水泵基本参数及特性曲线讲解

合集下载

水泵变频运行特性曲线

水泵变频运行特性曲线

水泵变频运行特性曲线 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】一、引言水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。

但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。

二、水泵变频运行分析的误区1.有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律 Q1/Q2=n1/n2扬程比例定律 H1/H2=(n1/n2)2轴功率比例定律 P1/P2=(n1/n2)3并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。

以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:1)为什么水泵变频运行时频率在30~35Hz以上时才出水2)为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,后才随着转速的升高而升高2.绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。

图1 水泵的特性曲线图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA ,管网理想阻力曲线R1=KQ与流量Q成正比。

采用节流调节时的实际管网阻力曲线R2,工作点为B,流量QB,扬程HB。

采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量QC,扬程HC;这里QB=QC。

按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。

实际水泵变频调速时,频率降到30~35Hz以下时就不出水了,流量已经降到零。

3.变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水是否工频泵的水会向变频泵倒灌4.以上分析的误区1)相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。

离心泵的主要性能参数和特性曲线1.离心泵的主要性能参数

离心泵的主要性能参数和特性曲线1.离心泵的主要性能参数
pa
Et2 Et3 hf23
0
p2
12 2
1
0
不含动能
H p2 p1 (真)
g
p(1 真)
H
0
Q
操作性问题分析 举例
练习1
图示为离心泵性能测定装置。若水槽液面上升,则 qV、H、Pa、hf 、p1和p2(均为读数)如何变化?
答:qV不变,H不变,Pa 不变,hf不变
p(1 真 ) p2
环流损失、摩擦损失、冲击损失 (3)机械损失:
泵轴与轴承、密封圈等机械部件之间的摩擦
小型水泵: 一般为5070% 大型泵: 可达 90%以上
轴功率和效率
Pa,又称功率,单位W 或kW
,无量纲
电功率 电 P 电出 传 Pa
P电出 电功率 电
电机 P P电出 传
Pe
泵 Pe Pa
Pe qmhe gHeqV
降有何变化?(设泵仍能正常工作)
• 泵的压头H,
pa
• 管路总阻力损失hf, • 泵出口处压力表读数,
• 泵入口处真空表读数。
H
解:
江面下降,泵特性曲线不变 管路特性曲线 平行上移
工作点左移
Heபைடு நூலகம்
z p
g
u2 2g
hf
A BqV 2
不变
0
q
操作性问题分析 举例
33
33
qV,H,Pa,hf BqV 2
0
P2 P1
0
p
如图所示,高位槽上方的
真空表读数为p,现p增大, 其它管路条件不变,则管路总
阻力损失。
A.增大
pa
B.减小
C.不变
D.不确定

水泵的特性曲线

水泵的特性曲线

创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*2-4离心泵的特性曲线一、离心泵的特性曲线压头、流量、功率和效率是离心泵的主要性能参数。

这些参数之间的关系,可通过实验测定。

离心泵生产部门将其产品的基本性能参数用曲线表示出来,这些曲线称为离心泵的特性曲线(characteristic curves)。

以供使用部门选泵和操作时参考。

特性曲线是在固定的转速下测出的,只适用于该转速,故特性曲线图上都注明转速n的数值,图2-6为国产 4B20型离心泵在n=2900r/min时特性曲线。

图上绘有三种曲线,即1.H-Q曲线H-Q曲线表示泵的流量Q和压头H的关系。

离心泵的压头在较大流量范围内是随流量增大而减小的。

不同型号的离心泵,H-Q曲线的形状有所不同。

如有的曲线较平坦,适用于压头变化不大而流量变化较大的场合;有的曲线比较陡峭,适用于压头变化范围大而不允许流量变化太大的场合。

2.N-Q曲线N-Q曲线表示泵的流量Q和轴功率N的关系,N随Q的增大而增大。

显然,当Q=0时,泵轴消耗的功率最小。

因此,启动离心泵时,为了减小启动功率,应将出口阀关闭。

3.η-Q曲线η-Q曲线表示泵的流量Q和效率η的关系。

开始η随Q的增大而增大,达到最大值后,又随Q的增大而下降。

该曲线最大值相当于效率最高点。

泵在该点所对应的压头和流量下操作,其效率最高。

所以该点为离心泵的设计点。

选泵时,总是希望泵在最高效率工作,因为在此条件下操作最为经济合理。

但实际上泵往往不可能正好在该条件下运转,因此,一般只能规定一个工作范围,称为泵的高效率区,如图2-6波折线所示。

高效率区的效率应不低于最高效率的92%左右。

泵在铭牌上所标明的都是最高效率下的流量,压头和功率。

离心泵产品目录和说明书上还常常注明最高效率区的流量、压头和功率的范围等。

二.离心泵的转数对特性曲线的影响离心泵的特性曲线是在一定转速下测定的。

当转速由n1改变为n2时,其流量、压头及功率的近似关系为, ,(2-6)式(2-6)称为比例定律,当转速变化小于20%时,可认为效率不变,用上式进行计算误差不大。

离心泵的特性曲线要点

离心泵的特性曲线要点

二、流量与轴功率曲线



离心泵的轴功率随流量增加而逐渐增加,曲线有上升的 特点。 当流量为零时(闸阀关闭),轴功率最小。因此,为便 于离心泵的启动和防止动力机超载,启动时,应将出水 管路上的闸阀关闭,启动后,再将闸阀逐渐打开,即水 泵的闭阀启动。 轴流泵与离心泵相反。
三、流量效率曲线

