比和比例应用题1

合集下载

比和比例的应用题

比和比例的应用题

1、一种农药,用药液和水按照2∶500配制而成。

5千克药液能配制这种农药多少千克?(5分)2、为了预防冬季感冒,校医务室按1:200的配比配制了消毒液。

现在有2瓶105毫升的药液,需要加入多少升水?3、建筑工人用水泥、沙子、石子按2:3:5配制成96吨的混凝土,需要水泥、沙子、石子各多少吨?4、一种药水是用药物和水按3:400配制成的。

(1)要配制这种药水1612千克,需要药粉多少千克?(2)用水60千克,需要药粉多少千克?(3)用48千克药粉,可配制成多少千克的药水?5、某班男生人数与女生人数的比是4:3,已知女生有24人,这个班级有学生多少人?6、商店运来一批电冰箱,卖了18台,卖出的台数与剩下的台数比是3:2,求运来电冰箱多少台?7、三角形的三个角的比是2:3:4这个三角形三个角各是多少度?8、六(1)班原有学生52人,后来又调进女生4人,这时女生人数是男生人数的,六(1)班原来有女生多少人?9、一块长方形试验田的周长是120米,已知长与宽的比是2:1,这块试验 田的面积是多少平方米?10、用一根60厘米长的铁丝围一个长方形,已知长与宽的比是3:2,这块试验 田的面积是多少平方米?11、在比例尺是250000001 的中国地图上量得北京到上海的距离是4.2厘米.北京到上海的实际距离大约是多少千米?12、在比例尺是1:6000000的地图上,量得甲乙两个火车站的距离是2.4厘米。

求甲乙两个车站的实际距离是多少千米?13、在某城市的公交路线图上,2路公交车从火车站到终点站的实际距离是20千米,已知这幅图的比例尺是1:50000 ,从火车站到终点站的图上距离是多少厘米?14、在一幅比例尺是1:30000 的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?15、在比例尺是15000000 的地图上,量得甲、乙两地的距离是9.6厘米。

甲、乙两地的实际距离是多少千米?16、甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?17、一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?18、在一幅比例尺是14000 的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?19、在比例尺是1∶300000的地图上,量得甲、乙两地的距离是12厘米,它们之间的实际距离是多少千米?如果改用1∶500000的比例尺,甲、乙两地的距离应画多少厘米?20、一个修路队,原来计划每天修400米,15天可以完成任务.结果12天完成任务,实际每天修多少米?(5分)21、食堂里的一批煤,如果每天烧0.6吨,可以烧24天;如果每天少烧0.12吨,这批煤可以烧多少天?(两种方法解答)22、学校班车4分钟行驶了2400米,照这样的速度,从第1站到学校共行驶了30分钟,这段路程有多少千米?(解比例)23、用同样的地砖铺地,铺完36平方米的房间用了方砖180块地砖,如果再铺个48平方米的房间,还要用地砖多少砖?(用比例解)24、运一批药品,每箱装36瓶,需要40只箱子。

比和比例应用题例

比和比例应用题例

★比和比例应用题
1、甲乙两厂人数的比是7∶6。

从甲厂调360人到乙厂后,甲乙两厂人数比为2∶3,甲乙两厂原有多少人
2、一辆汽车在甲、乙两站之间匀速行驶,往返一次共用去4小时(停车时间不计算在内)。

已知汽车去时速度为每小时45千米,返回时速度为每小时30千米,甲乙两站相距多少千米?
3、A、C两站相距10千米,A、B两站相距2千米,甲车从A站,乙车从B站同时向C站开去,当甲车到达C站时,乙车距C站还有0.5千米,甲车是在离C站多远的地方追上乙车的?(如图)
4、某班在一次数学考试中,平均成绩是78分,男、女生各自的平均成绩分别是75.5分、81分。

这个班男、女生人数的比是多少
5、王师傅原定在若干小时内加工完一批零件。

他估算了一下,如果按原定速度加工120个零件后工作效率提高25%,可提前40分钟完成;如一开始工作效率就提高20%的话,就可提前1小时完成。

他原计划每小时加工多少个零件?
6、一只野兔跑出80步后,猎狗才追它。

野兔跑8步的路程,猎狗只需跑3步;猎狗跑4步的时间,野兔要跑9步。

那么猎狗至少要跑多少步才能追上野兔?
7、某团体100名会员,男会员与女会员的人数之比是14∶11,会员分成三个组,甲组人数与乙、丙两组人数之和一样多,且各组男会员与女会员人数之比是:甲:(12∶13)、乙:(5∶3)、丙:(2∶1)。

