初一数学公式概念
初一数学知识点公式定理大全
初一数学知识点公式定理大全(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!初一数学知识点公式定理大全初中数学是由简单明了的事项一步一步地发展而来,所以,只要学习数学的人老老实实地、一步一步地去理解,并同时记住其要点,以备以后之需用,就一定能理解其全部内容。
最全面的初中数学概念定义公式大全
初中数学定义定理公式总结一、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0〔原点,选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。
两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
人教版初一年级初中数学公式
初中数学常用的概念、公式和定理整数(包括:正整数、0、负整数)和分数(包括:有限小和无限环循小数)都是有理数.如:-3,-,0.231,0.737373…,,.无限不环循小数叫做无理数..如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.1.绝对值:a≥0丨a丨=a;a≤0-丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3.一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4.把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5.被开方数的小数点每移动2位,算术平方根的小数点就向相同方向移动1位;被开方数的小数点每移动3位,立方根的小数点就向相同方向移动1位.如:已知=0.4858,则-=48.58;已知=1.558,则-=0.1588.6.整式的乘除法:①几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除.②单项式乘以多项式,用单项式乘以多项式的每一个项.③多项式乘以多项式,用一个多项式的每一项分别乘以另一个多项式的每一项.④多项式除以单项式,将多项式的每一项分别除以这个单项式.7.幂的运算性质:①a m×a n=a m+n. ②a m÷a n=a m-n.③(a m)n=a mn. ④(ab)n=a n b n.⑤()n=n. ⑥a-n=n,特别:()-n=()n. ⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=(-)2=,(-3.14)0=1,(--)0=1.8.乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2. ②(a±b)2=a2±2ab+b2. ③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab, (a-b)2=(a+b)2-4ab.9.选择因式分解方法的原则是:先看能否提公因式.在没有公因式的情况下:二项式用平方-差公式或立方和差公式,三项式用十字相乘法(特殊的用完全平方公式),三项以上用分组分解法.注意:因式分解要进行到每一个多项式因式都不能再分解为止.10.分式的运算:乘除法要先把分子、分母都分解因式,并颠倒除式,约分后相乘;加减法应先把分母分解因式,再通分(不能去分母).注意:结果要化为最简分式.11.二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如:①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.12.一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x=,其中=b2-4ac叫做根的判别式.当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有个相等的实数根;当Δ<0时,方程没有实数根.注意:当Δ≥0时,方程有实数根.③若方程有两个实数根x1和x2,则x1+x2=-,x1x2=,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).④以a和b为根的一元二次方程是x2-(a+b)x+ab=0.13.解分式方程(去分母或换元)和无理方程(两边平方或换元)必须检验.形如:-的方程组,用代入法解;形如:的方程组,先把一个方程分解为两个一次方程,再把这两个方程分别与另一个方程组合成两个方程组,再用代入法分别解这两个方程组.14.不等式两边都乘以或除以同一个负数,不等号要改变方向.15.平面直角坐标系:①各限象内点的坐标如图所示.②横轴(x轴)上的点,纵坐标是0;纵轴(y轴)上的点,横坐标是0.③关于横轴对称的两个点,横坐标相同(纵坐标互为相反数);关于纵轴对称的两个点,纵坐标相同(横坐标互为相反数);关于原点对称的两个点,横坐标、纵坐标都互为相反数.16.一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx又叫做正比例函数(y与x成正比例),图象必过原点.17.反比例函数y=(k ≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(从左向右降);当k<0时,双曲线在二、四象限(从左向右上升).因此,它的增减性与一次函数相反. 18.二次函数y=ax 2+bx+c(a ≠0)的图象叫做抛物线(c 是抛物线与y 轴的交点的纵坐标).①a>0时,开口向上;a<0时,开口向下.②顶点坐标是(-,),对称轴是直线x=-.特别:抛物线y=a(x -h)2+k 的顶点坐标是(h,k),对称轴是直线x=h.注意:求解析式的设法 ①已知三个点的坐标,则设为一般形式y=ax 2+bx+c;②已知顶点坐标(h,k),则设为顶点式y=a(x -h)2+k;③已知抛物线与x 轴的两个交点坐标(x 1,0)和(x 2,0),则设为交点式y=a(x -x 1)(x -x 2).19.抛物线与x 轴的位置关系: 对于抛物线y=ax 2+bx+c ①Δ<0时,它与x 没有交点.②Δ=0时,它与x 轴只有一个交点(与x 轴相切).③Δ>0时,它与x 轴有两个交点(x 1,0)和(x 2,0),其中x 1和x 2是方程ax 2+bx+c=0的两个根.20.统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数.(2)公式:设有n 个数x 1,x 2,…,x n ,那么:①平均数=(x 1+x 2+…+x n ).②方差S 2=[(x 1-)2+(x 2-)2+…+(x n-)2.(是整数时用)③S 2=[(x 12+x 22+…+x n 2)-n(-)2].注:各数据的数位较少或平均数是分数时,用此公式.④若将n 个数x 1,x 2,…,x n 各减去一个适当的数a,得到一组新数x 1,,x 2,,…,x n ,,那么原来那组数的方差S 2=这组新数的方差,平均数=a+,.方差越大,这组数据的波动就越大.通常用样-本方差去估计总体方差,用样本平均数去估计总体平均数.方差的算术平方根叫做标准差 (3)频率:①把一组数分成若干个小组,组距=(最大值-最小值)÷组数(求组数时,用收尾法取整数),这时,落在某小组内的数据的个数叫做这组的频数,每一小组的频数与数据总个数的比值叫做这一小组的频率.因此,各组的频率的和等于1.在频率分布直方图中,各小长方形的面积等于相应各组的频率.各小长方形的面积的和等于1.21.锐角三角函数:①设∠A 是Rt Δ的任一锐角,则∠A 的正弦:sinA=,∠A 的余弦:cosA=,∠A 的正切:tanA=,∠A 的余切:cotA=. 并且sinA=cosB,tgA=ctgB,-tgActgA=1,-sin 2A+cos 2A=1.0<sinA<1,-0<cosA<1,tgA>0,ctgA>0.∠A越大,∠A 的正弦和正切值越大,余弦和余切值反而越小. ②余角公式:sin(900-A)=cosA,cos(900-A)=sinA,-tg(900-A)=ctgA,ctg(900-A)=-tgA.③特殊角的三角函数值:-sin300=cos600=,sin450=cos450=-,sin600=cos300=,sin00=cos900=0,sin900=cos00=1,tg300=ctg600=,tg450=ctg450=1-,tg600=ctg300=-,tg00=ctg900=0. ④斜坡的坡度i==.设坡角为α,则i=tg α=.22.三角形:(1)在一个三角形中:等边对等角,等角对等边.(2).证明两个三再形全等的方法有:SAS,AAS,ASA,SSS,HL.(3)在Rt Δ中,斜边上的中线等于斜边的一半.(4)证明一个三角形是直角三角形的方法有:①先证明有一个角等于900.②先证明最长边的平方等于另两边的平方和.③先证明一条边的中线等于这条边的一半.(5)三角形的中位线平行于笫三边,并且等于笫三边的一半. (6)等腰三角形中,顶角的平分线与底边上的中线和高互相重合.23.四边形:(1)n 边形的内角和等于(n -2)1800,外角和等于3600. (2)平行四边形的性质:对边平行且相等;对角相等;邻角互补;对角线互相平分.(3)证明一个四边形是平行四边形的方法有:①先证两组对边平行.②先证两组对边相等. ③先证一组对边平行且相等.④先证两条对角线互相平分.⑤先证两组对角分别相等.(4)矩形的对角线相等且互相平分;菱形的对角线互相垂直平分,并且四条边相等.