七年级数学行程问题应用题汇总
初一行程问题应用题初一行程问题及答案
初一行程问题应用题初一行程问题及答案25. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
故可结合图形分析。
26. 甲乙两人在同一道路上从相距5千米的A、B两地同向而行,甲的速度为5千米/小时,乙的速度为3千米/小时,甲带着一只狗,当甲追乙时,狗先追上乙,再返回遇上甲,再返回追上乙,依次反复,直至甲追上乙为止,已知狗的速度为15千米/小时,求此过程中,狗跑的总路程是多少?27. 某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。
A、C两地之间的路程为10千米,求A、B两地之间的路程。
28.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.29.已知甲、乙两地相距120千米,乙的速度比甲每小时快1千米,甲先从A地出发2小时后,乙从B地出发,与甲相向而行经过10小时后相遇,求甲乙的速度?30.一队学生去军事训练,走到半路,队长有事要从队头通知到队尾,通讯员以18米/分的速度从队头至队尾又返回,已知队伍的行进速度为14米/分。
问: 若已知队长320米,则通讯员几分钟返回? 若已知通讯员用了25分钟,则队长为多少米?31.一架飞机在两个城市之间飞行,风速为24千米/小时,顺风飞行需要2小时50分,逆风飞行需要3小时,求两个城市之间的飞行路程?32.一轮船在甲、乙两码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流的速度为2千米/时,求甲、乙两码头之间的距离。
七年级数学配套应用题专项训练
七年级数学配套应用题专项训练一、行程问题1. 题目甲、乙两人从相距36千米的两地相向而行。
如果甲比乙先走2小时,那么他们在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么他们在甲出发后3小时相遇。
甲、乙两人每小时各走多少千米?解析设甲每小时走公式千米,乙每小时走公式千米。
当甲比乙先走2小时,甲先走的路程为公式千米,两人共同走的时间是公式小时,共同走的路程为公式千米,可得到方程公式。
当乙比甲先走2小时,乙先走的路程为公式千米,两人共同走的时间是3小时,共同走的路程为公式千米,可得到方程公式。
对第一个方程进行化简:公式,即公式,两边同时乘以2得到公式。
对第二个方程进行化简:公式,即公式。
用公式减去公式:公式公式公式,解得公式。
把公式代入公式,得到公式,公式,公式,解得公式。
2. 题目一艘船在两个码头之间航行,水流速度是3千米/小时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。
解析设船在静水中的速度为公式千米/小时。
顺水速度公式船在静水中的速度+水流速度,即公式千米/小时;逆水速度公式船在静水中的速度-水流速度,即公式千米/小时。
根据路程 = 速度×时间,且两个码头之间的距离不变。
顺水航行的路程为公式千米,逆水航行的路程为公式千米,则公式。
展开方程得公式。
移项可得公式,解得公式。
两码头之间的距离为公式千米。
二、工程问题1. 题目一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?解析把这项工程的工作量看作单位“1”。
甲单独做需要10天完成,则甲每天的工作效率为公式;乙单独做需要15天完成,则乙每天的工作效率为公式。
两人合作4天完成的工作量为公式。
先计算括号内的值:公式。
那么两人合作4天完成的工作量为公式。
剩下的工作量为公式。
乙单独完成剩下的工作量需要的时间为公式天。
2. 题目某工程,甲工程队单独做40天完成,若乙工程队单独做30天后,甲、乙两工程队再合作20天完成。
第三章一元一次方程微专题——应用题行程问题专练+2023—2024学年人教版数学七年级上册
人教版数学七年级上册第三章一元一次方程微专题——应用题行程问题专练1.列一元一次方程解应用题.从甲城到乙城,普通列车原来需行驶8个小时,开通高铁以后,路程缩短了80千米,车速平均每小时增加了180千米,结果只需3个小时即可到达.求甲乙两城之间开通高铁以后的路程.2.某船在静水中的速度是每小时8千米,水速是每小时2千米,这船从甲地到乙地,再从乙地回到甲地,共用8小时,求甲乙两地的距离.3.明明家和学校相距2300m,每天步行上学,有一天他正以每分钟80m的速度前进着,一抬头看见路边的钟表发现要迟到,他马上改用每分钟150m的速度跑步前进,途中共用20分钟,准时到达了学校.明明在离学校多远的地方开始跑步?4.甲车从A地开往B地,乙车从B地开往A地,两车同时出发,沿着A,B两地间的同一条笔直的公路匀速行驶,出发1小时后两车相距48千米,又过1小时,两车又相距48千米,且此时两车均未到达终点,求A,B两地间的距离.5.我国古代数学著作《九章算术》中记载以下问题:今有凫起南海,七日至北海;雁起北海,九日至南海,今凫雁俱起,问何日相逢?意思是:野鸭从南海起飞,7天飞到北海;大雁从北海起飞,9天飞到南海,野鸭与大雁从南海和北海同时起飞,经过几天相遇?请解决上述问题.6.一艘客船从A地出发到B地顺流行驶,用了2.5小时;从B地返回A地逆流行驶,用了3.5小时,已知水流的速度是4千米∕ 时,求客船在静水中的平均速度?7.在一条直线上顺次有A地,B地,C地.小明和小红分别从A地和B地同时出发前往C 地,小明慢跑,小红步行,且小明慢跑的速度比小红步行速度的2倍还多10米/分钟.他们出发5分钟时,小明到达B地.他们出发9分钟时,小明追上小红.(1)求小明慢跑的速度和小红步行速度分别是多少?(2)小明到达C地后休息了2分钟,沿原路以原速返回A地.当小红到达C地时,小明刚好到达B地.求B地与C地的距离是多少?8.为了打通城市和景区的交通线路,某市新修了高铁线路,使得两地总里程比原来缩短了29千米,高铁行驶速度比原来火车行驶速度的3倍还多9千米,原来的火车行完全程用时3小时,现在高铁用时50分钟,求开通后高铁的平均速度是多少千米/小时?9.一架飞机在A、B两地飞行,风速为15km/h,它从A地顺风飞往B地需12.5h,它逆风飞行同样的航线需13h.求(1)飞机无风时的平均速度;(2)两地之间的航程.10.一艘轮船以每小时40千米的速度从甲港开往乙港,行了全程的20%后,又行驶了1小时,这时未行路程与已行路程的比是3:1.甲乙两港相距多少千米?11.甲、乙两人分别从A,B两地同时出发、沿同一条路线相向匀速行驶,已知出发后3h 两人相遇.乙的速度比甲快20km/h、相遇后乙再经1h到达A地.(1)甲、乙两人的速度分别是多少?(2)甲、乙两人分别从A,B两地同时出发后,经过多长时间两人相距20km?12.一个自行车队进行训练,训练时所有队员都以30km/h的速度前进.突然,1号队员以50 km/h的速度独自行进,行进20 km后掉转车头,仍以50km/h的速度往回骑,直到与其他队员会合.1号队员从离队开始到与队员重新会合,经过了多长时间?13.某市实验中学学生步行到郊外旅游.七(1)班学生组成前队,步行速度为4千米/时,七(2)班学生组成后队,速度为6千米/时.前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米/时.