那么丙组有多少名男会员?。

比和比例应用题

比和比例应用题

比和比例应用题1.小明三天读完一本书,第一天读了全本书的一半少32页,第二天读了2、甲、乙两人去看电影,一张电影票价是甲所有钱的6/25,是乙所有钱的3/5;当他们各自买了电影票后,甲剩下的钱比乙剩下的钱多3元;问甲、乙买电影票前各有多少钱3、男生比全校学生总数的3/5还少63人,男生比女生多26人;六年级中,男生与女生的人数之比是35∶31,男生比女生多8人.问其他年级中女生有多少人,B两个盘子,放着黑子和白子.在A中有2700个棋子,其中黑子多少个5.陆地与海洋的面积之比,在北半球是2∶3,在南半球是1∶4.求地球上陆地与海洋的面积之比.6、一块地由三台拖拉机耕完;甲耕了这块地的2/5,乙耕的地比丙耕的多1/4,乙比甲少耕100亩;问这块地有多少亩7.孙悟空有仙桃,机器猫有甜饼,米老鼠有泡泡糖.他们按下面比例互换:仙桃与甜饼为3∶5,仙桃与泡泡糖为3∶8,甜饼与泡泡糖为7∶10.现在孙悟空各拿出90个仙桃与其他两位互换,机器猫共拿出甜饼269个与其他两位互换,问米老鼠拿出互换的泡泡糖有多少个8.水池的水面上立着两根木桩,露出水面部分的长度之比是10∶1.当水面下降2 0厘米后,露出水面部分的长度之比变成5∶2.求较短的一根木桩,原来露出水面部分是多少厘米9.小明有12元,小强有元,他们去买每本元的笔记本,小明比小强多买了2本,小明与小强剩下的钱数之比是5∶3.问小明买了几本笔记本10.甲、乙两人收入的钱数之比是8∶5,开支的钱数之比是4∶3,甲结余152元,乙结余69元.问甲、乙两人收入各多少元11.有三堆棋子,每堆棋子数一样多,并且都只有黑、白两色棋子.第一堆三堆棋子集中在一起,求黑子数与白子数之比.12.小明要写152页字,小强要写150页字.从暑假第一天起,小明每天写3页,小强每隔一天写4页第一天写4页,第二天不写,第三天写4页…….当小强未写的页数是小明未写的页数的2倍时,问这是第几天比和比例应用题汇总一、操作题;1、一个圆形大花坛,量得它的直径是40米,请你仔细把它画在比例尺是的图纸上;要求:先计算出图上圆的半径长度,再画出平面图;2、一块长方形菜地,长90米,宽60米;请你自己设计一个比例尺,再根据你设计的比例尺画出这块菜地的平面图;3、下图的比例尺是1:2500,量出图上各数据,求出它的实际占地面积是多少平方米量时得数保留整厘米4、下图是按1:60000的比例尺画出的一张试验田的平面图,请量出有关数据,求出试验田的面积是多少公顷;二、应用题;1一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少2在一幅的平面图上,量得一块平行四边形的菜地的底是12厘米,高是10厘米,这块菜地的实际面积是多少公顷3甲、乙两地相距240千米,画在比例尺是1∶3000000的地图上,长度是多少厘米4在一幅地图上,用3厘米的线段表示实际距离600千米;在这幅地图上,量得甲、乙两地的距离是4.5厘米,甲、乙两地的实际距离是多少千米5甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米6在一幅比例尺是1:30000 的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米9.6厘米;甲、乙两地的实际距离是多少千米8甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米9一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少10在一幅比例尺是14000 的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷11在比例尺是1∶300000的地图上,量得甲、乙两地的距离是12厘米,它们之间的实际距离是多少千米如果改用1∶500000的比例尺,甲、乙两地的距离应画多少厘米12一辆汽车2小时行驶130千米;照这样的速度,从甲地到乙地共行驶5小时;甲、乙两地相距多少千米用比例解13一辆汽车从甲地开往乙地,每小时行64千米,5小时到达;如果要4小时到达,每小时需行驶多少千米用比例解14修一条公路,原计划每天修360米,30天可以修完;如果要提前5天修完,每天要修多少米用比例解15修一条路,如果每天修120米,8天可以修完;如果每天修150米,可以提前几天可以修完用比例方法解16修一条公路,总长12千米,开工3天修了1.5千米;照这样计算,修完这条路还要多少天用比例解答17修一条路,如果每天修120米,8天可以修完;如果每天多修30米,几天可以修完用比例方法解18小明买4本同样的练习本用了元,138元可以买多少本这样的练习本用比例解答19工厂有一批煤,计划每天烧吨,42天可以烧完;实际每天节约1/8,实际可以烧多少天用比例方法解20两个底面积相等的长方体,第一个长方体与第二个长方体高的比是7:11,第二个长方体的体积是144立方分米,第一个长方体的体积是多少立方分米用比例方法解21解放军某部行军演习,4小时走了22.4千米,照这样的速度又行了6小时,一共行了多少千米用比例方法解22一对互相啮合的齿轮,主动轮有60个齿,每分转80转;从动轮有20个齿,每分转多少转用比例方法解236台榨油机每天榨油吨,现在增加了13台同样的榨油机,每天共榨油多少吨用比例方法解24一某工厂要生产一批机器零件,5天生产410个,照这样计算,要生产1066个机器零件需要多少天用比例方法解25某工地要运一堆土,每天运150车,需要24天运完,如果要提前4天完成,每天要多运多少车用比例方法解26用一边长为30厘米的方砖铺地,需200块,如果改用边长为20厘米的方砖铺地需多少块用比例方法解27种农药,药液与水重量的比是1:1000;1、20克药液要加水多少克2、在6000克水中,要加多少克药液3、现在要配制这种农药500.5千克,需要药液和水各多少千克28一种稻谷每1000千克能碾出大米720千克;照这样计算,要得到180吨大米,需要稻谷多少吨29 某工程队修一条公路,已修了1200米,这时已修的未修的比是3:2,这条公路全长是多少米30园林绿化队要栽一批树苗,第一天栽了总数的15 ,第二天栽了136棵,这时剩下的与已栽的棵数的比是3:5;这批树苗一共有多少棵31一辆汽车三天共行720千米,第一天行驶5小时,第二天行驶6小时,第三天行驶7小时,如果每小时行驶的路程都相同,这三天各行多少千米32 甲、乙两地相距350千米,一列快车和一列慢车同时从两地相对开出,小时后相遇;已知快车和慢车的速度比是3:2,这两列火车的速度分别是多少33 甲、乙两堆煤原来吨数比是5:3,如果从甲堆运90吨放入乙堆,这时两堆吨数相等,甲、乙原来各有多少吨34园林绿化队要栽一批树苗,第一天栽了总数的15% ,第二天栽了136棵,这时剩下的与已栽的棵数的比是3:5;这批树苗一共有多少棵35生产一批零件,计划每天生产160个,27天可以完成,实际每天超产20个,可以提前几天完成36用边长15厘米的方砖铺一块地,需要2000块,如果改用边长为20厘米的方砖铺地,需要多少块37一堆煤用载重4吨的汽车运需20辆才能一次运完,如果改用载重5吨的汽车运,需要几辆才能运完38学生参加搬砖劳动,6人搬砖162块,照这样计算,再增加432块,需要学生多少人39一捆铅丝重520克,剪下20米,这捆铅丝少了130克,这捆铅丝还剩多少米40运来一批纸装订成练习本,每本36页,可订40本,若每本30页,可订多少本典型应用题具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题;1平均数问题:平均数是等分除法的发展;解题关键:在于确定总数量和与之相对应的总份数;算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少;数量关系式:数量之和÷数量的个数=算术平均数;加权平均数:已知两个以上若干份的平均数,求总平均数是多少;数量关系式部分平均数×权数的总和÷权数的和=加权平均数;差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数;数量关系式:大数-小数÷2=小数应得数最大数与各数之差的和÷总份数=最大数应给数最大数与个数之差的和÷总份数=最小数应得数;例:一辆汽车以每小时100 千米的速度从甲地开往乙地,又以每小时60 千米的速度从乙地开往甲地;求这辆车的平均速度;分析:求汽车的平均速度同样可以利用公式;此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为100 ,所用的时间为,汽车从乙地到甲地速度为60 千米,所用的时间是,汽车共行的时间为+ = , 汽车的平均速度为2 ÷ =75 千米2 归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题;根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题;根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题;一次归一问题,用一步运算就能求出“单一量”的归一问题;又称“单归一;”两次归一问题,用两步运算就能求出“单一量”的归一问题;又称“双归一;”正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题;反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题;解题关键:从已知的一组对应量中用等分除法求出一份的数量单一量,然后以它为标准,根据题目的要求算出结果;数量关系式:单一量×份数=总数量正归一总数量÷单一量=份数反归一例一个织布工人,在七月份织布4774 米, 照这样计算,织布6930 米,需要多少天分析:必须先求出平均每天织布多少米,就是单一量; 693 0 ÷ 