效率曲线为从最高点向两侧下降的变化趋势。 四、流量与允许吸上真空度曲线 离心泵流量与允许吸上真空度曲线是一条下降的曲线。 而离心泵流量与汽蚀余量(HSV或Δ h)曲线是一条上升的 曲线。不同转速下的性能曲线用 同一个比例尺,绘在同一坐标内而得到的性能曲线。
H=KQ2 (相似工况抛物线或等效率线)

离心泵的通用性能曲线图
水泵的系列型谱图

离心泵的综合性能图:把一种或多种泵型不同规格的一系列

泵的Q~H性能曲线工作范围段综合绘入一张对数坐标图 内,即成为水泵的综合性能曲线图(水泵的系列型谱 图)。 这不仅扩大该泵的适用范围,而且在选用水泵使需要的 工作点落在该区域内,则所选定的水泵型号是经济合理 的。
第六节 离心泵的特性曲线

水泵的性能参数,标志着水泵的性能。水泵各个性能参数之 间的关系和变化规律,可以用一组性能曲线来表达。对每一 台水泵而言,当水泵的转速一定时,通过试验的方法,可以 绘制出相应的一组性能曲线,即水泵的基本性能曲线。

一般以流量Q为横坐标,,用扬程H、功率N、效率η 和允许
吸上真空度Hs为纵坐标,绘Q~H、Q~N、Q~η 、Q~ Hs 曲线。
一、流量和扬程曲线

结论: Q~H曲线是下降的曲线,即随流量Q的增大,
扬程H逐渐减少。相应与效率最高值的点的参数,即水泵 铭牌上所列的各数据。水泵的高效段(不低于最高效率 点10%左右)

离心泵知识,性能参数及特性曲线

离心泵知识,性能参数及特性曲线

离心泵知识、性能参数与特性曲线要正确地选择和使用离心泵,就必需了解泵的性能和它们之间的相互关系。

离心泵的主要性能参数有流量、压头、轴功率、效率等。

离心泵性能间的关系通常用特性曲线来表示。

一、离心泵的概念:水泵是把原动机的机械能转换成抽送液体能量的机器。

来增加液体的位能、压能、动能。

原动机通过泵轴带动叶轮旋转,对液体作功,使其能量增加,从而使需要数量的液体,由吸入口经水泵的过流部件输送到要求的高处或要求压力的地方。

二、离心泵的基本构造离心泵的基本构造是由六部分组成的,分别是:叶轮,吸液室,泵壳,转轴,托架,轴承及轴承箱,密封装置,基础台板等。

1、叶轮是离心泵的核心部分,它转速高输出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。

叶轮上的的内外表面要求光滑,以减少水流的摩擦损失。

2、泵壳,它是水泵的主体。

起到支撑固定作用,并与安装轴承的托架相连接。

3、转轴的作用是借联轴器和电动机相连接,将电动机的转距传给叶轮,所以它是传递机械能的主要部件。

4、轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。

轴承的依托为轴承箱。

滚动轴承使用牛油作为润滑剂加油要适当一般为2/3~3/4的体积太多会发热,太少又有响声并发热!滑动轴承使用的是透明油作润滑剂的,加油到油位线。

太多油要沿泵轴渗出,不利于散热;太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在85度一般运行在60度左右,如果高了就要查找原因(是否有杂质,油质是否发黑,是否进水)并及时处理!5、密封装置。

叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低!间隙过小会造成叶轮与泵壳摩擦产生磨损。

为了增加回流阻力减少内漏,延缓叶轮和泵壳的所使用寿命,在泵壳内缘和叶轮外援结合处装有密封装置,密封的间隙保持在0.25~1.10mm之间为宜。

三、泵的分类泵的种类很多,可按其各种特征加以分类,见表1-1。

水泵特性曲线的关系

水泵特性曲线的关系

主要是由三条特性曲线组成,分别是:H-qv曲线,表示泵的扬程与流量关系。

P-qv曲线,表示泵的轴功率与流量的关系。

n qv曲线,表示泵的效率与流量的关系。

扬程随流量的增加而减少,轴功率随流量的增加而增加;流量为零时,效率为零;流量增加,效率增加,但当流量增大到某一标准值时,流量在增大,效率反而下降1、特性曲线主要是用于选泵使用,不同曲线会极大影响泵的效率,泵并联运行也需要性能曲线,合理配备水泵的台数。

2、关闭阀门的原因从试验数据上分析:开阀门意味着扬程极小,这意味着电机功率极大,会烧坏电机。

3、离心泵不灌水很难排掉泵内的空气,导致泵空转而不能排水;泵不启动可能是电路问题或是泵本身已损坏,即使电机的三相电接反了,泵也会启动的。

4、用出口阀门调解流量而不用崩前阀门调解流量保证泵内始终充满水,用泵前阀门调节过度时会造成泵内出现负压,使叶轮氧化,腐蚀泵。

还有的调节方式就是增加变频装置,很好用的。

5、当泵不被损坏时,真空表和压力表读数会恒定不变,水泵不排水空转不受外网特性曲线影响造成的。

6、合理,主要就是检修,否则可以不用阀门。

7、这个问题的条件不充分,如果选用的是同一台水泵,同样的电机功率,外网不变的情况下,那么压力不会变化,轴功率会增加。

&问题的本身就是错误的,有效压头并不一定随着流量的增加而下降,这与叶轮安装角有关,还有可能增加。

但就通常使用的泵而言这个问题也是有问题的,扬程随着流量的增加可以大幅度降低的,这与泵的种类,也就是泵的性能曲线有关。

离心泵的特性曲线是将由实验测定的Q、H、N、n等数据标绘而成的一组曲线。

此图由泵的制造厂家提供,供使用部门选泵和操作时参考。

不同型号泵的特性曲线不同,但均有以下三条曲线:(1) H-Q线表示压头和流量的关系;(2)N-Q线表示泵轴功率和流量的关系;(3)n线表示泵的效率和流量的关系;(4)泵的特性曲线均在一定转速下测定,故特性曲线图上注出转速n值。