(1)后队追上前队需要多长时间?(2)后队追上前队时间内,联络员走的路程是多少?14.列方程解答下题:甲、乙两人同时骑摩托车从相距160千米的两地相向而行,经过4小时相遇,甲每小时比乙慢6千米,甲、乙的速度分别是多少?15.小明家和小刚家相距28千米,两人约定见面,他们同时从家出发,小明的速度为8千米/时,小刚的速度为6千米/时,小明的爸爸在小明出发30分钟后发现小明忘了带东西,于是就以10千米/时的速度追赶小明,当小明和小刚相遇时,爸爸追上小明了吗?若没有追上,他要想追上小明,速度至少为多少.16.一列动车从甲站开往乙站,若动车以180千米/小时的速度行驶,能准时到达乙站,现在动车以160千米/小时的速度行驶了2小时后把速度提高到240千米/小时,也能准时到达乙站,求甲、乙两站之间的距离.17.一列货车和一列客车同时从相距504千米的两地相对开出,4.5小时相遇,客车每小时行64千米,货车每小时行多少千米?(列方程解答)18.当甲在60m赛跑中冲过终点线时,比乙领先10m,比丙领先20m.如果乙和丙按各自原来的速度继续冲向终点,那么当乙到达终点时,将比丙领先几米?19.甲、乙两人练习短距离赛跑,测得甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑2秒,那么几秒钟后甲可以追上乙?(列方程解应用题)20.已知甲码头在江的上游,乙码头在江的下游.一艘船在静水中每小时航行20千米,在水流速度为每小时4千米的江中,往返甲、乙两码头共用了12.5小时,求甲、乙两码头之间的距离.21.甲,乙两地相距162千米,甲地有一辆货车,速度为每小时48千米,乙地有一辆客车,速度为每小时60千米,求:(1)若两车同时相向而行,货车在路上耽误了半小时,多长时间可以相遇?(2)若两车相向而行,同时出发,多长时间两车相距54千米?22.(列方程解应用题)甲、乙两车自南向北行驶,甲车的速度是每小时48千米,乙车的速度是每小时72千米,甲车开出25分钟后,乙车开出,问几小时后乙车追上甲车?23.面对突然暴发的新型冠状病毒肺炎,全国人民情系灾区,捐资捐物.淳朴善良的山东寿光菜农们把自己种植的新鲜蔬菜捐献出来运往武汉灾区.已知寿光距武汉1090千米,甲车装满蔬菜从寿光出发开往武汉,行驶100千米后,乙车从武汉出发返回寿光,乙车出发6小时后与甲车相遇,若甲车每小时行驶的路程比乙车每小时行驶的路程少35千米,那么甲车平均每小时行驶多少千米⋅24.(列方程解应用题)一个通讯员骑摩托车要在规定的时间内把文件送到.他骑摩托车的速度是每小时36千米,结果早到20分钟,若每小时30千米,就迟到12分钟.求规定时间是多少?这段路程是多少?25.“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,行程中小张必经过小李家.(1)若两人同时出发,小张车速为18千米每小时,小李车速为12千米每小时,经过多少小时两人能相遇?(2)若小李的车速为10千米/时,小张提前20分钟出发,两人商定小李出发后半小时二人相遇,则小张的车速应为多少?26.甲、乙两人练习跑步,从同一地点同时同向出发,甲每分钟跑250米,乙每分钟跑200米,甲比乙早3分钟到达终点,求两人所跑的路程.27.小明和小丽分别从甲、乙两地相向而行,假设他们在行走过程中各自保持一定的速度不小变.如果两人同时出发,那么经过32分钟两人相遇;如果小丽先出发半小时,那么再经过13时两人相遇.如果小丽的速度是每小时4千米,问小明的速度是每小时多少千米?28.周末小明坐车从家里出发到大剧场听音乐,去时汽车的速度为40千米/小时,回来时因道路受阻,汽车必须绕道而行,因此比去时多走了8千米,虽然车速增加了5千米/小时,但比去时还多用了8分钟,求小明家距大剧场多远?29.小明参加了一场1000米的赛跑,他以6米/秒的速度跑了一段路程,又以5米/秒的速度跑完了其余的路程,一共花了3分钟,小明以6米/秒的速度跑了多少米?30.一列火车匀速通过一座1200米长的桥,从火车上桥到火车完全离开桥经历50秒,整列火车在桥上的时间为30秒,求火车的长度.。
七年级行程问题经典例题
第十讲行程问题分类例析主讲:何老师行程问题有相遇问题,追及问题,顺流、逆流问题,上坡、下坡问题等. 在运动形式上分直线运动及曲线运用(如环形跑道). 相遇问题是相向而行. 相遇距离为两运动物体的距离和. 追及问题是同向而行, 分慢的在快的前面或慢的先行若干时间, 快的再追及, S快S慢S追及距离. 顺逆流、顺风逆风、上下坡应注意运动方向,去时顺流,回时则为逆流.一、相遇问题例 1 :两地间的路程为360km,甲车从 A 地出发开往 B 地,每小时行72km;甲车出发25 分钟后,乙车从 B 地出发开往 A 地,每小时行使48km,两车相遇后,各自按原来速度继续行使,那么相遇以后,两车相距100km 时,甲车从出发开始共行驶了多少小时?分析:利用相遇问题的关系式(相遇距离为两运动物体的距离和)建立方程解答:设甲车共行使了xh,则乙车行使了(x 25)h. (如图1)60依题意,有72x+48 ( x 25)=360+100,60解得x=4.因此,甲车共行使了4h.说明:本题两车相向而行,相遇后继续行使100km,仍属相遇问题中的距离,望读者仔细体会.例2: 一架战斗机的贮油量最多够它在空中飞行 4.6h, 飞机出航时顺风飞行, 在静风中的速度是575km/h,风速25 km/h, 这架飞机最多能飞出多少千米就应返回?分析: 列方程求解行程问题中的顺风逆风问题.顺风中的速度=静风中速度+风速逆风中的速度=静风中速度- 风速解答:解法一:设这架飞机最远飞出xkm就应返回.依题意,有x x 4.6575 25 575 25解得:x=1320.答:这架飞机最远飞出1320km就应返回.解法二: 设飞机顺风飞行时间为th.依题意, 有(575+25)t=(575-25)(4.6-t),解得:t=2.2.(575+25)t=600 ×2.2=1320.答:这架飞机最远飞出1320km就应返回.说明:飞机顺风与逆风的平均速度是575km/h,则有2x 4.6,解得x=1322.5. 错误原因575在于飞机平均速度不是575km/h, 而是2x 2v顺v逆2 600 550 574(km/ h)x x v 顺v逆600 550v顺v逆例3: 甲、乙两人在一环城公路上骑自行车,环形公路长为42km,甲、乙两人的速度分别为21 km/h 、14 km/h.(1) 如果两人从公路的同一地点同时反向出发,那么经几小时后, 两人首次相遇?(2) 如果两人从公路的同一地点同时同向出发,那么出发后经几小时两人第二次相遇?分析: 这是环形跑道的行程问题.解答:(1) 设经过xh 两人首次相遇.依题意, 得(21+14)x=42,解得:x=1.2.因此, 经过 1.2 小时两人首次相遇.(3) 设经过xh 两人第二次相遇.依题意, 得21x-14x=42 ×2,解得:x=12.因此,经过12h两人第二次相遇.说明: 在封闭的环形跑道上同向运动属追及问题,反向运动属相遇问题.从同一地点出发,相遇时,追及路程或相隔路程就是环形道的周长,第二次相遇,追及路程为两圈的周长.有趣的行程问题【探究新知】例 1 、甲、乙二人分别从相距30 千米的两地同时出发相向而行,甲每小时走6 千米,乙每小时走4 千米,问:二人几小时后相遇?分析与解:出发时甲、乙二人相距30 千米,以后两人的距离每小时都缩短 6 +4=10(千米),即两人的速度的和(简称速度和),所以30 千米里有几个10 千米就是几小时相遇.30 ÷(6+4)=30÷10=3(小时)答:3 小时后两人相遇.本题是一个典型的相遇问题. 在相遇问题中有这样一个基本数量关系:路程=速度和×时间追及路程: 10+ 6=16(米) 速度差: 5- 4.5=0.5 (米) 追击时间: 16÷ 0.5=32 (秒) 甲跑了 5×32÷[ (10+6)× 2]=5 (圈) 答:甲跑了 5 圈。