477 4 ÷ 31 =45 天3归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量或单位数量的个数,通过求总数量求得单位数量的个数或单位数量;特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通;数量关系式:单位数量×单位个数÷另一个单位数量= 另一个单位数量单位数量×单位个数÷另一个单位数量= 另一个单位数量;例修一条水渠,原计划每天修800 米, 6 天修完;实际4 天修完,每天修了多少米分析:因为要求出每天修的长度,就必须先求出水渠的长度;所以也把这类应用题叫做“归总问题”;不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量; 80 0 × 6 ÷ 4=1200 米4 和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题;解题关键:是把大小两个数的和转化成两个大数的和或两个小数的和,然后再求另一个数; 解题规律:和+差÷2 = 大数大数-差=小数和-差÷2=小数和-小数= 大数例某加工厂甲班和乙班共有工人94 人,因工作需要临时从乙班调46 人到甲班工作,这时乙班比甲班人数少12 人,求原来甲班和乙班各有多少人分析:从乙班调46 人到甲班,对于总数没有变化,现在把乙数转化成2 个乙班,即9 4 -12 ,由此得到现在的乙班是9 4 -12 ÷ 2=41 人,乙班在调出46 人之前应该为41+46=87 人,甲班为9 4 -87=7 人5和倍问题:已知两个数的和及它们之间的倍数关系,求两个数各是多少的应用题,叫做和倍问题;解题关键:找准标准数即1倍数一般说来,题中说是“谁”的几倍,把谁就确定为标准数;求出倍数和之后,再求出标准的数量是多少;根据另一个数也可能是几个数与标准数的倍数关系,再去求另一个数或几个数的数量;解题规律:和÷倍数和=标准数标准数×倍数=另一个数例:汽车运输场有大小货车115 辆,大货车比小货车的5 倍多7 辆,运输场有大货车和小汽车各有多少辆分析:大货车比小货车的5 倍还多7 辆,这7 辆也在总数115 辆内,为了使总数与5+1 倍对应,总车辆数应115-7 辆;列式为115-7 ÷ 5+1 =18 辆, 18 × 5+7=97 辆6差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题;解题规律:两个数的差÷倍数-1 = 标准数标准数×倍数=另一个数;例甲乙两根绳子,甲绳长63 米,乙绳长29 米,两根绳剪去同样的长度,结果甲所剩的长度是乙绳长的3 倍,甲乙两绳所剩长度各多少米各减去多少米分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的3 倍,实比乙绳多3-1 倍,以乙绳的长度为标准数;列式63-29 ÷ 3-1 =17 米…乙绳剩下的长度, 17 × 3=51 米…甲绳剩下的长度, 29-17=12 米…剪去的长度;7行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题;解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答;解题关键及规律:同时同地相背而行:路程=速度和×时间;同时相向而行:相遇时间=速度和×时间同时同向而行速度慢的在前,快的在后:追及时间=路程速度差;同时同地同向而行速度慢的在后,快的在前:路程=速度差×时间;例甲在乙的后面28 千米,两人同时同向而行,甲每小时行16 千米,乙每小时行9 千米,甲几小时追上乙分析:甲每小时比乙多行16-9 千米,也就是甲每小时可以追近乙16-9 千米,这是速度差; 已知甲在乙的后面28 千米追击路程, 28 千米里包含着几个16-9 千米,也就是追击所需要的时间;列式2 8 ÷16-9 =4 小时8流水问题:一般是研究船在“流水”中航行的问题;它是行程问题中比较特殊的一种类型,它也是一种和差问题;它的特点主要是考虑水速在逆行和顺行中的不同作用;船速:船在静水中航行的速度;水速:水流动的速度;顺水速度:船顺流航行的速度;逆水速度:船逆流航行的速度;顺速=船速+水速逆速=船速-水速解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答; 解题时要以水流为线索;解题规律:船行速度=顺水速度+ 逆流速度÷2流水速度=顺流速度逆流速度÷2路程=顺流速度×顺流航行所需时间路程=逆流速度×逆流航行所需时间例一只轮船从甲地开往乙地顺水而行,每小时行28 千米,到乙地后,又逆水航行,回到甲地;逆水比顺水多行2 小时,已知水速每小时4 千米;求甲乙两地相距多少千米分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间;已知顺水速度和水流速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用2 小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程;列式为284 × 2=20 千米2 0 × 2 =40 千米40 ÷ 4 × 2 =5 小时28 × 5=140 千米;9 还原问题:已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题;解题关键:要弄清每一步变化与未知数的关系;解题规律:从最后结果出发,采用与原题中相反的运算逆运算方法,逐步推导出原数;根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数;解答还原问题时注意观察运算的顺序;若需要先算加减法,后算乘除法时别忘记写括号;例某小学三年级四个班共有学生168 人,如果四班调3 人到三班,三班调6 人到二班,二班调6 人到一班,一班调2 人到四班,则四个班的人数相等,四个班原有学生多少人分析:当四个班人数相等时,应为168 ÷ 4 ,以四班为例,它调给三班3 人,又从一班调入2 人,所以四班原有的人数减去3 再加上2 等于平均数;四班原有人数列式为168 ÷4-2+3=43 人一班原有人数列式为168 ÷ 4-6+2=38 人;二班原有人数列式为168 ÷ 4-6+6=42 人三班原有人数列式为168 ÷ 4-3+6=45 人;10植树问题:这类应用题是以“植树”为内容;凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题;解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算;解题规律:沿线段植树棵树=段数+1 棵树=总路程÷株距+1株距=总路程÷棵树-1 总路程=株距×棵树-1沿周长植树棵树=总路程÷株距株距=总路程÷棵树总路程=株距×棵树例沿公路一旁埋电线杆301 根,每相邻的两根的间距是50 米;后来全部改装,只埋了201 根;求改装后每相邻两根的间距;分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一;列式为50 × 301-1 ÷ 201-1 =75 米11 盈亏问题:是在等分除法的基础上发展起来的; 他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足或两次都有余,或两次都不足,已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题;解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差也称总差额,用前一个差去除后一个差,就得到分配者的数,进而再求得物品数;解题规律:总差额÷每人差额=人数总差额的求法可以分为以下四种情况:第一次多余,第二次不足,总差额=多余+ 不足第一次正好,第二次多余或不足,总差额=多余或不足第一次多余,第二次也多余,总差额=大多余-小多余第一次不足,第二次也不足, 总差额= 大不足-小不足例参加美术小组的同学,每个人分的相同的支数的色笔,如果小组10 人,则多25 支,如果小组有12 人,色笔多余5 支;求每人分得几支共有多少支色铅笔分析:每个同学分到的色笔相等;这个活动小组有12 人,比10 人多2 人,而色笔多出了25-5 =20 支, 2 个人多出20 支,一个人分得10 支;列式为25-5 ÷ 12-10 =10 支10 × 12+5=125 支;12年龄问题:将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问题”; 解题关键:年龄问题与和差、和倍、差倍问题类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种“差不变”的问题,解题时,要善于利用差不变的特点;例父亲48 岁,儿子21 岁;问几年前父亲的年龄是儿子的4 倍分析:父子的年龄差为48-21=27 岁;由于几年前父亲年龄是儿子的4 倍,可知父子年龄的倍数差是4-1 倍;这样可以算出几年前父子的年龄,从而可以求出几年前父亲的年龄是儿子的4 倍;列式为:21 48-21 ÷ 4-1 =12 年13鸡兔问题:已知“鸡兔”的总头数和总腿数;求“鸡”和“兔”各多少只的一类应用题;通常称为“鸡兔问题”又称鸡兔同笼问题解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数;解题规律:总腿数-鸡腿数×总头数÷一只鸡兔腿数的差=兔子只数兔子只数=总腿数-2×总头数÷2如果假设全是兔子,可以有下面的式子:鸡的只数=4×总头数-总腿数÷2兔的头数=总头数-鸡的只数例鸡兔同笼共50 个头, 170 条腿;问鸡兔各有多少只兔子只数170-2 × 50 ÷ 2 =35 只鸡的只数 50-35=15 只。