(5)证明一个四边形是矩形的方法有:①先证明它有三个角是直角.②先证它是平行四边形,再证它有一个角是直角或对角线相等.(6)证明一个四边形是菱形的方法有:①先证明它的四条边相等.②先证它是平行四边形,再证它有一组邻边相等或对角线互相垂直.(7)正方形既是矩形又是菱形,它具有矩形和菱形的所有性质.(8)梯形的中位线平行于两底并且等于两底之和的一半.(9)轴对称图形有:线段,角,等腰三角形,等腰梯形,矩形,菱形,正方形,正多边形,圆.中心对称图形有:线段,平行四边形,矩形,菱形,正方形,边数是偶数的正多边形,圆.24.证明两个三角形相似的方法有:①先证两组对应角相等.②先证两边对应成比例并且夹角相等.③先证三边对应成比例.④先证斜边和一条直角边对应成比例.相似三角形的性质:对应高的比,对应角平分线的比,对应中线的比,周长的比,都等于相似比.面积的比等于相似比的平方.25.平行切割定理:①如图1,DE∥BC=.②如图2,若AB∥CD∥EF则=-,=.26.射影定理:如图3,ΔABC中,若∠ACB=900,CD⊥AB,则:①AC2=AD·AB.②-BC2=BD·BA.③AD2=DA·DB.27.圆的有关性质:(1)垂径定理:如果一条直线具备以下五个性质中的任意两个性质:①经过圆心;②垂直弦;③平分弦;④平分弦所对的劣弧;⑤平分弦所对的优弧,那么这条直线就具有另外三个性质.注:具备①,③时,弦不能是直径.(2)两条平行弦所夹的弧相等.(3)在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,那么它所对应的其余三组量都分别相等.(4)圆心角的度数等于它所对的弧的度数.(5)一条弧所对的圆周角等于它所对的圆心角的一半.(6)圆周角等于它所对的弧的度数的一半.(7)弦切角等于它所夹的弧的度数的一半.(8)同弧或等弧所对的圆周角相等.(9)在同圆或等圆中,相等的圆周角所对的弧相等.(10).900的圆周角所对的弦是直径.(11)圆内接四边形的对角互补,外角等于它的内对角.28.直线和圆的位置关系:(1)若⊙O的半径为r,圆心到直线L的距离为d,则:①d<r直线L和⊙O相交.②d=r直线L和⊙O相切.③d>r-直线L和⊙O相离.(2)切线的判定定理:经过半径外端并且垂直这条半径的直线是圆的切线.反之:切线垂直过切点的半径.(3)切线长定理,弦切角定理,相交弦定理及其推论,切割线定理及其推论.(4)三角形的内切圆的圆心叫做三角形的内心.三角形的内心就是三内角平分线的交点.三角形的外接圆的圆心叫做三角形的外心.三角形的外心就是三边中垂线的交点.(5)RtΔ的内切圆的半径R内=-,任意多边形的内切圆的半径R内=.(6)圆外切四边形的一组对边的和等于另一组对边的和.29.圆和圆的位置关系:(1)设两圆半径为R和r,圆心距为d,则:①d>R+r两圆外离.②d=R+r两圆外切.③R-r<d<R+r(R≥r)两圆相交.④d=R-r两圆内切.⑤d<R-r两圆内含.30.圆中常作的辅助线:(1)两圆相交,常作公共弦,连心线.(2)两圆相切,常作公切线,连心线.(3)已知切线,常过切点作半径.(4)已知直径,常作直径所对的圆周角.(5)求解有关弦的问题,作弦心距.(6)弧的中点常和圆心连结.31.各顶点等分圆周正n边形各边相等,各角相等,且每个内角=度,中心角=外角=度.32.面积公式:①S正Δ=×(边长)2.②S平行四边形=底×高.③S菱形=底×高=×(对角线的积)④S圆=πR2.⑤C圆周长=2πR.⑥弧长L=.⑦S扇形==LR.⑧S圆柱侧=底面周长×高.⑨S圆锥侧=×底面周长×母线=πrR,并且2πr=(如上图).。
初一数学公式大全
初一数学公式大全1.一元一次方程一元一次方程的形式为:ax + b = 0,其中a和b为常数。
求解一元一次方程的步骤:1)将b移到等号右边,得到ax = -b。
2)将等式两边同时除以a,得到x=-b/a,在这个过程中需要注意a不能为零。
2.二元一次方程组二元一次方程组的形式为:a1x+b1y=c1a2x+b2y=c2求解二元一次方程组的步骤:1)通过消元法或代入法将其中的一个方程转化为y = ax + b的形式。
2)将得到的表达式代入另一个方程中,得到关于x的一元一次方程。
3)求解得到x的值后,将其代入第一步得到的表达式,得到y的值。
3.百分数百分数表示一个数相对于100的比例关系,常用百分号%表示。
例如:60%表示60/100=0.6或者以小数形式表示的0.6可以表示为60%。
4.百分数与小数的转换将百分数转换为小数,直接将百分数去掉百分号,然后除以100即可。
例如:45%=45/100=0.45将小数转换为百分数,将小数乘以100并加上百分号即可。
例如:0.75=0.75×100%=75%。
5.比例比例是用两个或多个有相同单位的数的比来表示两个或多个数量的关系。
比例的表示方法为a:b或者a/b。
其中a和b为正数,a称为第一项,b称为第二项。
6.比例的性质比例具有以下性质:1)比例中任意两个非零项的比值相等。
2)若已知a:b=c:d,则称a、d为比例的相对项,b、c为比例的相对项。
3)比例的两个相对项,其中一个等于1,另一个等于比例的另一对相对项之间的比。
7.相似形两个几何图形的形状和内部角度相同,但是大小不同,它们被称为相似形。
相似形具有以下性质:1)对应角相等。
2)对应边的比例相等。
8.面积矩形的面积公式为:面积=长×宽。
三角形的面积公式为:面积=底×高÷2圆的面积公式为:面积=πr²,其中r为半径,π约等于3.14169.周长和周率矩形的周长公式为:周长=2×(长+宽)。
初中数学公式大全(从初一到初三)
一、初一数学公式1.1 二次根式的性质① 非负性:若a≥0,则√a≥0② 开平方的乘法性:√a×√b=√(a×b)③ 开平方的除法性:√(a/b)=√a/√b (b>0)1.2 整式化简公式①(a+b)²=a²+2ab+b²②(a-b)²=a²-2ab+b²③(a+b)×(a-b)=a²-b²1.3 分式的运算① 加法:a/b+c/d=(ad+bc)/bd② 减法:a/b-c/d=(ad-bc)/bd③ 乘法:a/b×c/d=ac/bd④ 除法:a/b÷c/d=ad/bc2.1 二次函数① 一般式:y=ax²+bx+c (a≠0)② 顶点坐标:( -b/2a , c-b²/4a )③ 判别式:Δ=b²-4ac若Δ>0,则二次函数有两个不同的实根若Δ=0,则二次函数有两个相等的实根若Δ<0,则二次函数无实根2.2 三角函数① 正弦函数:y=Asin(Bx-C)+D② 余弦函数:y=Acos(Bx-C)+D③ 正切函数:y=Atan(Bx-C)+D2.3 同底数幂的运算aⁿ×aᵐ=aⁿᵐaⁿ÷aᵐ=aⁿ⁻ᵐ(a≠0)三、初三数学公式3.1 等差数列① 通项公式:aₙ=a₁+(n-1)d② 前n项和公式:Sₙ=n/2(a₁+aₙ)3.2 三角恒等变换公式① 和差化积公式:sinα±sinβ=2sin(±(α±β)/2)cos(∓(α±β)/2)② 二倍角公式:sin2α=2sinαcosα, cos2α=cos²α-sin²α3.3 平面几何图形① 三角形面积公式:S=(1/2)×底×高② 圆周长公式:C=2πr, 圆面积公式:S=πr²初中数学公式包括初一到初三阶段的各类公式,涵盖了整式化简、二次函数、三角函数、等差数列、三角恒等变换、平面几何图形等内容。
初一年级上册数学公式与定义
初一年级上册数学公式与定义初一年级上册数学公式与定义学校数学怎么学,很多家长和同学都在为此发愁,其实,数学学习很简洁,我在此整理了初一年级上册数学公式与定义,盼望能关心到您。
初一年级上册数学公式与定义第一章有理数1.1 正数与负数①正数:大于0的数叫正数。
(依据需要,有时在正数前面也加上“+”)①负数:在以前学过的0以外的数前面加上负号“”的数叫负数。
与正数具有相反意义。
①0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
留意:搞清相反意义的量:南北;东西;上下;左右;上升下降;凹凸;增长削减等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。
2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:全部的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。
(例:2的相反数是-2;0的相反数是0)4、肯定值:(1)数轴上表示数a的点与原点的距离叫做数a的肯定值,记作|a|。
从几何意义上讲,数的肯定值是两点间的距离。
(2) 一个正数的肯定值是它本身;一个负数的肯定值是它的相反数;0的肯定值是0。
两个负数,肯定值大的反而小。
1.3 有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把肯定值相加。
2、肯定值不相等的异号两数相加,取肯定值较大的加数的符号,并用较大的肯定值减去较小的肯定值。
互为相反数的两个数相加得0。
3、一个数同0相加,仍得这个数。
加法的交换律和结合律①有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法①有理数乘法法则:两数相乘,同号得正,异号得负,并把肯定值相乘;任何数同0相乘,都得0;乘积是1的两个数互为倒数。
人教版初一数学公式及概念