初中数学行程问题类题目及答案(完美版)
行程问题归纳1 •小刚从家出发匀速步行去学校上学.几分钟后发现忘带数学作业,于是掉头原速返回并立即打电话给爸爸,挂断电话后爸爸立即匀速跑步去追小刚,同时小刚以原速的两倍匀速跑步回家,爸爸追上小刚后以原速的丄倍原路步行回家.由于时间关系小明拿到作业后同样以之2前跑步的速度赶往学校,并在从家岀发后23分钟到校(小刚被爸爸追上时交流时间忽略不计)・两人之间相距的路程y (米)与小刚从家出发到学榜的减柠射问r (0轴)问的函豹i A米关系如图所示,则小刚家到学校的路程为2960 X,【解答】解:由图可知,小刚和爸爸相遇后,到小刚爸爸回到家用时17- 15=2 (分钟),•••爸爸追上小刚后以原速的丄倍原路步行回家,2•••小刚打完电话到与爸爸相遇用的时间为1分钟,Y由于时间关系小明拿到作业后同样以之前跑步的速度赶往学校,•••小刚和爸爸相遇之后跑步的1分和爸爸2分钟上的路程是720米,•••小刚后来的速度为:1040 - 720=320 (米份钟)则小刚家到学校的路程为:1040+(23 - 17)×320=l040+6X320= 1040+1920=2960(•米), 故答案为:2960.2•已知A.B.C三地顺次在同一直线上,甲、乙两人均骑车从A地岀发,向C地匀速行驶.甲比乙早出发5分钟,甲到达B地并休息了2分钟后,乙追上了甲.甲.乙同时从B地以各自原速继续向C地行驶•当乙到达C地后,乙立即掉头并提速为原速的色倍按原路返回A4地,而甲也立即提速为原速的号■倍继续向C地行驶,到达C地就停止.若甲、乙间的距离y3(米)与甲出发的时间/(分)之间的函数关系如图所示,则下列说法①甲、乙提速前的速度分别为300米/分、400米/分;C两地相距7200米:③甲从A地到C地共用时2614 H甲乙两人刚开始的速度之差为:9∞÷ (23-14) =IOO (米/分),设甲刚开始的速度为X米/分,乙刚开始的速度为(x+100)米/分,IZV= (14-5)× (x+100),解得,X= 300,则丹IOo=400,即甲、乙提速前的速度分别为300米/分、400米/分.故①正确;A> B两地之间的距离为:300X12 = 3600 (米),A. (7两地之间的距离为:400× (23 - 5) =7200 (米),故②正确:•••当乙到达C地后,乙立即掉头并提速为原速的色倍按原路返回A地,而甲也立即提速4为原速的垒倍继续向C地行驶,3.•・后来乙的速度为:400×-∣-=5∞ (米/分),甲的速度为300×-⅛-=400 (米/分),•••甲从A地到C地共用时:23+(7200 - (23 - 2) X300)÷400=25^ (分钟),故③错误;4.∙.当甲到达C地时,乙距A地:7200- (25丄-23)×500=6075 (米),故④正确.4综上所述,正确的有①②④.3.尊老助老是中华民族的传统美徳,我校的小艾同学在今年元旦节前往家附近的敬老院,为老人们表演节目送上新年的祝福.当小艾同学到达敬老院时,发现拷音乐的U盘没有带,于是边打电话给爸爸边往家走,请爸爸能帮忙送来.3分钟后,爸爸在家找到了(/盘并立即前往敬老院,相遇后爸爸将U盘交给小艾,小艾立即耙速度提髙到之前的1.5倍跑回敬老院, 这时爸爸遇到了朋友,停下与朋友交谈了2分钟后,爸爸以原来的速度前往敬老院观看小艾的表演.爸爸与小艾的距离y (米)与小艾从敬老院出发的时间X (分)之间的关系如图所小艾的原来的速度为:180÷ (11-9)÷ 1.5=60 (米/分钟),爸爸的速度为:(990- 60×3)÷ (9 - 3) - 60=75 (米/分钟),9分钟的时候,小艾离敬老院的距离为:60X9=540 (米),小艾最后回到敬老院的时间为:9+540÷ (60X1.5) =15 (分钟),当小艾回到敬老院时,爸爸离敬老院还有:540- (15 - 11)×75=240 (米),故答案为:240.4•甲、乙分別骑摩托车同时沿同一条路线从A地岀发B地,已知爪B两地相距280亦,他们出发2小时的时候乙的摩托车坏了,乙立即开始修车,甲车继续行驶,当甲第一次与乙相遇时,乙还在修车,乙修好车继续按原速前往B地.乙到达B地5小时后,甲车到达B地.整4个过程中,两人均保持各自的速度匀速行驶,甲、乙两人相距的路程y(千米)与甲出发的时间X(小时)之间的关系如图所示,则当乙车修好时,甲车距B地的路程为130千米.【解答】解:Y甲车速度=—=40千米/时,T•••甲车走完全程时间=型=7小时,40•••乙车速度=40+ 5严! =70千米耐,7—4 4设乙车修了兀小时,由题意可得:70 ・40X丄殳=20, ∙∙∙x=工,4 4 4•••当乙车修好时,甲车距B地的路程=280-40× (2+2.) =I30千米,45.十一黄金周,小明和小亮乘甲车从沙坪坝出发,以一泄的速度匀速前往铁山坪体验“飞越丛林”・出发15分钟后,小明发现忘带身份证和钱包,便下车换乘乙车匀速回家去取(小明换车.取身份证和钱包的时间忽略不计),小亮仍乘甲车并以原速继续前行,小明回家取了身份证和钱包后,为节约时间,又立即乘乙车以原来速度的仝倍匀速按原路赶往铁山坪,由3于国庆期间车流量较大,在小明乘乙车以加速后的速度匀速赶往铁山坪期间,甲车恰好因故在途中持续堵塞了5分钟,结果乙车先到达目的地.甲、乙两车之间的距离y (千米)与乙车行驶时间X (小时)之间的部分图象如图所示,则乙车岀发—郑小时到达目的地.【解答】解:设甲车的速度为“千米/小时,乙车回家时即加=5, ∙'∙α=40, b=45, 设/小时两车相距3千米,(4)×45X∣=⅞÷3÷ (-∣-⅛) ×40,尸舒,6.小亮和妈妈从家岀发到长嘉汇观看国庆灯光秀,妈妈先出发,2分钟后小亮沿同一路线岀发去追妈妈,当小亮追上妈妈时发现相机落在途中了,妈妈立即返回找相机,小亮继续 前往长嘉汇,当小亮到达长嘉汇时,妈妈刚好找到了相机并立即前往长嘉汇(妈妈找相 所以家到长嘉汇的距离为:60X (18 - 2) =960 (米), 由(18・12=6分钟)可知妈妈返回找到相机行走路程为6X50=300 (米),此时设小亮在长嘉汇等妈妈的时间为f 分钟,由图象知小亮与妈妈会合所用时间为27 -18=9分钟可建立方程如下:60X (9 -/) +50X9—960- (600- 300),解得 /=5.5(分钟),•••小亮开始返回时,妈妈离家的距离为:50X (18+5.5 - 6X2) =575 (米)・设 a=Sm f b=9m (m>0),由图象得乙车行畔小时两边相碍千米, ×8ι机的时间不计),小亮在长嘉汇等了一会,没有等到妈妈,就沿同一路线返回接妈妈,最可知是小亮到达长嘉汇所经历的时间, (分)7•甲、乙两人开车分别从A、B两地同时岀发到AB之间的C地办事(A、B、C三地在一条直线上)已知甲出发0.5小时时发现忘给乙带重要文件,于是立刻返回A地,拿文件后马上向C地赶去(中间拿文件的时间忽略不计).