比和比例应用题

比和比例应用题

1、甲、乙两包糖的重量比是4:1,如果从甲包取出10克放入乙包后,甲、乙两包糖的重量比为7:5,那么甲包糖原来重多少克?2、A、B两种商品的价格比是7:3.如果它们的价格分别上涨70元,它们的比是7:4,这两种商品原来的价格各是多少元?3、光明小学五年级共有学生140人,分成三个小组进行植树活动,已知第一小组与第二小组人数的比是2:3,第二小组和第三小组人数的比是4:5,这三小组各有多少人?4、城中小学六年级的学生共参加了三类兴趣活动,其中科技组合美术组人数的比是5:4,美术组和数学组人数的比是3:2,已知科技组人数比美术组、数学组人数的总和少15人,六年级共有多少人参加兴趣活动?5、小红看一本故事书,已看的和未看的页数的比是1:5,如果再看20页,那么已看的和未看的页数的比是3:5,这本书共有多少页?6、图书室取出一批书按照一年级得二分之一,二年级得三分之一,三年级得七分之一分配,正好是41本,各年级各得多少本?7、甲乙丙三人共做零件900个,甲做总数的30%,乙比丙多做三分之一,三人各做多少个?八.比例问题1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分?快快快答案:甲收8元,乙收2元。

“三人将五条鱼平分,客人拿出10元”,可以理解为五条鱼总价值为30元,那么每条鱼价值6元。

又因为“甲钓了三条”,相当于甲吃之前已经出资3*6=18元,“乙钓了两条”,相当于乙吃之前已经出资2*6=12元。

而甲乙两人吃了的价值都是10元,所以甲还可以收回18-10=8元乙还可以收回12-10=2元刚好就是客人出的钱。

2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几?答案22/25最好画线段图思考:把去年原来成本看成20份,利润看成5份,则今年的成本提高1/10,就是22份,利润下降了2/5,今年的利润只有3份。

比和比例应用题

比和比例应用题

一.比和比例应用题。

(1——5题用正、反比例两种方法解答)1.运一堆煤,计划每天运150吨,20天运完。

实际2天就运了400吨,照这样计算,实际几天运完?2. 修一条公路,计划每天修100米,40天修完;实际2天就修了400米,照这样计算,多少天可完成任务?3.学校买来161米塑料绳,先剪下21米,做12根绳,照这样计算,剩下的塑料绳还可以剪几根跳绳?4. 一辆汽车从甲地到乙地,计划每小时行50千米,7小时到达。

实际3小时行180千米。

照这样速度,行完全程要几小时?5. 由于技术革新,某工人加工一个零件所用的时间由原来的20分钟缩短到8分钟。

现在每天加工24个零件,现在每天比原来多加工多少个零件?6.甲乙两列火车同时从两地相对开出,3小时后两车已行路程和剩下的路程比是5:3。

已知甲每小时行48千米,乙每小时行57千米。

两地相距多少米?7. 甲、乙、丙、丁四人同走一段路,甲、乙的速度比是3:4,乙、丙的速度比是2:3,丙丁的速度比是4:9,甲、丁的速度比是多少?8. 有一杯糖水,糖和水的比是1:10,再加入2克糖,新糖水重79克,求原糖水中糖和水各是多少克?二.分数、百分数应用题。

1. 一个数减去56等于144,这个数减少了百分之几?2.某村去年植树800棵,比今年多25%,今年比去年减少了百分之几?3. 有两筐水果,甲筐水果的16 加上6斤,正好等于乙筐水果的14减去6斤,已知甲筐水果重54斤,那么乙筐水果有多少斤?4. 甲、乙两数和为50,如果甲去掉它的 14,乙去掉1后,两数正好相等,甲数原来是多少?5. 甲、乙两个书架共有图书360本,从甲书架借出 45 ,从乙书架借出34,两书架剩下的书相等。