公式▲乘法定律:乘法交换律:a×b = b×a乘法结合律:a×b×c = a×(b×c)乘法分配律:a×c + b×c=c×(a + b) a×c - b×c=c×(a - b)▲除法性质:a÷b÷c = a÷(b×c)▲减法性质:a –b - c = a - (b + c) ▲解方程定律:◇加数 +加数= 和;加数= 和–另一个加数.◇被减数–减数= 差;被减数=差+减数;减数=被减数–差.◇因数×因数= 积;因数= 积÷另一个因数.◇被除数÷除数= 商;被除数=商×除数;除数=被除数÷商.◆行程问题:路程=速度×时间;时间=路程÷速度;速度=路程÷时间.◆相遇问题:相遇路程=(甲速度+乙速度)×相遇时间;相遇时间=相遇路程÷(甲速度+乙速度);甲速度=相遇路程÷相遇时间–乙速度;乙速度=相遇路程÷相遇时间–甲速度.◆工程问题:工作总量=工作效率×工作时间;工作时间=工作总量÷工作效率;工作效率=工作总量÷工作时间;工作总量=计划工作效率×计划工作时间;工作总量=实际工作效率×实际工作时间;实际工作时间=工作总量÷实际工作效率;实际工作效率=工作总量÷实际工作时间;◆买卖问题:总金额=单价×数量;数量=总金额÷单价;单价=总金额÷数量.6年级(1)S=nR2-nr2或S=n(R2-r2)(2)(a-b)除以b*100%或(b-a)除以b*100%(3)出勤人数除以总人数(4)b*(1+C%)或b*(1-C%)(5)利息=本金*利率*时间,利息税=本金*利率*时间*(1-5%)(6)a除以(1+C%)或a除以(1-C%)7年级常用数学公式表:公式表达式平方差 a2-b2=(a+b)(a-b)和差的平方 (a+b)2=a2+b2+2ab (a-b)2=a2+b2-2ab和差的立方 a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py常用数学公式表:几何图形公式直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式l=a*r (a是圆心角的弧度数r>0) 扇形面积公式s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h柱体体积公式 V=s*h 圆柱体 V=pi*r2h斜棱柱体积V=S'L (S'是直截面面积,L是侧棱长) 注:pi=3.14159265358979……概念一、有理数0既不是正数,也不是负数。
初一数学公式大全
初一数学公式大全1. 数字与运算1.1 数的分类•自然数:0、1、2、3、4…•整数:…-3、-2、-1、0、1、2、3…•有理数:可以用两个整数的比表示,如-2/3、0.5•无理数:不能表示为两个整数的比,如π、√21.2 加法与减法公式加法公式•加法交换律:a + b = b + a•加法结合律:a + (b + c) = (a + b) + c•加法零元素:a + 0 = a•加法逆元素:a + (-a) = 0减法公式•减法定义:a - b = a + (-b)•减法规律:a - (-b) = a + b1.3 乘法与除法公式乘法公式•乘法交换律:a × b = b × a•乘法结合律:a × (b × c) = (a × b) × c•乘法分配律:a × (b + c) = a × b + a × c除法公式•除法定义:a ÷ b = a × (1/b)1.4 平方与立方公式•平方公式:(a + b)² = a² + 2ab + b²,(a - b)² = a² - 2ab + b²•立方公式:(a + b)³ = a³ + 3a²b + 3ab² + b³,(a - b)³ = a³ - 3a²b + 3ab²- b³1.5 百分数与比例•百分数定义:以百分之一为单位,百分数 = 实际数值 × 100%•百分数与小数的关系:百分数 = 小数 × 100%,小数 = 百分数 ÷ 100%•比例:两个量之间的比值关系2. 图形几何2.1 直线与角•直线定义:无限延伸,只有一个方向,没有长度•线段定义:有起点和终点,长度有限•射线定义:有一个起点,延伸的方向和射线上各点到起点的距离都相等•角度定义:两条射线公共起点的两个相邻区域之间的夹角2.2 三角形•三角形定义:由三条线段组成的图形•三角形分类:–按边长:等边三角形、等腰三角形、一般三角形–按角度:锐角三角形、直角三角形、钝角三角形2.3 平行四边形•平行四边形定义:具有两组平行的对边的四边形•矩形特征:平行四边形且所有角都是直角•正方形特征:矩形的特殊情况,所有边相等•菱形特征:平行四边形的特殊情况,所有边相等,相邻角相等2.4 圆与圆的计算•圆的定义:平面上到一个确定点的距离相等的点的轨迹•圆周长公式:周长= 2πr,其中r为半径•圆面积公式:面积= πr²3. 数据和统计3.1 数据的收集与整理•问卷调查•实地观察•文献查询3.2 统计图表的制作和分析•条形图•饼状图•折线图3.3 平均数与中位数•平均数:一组数据之和除以数据的个数•中位数:排列后位于中间位置的数值3.4 茎叶图与频数分布表•茎叶图:用来整理和表示数据的一种方法•频数分布表:用来表示数据的频数和频率的表格以上是关于初一数学公式的大致内容,如果需要更深入了解和学习,请阅读相关的数学教材或参考资料。
初中数学公式及概念总结
【图形】{棱柱}²在棱柱中,任何相邻两个面的交线都叫做棱,相邻两个侧面的交线叫做侧棱,棱柱的所有侧棱长都相等。
棱柱的上、下底面的形状相同,侧面的形状都是长方形。
²人们通常根据地面图形的边数将棱柱分成三棱柱、四棱柱、五棱柱、六棱柱…他们底面图形的形状分别为三边形、四边形、五边形、六边形…²长方体和正方体都是四棱柱。
{线段、射线和直线}²线段有两个端点。
²将线段向一个方向无限延长就形成了射线,射线有一个端点。
²将线段向两个方向无限延长就形成了直线,直线没有端点。
²经过两点有且只有一条直线。
²两点之间的所有连线中,线段最短。
²两点之间线段的长度,叫做这两点之间的距离。
{角}²角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。
²角通常用三个字母及符号“∠”来表示(如∠ABC,中间的字母B表示顶点,其他两个字母A、C分别表示角的两边上的点)。
我们还可以用一个数字或一个字母表示一个角(如∠β、∠1)。
²1°的1/60为1分,记作“1′”,即1°=60′。
²1′的1/60为1秒,记作“1″”,即1′=60″。
²角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
角的平分线上的点到这个角的两边的距离相等。
²平角和周角:角也可以看成是由一条射线绕着它的端点旋转而成的。
一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。
终边继续旋转,当它又和始边重合时,所成的角叫做周角。
²余角和补角:如果两个角的和是直角那么称这两个角互为余角;如果两个角的和是平角,那么称这两个角互为补角。
同角或等角的余角相等,同角或等角的补角相等。
²对顶角:有公共顶点,他们的两边互为反向延长线,这样的两个角叫做对顶角。
初中数学公式大全(整理打印版)
初中数学公式大全初中数学定理、公式汇编一、数与代数1.数与式(1)实数实数的性质:①实数a 的相反数是—a ,实数a 的倒数是(a≠0);a1②实数a 的绝对值:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a ③正数大于0,负数小于0,两个负实数,绝对值大的反而小。
二次根式:①积与商的方根的运算性质:(a≥0,b≥0);b a ab ⋅=(a≥0,b >0);ba ba =②二次根式的性质:⎩⎨⎧<-≥==)0()0(2a a a a a a (2)整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即(m 、n 为正整数);n m n m a a a +=⋅②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m 、n 为正整数,m>n );n m n m a a a -=÷③幂的乘方法则:幂的乘方,底数不变,指数相乘,即(n 为正nnnb a ab =)(整数);④零指数:(a≠0);10=a⑤负整数指数:(a≠0,n 为正整数);n naa1=-⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即;22))((b a b a b a -=-+⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即;2222)(b ab a b a +±=±分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即;,其中m 是不等于零的代数式;m b m a b a ⨯⨯=m b m a b a ÷÷=②分式的乘法法则:;bdacd c b a =⋅③分式的除法法则:;)0(≠=⋅=÷c bcadc d b a d c b a ④分式的乘方法则:(n 为正整数);n nn ba b a =)(⑤同分母分式加减法则:;c ba cbc a ±=±⑥异分母分式加减法则:;bccdab b d c a ±=±2.方程与不等式①一元二次方程(a≠0)的求根公式:02=++c bx ax )04(2422≥--+-=ac b aac b b x ②一元二次方程根的判别式:叫做一元二次方程ac b 42-=∆(a≠0)的根的判别式:02=++c bx ax 方程有两个不相等的实数根;⇔>∆0方程有两个相等的实数根;⇔=∆0方程没有实数根;⇔<∆0③一元二次方程根与系数的关系:设、是方程1x 2x 02=++c bx ax(a≠0)的两个根,那么+=,=;1x 2x a b -1x 2x ac 不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;②不等式两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;3.函数一次函数的图象:函数y=kx+b(k 、b 是常数,k≠0)的图象是过点(0,b )且与直线y=kx 平行的一条直线;一次函数的性质:设y=kx+b (k≠0),则当k>0时,y 随x 的增大而增大;当k<0, y 随x 的增大而减小;正比例函数的图象:函数的图象是过原点及点(1,k )的一条直线。