乙得知情况后决泄先见到甲拿到文件再返回C 地办事.两人分别在C地用了10分钟办完事后各自回出发地.已知甲、乙的速度始终保持不变,两人之间的距离y (单位:千米)与甲出发的时间X (单位:小时)的部分数关系如图所示,则当甲办完事再次返回到A地时乙距B地50千米.【解答】解:乙的速度为:460- 360=100 (千米耐),甲的速度为:(460-370- 100X0.5)÷O.5=8O (千米/时),甲从出发到两人相遇所用时间为:(460-100)÷ (8O+146°4J(千米)•••A、C两地距离为:80× (3- D + (100 - 80)÷(^370360甲从A地到C地的时间为:220÷80=2.75 (小时),甲从出发到返回所需时间为十.75+⅛=护小时),当甲办完事再次返回到A地时,乙与B地的距离为「00X (f- 护=5° (米故答案为:50.&某周末,大海和大成两家人同时开车从国奥村岀发,以一泄的速度匀速前往渝北统景镇风景区参加蹦极勇敢者挑战.出发15分钟后,大海发现忘带身份证,便掉头以另一速度匀速回国奥村去取(大海掉头.取身份证的时间忽略不计),大成仍以原速继续前行.大海回家取了身份证后,立即以返回速度畤倍匀速按原路赶往统景镇,在大海以加速后的速度匀速赶往统景镇期间,大成在途中TB伽司的距离【解答】解:设两家出发时,速度是“千米/小时,大海返回国奥村时速度是b 千米/小时, 由图象得:~~y t=("~~609"=8b, — z>^∙∙b 9(∕n>0)>设X 小时,两车的距离是辿千米,9根据题意得:45X 空任丄)=込40 (厂丄)Q, f=53,312 ; 3 12 9 36则国奥村与统景镇相距:(⅛-⅛) × 45X4=60 (千米),36 3639•暑假假期,小明和小亮两家相约自驾车从重庆出发前往相距172千米的景区游玩两家人同时同地出发,以各自的速度匀速行驶,出发一段时间后,小明家因故停下来休息了 15分钟, 为了尽快追上小亮家,小明家提高速度后仍保持匀速行驶(加速的时间忽略不讣),小明家小亮的速度为:-^^=80 (千米/小时),^60^•••小明家的速度是90千米/小时,设小明加速后的速度为m 千米/小时, 根据题意得: —36 ^ 6O )⅛-⅛- ⅛⅛ 4,9Ir=V追上小亮家后以提髙后的速度直到景区,小亮家保持原速,如图是小明家、小亮家两车之间×8O= (-51- 1.05)加+0.8X90,20 20加=IoO, lf,2-0. 8×90 , k05f =O l(小时),=6 (分),80 100即小明家比小亮家早到景区6分钟.10•华师大一附中是各地中学生游学的向往之地,现有一组游学小分队从武汉站下车,计划骑自行车从武汉站到华中师大一附中,出发一段时间后,发现有贵重物品落在了武汉站,于是安排小李骑自行车以原速返回,剩下的成员速度不变向华中师大一附中前进.小李取回物后,改乘出租车追赶车队(取物品、等车时间忽略不计),小李在追赶上自行车队后仍乘坐出租车•再行驶10分钟后遭遇堵车,在此期间,自行车队反超出租车・拥堵30分钟后交通恢复正常,出租车以原速开往华中师大一附中,最终出租车和自行车队同时到达设自行车队和小李行驶时间为t分钟,与武汉站距禽5千米,S与/ AX kt m相遇到出租车堵车结朿,经过了22.5分钟.【解答】解:自行车速度8÷30=^ (千米/分钟), 15自行车到达终点用时为:20÷县=75 (分钟),15出租车到达洪崖洞用时75 - 3O- 30=15 (分钟);出租车速度20÷15=寻(千米/分钟),设自行车出发X分钟第一次相遇,根据题意得寻∙2Z∙∣∙(∕-30)'解得= 37.5’设第二次相遇时间为y,则(37. 5+10-30),15 3解得y=52.5, 75 - 52 - 5=22.5 (分钟)・所以第二次相遇后,出租车还经过了22.5分钟到达.。
初一行程问题及解答
初一行程问题及解答1.轮船在两个码头之间航行,顺水航行需要4小时,逆水行驶需要5小时,水流的速度是2千米/时,求轮船在静水中的行驶速度用方程解应用题2.甲,乙两站相距360千米,一列慢车从甲站开出,每小时行驶48千米;一列快车从乙站开出,每小时行驶72千米,慢车先开出25分钟,两车相向而行,慢车开几小时与快车相遇用方程解应用题3.一个人从甲村走到乙村.如果他每小时走4千米,那么走到预定的时间,离乙村还有0.5千米;如果他每小时走5千米,那么比一定时间少用半小时就可以到达乙村.求预定时间是多少小时,甲村到一寸的路程是多少千米用方程解应用题4.一个自行车队进行训练,训练时所有队员都以35千米/小时的速度前进,突然一号队员以45千米/小时的速度独自行进,行进10千米后调转车头,仍以45千米/小时的速度往回骑,直到与其他队员会和.一号队员从离队开始到与队员重新会和,经过多长时间用方程解应用题5.某人骑自行车以每小时10千米的速度从甲地到乙地,返回时因事绕道而行,比去时多走8千米的路.虽然行车的速度增加到每小时12千米,但比去时还多用了10分钟.求甲、乙两地的距离.6.甲、乙两站相距380km,一列慢车从甲站开出,每小时行驶48km,一列快车从乙站开出,每小时行驶72km,慢车先开25分钟.两车相向而行,慢车开出多长时间后与快车相遇7.一队学生从学校出发去部队军训,行进速度是5千米/时,走了45千米时,一名通讯员按原路返回学校报信,然后他随即追赶队伍,通讯员的速度是14千米/时,他距部队6千米处追上队伍.问学校到部队的距离是多少8.某人原计划骑车以每小时12千米的速度由A第到B地,这样便可在规定的时间到达,但他因有事将原计划出发的时间推迟了20分钟,只好以每小时15千米的速度前进,结果比规定的时间早4分钟到B地,求AB两地距离.9.甲、乙两列火车相向而行,甲列车每小时行驶60千米,车长150米;乙列车每小时行驶75千米,车长120米.两车从车头相遇到车尾相离需多少时间10.矿山爆破为了确保安全,点燃引火线后人要在爆破前转移到3000米以外的安全地带,引火线燃烧的速度是0.8厘米每秒,人离开的速度是5米/秒,问引火线至少需要多少厘米11.甲,乙两人相距22.5千米,且分别以2.5km/h相向而行,同时甲所带的小狗以每小时7.5千米的速度奔向乙,小狗遇乙后立即回头奔向甲,遇甲后又奔向乙,……直到甲乙相遇,求小狗所走的路程.12.育红学校七年级的学生步行到郊区野营,一班的学生组成前队,步行速度为4千米/小时,二班的学生组成后队,速度为6千米/小时,前队出发一小时后后队才出发,,同时后队派一名联络员骑自行车在两队之间不断的来回联络,他骑自行车的速度为12千米/小时,问联络员骑了多少路答案1.设轮船静水中速度为X则x+24=x-25 得X=182.设为X小时相遇则72x+2548/60+48x=360 得X3.设预定时间为X4x+0.5=5x-0.5 得X甲乙距离:4x+0.54.设X则35x+x-10/4545=105.设甲乙两地的距离为x千米则:x/10=x+8/12-1/66x=5x+8-10x=30 所以甲乙两地之间的距离为30千米6.设慢车开出X小时后与快车相遇,则 48X+72X-25/60=380 X=41/127.设学校到部队的距离是X千米,则 X-6-45/514=X-6+45 X=1018.设AB两地距是X千米,则 X/12=X/15+20/60+4/60 X=249.设需X小时,则 60+75X=150+120/1000 X=0.00210.设需要X厘米,则 X/0.8=3000/5 X=48011.设小狗所走的路程为X千米,则 X/7.5=22.5/2.52 X=33.7512.设二班追上一班用了x小时,得:4x+1=6x13.解,得:x=2 联络员骑的路程为212=24千米。