离心泵特性曲线上的效率最高点称为设计点,泵在该点对应的压头和流量下工作最为经济。

关于离心水泵性能曲线与参数

关于离心水泵性能曲线与参数

关于离心水泵性能曲线与参数!一、关于离心水泵参数之间必须遵从的关系:1、能量关系:机械能守恒原理:功率N ∝扬程H ³流量Q2、流体动力学原理:A、阻力矩M正比流速v的平方:M ∝ v^2B、速度头与水头的转换关系(流速v的平方与扬程H的转换关系):v^2 /2∝gHC、流量与管网阻力R的关系:H ∝流量Q^23、运动学关系:线速度与角速度成正比 v ∝ω4、功能关系:A、功率N = 转矩M³角速度ωB、功率N ∝角速度ω的立方:N ∝ω^3二、各种曲线:1、流量-扬程曲线(Q-H)2、流量-功率曲线(Q-N)3、流量-效率曲线(Q-η)4、流量-气蚀余量曲线(Q-(NPSH)r)5、意义:A、性能曲线作用是泵的任意的流量点,都可以在曲线上找出一组与其相对的扬程、功率、效率和气蚀余量值;B、这一组参数称为工作状态,简称工况或工况点;C、离心泵取高效率点工况称为最佳工况点;D、最佳工况点一般为设计工况点;E、一般离心泵的额定参数即设计工况点和最佳工况点相重合或很接近;F、在实践中选高效率区间运行、即节能、又能保证泵正常工作,因此了解泵的性能参数相当重要。

要分清几个过程的前提条件:1、管网曲线一定时:1)系统压力增大,流量增大,压力与流量的平方成正比,即H ∝流量Q^22)是一个系统功率增大的过程,或者说泵机转速提高的过程,变频频率升高的过程; 3)管网曲线是一个二次曲线;4)就相当于电路电阻R一定,电压变化、电流变化、功率变化的情况;2、改变管网曲线,增大流量:1)相关物理过程例如打开出水龙头时;2)改变管网曲线减小管网阻力R,系统流量增大,压力减小很少认为恒定,3)压力恒定,系统流量与功率成正比,流量增大,功率增大,电机转子转速在稳定区速度梢微降低,负荷增大;4)这就是泵的实际运行状态,流量大,功率大,流量小功率小,例如风门关小时、回流阀开大时,系统流量减小,功率减小,用电量也小;5)风门关小时、回流阀开大时,系统流量减小,功率减小,用电量也小,此时转子转速在稳定区速度梢微升高,负荷减轻;6)如果这时改变出水管径,就等于改变流量,改变电机运行功率,这就是改变出水管径改变流量的原理;7)相当于电路的电压不变,电阻R变化时,电流、功率变化的情况;3、泵机功率不变:1)相关物理过程如灭火水枪;2)用减小出水管截面,增大管网阻力R,减小流量、增大压力,泵机功率不变;3)目的在于增大压力,增大出口水流速度等;4)也是管网改造,减小流量、增大扬程、不增大系统功率的方法的原理;5)这个过程H-Q曲线,是上翘的双曲线形,流量与压力反比降低,或压力与流量反比升高的曲线;6)这个过程相当于恒流源电路中,外电路变阻器的电阻增大时,电流减小、电压升高、功率不变的情形;1、管网曲线一定时:这种运行情况适宜封闭式流体循环系统;2、改变管网曲线,调节流量:1)这是大部分风机、供水泵的正常工作状态;2)在这种状态下运行时,忽略压力的变化既恒压;3)在这种状态下运行时,流量与电机输出功率成正比,既风门大功率大、风门小功率小,所以用风门调节风量大小并不浪费电。

水泵基本参数及特性曲线讲解

水泵基本参数及特性曲线讲解


4.射流泵 5.轴流泵装置模型 6.离心泵装置 7.离心泵的起动过程 (抽真空启动、闸阀的 操作) 8.离心泵主要性能参数 的测量与计算

3.水环真空泵
第二章 25
复习


叶片泵工作原理 离心泵泵体结构及基本零件

叶轮(叶片、流道)、泵壳、泵轴、轴承、填料盒 (填料、水封管、水封水)、减漏环、连轴器、 轴向力平衡措施、泵座
2
一、泵的定义

定义:

将其它形式的能量转化为机械能并传递给被输送介质的 动能和压能的一种机械

背景知识:



泵是我国三大耗能机械产品(汽车、机床、水泵)之一, 水泵效率提高1%即相当于我国新建了一座300MW发电 厂。 我国风机、泵的总用电占全国用电量的31%,占工业用 电的约50%,各工业部门机泵用电量均占60%以上。 例如:电力72.43%;化肥76%;炼油58.15%;油田 63.3%
T 2
M Q (C

cos 2 R2 C1 cos1 R1 )
式中: QT 、HT ——通过叶轮的理论流量、扬程
第二章 40

2.3 理想流体假定下的理论功率: 2.4 功率的另一表达式→基本方程:(2-14)
NT gQT H T
HT M
NT M
u 2 C2u u1C1u HT g
gQT
第二章
41
三、基本方程式的讨论