甲、乙两个书架各有多少本书?6. 某班女生是男生的80%,最近又转来一名女生,结果女生是男生的56,现在全班有学生多少人?7. 六年级甲、乙两班共有110名学生,已知甲班的学生的 23 与乙班学生的45的和是80人。

比和比例应用题

比和比例应用题

比和比例应用题1.甲、乙两车间的平均人数是156人,两车间的人数比是5:7,甲、乙两车间各有多少人?2.水果店运进苹果、橘子和梨共435千克。

如果橘子增加15千克,这三种水果质量的比是15:7:8。

问:原来运进橘子多少千克?3.一间教室用边长0.4米正方形砖铺地,需要300块。

如果改用边长为0.5米的正方形砖铺地,需要多少块?4.把一批图书按4:5:6的比分给甲、乙、丙三个班,已知甲班比丙班少分的24本。

三个班各分得多少本?5.一艘轮船以每小时40千米的速度从甲港开往乙港,行了全程的20%后,又行驶了1小时,这时未行路程与已行路程的比是3:1。

甲、乙两港相距多少千米?6.一次演讲比赛,有50名选手,其中有26人获奖。

已知获二等奖的人数与获一等奖的人数比是4:1,获一等奖的人数是获三等奖人数的81。

获一等奖的有多少人? 7.修一条公路,已修的和未修的长度比是1:3,再修300米后,已修的和未修的长度比是1:2.这条公路长多少米?8.星星小学操场有一根高耸的旗杆,旁边有一根2.5米高的竹竿。

上午九时明明测得竹竿的影长2米,旗杆的影长6.4米。

请你用比例知识求出旗杆的高度。

9.某农具厂要生产一批农具,原计划每天生产75台,20天完成,实际每天生产的台数比原计划每天生产的多31。

实际用多少天完成任务? 10.六(2)班学生共植树150棵,第一天与第二天植树的棵数比是5:6,第二天与第三天植树的棵数比是3:2.第一、二、三天各植树多少棵?11.配制什锦糖,妈妈用进价是3.6元/千克的奶糖、2.8元/千克的水果糖和2.1元/千克的酥糖按2:3:1配制,然后按20%的利润定价。

每千克什锦糖定价多少元?12.客车和货车同时从甲、乙两地的中点向相反方向行驶,5小时后,客车到达甲地,货车离乙地还有60千米,已知货车与客车的速度比是5:7,求甲、乙两地相距多少千米?13.仓库有一批货物,运走的货物与剩下的货物的质量比是2:7,如果又运走64吨,那么剩下的货物只占仓库原有货物的53。

比和比例应用题

比和比例应用题

比和比例应用题例1 甲、乙两个仓库原有粮食吨数的比是5:4,甲仓库运走36吨后,两仓库粮食的吨数的比是3:4,甲仓库原有粮食多少吨?练习1 甲、乙两个仓库存放的货物重量比是4:3,把甲仓库货物的1/3运到乙仓库,这时乙仓库的货物重量比甲仓库多100吨,甲仓库原有货物多少吨?练习2 甲乙两人各加工100个零件,甲比乙迟1 1/2小时开工,结果同时完成,甲乙两人的工作效率比是5:2。

甲每小时加工多少个零件练习3 两个相同的瓶子装满酒精溶液,一个瓶中酒精和水的体积之比是3:1,而另一个瓶中酒精与水的比是4:1,若把两瓶酒精溶液混合,混合液中酒精和水的体积比是多少?例2 甲、乙两个瓶子装的酒精溶液体积的比是2:5,甲瓶中酒精与水的体积比是3:1,乙瓶中酒精与水的体积比是4:1,现在把两瓶溶液倒入大瓶中混合,这时酒精与水的体积比是多少?练习1 某班在一次考试中,平均成绩是78分,男、女生各自的平均成绩是75.5分和81分,这个班男、女生人数的比是多少?练习3 一个长方形和一个正方形的周长比为6:5,长方形的长是宽的521倍,求这个长方形与正方形的面积之比。

例3甲和乙同时从A、B两地相向走来,甲每小时走7.5千米,两人相遇后,再走22.5千米到米到A地,甲再走2小时到B地,乙每小时走多少千米?练习1 甲、乙两人步行的速度比是7:5,甲、乙分别由A、B两地同时出发,如果相向而行,0.5小时后相遇;如果他们同向而行,那么甲追上乙需要多少小时?练习2 一批货物已经运走的65%,还剩下280吨,这批货物运走了多少吨?练习3 甲、乙两人进行百米赛跑,当甲到达终点时,乙距终点还有6米。

如果甲在起跑线后面6米,与乙同时跑,谁先到达终点?这时另一个距终点还有几米?例4化肥厂经过改革日产量比原来的20吨提高了25%,原来30天的产量,现在需要多少天能完成?练习1 有一项搬运砖的任务,25个人去搬需6小时可以完成。

如果相同工效的人数增加到30人,运完这批砖能减少几小时?练习2 甲、乙两辆汽车同时从A、B两个城市相对开出,经过12小时相遇后,甲车继续向前开到B城还要6小时,已知甲车每小时比乙车块25千米,求A、B两个城市间的公路长多少千米练习3 师徒两人加工一批零件,徒弟共加工3小时,师傅再参加工作,完成时,徒弟加工了这批零件的83,已知师徒工效比为2:5,师徒单独加工各要几小时例5 在一群学生中,如果走了15名学生,那么剩下的男女人数比为2:1。

比和比例应用题1

比和比例应用题1

比与比例应用题(一)1.有一个长方体,长与宽的比是2:1,宽与高的比是3:2,求长与高的比。

2.六年级三个班参加植树活动,一班和二班的人数比是5:4,二班和三班的人数比是3:4,一班、二班和三班的人数连比是多少?3.直角三角形三条边长度的比是3:4:5。

已知这个三角形的周长是48厘米,求斜边上的高。

4.甲、乙两个仓库原有粮食吨数的比是5:4,甲仓库运走36吨后,两个仓库粮食吨数的比是3:4,乙仓库原有粮食多少吨?5.甲、乙、丙三个工程队合修一条长70千米的公路,甲、乙两个工程修路的长度比为2:3,乙、丙两个工程队修路的长度比为4:5,这三个工程队各修了多少千米?6.买甲、乙两种铅笔共210支,甲种铅笔每支6角,乙种铅笔每支8角,买两种铅笔用去的钱相同。