期末专训:一元一次方程应用题(行程问题)2023-2024学年人教版数学+七年级上册+
人教版数学2023-2024学年七年级上册期末专训一元一次方程应用题(行程问题)1.甲、乙两人练习短跑,甲每秒跑7m,乙每秒跑6.5m.(1)如果甲让乙先跑5m,那么甲追上乙需要多长时间?(2)如果甲让乙先跑1s,那么甲追上乙需要多长时间?(3)如果两人比赛百米短跑,甲让乙先跑0.5s,甲是否可以在终点前追上乙?2.某客运公司的甲、乙两辆客车分别从相距380千米的A,B两地同时出发相向而行,并以各自的速度匀速行驶,两车行驶2小时时甲车先到达服务区C地,此时两车相距20千米,甲车在服务区C地休息了20分钟,然后按原速度开往B地;乙车行驶2小时10分钟时也经过C地,未停留继续开往A地.(1)求甲、乙两车行驶的速度分别是多少千米/小时:(2)乙车出发多长时间,两车相距200千米?3.甲、乙两地相距2240km、复兴号高铁从甲地出发,平均每小时行320km;和谐号动车从乙地出发,平均每小时行240km.6.如图,M,N两地相距50千米,甲、乙两人于某日下午从M地前往N地,图中的折线ABC和线段EF分别表示甲与乙所行驶的路程s和时间t的关系.根据图象回答下列问题:(1)甲出发小时后,乙才开始出发;(2)甲在BC段路程中的平均速度是千米/小时;乙的平均速度是千米/小时;(3)乙出发后经过几小时就追上甲?7.(列方程解答)2023年10月18日至22日,中国体育彩票亚洲青年攀岩锦标赛在九龙坡区华岩壁虎国家攀岩示范公园(下简称攀岩公园)举行,来自亚洲各国的百余名运动员参加了比赛.10月19日,小刘从家出发以3km/h的速度沿A路线匀速步行前往攀岩回家.已知A路线比B路线的路程多1km,且小刘从家出发起到回到家止总计用时3.5小时.(1)求B路线路程是多少千米?(2)10月20日,小刘与小王相约去攀岩公园观赛.小刘以5km/h的速度沿B路线匀速步行前往,小王比小刘晚出发6分钟,以3km/h的速度匀速步行前往,结果两人同时到达,求小王去攀岩公园行走的路程是多少千米?8.小明离家去市中心的体育馆看球赛,进场时发现门票忘在家中,此时离比赛开始还有45分钟,于是他立即步行(匀速)回家取票.在家取票用时2分钟,取到票后,他急忙骑自行车(匀速)赶往体育馆,终于在比赛开始前3分钟赶到体育馆门口,已知小明步行的速度是80米/分,骑自行车的速度是步行速度的3倍.你知道小明家离体育馆多远吗?9.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示12,点B表示10,点C表示20,我们称点A和点C在数轴上相距32个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B 期间速度变为原来的一半,之后立刻恢复原速,当点P到终点C时停止运动:点P出发同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到运动的时间为t 秒,问:(1)3t 秒时,点P 在“折线数轴”上所对应的数是______;点P 到点Q 的距离是______个单位长度:(2)动点Q 从点C 运动至A 点需要______秒;(3)当t 为______时,P Q 、两点在数轴上相距的长度为3个单位?(4)如果动点P O 、两点在数轴上相距的长度与Q B 、两点在数轴上相距的长度相等,直接写出求出t 的值______.10.陈老师用电动车从学校门口送两位同学甲和乙到图书馆参加书法比赛,图书馆距离学校10千米,此时离比赛开始只剩1小时,甲和乙的步行速度均为5千米/时,用电动车一次只能送一个人,电动车的速度是20千米/时,(1)若陈老师先把甲送到图书馆,再回头接乙,乙一直在学校门口等老师来接,那么陈老师把两位同学都送到图书馆一共用______小时;(2)为了能尽快到达图书馆,甲乙两人商定,由甲先乘坐老师的电动车去,乙先步行,同时出发,陈老师将甲送达图书馆,立刻回头接乙,甲乙都能在比赛前到达图书馆吗? (3)为了使两位同学都能在比赛前到达图书馆,请你帮他们设计一种方案,使得两人都到达图书馆所用的时间最少,并计算出最短时间.13.某学校七年级学生组织步行到郊外旅行,701班学生组成前队,速度为每小时4千米, 702班同学组成后队,速度为每小时6千米,前队出发1小时后,后队才出发,同时,后队派出一名联络员骑自行车在两队之间不断地来回进行联络,骑车的速度是每小时12千米(队伍长度忽略不计).(1)后队出发后多长时间可以追上前队?(2)后队刚好追上前队时,联络员共骑行了多少千米?(3)联络员出发到他第一次追上前队的过程中,何时联络员离前队的距离与他离后队的距离相等?14.M N 、两地相距600km ,甲、乙两车分别从M N 、两地出发,沿一条公路匀速相向而行,甲与乙的速度分别为100km /h 和20km /h ,甲从M 地出发,到达N 地立刻调头返回M 地,并在M 地停留等待乙车抵达,乙从N 地出发前往M 地,和甲车会合.(1)求两车第一次相遇的时间(用一元一次方程解答);(2)直接写出甲车出发多长时间,两车相距20km .15.在全民健身运动中,骑自行车越来越受到市民青睐,从A地到B地有一条自行车骑行车道.小明从A地出发骑行去B地,小军从B地出发骑行去A地.(1)小明和小军相约在上午8时同时从各自出发地出发,匀速前行,到上午10时,他们还相距30km,到中午12时,两人又相距30km.求A、B两地间的自行车道的距离.(2)因骑自行车的市民越来越多,政府决定重新改建一条自行车道,改建的自行车道比A、B两地的距离多30km,某工程队由于采用了更加先进的修路技术和修路机器,每天可以比原计划的改建里程多20%,结果完成此项修路工程比原计划少用了5天.若每天付给工程队的施工费用为4万元,则完成工程后,一共付给工程队的费用是多少?参考答案:1.(1)甲追上乙需要10秒(2)甲追上乙需要13秒(3)甲可以在终点前追上乙2.(1)60千米/时,120千米/时(2)1或103小时3.(1)若两车同时相向出发,4小时后相遇(2)若两车同时相向出发,出发后3小时或5小时两车相距560km(3)两车同时同向出发,和谐号动车在前复兴号高铁在后,28小时后两车相遇4.(1)外环公路的总长和市区公路长的比为6:5(2)市区公路的长为10km5.(1)经过2小时两人相遇.(2)127或167小时后两人相距10千米.6.(1)1(2)10;50(3)乙出发后经过0.5小时就追上甲7.(1)2(2)9 108.小明家离体育馆2400米. 9.(1)6 ;23;(2)27;(3)11或13秒;。
七年级应用题