3.1 减小进水角获得正值扬程 基本方程为第一项, 说明水流垂直流入叶轮可以 u1 90 提高扬程 3.2 理论扬程与出口圆周速 度有关,提高转速、增加叶 轮直径均可增加扬程
1

水泵变频运行的特性曲线

水泵变频运行的特性曲线

水泵变频运行的特性曲线(一)1 引言水泵冷油泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。

但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。

2 水泵罗茨真空泵变频运行分析的误区2.1 有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律Q1/Q2=n1/n2扬程比例定律H1/H2=(n1/n2)2轴功率比例定律P1/P2=(n1/n2)3并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。

以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:(1) 为什么水泵变频运行时频率在30~35Hz以上时才出水?(2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高?2.2 绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。

图1 水泵的特性曲线图1中,水泵液下排污泵在工频运行的特性曲线为F1,额定工作点为A,额定流量Q A,额定扬程H A,管网理想阻力曲线R1=K1Q与流量Q成正比。

采用节流调节时的实际管网阻力曲线R2,工作点为B,流量Q B,扬程H B。

采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量Q C,扬程H C;这里Q B=Q C。

按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。

实际水泵变频调速时,频率降到30~35H z以下时就不出水了,流量已经降到零。

2.3 变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水?是否工频泵的水会向变频泵倒灌?3 以上分析的误区(1) 相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。

水泵的性能曲线图分析

水泵的性能曲线图分析

水泵的性能曲线图分析文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-水泵的性能曲线图分析:泵的特性曲线均在一定转速下测定,故特性曲线图上注出转速n值。

水泵的性能曲线图上水平座标标示流量,垂直座标标示压力(扬程),其中有根流量与压力曲线,一般情况下当压力升高时流量下降,你可以根据压力查到流量,也可从流量查到压力;还有根效率曲线,其这中间高,两边低,标明流量与压力在中间段是效率最高,因此我们选泵时要注意泵运行时的压力与流量,处于效率曲线最高附近;再有一个功率(轴功率)曲线,其一般随流量增加而增加。

注意其轴功率不应超过电机功率。

1、曲线:Q-H,流量与扬程曲线趋势图,粗线是推荐工作范围。

扬程--流量曲线以离心式水泵为例,水泵性能曲线图包含有Q-H(流量-扬程)、Q-N(流量-功率)、Q-n(流量-效率)及Q-Hs(流量-允许吸上真空高度)。

每一个流量Q都相应于一定的扬程H、轴功率N、效率n和允许吸上真空高度Hs 。

扬程是随流量的增大而下降的。

Q-H(流量-扬程)是一条不规则的曲线。

相应于效率最高值的(Qo,Ho)点的参数,即为水泵铭牌上所列的各数据。

它将是该水泵最经济工作的一个点。

在该点左右的一定范围内(一般不低于最高效率点的10%左右)都属于效率较高的区段,称为水泵的高效段。

在选泵时,应使泵站设计所要求的流量和扬程能落在高效段范围内。

因无法上图,请自找一幅水泵性能曲线图对照着看。

主要就这些了。

GPM :加仑/分钟,流量单位 3.=gallons per minute 加仑/分,每分钟加仑数(等于4.546升/分)273L/h。

其中ft是英尺,表示扬程。

1英尺=12英寸, 1英寸=2.54厘米所以, 1英尺=12×2.54=30.48厘米=0.3048米.比如说自来水管道压力为0.2Mpa,它能供到多高的高度呢转换公式是什么请大家告诉我一下!谢谢转换公式:高度H=P/(ρg)压力为 P=0.2 Mpa=200000 Pa 高度H=P/(ρg)=200000/(1000*9.8)= 20.41 m以上是静压转换为压力高度的计算公式,实际在使用时,水以某一流量沿管道流动,流动中有沿程水头损失和局部水头损失,水并不能供到上述高度,应是上述高度再减去水在管道流动的水头损失。

水泵特性曲线的关系

水泵特性曲线的关系

主要是由三条特性曲线组成,分别是:H-qv曲线,表示泵的扬程与流量关系。

P—qv曲线,表示泵的轴功率与流量的关系。

η—qv曲线,表示泵的效率与流量的关系。

扬程随流量的增加而减少,轴功率随流量的增加而增加;流量为零时,效率为零;流量增加,效率增加,但当流量增大到某一标准值时,流量在增大,效率反而下降1、特性曲线主要是用于选泵使用,不同曲线会极大影响泵的效率,泵并联运行也需要性能曲线,合理配备水泵的台数。

2、关闭阀门的原因从试验数据上分析:开阀门意味着扬程极小,这意味着电机功率极大,会烧坏电机.3、离心泵不灌水很难排掉泵内的空气,导致泵空转而不能排水;泵不启动可能是电路问题或是泵本身已损坏,即使电机的三相电接反了,泵也会启动的.4、用出口阀门调解流量而不用崩前阀门调解流量保证泵内始终充满水,用泵前阀门调节过度时会造成泵内出现负压,使叶轮氧化,腐蚀泵。

还有的调节方式就是增加变频装置,很好用的。

5、当泵不被损坏时,真空表和压力表读数会恒定不变,水泵不排水空转不受外网特性曲线影响造成的。

6、合理,主要就是检修,否则可以不用阀门。

7、这个问题的条件不充分,如果选用的是同一台水泵,同样的电机功率,外网不变的情况下,那么压力不会变化,轴功率会增加.8、问题的本身就是错误的,有效压头并不一定随着流量的增加而下降,这与叶轮安装角有关,还有可能增加。