七八年级数学定理概念公式总集
一、数学定理1.勾股定理:直角三角形斜边的平方等于两直角边的平方和。
2. 皮亚诺小定理:若p是质数,a是整数且a与p互素,则a^(p-1)≡1(mod p)。
3. 欧拉定理:若a与n互素,则a^φ(n) ≡ 1 (mod n),其中φ(n)表示小于n且与n互素的数的个数。
4. 费马定理:若p是质数,a是整数且a与p互素,则a^(p-1) ≡1 (mod p)。
5. 泰勒展开定理:当函数f(x)在x=a处具有n阶导数时,可以将其在x=a处展开为Taylor级数。
6. 插值定理:设f(x)在[a,b]上有n+1阶连续导数,则对于[a,b]上任意n+1个互异的点x0,x1,…,xn,则存在一点ξ属于[a,b],使得f(x)可以通过这n+1个点的线性组合唯一确定。
7.中值定理:如果函数f(x)在区间[a,b]上连续,在(a,b)内可导且f(a)=f(b),则在(a,b)内,至少存在一点c,使得f'(c)=0。
8.泰勒中值定理:当函数f(x)在闭区间[a,b]上的n+1阶导数存在且连续时,在(a,b)内至少存在一个点ξ,使得f(x)在点x的泰勒展开式与f(x)在点ξ的泰勒展开式的误差项成正比,即f(x)-T(x)=f^(n+1)(ξ)(x-ξ)^(n+1)/(n+1!)。
9.柯西定理:设f(x)和g(x)在区间[a,b]上连续,在(a,b)内可导,且g'(x)≠0,则在(a,b)内至少存在一点c,使得[f(b)-f(a)]/[g(b)-g(a)]=f'(c)/g'(c)。
10. 韦达定理:设多项式f(x) = a_nx^n + a_(n-1)x^(n-1) + … + a_1x + a_0,其中a_n ≠ 0,则f(x)可以被(x-r1)(x-r2)…(x-rn)整除,其中r1,r2,…,rn为f(x)的根。
二、数学概念1. 原始根:设p是一个素数,若存在一个整数g使得(x^(p-1)) mod p = 1,且对于任意整数a,若a^(p-1)= 1 (mod p),则a ≡ g^k (mod p)。
七年级下册数学定义公式
七年级下册数学定义公式
以下是七年级下册数学中常见的一些定义和公式:
1. 定义:
- 因数:一个数能整除另一个数,我们称这个数是另一个数的因数。
- 整数:不带小数点和分数线的数。
- 分数:带有分数线的数,分子除以分母得到的数。
- 常数:不含未知数的数字。
- 变量:在数学中,代表未知数的字母或符号。
- 平方数:一个数的平方根是整数的数。
- 二次根式:形如√a的表达式,其中a为正数。
- 等差数列:数列中相邻两项之差都相等的数列。
- 等比数列:数列中相邻两项之比都相等的数列。
- 多项式:一个含有字母的代数式。
2. 公式:
- 面积公式:
- 矩形的面积:长 ×宽
- 正方形的面积:边长 ×边长
- 三角形的面积:底边 ×高 ÷ 2
- 梯形的面积:长边 ×短边之和 ÷ 2 ×高
- 周长公式:
- 矩形的周长:(长 + 宽) × 2
- 正方形的周长:边长 × 4
- 三角形的周长:边1 + 边2 + 边3
- 圆的周长:直径 ×π (π取近似值3.14)
- 体积公式:
- 立方体的体积:边长 ×边长 ×边长
- 长方体的体积:长 ×宽 ×高
- 圆柱体的体积:底面积 ×高
- 平均值公式:
- 平均值 = 总和 ÷数据个数
以上仅列举了一部分常见的定义和公式,七年级下册数学中还包括更多的概念和公式,具体内容可以参考教材。
初一上册数学必背公式12个
初一上册数学必背公式12个1. 二次根式公式二次根式的定义为:设a是任意实数,且a≥0,b是任意正实数,那么这样的代数式√a称为二次根式,其中a叫做二次根式的被开方数,开方号√叫做二次根式的符号。
2. 一元一次方程一元一次方程是指只含有一个未知数,并且这个未知数的最高次数是1的方程。
它的一般形式为:ax + b = 0。
3. 相似三角形比例定理相似三角形比例定理即相似三角形中对应边的比例相等。
若有两个相似的三角形ABC和DEF,则有等式AB/DE = AC/DF =BC/EF。
4. 平行线的性质平行线是指在同一个平面内,永不相交的直线。
平行线具有以下性质:- 对于一条直线和一组平行线,直线和这组平行线中的任意一条线的交角相等。
- 平行线之间的距离保持不变。
5. 一次函数一次函数是指函数的值和自变量的关系可以用一次多项式表示的函数。
它的一般形式为:y = kx + b,其中k是斜率,b是与y轴的交点。
6. 直角三角形的勾股定理直角三角形的勾股定理表达了直角三角形中三条边之间的关系。
对于一个直角三角形,设直角边为a、b,斜边为c,那么有等式a^2 + b^2 = c^2。
7. 园的周长和面积公式圆是一个平面内与一个确定点距离相等的点的轨迹。
圆的周长公式为C = 2πr,圆的面积公式为A = πr^2,其中r为圆的半径。
8. 并集和交集并集是指集合A和集合B中所有元素的总集合,用符号表示为A∪B。
交集是指集合A和集合B中共有的元素的集合,用符号表示为A∩B。
9. 平行四边形的性质平行四边形是指具有两组平行边的四边形。
平行四边形具有以下性质:- 对角线互相平分。
- 对边平行且相等。
10. 三角形的内角和三角形的内角和定理表达了三角形的内角和和180°的关系。
对于任意三角形ABC,设其内角分别为∠A、∠B、∠C,那么有等式∠A + ∠B + ∠C = 180°。
11. 两点之间的距离公式两点之间的距离公式表达了平面上两个点之间的距离。
初中数学概念、定义、定理、公式大全(最新版)
初中数学概念、定义、定理、公式大全(最新版)初中数学概念、定义、定理、公式第二版逻辑与命题实验、观察、操作得出的结论有时不够深入、全面,甚至是错误的。
因此,判断某一事情的句子称为命题。
如果条件成立,那么结论也成立,这样的命题称为真命题。
但条件成立时,结论不一定总是正确,这样的命题称为假命题。
如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题称为互逆命题。
其中一个命题称为另一个命题的逆命题。
数系及运算正数是比大的数,负数是比小的数,零既不是正数也不是负数。
数轴上表示一个数的点与原点的距离,称为这个数的绝对值。
如果两个数的符号不同而绝对值相同,那么它们互为相反数,其中一个是另一个的相反数。
例如,3和-3是互为相反数的。
一个数的相反数是它的相反数。
例如,-5的相反数是5.两个正数相加,绝对值大的正数大;两个负数相加,绝对值大的负数反而小。
有理数加法的法则是:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数和为0;一个数与0相加,仍得这个数。
有理数加法满足交换律和结合律。
减去一个数等于加上这个数的相反数,即a-b=a+(-b)。
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与0相乘都得0.有理数乘法满足交换律、结合律和分配率。
除以一个不等于0的数等于乘这个数的倒数。
幂是指相同因数的积的运算,乘方运算的结果称为幂。
正数的任何次幂都是正数。
负数的奇数次幂是负数,偶数次幂是正数。
科学计数法是一种表示大于10的数的方法,其中1≤a <10,n是正整数。
有理数混合运算的顺序是先乘方,再乘除,最后加减。
如果有括号,先进行括号内的运算。
幂的乘方,底数不变,指数相乘。
(m、n是正整数)积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘。
(n是正整数)同底数幂相除,底数不变,指数相减。
初一数学常用重要公式 超全详细总结
初一数学常用重要公式超全详
细总结
初一数学公式大全
1、正方形:
周长=边长×4 c=4a
面积=边长×边长s=a×a
2、正方体:
表面积=棱长×棱长×6 s表=a×a×6
体积=棱长×棱长×棱长v=a×a×a
3、长方形:
周长=(长+宽)×2 c=2(a+b)
面积=长×宽 s=ab
4、长方体:
表面积(长×宽+长×高+宽×高)×2 s=2(ab+ah+bh)
体积=长×宽×高 v=abh
初一数学重要定理
1 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
2 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
3 推论3 等边三角形的各角都相等,并且每一个角都等于60°
4 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
5 推论1 三个角都相等的三角形是等边三角形
6 推论 2 有一个角等于60°的等腰三角形是等边三角形
7 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
8 直角三角形斜边上的中线等于斜边上的一半。
数学公式初一必背公式
数学公式初一必背公式1. 直线与角度•同位角:相对于两条平行线而言,同位角是指对顶角或内错角,它们的度数相等。
•对顶角:相对于两条交叉直线而言,对顶角是指位于交叉相反侧的两个内角,它们的度数相等。
•内错角:相对于两条交叉直线而言,内错角是指位于交叉相同侧的两个内角,它们的度数之和为180度。