一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,求甲、乙两地相距多少千米2、某人从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?4、甲、乙骑自行车同时从相距65千米的两地相向而行,2小时相遇.甲比乙每小时多骑2.5千米,求甲、乙的时速各是多少?6、一条环行跑道长400米,甲每分钟行550米,乙每分钟行250米.(1)甲、乙两人同时同地反向出发,问多少分钟后他们再相遇?(2)甲、乙两人同时同地同向出发,问多少分钟后他们再相遇?7、甲、乙两人分别在相距50千米的地方同向而行,乙在甲的前面,甲每小时走16千米,乙每小时走18千米,如果乙先走1小时,求甲走多少小时后相人相距70千米?8、通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;如果每小时走12千米,则要迟到15分钟。
求通讯员到达某地的路程是多少千米?和原定的时间为多少小时?9、甲、乙两人在400米长的环形跑道上跑步,甲分钟跑240米,乙每分钟跑200米,二人同时同地同向出发,几分钟后二人相遇?若背向跑,几分钟后相遇?10、甲、乙两人驾车分别从A、B两地同时出发,相向而行,在C出相遇后继续前进,甲到B地、乙到A地后立即返回,在D处第二次相遇,已知C、D相距36km,并且乙的速度是甲的,求A、B两地的路程。
(完整版)七年级数学应用题专题---行程问题【精】整理版
行程问题1:甲、乙两地相距416千米,一辆汽车从甲地开往乙地,每小时行32千米,汽车开出半小时后,一辆摩托车从乙地开往甲地,速度是汽车的1.5倍,问摩托车开出几小时后才能与汽车相遇?2:甲、乙两人相距80千米,甲骑自行车每小时行20千米,乙骑摩托车每小时行60千米,摩托车在自行车后面,两人同时出发,同向行驶,问乙经过多少时间追上甲。
3:一只轮船,在甲、乙两地之间航行,顺水用8小时,逆水比顺水多30分钟,已知轮船在静水中速度是每小时26千米,求水流的速度。
4:自行车环城赛,一圈12千米,已知甲的速度是乙的5/7,两人同时同地出发后2小时30分相遇,问乙比甲每分钟快多少千米?5:一条山路,从山下到山顶,走了1小时还差1千米,从山顶到册下,50分钟可以走完,已知下山速度是上山速度的1.5倍,上山、下山每小时各走了多少千米?这条山路有多少千米?6:一架飞机在两个城市之间飞行,顺风时需要5小时30分钟,逆风时需要6小时,已知风速是每小时24千米,求两城市之间的距离?7:甲、乙两人骑自行车从相距75千米的两地相向而行,3小时后相遇,若甲比乙每小时多走2千米,求甲、乙的速度及各自所走的距离?8:一条环形跑道长400米,甲骑车,平均速度为550米/分,乙跑步平均速度为250米/分。
⑴两人同时同向从同地出发经过多少分钟两人再相遇。
⑵两人同时同地背向出发经过多少分钟相遇?9:甲、乙两人沿一公路自西向东前进,速度分别为3千米/小时和5千米/小时,甲于中午12时经过A地,乙于下午2时经过A地,则乙追上甲时离A地多远10:若敌我相距15千米,且敌军于1小时前以每小时4千米的速度逃跑,现我军以每小时7千米的速度追击,问几小时可以追上?11:甲骑自行车从A地出发,以每小时12千米的速度驶向B地,经过15分钟后,乙骑自行车从B地出发,以每小时14千米的速度驶向A地,两人相遇时,乙已超过中点1.5千米,求A、B两地距离。
12:一个学生用每小时5千米的速度前进,可以及时从家里返回学校,走了全程度的1/3,他搭上了速度是每小时20千米的公共汽车,因此比规定时间早2小时到达学校。
行程问题应用题及答案
行程问题应用题及答案行程问题应用题及答案行程问题一直是数学应用题的必考点,那么,下面是小编给大家整理收集的行程问题应用题及答案,内容仅供参考。
行程问题应用题及答案一1、羊跑5步的时间马跑3步,马跑4步的距离羊跑7步,现在羊已跑出30米,马开始追它。
问:羊再跑多远,马可以追上它?2、甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?3、在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?4、慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?5、在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?6、一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)7、猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。
8、AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?9、甲乙两车同时从AB两地相对开出。
第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。
第二次相遇时离B地的距离是AB全程的1/5。
七年级上册数学解方程应用题
七年级上册数学解方程应用题一、行程问题。
1. 甲、乙两人相距285米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,如果甲先走12米,那么甲出发几秒与乙相遇?- 解析:- 设甲出发t秒与乙相遇。
- 甲先走12米后,两人共同走的路程为(285 - 12)米。
- 甲的速度是每秒8米,乙的速度是每秒6米,根据路程 = 速度和×时间,可列方程(8 + 6)t=285 - 12。
- 化简得14t = 273,解得t=(273)/(14)=19.5秒。
2. 一辆汽车从A地到B地,若每小时行45千米,就要比原计划晚0.5小时到达;若每小时行50千米,就可比原计划提前0.5小时到达。
求A、B两地的距离。
- 解析:- 设原计划用x小时到达。
- 根据路程相等,可列方程45(x + 0.5)=50(x - 0.5)。
- 展开括号得45x+22.5 = 50x - 25。
- 移项得50x - 45x=22.5 + 25。
- 合并同类项得5x = 47.5,解得x = 9.5小时。
- 那么A、B两地的距离为50×(9.5 - 0.5)=450千米。
二、工程问题。
3. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?- 解析:- 设还需要x天完成。
- 把这项工程的工作量看作单位“1”,甲的工作效率是(1)/(10),乙的工作效率是(1)/(15)。
- 两人合作4天的工作量为((1)/(10)+(1)/(15))×4,乙单独做x天的工作量为(1)/(15)x,可列方程((1)/(10)+(1)/(15))×4+(1)/(15)x = 1。
- 先计算((1)/(10)+(1)/(15))×4=((3 + 2)/(30))×4=(2)/(3)。
- 方程变为(2)/(3)+(1)/(15)x=1,移项得(1)/(15)x = 1-(2)/(3),(1)/(15)x=(1)/(3),解得x = 5天。
七年级行程问题典型例题
七年级行程问题典型例题
例题:一个边长为100米的正方形跑道,甲、乙两人分别在跑道相对的两个顶点逆时针同时起跑.甲的速度是每秒7米,乙的速度是每秒5米,他们在转变处都要耽误5秒.当甲第1次追上乙时,乙跑了多少米? 解析:假设乙在某顶点刚休息完,正准备跑时,甲到达该顶点(追上乙).此时,乙比甲恰好多休息1次.设甲纯跑步时间为t1秒,则乙纯跑步时间为(t1+5)秒.根据甲比乙多跑200米,可得方程7t1-5(t1+5)=200解得t1=112.5秒.
甲跑一条边需秒,而112.5不是的倍数,所以这种情况不成立.