问甲种铅笔买了几支?7.妈妈买了一些水果,其中苹果与荔枝的重量之比是5:7,而单价之比是3:8,那么苹果与荔枝的总价之比是多少?8.小明和小芳各走一段路,小明走的路程比小芳多18,小芳用的时间比小明多15,小明和小芳的速度之比是多少?9.一批零件按5:3分给师、徒两人加工,结果师傅加工了1440个,超额完成20%,徒弟只完成了80%,徒弟加工了多少只?10.长方体棱长的和是216厘米,长、宽、高的比是4:3:2,长方体的体积是多少?11.六年级一班和二班的人数比是8:7,如果把一班的8名同学调到二班去,则一班和二班的人数比变为4:5,原来一班、二班各有多少人?12.学校图书馆原有文艺书和科技书共5400本,其中科技书比文艺书少15,最近又买来一批科技书,这时科技书和文艺书本书的比是9:10。

图书馆买来多少本科技书?13.1352[15(1 1.75)] 1.375 2477-⨯+⨯÷14.31 (20.25120.148.134%)158 +⨯-⨯÷。

比和比例应用题

比和比例应用题

比和比例应用题1、一本书,第一天看了总页数的31,第二天看了页数和第一天的页数比是6:5,还剩64页没有看,全书共有多少页?2、修一条公路,原计划按10:7分配给甲、乙两个修路队,实际甲队修了2000米,超过分配任务的41,乙因有事只完成了分配任务的60%,乙实际修了多少米?3、大、小两瓶油共重2.7千克,小瓶用去0.3千克后,大瓶和小瓶剩下的重量比为2:1.大瓶和小瓶原来各有多少千克油?4、甲、乙两个建筑队原有水泥的重量比是4:3,当甲队给乙队54吨后,甲、乙两队的水泥重量比是3:4。

原来甲队友水泥多少吨?5、小军走的路程比小红多41,而小红行走的时间比小军多101,小红和小军的速度比是多少?6、两个长方形,它们的面积比是8:7,长的比是4:5,那么宽的比是多少?7、全年级共有104人,男生人数的71与女生人数的61相等。

男生有多少人?8、文艺组人数比科技组多31人,若从科技组调7人到文艺组,则两组人数比为7:4,文艺组、科技组原来各有多少人?9、水果店运来一批苹果,第一天卖出总数的74,第二天卖出20千克,剩下的与卖出的重量比是2:3,这批苹果重多少千克?10、六年级原有240名同学,男女生人数比是8:7,后来又转来几名女生,这时女生和男生人数之比是15:16,问转来几名女生?11、在比例尺是8000001的地图上,量得甲、乙两地的距离是15厘米,一辆汽车以每小时45千米的速度从甲地开往乙地,几小时能到达?12、在一幅1:3000000的地图上,量得甲、乙两地的公路长14厘米,一辆车从甲地开到乙地用了7小时,汽车平均每小时行驶多少千米?1的地图上,量得甲、乙两地的距离为25厘米,上午9 13、在比例尺是6000000点30分有一架飞机从甲地飞往乙地,上午10点45分到达。

这架飞机每小时飞行多少千米?14、在比例尺为1:500000的地图上,量得两地的距离是4厘米,它的实际距离1的地图上,应画几厘是多少千米?如果将这段实际距离画在比例尺是200000米?15、在比例尺是50:1的图纸上,量得某个零件的长度是20厘米,如果把这个零件画在比例尺为40:1的图纸上,应画多少厘米?16、工厂要加工1920个零件,前5天加工了240个,照这样计算,余下的还要多少天才能完成?(用比例解)17、某修路队要修16.2千米的公路,4天修了7.2千米。