但就通常使用的泵而言这个问题也是有问题的,扬程随着流量的增加可以大幅度降低的,这与泵的种类,也就是泵的性能曲线有关。

离心泵的特性曲线是将由实验测定的Q、H、N、η等数据标绘而成的一组曲线。

此图由泵的制造厂家提供,供使用部门选泵和操作时参考.不同型号泵的特性曲线不同,但均有以下三条曲线:(1)H—Q线表示压头和流量的关系;(2) N-Q线表示泵轴功率和流量的关系;(3) η—Q线表示泵的效率和流量的关系;(4) 泵的特性曲线均在一定转速下测定,故特性曲线图上注出转速n值.离心泵特性曲线上的效率最高点称为设计点,泵在该点对应的压头和流量下工作最为经济.离心泵铭牌上标出的性能参数即为最高效率点上的工况参数。

水泵特性曲线的关系

水泵特性曲线的关系

主要是由三条特性曲线组成,分别是:H-qv曲线,表示泵的扬程与流量关系。

P-qv曲线,表示泵的轴功率与流量的关系。

η-qv曲线,表示泵的效率与流量的关系。

扬程随流量的增加而减少,轴功率随流量的增加而增加;流量为零时,效率为零;流量增加,效率增加,但当流量增大到某一标准值时,流量在增大,效率反而下降1、特性曲线主要是用于选泵使用,不同曲线会极大影响泵的效率,泵并联运行也需要性能曲线,合理配备水泵的台数。

2、关闭阀门的原因从试验数据上分析:开阀门意味着扬程极小,这意味着电机功率极大,会烧坏电机。

3、离心泵不灌水很难排掉泵的空气,导致泵空转而不能排水;泵不启动可能是电路问题或是泵本身已损坏,即使电机的三相电接反了,泵也会启动的。

4、用出口阀门调解流量而不用崩前阀门调解流量保证泵始终充满水,用泵前阀门调节过度时会造成泵出现负压,使叶轮氧化,腐蚀泵。

还有的调节方式就是增加变频装置,很好用的。

5、当泵不被损坏时,真空表和压力表读数会恒定不变,水泵不排水空转不受外网特性曲线影响造成的。

6、合理,主要就是检修,否则可以不用阀门。

7、这个问题的条件不充分,如果选用的是同一台水泵,同样的电机功率,外网不变的情况下,那么压力不会变化,轴功率会增加。

8、问题的本身就是错误的,有效压头并不一定随着流量的增加而下降,这与叶轮安装角有关,还有可能增加。

但就通常使用的泵而言这个问题也是有问题的,扬程随着流量的增加可以大幅度降低的,这与泵的种类,也就是泵的性能曲线有关。

离心泵的特性曲线是将由实验测定的Q、H、N、η等数据标绘而成的一组曲线。

此图由泵的制造厂家提供,供使用部门选泵和操作时参考。

不同型号泵的特性曲线不同,但均有以下三条曲线:(1) H-Q线表示压头和流量的关系;(2) N-Q线表示泵轴功率和流量的关系;(3) η-Q线表示泵的效率和流量的关系;(4) 泵的特性曲线均在一定转速下测定,故特性曲线图上注出转速n值。

离心泵特性曲线上的效率最高点称为设计点,泵在该点对应的压头和流量下工作最为经济。

水泵特性曲线

水泵特性曲线

通常把表示主要性能参数之间关系的曲线称为离心泵的性能曲线或特性曲线,实质上,离心泵性能曲线是液体在泵内运动规律的外部表现形式,通过实测求得。

特性曲线包括:流量-扬程曲线(Q-H),流量-效率曲线(Q-η),流量-功率曲线(Q-N),流量-汽蚀余量曲线(Q-(NPSH)r),性能曲线作用是泵的任意的流量点,都可以在曲线上找出一组与其相对的扬程,功率,效率和汽蚀余量值,这一组参数称为工作状态,简称工况或工况点,离心泵最高效率点的工况称为最佳工况点,最佳工况点一般为设计工况点。

一般离心泵的额定参数即设计工况点和最佳工况点相重合或很接近。

在实践选效率区间运行,即节能,又能保证泵正常工作,因此了解泵的性能参数相当重要。

什么叫泵的效率?公式如何?指泵的有效功率和轴功率之比。

η=Pe/P泵的功率通常指输入功率,即原动机传到泵轴上的功率,故又称轴功率,用P表示。

有效功率即:泵的扬程和质量流量及重力加速度的乘积。

天牛船泥泵计算Pe=ρg QH (W) 或Pe=γQH/1000(KW)ρ:泵输送液体的密度(kg/m3)γ:泵输送液体的重度γ=ρg(N/ m3)g:重力加速度(m/s)质量流量Qm=ρQ(t/h 或kg/s)什么是泵的全性能测试台?能通过精密仪器准确测试出泵的全部性能参数的设备为全性能测试台。

国家标准精度为B级。

流量用精密蜗轮流量计测定,扬程用精密压力表测定。

吸程用精密真空表测定。

功率用精密轴功率机测定。

转速用转速表测定。

效率根据实测值:n=rQ102计算什么叫泵的效率?公式如何?答:指泵的有效功率和轴功率之比。

η=Pe/P 泵的功率通常指输入功率,即原动机传到泵轴上的功率,故又称轴功率,用P表示。

有效功率即:泵的扬程和质量流量及重力加速度的乘积。

Pe=ρg QH (W) 或Pe=γQH/1000 (KW)ρ:泵输送液体的密度(kg/m3)γ:泵输送液体的重度γ=ρg (N/ m3)g:重力加速度(m/s)质量流量Qm=ρQ (t/h 或kg/s)我只知道物体旋转时会产生一个轴向的力,但是不知道如何计算,和转速直径还是质量有关,还是都有关系。