再假设甲在某一边上而不是某一顶点上追上乙,那么甲比乙恰好多休息2次.设甲纯跑步时间为t3秒,则乙纯跑步时间为(t3+10)秒.根据甲比乙多跑200米,可得方程
7t3-5(t3+10)=200,解得t3=125(秒).因为在t1=112.5与t3=125之间,=是的整数倍,所以当甲纯跑步时间为t2=秒时,甲第1次追上乙.此时乙跑了7×-200=600米.。
7年级行程问题
行程问题1、相遇问题:甲、乙相向而行:甲走的路程+乙走的路程=总路程2、追及问题:甲、乙同向不同地:追者走的路程=前者走的路程+两地间的距离3、环形跑道问题:(1)甲、乙两人在环形跑道上同时同地同向出发,快的必须多跑一圈才追上慢的。
(2)甲、乙两人在环形跑道上同时同地反向出发,两人第一次相遇跑的总路程=环形跑道一圈的长度。
4、飞行问题:基本等量关系:顺风速度= 无风速度+ 风速逆风速度= 无风速度-风速顺风速度-逆风速度= 风速×25、航行问题:基本等量关系:顺水速度= 静水速度+ 水速逆水速度= 静水速度-水速顺水速度-逆水速度=水速×2典型例题:(1)相遇问题:1、甲、乙两站间的路程为360千米,一列慢车从甲站开出,每小时行48千米,一列快车从乙站开出,每小时行72千米,已知快车先开25分钟,两车相向而行,慢车行驶多少时间两车相遇?2、A、B两地相距150千米。
一辆汽车以每小时50千米的速度从A地出发,另一辆汽车以每小时40千米的速度从B地出发,两车同时出发,相向而行,问经过几小时,两车相距30千米?(2)追及问题:1、甲从A地以6千米/小时的速度向B地行走,40分钟后,乙从A地以8千米/小时的速度追甲,结果在甲离B地还有5千米的地方追上了甲,求A、B两地的距离。
2、甲、乙两车都从A地开往B地,甲车每小时行40千米,乙车每小时行50千米,甲车出发半小时后,乙车出发,问乙车几小时可追上甲车?(3)航行问题:1、一轮船从甲码头顺流而下到达乙码头需要8小时,逆流返回需要12小时,已知水流速度是3千米/小时,求甲、乙两码头的距离。
2、甲乙两港相距120千米,A、B两船从甲乙两港相向而行6小时相遇。
A船顺水,B船逆水。
相遇时A船比B船多行走49千米,水流速度是每小时15千米,求A、B两船的静水速度。
3、一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的航速和两城之间的航程?(4)过桥问题:1、一列火车以每分钟1千米的速度通过一座长400米的桥,用了半分钟,则火车本身的长度为多少米?(5)隧道问题:1、火车用26秒的时间通过一个长256米的隧道(即从车头进入入口到车尾离开出口),这列火车又以16秒的时间通过了长96米的隧道,求列车的长度。
2024年七年级上册数学应用题
2024年七年级上册数学应用题一、行程问题。
1. 甲、乙两人从相距20千米的两地同时出发,相向而行,甲每小时走6千米,乙每小时走4千米,几小时后两人相遇?- 解析:设x小时后两人相遇。
根据路程 = 速度和×时间,可列方程(6 + 4)x=20,即10x = 20,解得x = 2。
所以2小时后两人相遇。
2. 一辆汽车以每小时60千米的速度从A地开往B地,3小时后到达。
返回时速度为每小时45千米,求汽车往返的平均速度。
- 解析:A地到B地的距离为60×3 = 180千米。
返回时所用时间为180÷45=4小时。
往返总路程为180×2 = 360千米,总时间为3 + 4=7小时。
则平均速度为360÷7=(360)/(7)≈51.43千米/小时。
3. 甲、乙两人在环形跑道上跑步,甲每分钟跑200米,乙每分钟跑160米,两人同时同地同向出发,经过40分钟甲第一次追上乙。
求环形跑道的周长。
- 解析:甲每分钟比乙多跑200 - 160 = 40米,40分钟甲比乙多跑了一圈,即环形跑道的周长。
所以周长为40×40 = 1600米。
二、工程问题。
4. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要多少天完成?- 解析:设两人合作需要x天完成。
把这项工程的工作量看作单位“1”,甲的工作效率是(1)/(10),乙的工作效率是(1)/(15)。
根据工作量=工作效率和×工作时间,可列方程((1)/(10)+(1)/(15))x = 1,通分得到((3)/(30)+(2)/(30))x=1,即(1)/(6)x = 1,解得x = 6。
所以两人合作需要6天完成。
5. 某工程队修一条路,原计划每天修400米,25天完成,实际每天修500米,实际多少天可以完成?- 解析:这条路的总长度为400×25 = 10000米。
实际每天修500米,那么实际完成天数为10000÷500 = 20天。
七年级上册数学题应用题
七年级上册数学题应用题一、行程问题1. 甲、乙两人从相距20千米的两地同时出发,相向而行,甲每小时走6千米,乙每小时走4千米,几小时后两人相遇?解析:设小时后两人相遇。
根据路程 = 速度×时间,甲走的路程为千米,乙走的路程为千米。
由于两人是相向而行,总路程为20千米,所以可列方程。
合并同类项得,解得。
2. 一艘轮船在两个码头间航行,顺水航行需4小时,逆水航行需5小时,水流速度为2千米/时,求轮船在静水中的速度。
解析:设轮船在静水中的速度为千米/时。
顺水速度 = 静水速度+水流速度,即千米/时;逆水速度=静水速度 - 水流速度,即千米/时。
根据两个码头间的距离不变,可列方程。
去括号得,移项得,合并同类项得,解得。
二、工程问题1. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?解析:把这项工程的工作量看作单位“1”。
甲的工作效率为,乙的工作效率为。
两人合作4天的工作量为。
剩下的工作量为。
乙单独完成剩下部分需要的时间为天。
2. 某工程队承建一项工程,要用12天完成。
如果只让其中的甲、乙两个小队交换一下工作内容,那么全工程就要推迟3天完成;如果让其中甲、乙两个小队交换一下工作内容的同时,也让丙、丁两个小队交换工作内容,仍然可以按期完成全工程。
如果只让丙、丁两个小队交换工作内容,那么可以使全工程提前几天完成?解析:设甲、乙、丙、丁的工作效率分别为、、、。
正常情况下工作效率为。
甲、乙交换工作内容后,工作效率为。
两式相减可得,即(这里说明甲、乙交换工作内容后效率降低了)。
当甲、乙交换且丙、丁交换时能按期完成,说明丙、丁交换后弥补了甲、乙交换带来的效率降低。
设丙、丁交换工作内容后,全工程需要天完成,则,因为且,所以丙、丁交换工作内容后效率提高了。
如果只让丙、丁交换工作内容,工作效率变为,所以需要10天完成,提前天。
三、销售问题1. 某商品的进价为200元,标价为300元,折价销售时的利润率为5%,求此商品是按几折销售的?解析:设此商品是按折销售的。
(完整)七年级数学行程问题(整理)
行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:简单行程:路程=速度×时间相遇问题:路程和=速度和×时间追击问题:路程差=速度差×时间流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2甲、乙两人分别从相距100 米的 A 、B 两地出发,相向而行,其中甲的速度是 2 米每秒,乙的速度是 3 米每秒。
一只狗从 A 地出发,先以 6 米每秒的速度奔向乙,碰到乙后再掉头冲向甲,碰到甲之后再跑向乙,如此反复,直到甲、乙两人相遇。
问在此过程中狗一共跑了多少米?1.甲、已两个车站相距168千米,一列慢车从甲站开出,速度为36千米/小时,一列快车从乙站开出,速度为48千米/小时。
(1)两列火车同时开出,相向而行,多少小时相遇?(2)慢车先开1小时,相向而行,快车开几小时与慢车相遇?2.甲、乙两人从同地出发前往某地。
甲步行,每小时走4公里,甲走了16公里后,乙骑自行车以每小时12公里的速度追赶甲,问乙出发后,几小时能追上甲?3.甲、乙两人练习50米短距离赛跑,甲每秒钟跑7米,乙每秒钟跑6.5米。
(1)几秒后,甲在乙前面2米?(2)如果甲让乙先跑4米,几秒可追上乙?4甲、乙两人在400米的环行形跑道上练习跑步,甲每秒跑5.5米,乙每秒跑4.5米。