数学比和比例的应用试题

数学比和比例的应用试题

数学比和比例的应用试题1.同时同地,一根长1米的标杆的影长0.6米,一名修理工要爬至48米高的电视塔上修理设备,他竖直方向爬行的速度为0.4米/秒,则此人的影子移动的速度为()米/秒.A.0.56B.0.24C.0.48D.0.36【答案】B【解析】因为在时间相同时,速度比等于路程的比,所以再根据在同时同地,影子的长度与物体的实际长度的比值一定,所以影子的长度与物体的实际长度成正比例,由此列出比例解答即可.解:设此人的影子移动的速度为x米/秒.0.6:1=x:0.4,x=0.6×0.4,x=0.24,答:此人的影子移动的速度为0.24米/秒.故选:B.点评:根据速度、时间与路程的关系判断出在时间相同时,速度比等于路程的比,再由影子的长度与物体的实际长度成正比例是解答此题的关键,注意48米是无关条件.2.小明和小芳各自从家里出发到学校,小明走的路程比小芳多,小芳用的时间比小明多,则小明和小芳的速度比是()A.5:8B.8:5C.27:20D.16:15【答案】C【解析】首先把小芳走的路程看作“1”则小明走的路程就是1+,再把小明用的时间看作“1”,则小芳用的时间就是1+,再根据路程除以时间等于速度,求出各自的速度,再求出辆速度差即可.解:小明的速度:(1+)÷1=,小芳的速度:1÷(1+)=,小明与小芳速度的比是::=27:20,故选:C.点评:此题关键是把一个人的路程和速度分别看作“1”,另一个人的就是“1”的几分之几,再根据路程÷时间=速度,再比快慢.3.(只列式,不计算)梨树和苹果树棵数的比是7:8,(1)梨树棵数是苹果树棵数的百分之几?(2)苹果树棵数是梨树棵数的百分之几?(3)梨树棵数比苹果树棵数少百分之几?(4)苹果树棵数比梨树棵数多百分之几?.【答案】7÷8,8÷7,(8﹣7)÷8,(8﹣7)÷7.【解析】(1)用份数计算,要求梨树棵数是苹果树棵数的百分之几,用梨树的份数除以苹果树的份数即可;(2)要求苹果树棵数是梨树棵数的百分之几,用苹果树的份数除以梨树的份数即可;(3)要求梨树棵数比苹果树棵数少百分之几,用梨树比苹果树少的部分除以苹果树占的份数即可;(4)要求苹果树棵数比梨树棵数多百分之几,用苹果树比梨树多的部分除以梨树占的份数即可.解:(1)7÷8=87.5%;答:梨树棵数是苹果树棵数的87.5%.(2)8÷7≈114.3%;答:苹果树棵数是梨树棵数的114.3%.(3)(8﹣7)÷8,=1÷8,=12.5%;答:梨树棵数比苹果树棵数少12.5%.(4)(8﹣7)÷7,=1÷7,≈14.3%;答:苹果树棵数比梨树棵数多14.3%.点评:解决这类问题,一定看准:谁是谁的百分之几,谁比谁多(或少)百分之几,只有这样,才能正确列式.4.师徒两人共生产零件若干个,徒弟生产的零件占零件总数的,若徒弟给师傅15个,则徒弟与师傅生产的零件个数的比是1:3,徒弟生产了多少个零件?【答案】40【解析】把二人生产的零件总数看作单位“1”,徒弟生产的零件占零件总数的,后来徒弟的零件数量占零件总量的=,徒弟减少的零件数量占总量的(﹣),与其对应的数量是15,所以用对应量15除以对应分率(﹣),就是零件的总量,进而就可以求出徒弟生产零件的数量.解:15÷(﹣),=15÷(﹣),=15÷,=100(个),100×=40(个);答:徒弟生产了40个零件.点评:分析题意,得出徒弟减少的零件数量占总量的几分之几,是解答本题的关键.5.甲、乙两堆煤共140吨,当甲堆运走,乙堆运走10吨时,甲、乙两堆煤的吨数比是6:5,原来两堆煤各多少吨?【答案】80;60【解析】设甲堆煤有x吨,乙堆煤有140﹣x吨,根据“当甲堆运走,乙堆运走10吨时,甲、乙两堆煤的吨数比是6:5,”列比例是(1﹣)x:(140﹣x﹣10)=6:5,据此解答.解:设甲堆煤有x吨,乙堆煤有140﹣x吨,由题意得:(1﹣)x:(140﹣x﹣10)=6:5,x:(130﹣x)=6:5,x=780﹣6x,x+6x=780﹣6x+6x,x=780,x=80;140﹣80=60(吨);答:甲堆煤有80吨,乙堆煤有60吨.点评:根据甲、乙两堆煤运走一部分后,甲、乙两堆煤余下的吨数比是6:5,进行列比例解答即可.6.一个直角三角形中,两个锐角的度数的比是1:2,这两个锐角各多少度?【答案】两个锐角分别是30度、60度.【解析】因为三角形的内角和是180度,所以在直角三角形中,两个锐角的和是180°﹣90°=90°,又因为两个锐角的比是1:2,所以一个角是90度的,用乘法计算即可,再用90度减去这个锐角的度数就是另一个锐角的度数.解:180°﹣90°=90°,所以一个锐角是:90°×=90°×=30°;另一个锐角:90°﹣30°=60°.答:两个锐角分别是30度、60度.点评:此题主要考查三角形的内角和是180度和比的灵活运用.7.一种铜与锌制的合金,其中铜的重量与锌的重量比是5:3.如果在合金中加入15千克铜,它们的重量比是2:1.求合金中原来铜和锌的重量.【答案】铜的重量是75千克,锌的重量是45千克.【解析】根据题意得出合金中锌的含量不变,所以统一单位“1”,即原来合金中铜占锌的,后来合金中铜是锌的2倍,所以15千克对应的分数是2﹣,由此用除法列式求出锌的含量,进而求出铜的含量.解:原来铜的质量是锌的,后来铜的质量是锌的2倍;15÷(2﹣),=15,=45(千克),45×=75(千克),答:合金中原来铜的重量是75千克,锌的重量是45千克.点评:关键是把比转化为分数,统一单位“1”,找出15对应的分率,求出单位“1”,进而解决问题.8.食品店用奶糖和巧克力配制一种礼品糖,每盒中奶糖与巧克力的质量比是5:3.现有奶糖和巧克力各60千克.(1)奶糖用完时,巧克力还剩多少千克?(2)再有多少千克奶糖,就可以把巧克力全部用完?【答案】24千克.40千克【解析】(1)设用去的巧克力是x千克,由“配置一种礼品糖,所需奶糖和巧克力的质量比为5:3”可得:用去的奶糖数与巧克力的重量之比是5:3,可得比例式60:x=5:3,即可求出用去的巧克力数,从而用60减去用去的巧克力的质量就是剩下的巧克力的质量.(2)设再有y千克奶糖,就可以把巧克力全部用完,再根据用去的奶糖数与巧克力的重量之比是5:3,可得比例式y:24=5:3,据此即可解答.解:(1)设用去的巧克力是x千克,则60:x=5:3,5x=60×3,x=36,60﹣36=24(千克).答:巧克力还剩24千克.(2)设再有y千克奶糖,就可以把巧克力全部用完,则可得比例式:y:24=5:3,3y=24×5,y=40,答:再有40千克奶糖,就可以把巧克力全部用完.点评:此题关键是根据题干已知比的关系得出用掉的奶糖与巧克力的重量之比,从而列出比例式解答问题.9.甲班有60人,乙班有80人.从甲班调几人到乙班才能使甲、乙两班人数的比是2:3?【答案】4【解析】根据调动后甲、乙两班人数的比是2:3,甲班人数占总人数的,调动前后总人数不变是60+80=140人,根据乘法意义即可求出调动后甲的人数,再用甲班原有的人数减去现在的人数就是调几人到乙班.