2. 平面图形2.1 三角形•直角三角形:其中一个内角为90度的三角形。
•等腰三角形:两个边相等的三角形。
•等边三角形:三个边都相等的三角形。
•全等三角形:具有相等对应边和对应角的两个三角形。
•勾股定理:直角三角形中,直角边平方之和等于斜边的平方。
即a2+b2=c2。
•正弦定理:在任意三角形中,三角形的每条边的长度与其对立角的正弦值之间存在比例关系。
即 $\\frac{a}{\\sin A}=\\frac{b}{\\sinB}=\\frac{c}{\\sin C}$。
•余弦定理:在任意三角形中,三角形的每条边的长度与其对立角的余弦值之间存在比例关系。
即 $c^2 = a^2 + b^2 - 2ab \\cdot \\cos C$。
2.2 四边形•矩形:对边相等的平行四边形。
•正方形:对边相等且内角均为90度的矩形。
•平行四边形:具有对边平行的四边形。
•梯形:有两个底边并且两个底边平行的四边形。
•菱形:对边相等的平行四边形。
3. 数字与运算•面积公式:根据不同图形的特点有不同的计算公式,如矩形的面积为长乘以宽。
•周长公式:根据不同图形的特点有不同的计算公式,如矩形的周长为长两倍加宽两倍。
•分数:表示一个整体被分成若干个相等的部分,如$\\frac{2}{3}$表示将一个整体分成3个部分中的两个部分。
•百分数:表示一个数在100中所占的比例,如75%表示75在100中所占的比例。
•数轴:是一条带有标记的直线,用于表示数的大小和顺序。
4. 正数与负数•正数:大于零的数。
•负数:小于零的数。
•绝对值:一个数的绝对值是指该数到0的距离,绝对值始终为正数。
初中数学常用概念公式和定理
初中数学重要的概念、公式和定理第一章 有理数正数:大于0的数叫正数负数:小于0的数叫负数有理数:整数和分数统称有理数数轴:规定了方向、原点、单位长度的一条直线; 相反数:只有符号不同的两个数叫相反数;例a a -与绝对值:数轴上一个数到原点的距离叫绝对值;负数正数〉〉0,两个负数,绝对值大的反而小性质:正数的绝对值是它本身,0的绝对值是0,负数的绝对值是他的相反数有理数的加法法则:1、同号两数相加,取相同的符号,并把它们的绝对值相加;2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对数减去较小的绝对值,互为相反数的两数相加得0;3、一个数同0相加,仍得这个数:加法交换律:两数相加,交换加数的位置,和不变;a b b a +=+加法结合律:三个数相加,先把前两数相加或先把后两个数相加,和不变;)(c b a c b a ++=++)( 减去一个数,等于 加上这个数的相反数;)(b a b a -+=-乘法法则:两数相乘同号得正,异号得负并把绝对值相乘;任何数同0相乘都得0; 倒数:乘积为1的两个数互为倒数;乘法交换律:两数相乘,交换因数的位置,积不变;ba ab =乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等;)()(bc a c ab =乘法分配率:一个数同两个数的和相乘,等于把这两个数分别同这个数相乘,再把积相加;ac ab c b a +=+)(有理数除法法则:除以一个不等于0的数,等于乘以这个数的倒数;)0(1≠•=÷b b a b a两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0;乘方:求n 个相同因数的积的运算叫乘方;乘方的结果最做幂;n a 叫做幂,其中a 叫底数,n 叫指数负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何非0次幂都是0;科学计数法:把一个数写成n a 10⨯的形式叫科学计数法;1≤a <10, n 为整数一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:精确到得,结果有两个有效数字6,0.有理数的混合运算:先算乘除、后算加减、有括号的先算括号、有乘方的先算乘方;第二章整式的加减单项式:数或字母的积叫单项式,单独的一个数或一个字母也叫单项式;单项式的系数:单项式中的数字因数;π不能看作字母单项式的次数:单项式中所有字母指数的和;多项式:几个单项式的和叫多项式;其中每个单项式叫多项式的项,来含字母的项叫常数项;多项式的次数:多项式里次数最高项的次数叫多项的次数;单项式和多项式统称整式;同类项:所含字母相同,并且相同字母的指数也相同的项叫同类项;常数项都是同类项合并同类项:字母部分不变,系数相加;把几个同类项合并成一项叫合并同类项; 去括号:括号前面是正号,去括号后括号内各项的符不变;括号前面是负号,去括号后括号内各项要变号;第三章一元一次方程方程:含有未知数的等式叫方程;一元一次方程:只含有一个未知数,并且未知数的最高次数是一次的方程叫一元一次方程;方程的解:使方程等号两边相等的未知数的值;等式的性质:1、等式两边加上减去同一个数或式子,结果仍相等;若ba=,则cbca±=±2、等式两边乘同一个数,或除以同一个来为0的数,结果仍相等;若ba=,则bcac=;若ba=,则)0(≠=ccbca解方程的一般步骤或方法:去分母;2、去括号;3、移项;4、合并同类项;5、系数化为1;6、检验分式方程第四章图形认识初步几何图形:从实物中抽象出的各种图形统称几何图形;立体图形:几何图形的各部分不都在同一平面内的图形叫立体图形;平面图形:几何图形的各部分都在同一平面内的图形叫立体图形;两点确定一条直线;两点之间,线段最短;同一平面内两直线的位置关系:相交、平行;角:由两条有公共端点的射线组成的图形叫角;或由一条射线绕端点旋转得到的图形;角的平分线:从角的顶点出发,把一个角分成两个相等的角的射线;余角:两角的和为90°,则称这两个角互为余角;同角或等角的余角相等;补角:两角的和为180°,则称这两个角互为补角;同角或等角的补角相等;第五章 相交线与平行线邻补角:有一条公共边,另一边互为反向延长线的两个角;对顶角:一个角的两边分别是另一个角两边的反向延长线的两个角;对顶角相等; 点到直线垂线段最短;过一点有且只有一条直线与已知直线垂直;同位角、内错角、同旁内角平行线的判定:1、同位角相等,两直线平行;2、内错角相等,两直线平行;3、同旁内角互补,两直线平行:平行线的性质:1、两直线平行,同位角相等;2、两直线平行,内错角相等;3、两直线平行,同旁内角互补:命题:判断一件事情的语句;分真命题和假命题;定理:经过推理证实是正确的命题叫定理;平移变换也叫平移:1、平移不改变图形的形状和大小;2、对应点的连线平行且相等:第六章 平面直角坐标系有序数对:把有顺序的两个数组成的数对叫做有序数对;点的坐标是一个有序数对;平面直角坐标系:平面内两条互相垂直、原点重合的数轴; 坐标k >0 ×1-横坐标x 向右移动k 个单位 向左移动k 个单位 关于纵轴y 轴对称 纵坐标y 向上移动k 个单位 向下移动k 个单位 关于横轴x 轴对称 坐标y x , 向右移动k 个单位,再向上移动k 个单位 向左移动k 个单位;再向下移动k 个单位关于原点0,0中心对称三角形:由不在同一直线上的三条线段首尾顺次相接而成的图形;分类:按边 按角: 三角形三边关系:三角形两边之和大于第三边三角形两边之差小于第三边三角形的高、中线、角平分线 三角形具有稳定性:三角形的内角和等于180°三角形外角:三角形的一个外角等于它不相邻的两个内角的和三角形的一个外角大于与它不相邻的任何一个内角多边形:由一些线段首尾顺次相接而成的图形;对角线:多边形不相邻顶点的连线段;正多边形:各角都相等,各边都相等的多边形多边形的内角和︒-=180)2(n多边形的内角和等于360°第八章 二元一次方程组二元一次方程:含有两个未知数,含有未知数的项的次数都是1的方程;{{三角形不等边三角形等腰三角形形底边和腰不相等的三角等腰三角形{⎪⎩⎪⎨⎧有一个角是钝角钝角三角形有一个角是直角直角三角形三个角都是锐角锐角三角形三角形:::二元一次方程组:具有相同未知数的两个二元一次方程合在一起,就组成一个二元一次方程组.使二元一次方程两边的值相等的未知数的值,叫做二元一次方程的解;两个二元一次方程组两个方程的公共解,叫做二元一次方程组的解;解二元一次方程组的方法:1、代入消元法; 2、加减消元法:第九章 不等式与不等式组不等式:用不等号表示大小关系的式子叫不等式;不等式解集:使不等式成立的未知数的取值范围叫不等式的解的集合;简称解集; 一元一次不等式:含有一个未知数,并且未知数的次数是一次的不等式叫一元一次不等式;不等式的性质:1、不等式两边加或减同一个数或式子,不等号的方向不变;如果a >b ,那么a ±c >b ±c . 2、不等式两边乘或除以同一个正数,不等号的方向不变;如果a >b , c >0,那么ac >bc .或 c b c a 〉 3、不等式两边乘或除以同一个负数,不等号的方向改变;a >b , c <0,那么ac <bc . 或 cb c a 〈 一个一元一次不等式组:具有相同未知数的两个一元一次不等式合在一起,就组成一个一元一次不等式组.