a)乙先跑10米,甲再和乙同地、同向出发,还要多长时间首次相遇?b)乙先跑10米,甲再和乙同地,背向出发,还要多长时间首次相遇?c)甲、乙同时同地同向出发,经过多长时间二人首次相遇?d)甲先跑10米,乙再和甲同地、同向出发,还要多长时间首次相遇?5、一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?6、甲、乙两人在一条长400米的环形跑道上跑步,如果同向跑,每隔133分钟相遇一次,,如果反向跑,则每隔40秒相遇一次,已知甲比乙跑的快,求甲、乙两人的速度?7、甲、乙两人骑自行车,同时从相距65千米两地相向而行,甲的速度为17.5千米每小时,乙的速度为15千米每小时,经过了几小时两人相距32.5千米?1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
七年级上册数学应用题专项训练
七年级上册数学应用题专项训练一、行程问题1. 甲、乙两人从相距240米的两地同时相向而行,甲每分钟走34米,乙每分钟走26米,从出发到两人相遇后又相距60米,要用几分钟?解析:首先明确两人从出发到相遇后又相距60米时,两人一共走的路程是公式米。
甲每分钟走34米,乙每分钟走26米,那么两人的速度和是公式米/分钟。
根据时间 = 路程÷速度,可得时间为公式分钟。
2. 一辆汽车以每小时60千米的速度从甲地开往乙地,4小时到达;若返回时每小时行驶80千米,几小时可以返回甲地?解析:根据路程 = 速度×时间,从甲地开往乙地的速度是每小时60千米,时间是4小时,所以甲乙两地的距离为公式千米。
返回时速度为每小时80千米,那么返回的时间为公式小时。
二、工程问题1. 一项工程,甲单独做8天完成,乙单独做12天完成。
现在甲、乙合作3天后,剩下的由乙单独做,还需几天完成?解析:把这项工程的工作量看作单位“1”。
甲单独做8天完成,则甲每天的工作效率是公式;乙单独做12天完成,则乙每天的工作效率是公式。
甲、乙合作3天完成的工作量为公式先算括号里的公式。
再乘以3得到公式。
剩下的工作量为公式。
乙单独做需要的时间为公式天。
2. 一个水池有甲、乙两个进水管,单开甲管6小时注满水池,单开乙管8小时注满水池。
如果甲、乙两管同时开,几小时可以注满水池的公式?解析:把水池的容积看作单位“1”。
甲管每小时的注水量是公式,乙管每小时的注水量是公式。
甲、乙两管同时开每小时的注水量为公式。
注满水池的公式需要的时间为公式小时。
三、销售问题1. 某商品的进价是2000元,标价为3000元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?解析:首先算出利润为公式元。
那么最低售价应该是公式元。
设打公式折,根据标价×折扣=售价,可得公式。
解方程公式,得公式,所以最低可以打7折。
2. 一种商品每件成本公式元,原来按成本增加22%定出价格,每件售价多少元?现在由于库存积压减价,按原价的85%出售,现售价多少元?每件还能盈利多少元?解析:原来按成本增加22%定出价格,则每件售价为公式元。
人教版七年级上册数学 第三章 一元一次方程 应用题 行程问题 专题训练
人教版七年级上册数学一元一次方程应用题行程问题专题训练二期工程完成后每月将产生不少于1300吨污水.(1)请你计算每台甲型设备和每台乙型设备的价格各是多少元;(2)请你求出用于二期工程的污水处理设备的所有购买方案.6.推进农村土地集约式管理,提高土地的使用效率,是新农村建设的一项重要举措.庐江县某村在小城镇建设中集约了1000亩土地,经投标,由甲工程队每天平可平整土地30亩,乙工程队每天可平整土地25亩,甲乙两工程队每天的工程费合计为4200元,而且甲工程队11天所需工程费与乙工程队10天所需工程费刚好相同.(1)甲乙两工程队每天各需工程费多少元?(2)现由甲乙两工人队共同参与土地平整,已知两个工程队工作天数均为正整数,且所有土地刚好平整完,总费用不超过76万元,有几种方案,并求出最低费用.7.如图,长方形PQMN是由六个正方形A,B,C,D,E,F拼接而成,已知最大的正方形B的边长是21米,最小正方形A的边长是a米.(1)用含a的式子分别表示正方形C,E,F的边长;(2)求a的值;(3)现有一项沿着长方形PQMN的四条边铺设管道的工程.甲、乙两个工程队共同参与这项工程,甲队单独铺设3天后,乙队加入,两队又共同铺设了6天,这项铺设管道的工程全部完成.已知甲队每天比乙队每天少铺设4米,则甲、乙两队每天各铺设多少米?8.为了扎实落实脱贫攻坚中“两不愁,三保障”的住房保障工作,花桥街道进行住房改造工程,有甲乙两个工程队加入住房改造中来,如果由甲工程队单独做需要30天完成,如果由乙工程队单独做需要20天完成.(1)甲乙两个工程队合作,完成这项工程需要几天?(2)甲工程队先单独做6天,因特殊事情离开,余下的乙工程队单独做,为了使人民能够更快住上于净漂亮的房屋,要求乙工程队提高一倍的工作效率来完成房屋改造工程,问乙工程队完成此项工程还需要几天?9.某中学举行校运会,初一(1)班同学准备用卡纸制成乒乓球拍和小旗作道具.若一张卡纸可以做3个球拍或6面小旗,用21张卡纸,刚好能够让每位同学拿一个球拍和一面小旗.(1)应用多少张卡纸做球拍,多少张卡纸做小旗?(2)若每个人的工作效率都相同,一个人完成道具制作要6个小时,先安排2个人做半小时,再增加几个人做1小时可以刚好完成?10.“再穷不能穷教育,再苦不应苦孩子”,为了让我区中小学生能“温暖”过冬,自治区决定实施中小学校供暖工程.某学校的供暖工程需铺设热力管道6300米,甲工程队负责铺设.甲工程队施工一个周后发现,每天平均只能铺设200米,按此速度将无法按期完成任务.为能及时供上暖确保师生“温暖”过冬,甲工程队决定邀请乙工程队来共同铺设剩余的管道,如果乙工程队平均每天能铺设150米,问乙工程队参与铺设多少天才能完成这项工程?11.某市今年进行煤气工程改造,甲乙两个工程队共同承包这个工程.这个工程若甲队单独做需要10天完成;若乙队单独做需要15天完成.若甲乙两队同时施工4天,余下的工程由乙队完成,问乙队还需要几天能够完成任务?12.为加快乡村振兴步伐,不断改善农民生产生活条件,某乡镇计划修建一条长18千米的乡村公路,拟由甲、乙两个工程队联合完成.已知甲工程队每天比乙工程队每天少修路0.3千米,甲工程队单独完成修路15.问题提出:如图1,A、B、C、D表示四个村庄,村民们准备合打一口水井.(1)问题解决:若水井的位置现有P、Q两种选择方案.点P在线段BD上,点Q在线段AB上,哪一种方案的水井到各村庄的距离总和较小?请说明你判断的理由.(2)你能给出一种使水井到各村庄的距离之和最小的方案吗?若能,请图2中标出水井的位置点M,并说明理由.问题拓展:如果(2)问中找出的水井经过招标,由两个工程队修建(不存在同时修建).已知甲工程队单独完成需要80天,乙工程队单独完成需要120天,且甲工程队比乙工程队每天多修建0.5m.(3)问水井要修建几米?(4)若甲工程队每天的施工费为0.5万元,乙工程队每天的费用是0.25万元,为了缩短工期和节约资金,则甲工程队最多施工几天才能使工程款不超过35万元?(甲、乙两队的施工时间不足一天按一天算).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一行程问题
1.甲、已两个车站相距168千米,一列慢车从甲站开出,速度为36千米/小时,一列快车从乙站开出,速度为48千米/小时。
(1)两列火车同时开出,相向而行,多少小时相遇
(2)慢车先开1小时,相向而行,快车开几小时与慢车相遇
"
2.甲、乙两人从同地出发前往某地。
甲步行,每小时走4公里,甲走了16公里后,乙骑自行车以每小时12公里的速度追赶甲,问乙出发后,几小时能追上甲
\
3.甲、乙两人练习50米短距离赛跑,甲每秒钟跑7米,乙每秒钟跑米。
(1)几秒后,甲在乙前面2米
(2)如果甲让乙先跑4米,几秒可追上乙
:
4甲、乙两人在400米的环行形跑道上练习跑步,甲每秒跑米,乙每秒跑米。
a).
b)乙先跑10米,甲再和乙同地、同向出发,还要多长时间首次相遇
c)乙先跑10米,甲再和乙同地,背向出发,还要多长时间首次相遇
d)甲、乙同时同地同向出发,经过多长时间二人首次相遇
e)甲先跑10米,乙再和甲同地、同向出发,还要多长时间首次相遇
、
5、一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小
时,逆水航行需要3小时,求两码头的之间的距离
-
6、甲、乙两人在一条长400米的环形跑道上跑步,如果同向跑,每隔
1
3
3
分钟
相遇一次,,如果反向跑,则每隔40秒相遇一次,已知甲比乙跑的快,求甲、乙两人的速度
!
7、甲、乙两人骑自行车,同时从相距65千米两地相向而行,甲的速度为千米每小时,乙的速度为15千米每小时,经过了几小时两人相距千米
…
#
8.甲、乙两人同时从A地出发去B地,甲骑自行车,速度是10km/h,乙步行,速度为6km/h.若甲出发后在路上遇到熟人交谈了半小时后,仍以原速度前往B 地,结果甲、乙两人同时到达B地,问A、B两地的路程是多少。