机器学习模型选择与正则化

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正则化与交叉验证 举例
因此,我们最终恰当地拟合了数据,我们所使用的正是二次函数加上一 些非常小,贡献很小项(因为这些项的 θ3、 θ4 非常接近于0)。显然, 这是一个更好的假设。
正则化与交叉验证
更一般地,这里给出了正规化背后的思路。这种思路就是,如果我们的参数 值对应一个较小值的话(参数值比较小),那么往往我们会得到一个形式更 简单的假设。 在我们上面的例子中,我们惩罚的只是 θ3 和 θ4 ,使这两个值均接近于零,从 而我们得到了一个更简单的假设,实际上这个假设大抵上是一个二次函数。 但更一般地说,如果我们像惩罚 θ3 和 θ4 这样惩罚其它参数,那么我们往往可 以得到一个相对较为简单的假设。 实际上,这些参数的值越小,通常对应于越光滑的函数,也就是更加简单的 函数。因此 就不易发生过拟合的问题。 我知道,为什么越小的参数对应于一个相对较为简单的假设,对你来说现在 不一定完全理解,但是在上面的例子中使 θ3 和 θ4 很小,并且这样做能给我们 一个更加简单的假设,这个例子至少给了我们一些直观感受。
正则化与交叉验证
正则化与交叉验证 举例
上图红色小叉代表给出的样本数据,我们看到了如果用一个二次函数来 拟合这些数据,那么它给了我们一个对数据很好的拟合。然而,如果我 们用一个更高次的多项式去拟合,最终我们可能会得到一个曲线,它能 很好地拟合训练集,但却并不是一个好的结果,因为它过度拟合了数据, 因此,一般性并不是很好。 让我们考虑下面的假设,我们想要加上惩罚项,从而使参数 θ3 和 θ4 足 够的小。
正则化与交叉验证
为什么过拟合的时候系数会很大?
正则化与交叉验证
如下图所示,过拟合,就是拟合函数需要顾忌每一个点,最终形成的拟合函 数波动很大。在某些很小的区间里,函数值的变化很剧烈。这就意味着函数 在某些小区间里的导数值(绝对值)非常大,由于自变量值可大可小,所以 只有系数足够大,才能保证导数值很大。
正则化与交叉验证
正则化与交叉验证
The End
机器学习之模型评估与模型选择
重庆大学
余俊良
摘要
• 损失函数与风险函数
• 经验风险最小化和结构风险最小化 • 模型评估与模型选择 • 正则化与交叉验证
百度文库
损失函数与风险函数
损失函数与风险函数
损失函数与风险函数
损失函数与风险函数
经验风险最小化和结构风险最小化
经验风险最小化和结构风险最小化
经验风险最小化和结构风险最小化
正则化与交叉验证
下面的这项就是一个正则化项
并且 λ 在这里我们称做正则化参数。 λ 要做的就是控制在两个不同的目标中的平衡关系。 第一个目标就是我们想要使假设更好地拟合训练数据。我们希望假设能够很 好的适应训练集。第二个目标是我们想要保持参数值较小。(通过正则化项)
而 λ 这个正则化参数需要控制的是这两者之间的平衡,即平衡拟合训练的目 标和保持参数值较小的目标。从而来保持假设的形式相对简单,来避免过度 的拟合。对于我们的房屋价格预测来说,我们之前所用的非常高的高阶多项 式来拟合,我们将会得到一个非常弯曲和复杂的曲线函数,现在我们只需要 使用正则化目标的方法,那么你就可以得到一个更加合适的曲线,但这个曲 线不是一个真正的二次函数,而是更加的流畅和简单的一个曲线。这样就得 到了对于这个数据更好的假设。
正则化与交叉验证 举例
上图的式子是我们的优化目标,也就是说我们需要尽量减少代价函数的 均方误差。对于这个函数我们对它添加一些项,加上 1000 乘以 θ3 的 平方,再加上 1000 乘以 θ4 的平方,
1000 只是我随便写的某个较大的数字而已。现在,如果我们要最小化 这个函数,那么为了最小化这个新的代价函数,我们要让 θ3 和 θ4 尽可 能小。因为,如果你在原有代价函数的基础上加上 1000 乘以 θ3 这一 项 ,那么这个新的代价函数将变得很大,所以,当我们最小化这个新 的代价函数时, 我们将使 θ3 的值接近于 0,同样 θ4 的值也接近于 0, 就像我们忽略了这两个值一样。如果我们做到这一点( θ3 和 θ4 接近 0 ),那么我们将得到一个近似的二次函数。
正则化与交叉验证
来让我们看看具体的例子,对于房屋价格预测我们可能有上百种特征,与刚 刚所讲的多项式例子不同,我们并不知道 θ3 和 θ4 是高阶多项式的项。所以, 如果我们有一百个特征,我们并不知道如何选择关联度更好的参数,如何缩 小参数的数目等等。因此在正则化里,我们要做的事情,就是把减小我们的 代价函数(例子中是线性回归的代价函数)所有的参数值,因为我们并不知 道是哪一个或哪几个要去缩小。因此,我们需要修改代价函数,在这后面添 加一项,就像我们在方括号里的这项。当我们添加一个额外的正则化项的时 候,我们收缩了每个参数。
正则化与交叉验证
在正则化线性回归中,如果正则化参数值 λ 被设定为非常大,那么将会发生 什么呢? 我们将会非常大地惩罚参数θ1 θ2 θ3 θ4 … 也就是说,我们最终惩罚 θ1 θ2 θ3 θ4 … 在一个非常大的程度,那么我们会使所有这些参数接近于零。
正则化与交叉验证
如果我们这么做,那么就是我们的假设中相当于去掉了这些项,并且使我们 只是留下了一个简单的假设,这个假设只能表明房屋价格等于 θ0 的值,那就 是类似于拟合了一条水平直线,对于数据来说这就是一个欠拟合 (underfitting)。这种情况下这一假设它是条失败的直线,对于训练集来说这 只是一条平滑直线,它没有任何趋势,它不会去趋向大部分训练样本的任何 值。 因此,为了使正则化运作良好,我们应当注意一些方面,应该去选择一个不 错的正则化参数 λ 。当我们以后讲到多重选择时我们将讨论一种方法来自动 选择正则化参数 λ ,为了使用正则化,接下来我们将把这些概念应用到到线 性回归和逻辑回归中去,那么我们就可以让他们避免过度拟合了。
模型评估与模型选择
训练误差与测试误差
模型评估与模型选择
训练误差与测试误差
模型评估与模型选择
过拟合与模型选择
模型评估与模型选择
过拟合与模型选择
模型评估与模型选择
过拟合与模型选择
模型评估与模型选择
过拟合与模型选择
模型评估与模型选择
过拟合与模型选择
模型评估与模型选择
过拟合与模型选择
正则化与交叉验证
相关文档
最新文档