解不等式组的解集:几个不等式的解的公共部分,叫做不等式组的解集;解不等式组就是求它的解集;取两个不等式的公共解集:1、同大取大;2、同小取小;3、大于小的小于大的取之间;4、大于大的小于小的无解:第十章 数据的收集、整理与描述收集数据:整理数据:描述数据:列表法;条形图;扇形图:全面调查:对考察全体对象的调查;抽样调查:抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况的调查;总体:要考察的全体对象;个体:组成总体的每一个考察对象;样本:被抽取的个体组成一个样本;样本容量:样本中个体的数目;简单随机抽样:总体中的每一个个体都有相等的机会被抽到的抽样方法: 第十一章 全等三角形全等形:能够完全重合的两个图形;形状相同、大小相等全等三角形:能够完全重合的两个三角形;性质:对应边相等;对应角相等: 三角形的判定:SSS 、SAS 、ASA 、AAS 、Rt △HL角的平分线:性质:1、角的平分线上的点到角的两边的距离相等;2、到角两边距离相等的点在角的角的平分线上;第十二章 轴对称轴对称图形:如果一个图形沿一条直线折叠,直线两旁能互相重合;这条直线就是它的对称轴;把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那第说这两个图形关于这条直线对称;折叠后重合的点是对应点,叫做对称点;垂直平分线:经过线段中点并且垂直于这条线段的直线;线段垂直平分线上的点到这条线段两端距离相等;到线段两端距离相等的点在这条线段的垂直平分线上;轴对称图形的对称轴垂直平分对应点的连线;等腰三角形:两边相等的三角形;性质:1、两底角相等等边对等角、等角对等边;2、顶角平分线、底边上的中线、底边上的高相互重合三线合一:等边三角形正三角形:三边都相等的三角形;性质:三个内角都相等并且每一个内角都等于60°;判定:1、三个角都相等的三角形是等边三角形:2、有一个角是60°的等腰三角形是等边三角形:直角三角形中30°角所对的边等于斜边的一半;第十三章 实数算术平方根:如果一个正数x 的平方等于a a x =2,那么这个正数x 叫做a 的算术平方根;记为:a ,读作“根号a ”, a 叫做被开方数;0的算术平方根是0; 平方根二次方根:一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根; 开平方:求一个数a 的平方根的运算叫做开平方;1、正数的两个平方根,它们互为相反数;2、0的平方3、根是0;负数没有平方根:立方根三次方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根开立方:求一个数的立方根的运算叫做开立方;用3a 表示,读作“三次根号a ”其中3叫根指数1、正数的立方根是正数;2、0的立方根是0;3、负数的立方根是0:{实数可以写成有限小数或无限循环小数的数有理数无理数无限不循环小数⎩⎨⎧按小数分数{{{实数正有理数正无理数负有理数负无理数正实数负理数按大小分类第十四章 一次函数变量:数值会发生变化的量;常量:数值始终不变的量;函数:如果在一个变化过程中有两个变量x 和y ,对于x 的每一个确定的值,y 都有一个唯一的值与它对应,我们就说x 是自变量,y 是x 的函数;表示函数的方法:列表法;解析法;图象法:一次函数:一般形式)0(≠+=k b kx y 正比列函数:0)0(≠≠=b k kx y 经过原点 图象:一条直线;画函数图象的步骤:列表、描点、连线;性质::x ,y ;k x ,y k 的增大而减小随时增大而增大随时00〈〉第十五 章整式的乘法与因式分解单项式×单项式:把它们的系数×系数、相同字母×相同字母单项式×多项式:用单项式去乘以多项式的每一项多项式×多项式:用一个多项式每一项乘以另一个多项式的每一项平方差公式:22))((b a b a b a -=-+完全平方公式:2222)(b ab a b a +±=±2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-去括号:括号前面是正号,去括号后各项都不变号;括号前面是负号,去括号后各项都要变号:因式分解分解因式:把一个多项式化成几个整式的乘积的形式;方法:提公因式法和公式法;第十六 章分式分式:分母中含有字母的式子分式的基本性质:1、分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变;2、①同分母:分母不变,分子相加减;②异分母:先通分,变为同分母,再按同分母分式相加减进行运算;约分:根据分式的性质,约去分式的分子和分母的公因式;最简分式:分子分母没有公因式、分子分母中的系数都是整数、分子分母中没有分式;通分:把不同分母分式的分母化相同;最简公分母分式方程:分母中含有未知数的方程;第十七章 反比列函数反比列函数:一般形式:)0(≠=k x k y图象:双曲线 性质:1、k >0时,;x ,y 、的增大而减小随三象限图象在第一2、k <0时,;x ,y 、的增大而减大随四象限图象在第二第十八章 勾股定理勾股定理: 222,Rt c b a c ,b ,a =+∆那么斜边为中两直角边分别为勾股定理的逆定理:若三角形中,三边长222,,c b a c b a =+满足,那么,这个三角形是直角三角形第十九章平行四边形平行四边形:两组对边分别平行的四边形叫做平行四边形性质1、平行四边形的对角相等平行四边形性质定理2 、平行四边形的对边相等3、 平行四边形的对角线互相平分推论 夹在两条平行线间的平行线段相等判定定理判定:1、定义两组对边分别平行的四边形是平行四边形2、两组对角分别相等的四边形是平行四边形3、两组对边分别相等的四边形是平行四边形4、对角线互相平分的四边形是平行四边形5、一组对边平行相等的四边形是平行四边形三角形的中位线平行且等于第三边的一半;矩形:有一个角是直角的平行四边形;性质:1、矩形的四个角都是直角叫矩形2、 矩形的对角线相等判定:1、定义有一个角是直角的平行四边形是矩形定义2、有三个角是直角的四边形是矩形3、对角线相等的平行四边形是矩形菱形:有一组邻边相等的平行四边形是叫菱形性质:1、菱形的四条边都相等2、菱形的对角线互相垂直,并且每一条对角线平分一组对角菱形面积=对角线乘积的一半,ab :s 21=即判定1、四边都相等的四边形是菱形2、对角线互相垂直的平行四边形是菱形正方形:有一个角是直角有一组邻边相等的平行四边形是正方形性质1、正方形的四个角都是直角,四条边都相等2、正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 梯形:有一组对边平行,另一组对边不平行的四边形叫做梯形;等腰梯形:两腰相等的梯形;直角梯形:有一个角是直角的梯形;性质1、等腰梯形在同一底上的两个角相等2、两条对角线相等判定1、两腰相等的梯形是等腰梯形2、在同一底上的两个角相等的梯形是等腰梯形3、对角线相等的梯形是等腰梯形 第二十章数据的代表nn n w w w w x w x w x x ++++++= 212112:加权平均数权:数据的重要程度;n n w w w ;x x x ;n ,,,,,,2121 每个数据的权这组数据为这组数据的个数中位数:一组数据按顺序排列,处于中间位置的数;众数:一组数据中出现次数最多的数据;极差:一组数据中最大数据与最小数据的差;⎥⎦⎤⎢⎣⎡-++-+-=---)()()(1212x x x x x x n :s n 方差方差越大,数据波动越大;方差越小,数据波动越小:标准差:⎥⎦⎤⎢⎣⎡-++-+-=---)()()(121x x x x x x n s n n x x x ;x ,,,21 这组数据为这组数据的平均数第二十一章二次根式 二次根式:形如)0(≥a a 的式子;“”称为二次根号;代数式:用基本运算符号把数和表示数的字母连接起来的式子;基本运算符号有:加、减、乘、除、乘方和开方最简二次根式:必须满足1、被开方数不含分母;2、被开方数中不含开得尽的因数或因式:二次根式的加减:先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并;第二十二章一元二次方程一元二次方程:只含有一个未知数,未知数的最高次数是二次的方程;一元二次方程的解也叫一元二次方程的根;一元二次方程的一般形式:)0(02≠=++a c b a c bx ax 为常数、、解一元二次方程的方法:1、配方法;2、公式法;3、因式分解法: 第二十三章旋转旋转:把一个图形绕着平面某一个点转动一个角度;旋转中心、旋转心方向、旋转角旋转图形:1、对应点到旋转中心的距离相等;2、对应点与旋转中心所连的夹角等于旋转角;3、旋转前、后图形全等:中心对称图形:把一个图形绕某一个点旋转180°,如果它能与另一个图形重合,那么这两个图形叫中心对称图形;也说这两个图形关于这个点中心对称,这个点叫对称中心.这时对应点也叫对称点;第二十四章圆圆:在一个平面内,线段绕它的一个端点旋转一周,另一个端点形成的图形叫做圆;圆心、半径弦:圆上任意两点的线段;经过圆心的弦叫做直径;弧:圆上任意两点间的部分;半圆、等圆、等弧垂径定理:垂直于弦的直径平分弦,并且平分缠绵民对的两条弧;平分弦不是直径的直径垂直于弦,并且平分缠绵民对的两条弧;同圆或等圆中,弦、弧、圆心角、圆周角中,任意一个量相等,则另外三个量也相等; 圆内接四边形对角互动补;如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形; 点和圆的位置关系:P 表示点、d ”读作等价于点P 在圆外⇔d >r ;点P 在圆外⇔d=r ;点P 在圆外⇔d <r ;不在同一直线上的三点确定一个圆;反证法:由矛盾断定所假设不正确,从而得到原命题成立;直线和圆的位置关系:l 表示直线、d 表示这条直线到圆心的距离、r 表示半径 直线l 和圆相交⇔d <r ;直线l 和圆相切⇔d=r ;直线l 和圆相离⇔d >r圆的切线:经过半径外端、垂直于半径的直线;圆的切线垂直于经过切点的半径 切线长:经过圆外一点作圆的切线,这点和切点之间的线段长;从圆外一点可以作圆的两条切线,它们的切 线长相等,这点和圆心的连线平分两条切线的夹角;多边形内切圆:与多边形各边都相切的圆;内切圆的圆心叫多边形的内心;圆与圆的位置关系:d 表示两圆心之间的距离、R 表示大圆半径、r 表示小圆半径、R >r外离⇔d >R+r外切⇔d=R+r相交⇔R-r <d <R+r内切⇔d=R-r内含⇔d >R-r多边形的中心:正多边形外接圆的圆心;多边形的半径:正多边形外接圆的半径;多边形的中心角:正多边形每一边所对的圆心角;多边形的边心距:中心到正多边形一边的距离; 弧长: 180R n l π=l 表示弧长、n 表示圆心角、R 表示圆的半径 扇形面积:lR R n S 213602== π扇形圆锥侧面积:lR S π=圆锥侧 第二十五章概率初步 n mP =列表法,树状图第二十六章二次函数二次函数:用二次式表示的函数;一般形式解析式:)0,,,(2≠++=a c b a c bx ax y 是常数 图象:抛物线 性质:a b ac a b x a y c bx ax y 44)2(222-++=++=化成 第二十七章相似相似图形:形状相同的图形;相似多边形:形状相同的多边形;相似多边形:对应边的比相等,对应角相等;对应边的比叫相似比;相似三角形的判定:SSS 、SAS 、AA;相似三角形:相似比=边长比=周长比=对应边上的高或中线、角平分线的比 面积比=相似比的平方位似:两个多边形不且相似,而且对应点的连线相交于一点,对应边互相平行,这个点叫做位似中心;第二十八章锐角三角函数特殊的三角函数值: 第二十九章投影与视图 投影:光线照射物体,在某个平面上得到的影子;中心投影:由同一点发出的光线形成的投影; 锐角a三角函数 30° 60°45° sinA cosAtanA正投影:投影线垂直于投影面产生的投影;视图:从某一角度观察一个物体,所看到的图象;三视图:主视图、俯视图、左视图画三视图:主视图与俯视图长对正、主视图与左视图高平齐、左视图与俯视图宽相等;。
七年级上册数学概念及公式
七年级上册数学概念及公式:概念:1.正数、负数:大于0的数叫做正数;小于0的数叫做负数;0既不是正数也不是负数。
2.有理数:整数和分数统称为有理数。
3.相反数:符号相反、绝对值相等的两个数互为相反数。
4.绝对值:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
5.数轴:人们通常用一条直线上的点表示数,这条直线叫做数轴。
6.乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an中,a叫做底数,n叫做指数。
7.乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把所得的积相加。
8.乘法交换律:两个数相乘,交换因数的位置,它们的积不变。
9.加法交换律:两个数相加,交换加数的位置,和不变。
10.加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
公式:1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
4.减去一个数,等于加上这个数的相反数。
5.两个负数相减,得它们的绝对值的和。
6.异号两数相乘除,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
7.一数除以一个不为0的数,等于乘这个数的倒数。
8.一个数同0相乘,仍得0。
9.除以一个不为0的数,等于乘这个数的倒数。
10.有理数的除法法则:除以一个不等于0的数,等于乘这个数的倒数。
110和任何整式相乘,先把这个整式的每一项分别乘10,再把所得的积相加。
11.整式的加减运算实际上就是去括号、合并同类项。
一般步骤是:先去括号,然后合并同类项。
12.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
13.合并同类项:把同类项的系数相加,字母和字母的指数不变。
14.平方差公式:两数和乘两数差,等于两数平方差。
15.完全平方公式:首平方又末平方,二倍首末在中央;和的平方加再加,先减后加差平方。
人教版初一年级初中数学公式大全
初中数学常用的概念、公式和定理整数(包括:正整数、0、负整数)和分数(包括:有限小和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,-.无限不环循小数叫做无理数..如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.1.绝对值:a≥0丨a丨=a;a≤0丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3.一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4.把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5.被开方数的小数点每移动2位,算术平方根的小数点就向相同方向移动1位;被开方数的小数点每移动3位,立方根的小数点就向相同方向移动1位.如:已知=0.4858,则=48.58;已知=1.558,则=0.1588.6.整式的乘除法:①几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除.②单项式乘以多项式,用单项式乘以多项式的每一个项.③多项式乘以多项式,用一个多项式的每一项分别乘以另一个多项式的每一项.④多项式除以单项式,将多项式的每一项分别除以这个单项式.7.幂的运算性质:①a m×a n=a m+n. ②a m÷a n=a m-n. ③(a m)n=a mn. ④(ab)n=a n b n.⑤()n=n. ⑥a-n=n,特别:()-n=()n. ⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)0=1,(-)0=1.8.乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2. ②(a±b)2=a2±2ab+b2. ③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3; a2+b2=(a+b)2-2ab, (a-b)2=(a+b)2-4ab.9.选择因式分解方法的原则是:先看能否提公因式.在没有公因式的情况下:二项式用平方差公式或立方和差公式,三项式用十字相乘法(特殊的用完全平方公式),三项以上用分组分解法.注意:因式分解要进行到每一个多项式因式都不能再分解为止.10.分式的运算:乘除法要先把分子、分母都分解因式,并颠倒除式,约分后相乘;加减法应先把分母分解因式,再通分(不能去分母).注意:结果要化为最简分式.11.二次根式:①()2=a(a≥0),②=丨a丨,③=×,④-=(a>0,b≥0).如:①(3)2=45.②=6.③a<0时,=-a .④的平方根=4的平方根=±2.12.一元二次方程:对于方程:ax 2+bx+c=0:①求根公式是x=-,其中=b2-4ac叫做根的判别式.当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有个相等的实数根;当Δ<0时,方程没有实数根.注意:当Δ≥0时,方程有实数根.③若方程有两个实数根x1和x2,则x1+x2=-,x1x2=,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).④以a和b为根的一元二次方程是x2-(a+b)x+ab=0.13.解分式方程(去分母或换元)和无理方程(两边平方或换元)必须检验.形如:的方程组,用代入法解;形如:的方程组,先把一个方程分解为两个一次方程,再把这两个方程分别与另一个方程组合成两个方程组,再用代入法分别解这两个方程组.14.不等式两边都乘以或除以同一个负数,不等号要改变方向.15.平面直角坐标系:①各限象内点的坐标如图所示.②横轴(x轴)上的点,纵坐标是0;纵轴(y轴)上的点,横坐标是0.③关于横轴对称的两个点,横坐标相同(纵坐标互为相反数);关于纵轴对称的两个点,纵坐标相同(横坐标互为相反数);关于原点对称的两个点,横坐标、纵坐标都互为相反数.16.一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx又叫做正比例函数(y与x成正比例),图象必过原点.17.反比例函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(从左向右降);当k<0时,双曲线在二、四象限(从左向右上升).因此,它的增减性与一次函数相反.18.二次函数y=ax2+bx+c(a≠0)的图象叫做抛物线(c是抛物线与y轴的交点的纵坐标).①a>0时,开口向上;a<0时,开口向下.②顶点坐标是(-,),对称轴是直线x=-.特别:抛物线y=a(x-h)2+k的顶点坐标是(h,k),对称轴是直线x=h.注意:求解析式的设法①已知三个点的坐标,则设为一般形式y=ax2+bx+c;②已知顶-点坐标(h,k),则设为顶点式y=a(x-h)2+k;③已知抛物线与x轴的两个交点坐标(x1,0)和(x2,0),则设为交点式y=a(x-x1)(x-x2).19.抛物线与x轴的位置关系:对于抛物线y=ax2+bx+c①Δ<0时,它与x没有交点.②Δ=0时,它与x轴只有一个交点(与x轴相切).③Δ>0时,它与x轴有两个交点(x1,0)和(x2,0),其中x1和x2是方程ax2+bx+c=0的两个根.20.统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数.(2)公式:设有n个数x1,x2,…,x n,那么:①平均数=(x1+x2+…+x n).②方差S2=[(x1-)2+(x2--)2+…+(x n-)2.