水泵基本参数及特性曲线讲解

水泵基本参数及特性曲线讲解

效率
01
效率:指水泵实际输出功率与输入功率的比值,是水泵的重要 性能参数。
02
效率的高低反映了水泵能量利用的完善程度,效率越高,说明
水泵的能量损失越少。
效率通常用百分数表示。
03
转速
01
转速:指水泵叶轮每分钟的旋转次数,是水泵的重要
性能参数。
02
转速的大小决定了水泵的流量、扬程和功率等性能参
数。
Q-n曲线
总结词
流量与转速的关系曲线
详细描述
Q-n曲线表示水泵在不同流量下的转速变化。在一定范围内,随着流量的增加,转速可能会相应增加或保持恒定。
Q-η曲线
总结词
流量与效率的关系曲线
详细描述
Q-η曲线表示水泵在不同流量下的效率变化。在最优工况点附近,水泵的效率最高。随着流量的增加或减 小,效率通常会相应降低。
扬程
01
扬程:指水泵所能够提升的液体的总高度,是水泵 的重要性能参数。
02
扬程的大小取决于泵的转速、叶轮结构、叶片角度 等因素。
03
扬程单位常用米表示。
功率
01 功率:指水泵在单位时间内所做的功,是水泵的 重要性能参数。
02 功率的大小取决于泵的转速、扬程、流量和效率 等因素。
03
功率单位常用千瓦(kW)表示。
定期检查水泵的各个部件,如轴承、密封件、叶轮等,确 保其完好无损。
要点二
清洗与润滑
定期清洗水泵内部,并加注润滑油,以减少摩擦和磨损。
水泵常见故障及处理
流量不足
可能是由于叶轮堵塞、密封件磨 损或管道堵塞等原因造成。应检 查并清洁叶轮和管道,更换密封
件。
扬程不足
可能是由于泵内漏气、叶轮损坏或 转速过低等原因造成。应检查泵内 气体是否泄漏,更换叶轮或调整电 机转速。

水泵性能曲线

水泵性能曲线

离心泵的特性曲线分析
水泵的特性参数之间的相互变化关系及相互制约性:首先以该水泵的额顶转速为先决条件的。

水泵的特性参数如流量Q 扬程H 轴功率N 转速n有效率η之间存在的一定的关系。

他们之间的量值变化关系用曲线来表示,这种曲线就称为水泵的特性曲线。

水泵特性曲线主要有三条曲线:流量—扬程曲线,流量—功率曲线,流量—有效率曲线。

A、流量—功率曲线
轴功率是随着流量而增加的,当流量Q=0时,相应的轴功率并不等于零,而为一定值(约正常运行的60%左右)。

这个功率主要消耗于机械损失上。

此时水泵里是充满水的,如果长时间的运行,会导致泵内温度不断升高,泵壳,轴承会发热,严重时可能使泵体热力变形,我们称为“闷水头”,此时扬程为最大值,当出水阀逐渐打开时,流量就会逐渐增加,轴功率亦缓慢的增加。

B、流量—扬程特性曲线
它是离心泵的基本的特性曲线。

比转速小于80的离心泵具有上升和下降的特点(既中间凸起,两边下弯),称驼峰特性曲线。

比转速在80~150之间的离心泵具有平坦的特性曲线。

比转数在150以上的离心泵具有陡降特性曲线。

一般的说,当流量小时,扬程就高,随着流量的增加扬程就逐渐下降。

C、流量—有效率曲线
它的曲线象山头形状,当流量为零时,有效率也等于零,随着流量的增大,有效率也逐渐的增加,但增加到一定数值之后有效率就下降了,有效率有一个最高值,在最高有效率点附近,有效率都比较高,这个区域称为高有效率区。

水泵变频运行的特性曲线

水泵变频运行的特性曲线

水泵变频运行的特性曲线The manuscript was revised on the evening of 2021水泵变频运行的特性曲线(一)1?引言水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。

但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。

2?水泵变频运行分析的误区有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律 Q1/Q2=n1/n2扬程比例定律H1/H2=(n1/n2)2轴功率比例定律P1/P2=(n1/n2)3并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。

以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:(1) 为什么水泵变频运行时频率在30~35Hz以上时才出水(2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。

图1 水泵的特性曲线图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量Q A,额定扬程H A,管网理想阻力曲线R1=K1Q与流量Q成正比。

采用节流调节时的实际管网阻力曲线R2,工作点为B,流量Q B,扬程H B。

采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量Q C,扬程H C;这里Q B=Q C。

按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。

实际水泵变频调速时,频率降到30~35Hz 以下时就不出水了,流量已经降到零。

变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水是否工频泵的水会向变频泵倒灌3?以上分析的误区(1) 相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。

水泵全特性曲线分析

水泵全特性曲线分析

水泵全特性曲线分析摘要:本文通过水泵全特性曲线分析,利用通用公式和就近取值的两种方法,得到不同比转速水泵全特性曲线的数值化离散数据,分析两种方法数据差异,并通过工程实例进行停泵水锤计算,研究比转速差异对大管径长距离高扬程管道水力过渡过程的影响,为同类工程停泵水锤计算提供参考。

关键字:大管径长距离高扬程,停泵水锤;全特性曲线;通用公式;一、前言近年来,由于人口的持续增长和经济的高速发展,工农业和人民生活用水持续增加,城市用水量大幅度提高。