(是整数时用)③S2=[(x12+x22+…+x n2)-n()2].注:各数据的数位较少或平均数是分数时,用此公式.④若将n个数x1,x2,…,x n各减去一个适当的数a,得到一组新数x1,,x2,,…,x n,,那么原来那组数的方差S2=这组新数的方差,平均数=a+,.方差越大,这组数据的波动就越大.通常用样-本方差去估计总体方差,用样本平均数去估计总体平均数.方差的算术平方根叫做标准差(3)频率:①把一组数分成若干个小组,组距=(最大值-最小值)÷组数(求组数时,用收尾法取整数),这时,落在某小组内的数据的个数叫做这组的频数,每一小组的频数与数据总个数的比值叫做这一小组的频率.因此,各组的频率的和等于1.在频率分布直方图中,各小长方形的面积等于相应各组的频率.各小长方形的面积的和等于1.21.锐角三角函数:①设∠A是RtΔ的任一锐角,则∠A的正弦:-sinA=,∠A的余弦:cosA=,∠A的正切:tanA=,∠A的余切:cotA=.并且sinA=cosB,tgA=ctgB,tgActgA=1,-sin2A+cos2A=1.0<sinA<1,0<cosA<1,tgA>0,ctgA>0.∠A越大,∠A的正弦和正切值越大,余弦和余切值反而越小.②余角公式:sin(900-A)=cosA,cos(900-A)=sinA,tg(900-A)=ctgA,ctg(900-A)=tgA.③特殊角的三角函数值:sin300=cos600=,sin450=cos450=-,sin600=cos300=,sin00=cos900=0,sin900=cos00=1,tg300=ctg600=-,tg450=ctg450=1,tg600=ctg300=,tg00=ctg900=0.④斜坡的坡度i==.设坡角为α,则i=tgα=.22.三角形:(1)在一个三角形中:等边对等角,等角对等边.(2).证明两个三再形全等的方法有:SAS,AAS,ASA,SSS,HL.(3)在RtΔ中,斜边上的中线等于斜边的一半.(4)证明一个三角形是直角三角形的方法有:①先证明有一个角等于900.②先证明最长边的平方等于另两边的平方和.③先证明一条边的中线等于这条边的一半.(5)三角形的中位线平行于笫三边,并且等于笫三边的一半.(6)等腰三角形中,顶角的平分线与底边上的中线和高互相重合.23.四边形:(1)n边形的内角和等于(n-2)1800,外角和等于3600.(2)平行四边形的性质:对边平行且相等;对角相等;邻角互补;对角线互相平分.(3)证明一个四边形是平行四边形的方法有:①先证两组对边平行.②先证两组对边相等.③先证一组对边平行且相等.④先证两条对角线互相平分.⑤先证两组对角分别相等.(4)矩形的对角线相等且互相平分;菱形的对角线互相垂直平分,并且四条边相等.(5)证明一个四边形是矩形的方法有:①先证明它有三个角是直角.②先证它是平行四边形,再证它有一个角是直角或对角线相等.(6)证明一个四边形是菱形的方法有:①先证明它的四条边相等.②先证它是平行四边形,再证它有一组邻边相等或对角线互相垂直.(7)正方形既是矩形又是菱形,它具有矩形和菱形的所有性质.(8)梯形的中位线平行于两底并且等于两底之和的一半.(9)轴对称图形有:线段,角,等腰三角形,等腰梯形,矩形,菱形,正方形,正多边形,圆.中心对称图形有:线段,平行四边形,矩形,菱形,正方形,边数是偶数的正多边形,圆.24.证明两个三角形相似的方法有:①先证两组对应角相等.②先证两边对应成比例并且夹角相等.③先证三边对应成比例.④先证斜边和一条直角边对应成比例.相似三角形的性质:对应高的比,对应角平分线的比,对应中线的比,周长的比,都等于相似比.面积的比等于相似比的平方.25.平行切割定理:①如图1,DE∥BC=.②如图2,若AB∥CD∥EF则=,=.26.射影定理:如图3,ΔABC中,若∠ACB=900,CD⊥AB,则:①AC2=AD·AB.②BC2=BD·BA.③AD2=DA·DB.27.圆的有关性质:(1)垂径定理:如果一条直线具备以下五个性质中的任意两个性质:①经过圆心;②垂直弦;③平分弦;④平分弦所对的劣弧;⑤平分弦所对的优弧,那么这条直线就具有另外三个性质.注:具备①,③时,弦不能是直径.(2)两条平行弦所夹的弧相等.(3)在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,那么它所对应的其余三组量都分别相等.(4)圆心角的度数等于它所对的弧的度数.(5)一条弧所对的圆周角等于它所对的圆心角的一半.(6)圆周角等于它所对的弧的度数的一半.(7)弦切角等于它所夹的弧的度数的一半.(8)同弧或等弧所对的圆周角相等.(9)在同圆或等圆中,相等的圆周角所对的弧相等.(10).900的圆周角所对的弦是直径.(11)圆内接四边形的对角互补,外角等于它的内对角.28.直线和圆的位置关系:(1)若⊙O的半径为r,圆心到直线L的距离为d,则:①d<r直线L和⊙O相交.②d=r直线L和⊙O相切.③d>r直线L和⊙O相离.(2)切线的判定定理:经过半径外端并且垂直这条半径的直线是圆的切线.反之:切线垂直过切点的半径.(3)切线长定理,弦切角定理,相交弦定理及其推论,切割线定理及其推论.(4)三角形的内切圆的圆心叫做三角形的内心.三角形的内心就是三内角平分线的交点.三角形的外接圆的圆心叫做三角形的外心.三角形的外心就是三边中垂线的交点.(5)RtΔ的内切圆的半径R内=,任意多边形的内切圆的半径R内=.(6)圆外切四边形的一组对边的和等于另一组对边的和.29.圆和圆的位置关系:(1)设两圆半径为R和r,圆心距为d,则:①d>R+r两圆外离.②d=R+r两圆外切.③R-r<d<R+r(R≥r)两圆相交.④d=R-r两圆内切.⑤d<R-r两圆内含.30.圆中常作的辅助线:(1)两圆相交,常作公共弦,连心线.(2)两圆相切,常作公切线,连心线.(3)已知切线,常过切点作半径.(4)已知直径,常作直径所对的圆周角.(5)求解有关弦的问题,作弦心距.(6)弧的中点常和圆心连结.31.各顶点等分圆周正n边形各边相等,各角相等,且每个内角=度,中心角=外角=度.32.面积公式:①S正Δ=×(边长)2.②S平行四边形=底×高.③S菱形=底×高=×(对角线的积)④S圆=πR2.⑤C圆周长=2πR.⑥弧长L=-.⑦S扇形==LR.⑧S圆柱侧=底面周长×高.⑨S圆锥侧=×底面周长×母线=πrR,并且2πr=(如上图).。
初一数学上册知识点公式汇总
整式、分式、代数式和有理式含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
整式和分式统称为有理式。
圆定义:圆周的简称静止定义:平面上所有到定点的距离等于定长的点的集合。
运动定义:平面上,一动点以一定点为圆心,一定长为距离运动一周的轨迹。
基本公式:S=лr2=лd2/4=C2/4лC=2лr=лd=√(4лS)相关公式:两圆外公切线长=√[d2-(R-r)2]两圆内公切线长=√[d2-(R+r)2]n度的圆心角所对的弧长=nлr/180n度的圆心角所对的扇形面积=nлr2/360l的扇形弧长所对的扇形面积=0.5rl单项式与多项式没有加减运算的整式叫做单项式。
(数字与字母的积—包括单独的一个数或字母)几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。
②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。
划分代数式类别时,是从外形来看。
如,=x,=│x│等。
同类二次根式化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
把分母中的根号划去叫做分母有理化。
统计1.总体:考察对象的全体。
2.个体:总体中每一个考察对象。
3.样本:从总体中抽出的一部分个体。
4.样本容量:样本中个体的数目。
5.众数:一组数据中,出现次数最多的数据。
6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)同类项及其合并合并同类项就是逆用乘法分配律。
把多项式中同类项合成一项,叫做合并同类项。
如果两个单项式,它们所含的字母相同,并且各字母的指数也分别相同,那么就称这两个单项式为同类项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学公式概念1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d<r②直线L和⊙O相切d=r③直线L和⊙O相离d>r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离d>R+r ②两圆外切d=R+r③两圆相交R-r<d<R+r(R>r)④两圆内切d=R-r(R>r) ⑤两圆内含d<R-r(R>r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长142正三角形面积√3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:L=n兀R/180145扇形面积公式:S扇形=n兀R^2/360=LR/2146内公切线长= d-(R-r) 外公切线长= d-(R+r)(还有一些,大家帮补充吧)实用工具:常用数学公式公式分类公式表达式乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4ac=0 注:方程有两个相等的实根b2-4ac>0 注:方程有两个不等的实根b2-4ac<0 注:方程没有实根,有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h。