以前城市常就近取用地表水和开采地下水,但由于近市水源及河流的污染,地表水水质恶化;过度开采引起地下水位下降而导致地面沉降,使得人们不得不远距离取水。

因此,近年来我国长距离输水工程逐年增多,如天津引滦工程、大连引碧工程、上海黄浦江上游引水工程、内蒙古引黄工程、引黄济青工程、引黄入晋工程、西安黑河引水工程、南水北调工程等,还有众多为解决各城市生产生活用水而兴建的各种长距离输水工程。

其中尤以高扬程多起伏的输水管线的安全运行问题最常见而又最突出,对高扬程多起伏的输水管线进行安全有效的水锤防护,其前提是能进行停泵水锤升压的精确计算,而这种精确计算的前提是必须有可靠的水泵全特性曲线的数值化数据。

因此,本文通过对水泵全特性曲线分析,利用通用公式和就近取值的两种方法得到的不同比转速水泵的全面特性曲线的数值化离散数据,然后利用大管径长距离高扬程管道工程实例进行停泵水锤水力过渡过程的影响研究。

二、停泵水锤计算方法概述根据相关的科技文献和技术资料,目前常用的停泵水锤计算方法有: 数解综合法、图解法、电算法等。

各种方法的特点简介如下。

1.数解综合法20世纪30年代前,数解综合法停泵水锤计算主要是应用相应的方程式和水泵全特性曲线图进行反复的算术计算和量图取值,工作量十分浩繁。

通常只能解决上、下游边界条件比较简单的水锤问题,并且,计算精度有限。

2.图解法从30至60年代,停泵水锤计算的图解法逐渐发展完善起来并被广泛的使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章
12
一、工作原理

P4图2-1


转速↑△H↑ 半径↑△H↑
流线

质点绕定位的中心轴作圆 周运动时受到离心力作用
流面 流线和流面
第二章
13
二、构成


P4图2-2单级单吸式离心泵 , 图2-3叶轮 叶轮、泵壳、泵轴、轴承、进水口、扩压室、支座、轴封 吸水管、出水管
第二章
14
三、工作过程

4.射流泵 5.轴流泵装臵模型 6.离心泵装臵 7.离心泵的起动过程 (抽真空启动、闸阀的 操作) 8.离心泵主要性能参数 的测量与计算

3.水环真空泵
第二章 25
复习


叶片泵工作原理 离心泵泵体结构及基本零件

叶轮(叶片、流道)、泵壳、泵轴、轴承、填料盒 (填料、水封管、水封水)、减漏环、连轴器、 轴向力平衡措施、泵座


填料又叫盘根(阻水、阻气); 压盖(压紧填料); 水封环、水封管(水封水有水封 管流入轴与填料的间隙,起冷却 与润滑的作用)
第二章
21
五、减漏环

作用:

减少叶轮入口的外圆与泵壳内壁接缝处高低压的交界面的泵壳内 高压水向吸水口回流、承磨(承磨环)

形式:单环型、双环型、双环迷宫型 材料:
第二章
Nu N
QH QH N (kw) (马力) 102 75
第二章 28
第三节 叶片泵的基本性能参数

允许吸上真空高度 H s

——水泵在给定的条件下保证不产生气蚀的最大吸上真
空高度(单位:m)

汽蚀余量(NPSH)

——为不发生汽蚀,在水泵进口单位重量的水所具有的 能量减去水的饱和气化压头后所剩余的值(单位:m) 满足水泵的吸水条件是保证水泵正常运行的必要条件 两个概念从不同侧面反映水泵吸水性能的好坏

P5图2-3 1、离心、真空→工作、连续 2、能量的转换及损失
第二章
15
第二节 离心泵主要零件

根据工作原理理解主要部件的结构及其作用 P5图2-4 重点五大部件,结合认识实习进一步建立感性认识 依次为:

叶轮、泵壳、泵轴、填料函、检漏环、轴承、泵座、联轴器
第二章
16
一、叶轮

第二章
17
b2
β1
β2
b1
D0
D1
D2
a)
b)
图2--1 叶轮投影图 a) 轴面投影 b) 平面投影 D1、D2--叶轮的进出口直径 b1、b2--叶轮的叶片进出 度 β1、β2--叶轮的叶片进出口安放角 D0--叶轮进口 直径 第二章
18
二、泵壳

1、作用:

水流通道、导流,其渐扩面的 设计应尽量减小速度梯度,保 证良好的水力条件 特点:渐扩断面时流速保 持常数,出口扩散管使流速降 低增加压能以减小水力损失 铸铁、青铜(特点:耐压、耐 磨、耐腐蚀、抗冲击) 充水、放气孔真空、压力表测 压螺孔
2
一、泵的定义

定义:

将其它形式的能量转化为机械能并传递给被输送介质的 动能和压能的一种机械

背景知识:



泵是我国三大耗能机械产品(汽车、机床、水泵)之一, 水泵效率提高1%即相当于我国新建了一座300MW发电 厂。 我国风机、泵的总用电占全国用电量的31%,占工业用 电的约50%,各工业部门机泵用电量均占60%以上。 例如:电力72.43%;化肥76%;炼油58.15%;油田 63.3%
叶片进口处的冲角
1
第二章
42

3.4 用余弦定律推导扬程的另一种表达式
2 2 2 u2 u12 w12 w2 C2 C12 HT 2g 2g 2g
由相对运动能量方程,可得右式前两项为势扬程:

第一项是离心力对单位重量液体所作之功,使经过叶轮 的液体压能增加
九、轴向力平衡措施

习题:

1、理解离心泵的工作原理及工作过程 2、离心泵主要部件及作用
第二章 24
参观模型室
参观内容:

1.泵的型式



(1)离心泵叶片、轴流泵叶 片、混流泵叶片 (2)双吸离心泵、单吸离 心泵 (3)单级离心泵、多级离 心泵



2.泵体构造
叶片(叶轮)、泵壳、泵 轴、填料函、检漏环、轴 承、泵座、联轴器
22
其它零件

六、轴承座

作用:支承 分类

构造特性:滚动、滑动 荷载大小:滚柱、滚珠 荷载特性:径向、止推

2.冷却:空冷、水冷

七、泵座

作用:将泵体与底板或基 础相固定
第二章
23
其它零件

八、联轴器

作用: (P10图2-14) 连接泵轴与电机轴、传递电机出力 (P10图2-15、16) 单吸离心泵,由于叶轮在轴向上缺乏对称性,工作是 前后两侧水压力不同,产生轴向推力
3
二、泵的分类



根据不同的标准有不同的分类方法: 介质性质(用途): 清水泵、污水泵、渣浆泵、油泵 泵体结构: 叶片泵、容积泵(往复泵或活塞泵、转子泵)、其他类型泵(螺旋 泵、气升泵、射流泵、水锤泵) 叶片泵按输送特性或工作原理分为:离心泵、轴流泵、混流泵

小知识


给排水、石油化工、航空航天、水利水电中最常用的泵为叶片泵 叶片泵定义:通过高速旋转的叶轮把机械能传给被抽吸液体的机械。
4
离心泵
5
轴流泵
6
混流泵
7
三、作用和地位

1、作用:输送、加压、混合

水泵及水泵站是给排水工程的主体动力工程 一种医用泵——人体血液体外循环泵,即是泵与给排水工程关 系的最好例子,即心脏与肌体的关系,输送介质即为血液。
给水厂:


2、泵站在给排水中的位臵

取水泵站(取自水源)→净水处理工艺构筑物(过滤反冲洗)→ 送水泵站(至用户管网) 污水泵站(收集污水)→水处理工艺构筑物(回流污泥泵房、排 污泵)→排水泵站(或自排入水体)
第二章
26
第三节 叶片泵的基本性能参数



(掌握定义、单位、符号及参数间的影响关系 ) 流量——单位时间内通过水泵出口的液体数量 Q( m3 / s )( l / s ) 扬程——单位重量液体从泵进口到出口所增加能量 H( kg m / kg m ) 轴功率——水泵从动力机实际获得的功率 (泵轴传递的功率)N(kW)
第二章
30
第四节 离心泵基本方程

一、叶轮中液体的流动分析
液体质点进入叶轮后做复合圆周运动
第二章
31
叶轮中液体的流动分析

1、两个坐标系
(1)动坐标系:旋转的叶轮
(2)静坐标系:固定不动的泵壳或泵座

2、相对运动、牵连运动——实际运动 相对速度——水流在液槽中以速度沿叶片而流动 牵连速度——水流随叶轮以u一起作旋转运动
9

研究动态

四、泵站的研究现状

节能改造措施

近年来,节能改造更换耗能大的老设备;改造设备 包括切割叶轮外径、减少叶轮级数,改用高效率泵 和机电;合理设计选型等,进一步节能的潜力在于 运行中的优化调度。 一般没有过多考虑经济运行,而按最不利工况选泵。 实际工业生产中,各厂的原料一般达不到设计要求, 减量较大,处理量时大时小,靠阀门调节流量能耗 很大。

污水处理厂:


输送管道工程:中途加压泵站(给水)、提升泵站(排水)
8
四、泵的研究现状


泵应用研究所关心的两大问题 工程实用性:不同类型的泵应满足各行各业工艺要求,且 具有易维修及耐久性; 经济运行:泵工艺制造方面造价低,实际运行费用低。 主要研究

泵的设计理论:提高效率、汽蚀防治、消除驼峰(小流量不 稳定运行)、无过载设计等 泵的优化运行 特种泵的设计 低比转速泵、超低比转速泵、渣浆泵(固液两相流)、高温 高扬程泵(锅炉水)、低温高压泵(液态氮、液态二氧化 碳)、电动潜油泵、砂泵、磁力驱动离心泵。其他特种泵如 往复泵(扬程高,流量稳定)
u 2 C2u u1C1本方程式的讨论


3.1 减小进水角获得正值扬程 基本方程为第一项, 说明水流垂直流入叶轮可以 u1 90 提高扬程 3.2 理论扬程与出口圆周速 度有关,提高转速、增加叶 轮直径均可增加扬程
1

n D u2 3.3 扬程与密度无关,但消 60 耗功率不同
C u

5、讨论叶片形状——后弯式叶片
第二章
34
进、出口速度三角形
C1
w
1
C2
1
Cm2 w
2
α
β u
1
1
α
2
β
Cu2
2
u
2
速度三角形
第二章
35
后弯式叶片示意
W2 C2r C2
β2
W2
β2
C2 α C1 u1
2
W2
β2
C2 α
2
α
2
u2 W1 C1 u1 W1
u2 W1 C1
u2 u1
第一章 概 论
——水工艺泵与泵站的作用及发展
1
前 言

学时安排:水泵基础理论(20)+泵站(16) 课堂任务



(1)有关基础知识(包括概念、公式定律及分析思路); (2)介绍与专业生产联系较紧密的技能常识; (3)介绍泵业发展新动向及研究前沿课题。
相关文档
最新文档