解:(60+80)×,=140×,=56(人);60﹣56=4(人);答:从甲班调4人到乙班即可.点评:此题主要是明白甲、乙两班不管怎么调动,总人数是不变的,再根据甲班调几人到乙班才能使甲、乙两班人数的比是2:3,求出甲班人数占总人数的,就能求出调动后甲班的人数,再比较即可.10.一个农场计划在100公顷的地里播种大豆和玉米.播种面积的比是3:2.两种作物各播种多少公顷?【答案】大豆播种60公顷,玉米播种40公顷.【解析】求出两种作物各占种植总面积的几分之几,进一步利用分数乘法的意义列式解答即可.解:100×=60(公顷),100×=40(公顷);答:大豆播种60公顷,玉米播种40公顷.点评:抓住按比例分配应用题的特点:两(或三)个数的和,两(或三)个数的比,就可以按比例进行分配.11.建筑工地运来一批水泥,甲去后,将剩下的水泥按2:3分给甲、乙两个工程队,甲队分得24袋,乙队分得多少袋?【答案】28【解析】把水泥总袋数看作单位“1”,先求出剩下水泥重量占的分率,再按照比例分配方法,求出甲分得总袋数的分率,再加上原来分得的,也就是24袋占总袋数的分率,依据分数除法意义,求出水泥总袋数,最后减甲队分得的袋数即可解答.解:22÷[(1﹣)×+]﹣22,=22÷[×]﹣22,=22÷[]﹣22,=22﹣22,=40﹣22,=18(袋);答:乙队分得18袋.点评:分数除法意义是解答本题的依据,关键是求出水泥总袋数.12.画一个边长是1.5厘米的正方形,并按照4:5的比分成两部分.【答案】【解析】画一个边长1.5厘米的正方形,按照4:5分成两部分,即将这个边长3厘米的正方形平均分成4+5=9份,其中一份占全部的,可用阴影部分表示,另一份占.点评:完成本题要明白4:5分成两部分,即将这个边长1.5厘米的正方形平均分成9份.13.小明读一本书,已经读了全书的,如果再读15页,则读过的页数与未读的页数的比是2:3,这本书有多少页?【答案】75【解析】把书的总页数看作单位“1”,再读15页,则读过的页数与未读的页数的比是 2:3,也就是读过的数是总页数的=,先求出再读15页后,比原来多读的书的页数占总页数的分率,也就是15页占总页数的分率,依据分数除法意义即可解答.解:2+3=5,15÷(),=15,=75(页),答:这本书有75页.点评:分数除法意义是解答本题的依据,关键是求出15页占总页数的分率.14.小红在同一时间、同一地点,测得自己的身高与影子的长度比是2:3,这时教学楼的影子长24米,则教学楼的高度是多少米?(用比例解)【答案】16【解析】根据“在同一时间、同一地点身高与影子的长度比是2:3,”即身高与影子的长度的比值一定,由此判断实际的高度与影子的高度成正比例,由此列出比例解决问题.解:教学楼的高度是x米;2:3=x:24,3x=24×2,x=,x=16;答:教学楼的高度是16米.点评:解答此题的关键是,判断实际高度与影子成正比例,由此列出比例解决问题.15.张华和李明两人有零花钱若干,其比为5:3,若张华给李明5元钱,则两人的比为9:7,两人原来各有多少钱?【答案】张华和李明原来的钱数分别是50元和30元【解析】根据已知所得:张华原来的钱数占两人总钱数的(),张华后来的钱数占总钱数的().因为两人的钱数和未变,所以5元所对应的分率是:﹣=,故两人的钱数和为:5÷=80(元).最后根据原来的钱数比,分别求出两人的钱数即可.解:两人的钱数和是:5÷(﹣),=5÷,=80(元);张华原来的钱数是:80×,=50(元);李明原来的钱数是:80﹣50,=30(元).答:张华和李明原来的钱数分别是50元和30元.点评:解答此题的关键是把两人的钱数和看作单位“1”,重点是求5元所对应标准量的分率.16.修一条水渠,每天工作8小时,要9天完成,如果工作效率不变,每天工作6小时,多少天可以完成任务?(用比例解)【答案】12【解析】根据题意知道修这条水渠的工作量一定,每天工作的时间和需要的天数成反比例,由此列式解答即可.解:设x天可以完成任务,6x=8×9,6x=72,x=12;答:12天可以完成任务.点评:解答此题的关键是弄清题意,先判断哪两种相关联的量成何比例,再找准对应量,列式解答即可.17.有大小两筐苹果,其重量比是4:3,大筐苹果比小筐苹果多5千克,大小两筐苹果各多少千克?【答案】大小两筐苹果各20千克、15千克.【解析】大小两筐苹果,其重量比是4:3,可以把大筐苹果的重量看做4份,小筐苹果的重量看做3份,大筐苹果比小筐苹果多1份,正好多5千克,所以每份为5÷(4﹣3)=5(千克),求大小两筐苹果各多少千克,就比较好解答了.解:大筐苹果的重量:5÷(4﹣3)×4,=5÷1×4,=20(千克);小筐苹果的重量:5÷(4﹣3)×3,=5÷1×3,=15(千克);答:大小两筐苹果各20千克、15千克.点评:此题采用了用份数解答的方法,这种方法易于理解.18.参加礼仪大赛的四、五、六年级的人数比是4:5:7,已知六年级的参赛人数是21人,四、五年级各有多少人参赛?【答案】四、五年级分别有12人、15人参赛.【解析】把四年级的人数看作4份,五年级的人数看作5份,六年级的人数看作7份;那么一份的人数是:21÷7=3(人),五年级的人数是:3×5=15(人),四年级的人数是:3×4=12(人);据此解答.解:21÷7=3(人),五年级的人数是:3×5=15(人),四年级的人数是:3×4=12(人);答:四、五年级分别有12人、15人参赛.点评:本题考查了比的应用,在比的应用题中可以把两个量的比看作两个量的份数关系,继而转化为两个量的分率关系,也可用于求出一份的量.19.小雅读一本名著,第一天读了一部分后,已读的页数与未读页数的比是5:7,第二天又读了92页,这时已读的页数是未读页数的4倍.第一天读了多少页?【答案】192【解析】把这本书看作单位“1”,由“已看页数与未看页数的比为5:7”可知,第一天看了全部的再由“第二天又看了92页,这时已看的页数是未看页数的4倍”得到,第二天看了全部的,92页对应得分率就是(﹣),用对应量,92除以对应分率,就是这本书的总页数,进而求出第一天读的页数.解:92÷(﹣)×,=92÷×,=192(页);答:第一天读了192页.点评:解决此题的关键是把比转化为分数,统一单位“1”,求出92页的对应分率,用对应量除以对应分率就是这本书的总页数.20.学校图书馆原有文艺书和科技书共5400本,其中科技书比文艺书少20%,最近又买来一批科技书,这时科技书和文艺书的本数的比是9:10,图书馆买来科技书多少本?【答案】图书馆买来科技书300本【解析】我们把文艺书的本数看作单位“1”,用5400除以(1﹣20%+1)求出文艺书的本数,再用文艺书的本数求出现在科技书和文艺书的总本数,再减去原来科技书和文艺书的总本数,就是最近又买来一批科技书的本数.解:5400÷(1﹣20%+1)÷﹣5400,=5400÷×﹣5400,=5400×﹣5400,=5400×﹣5400,=5700﹣5400,=300(本);答:图书馆买来科技书300本.点评:本题根据题意找准单位“1”,灵活的把关于比的问题转化成分数的乘除法应用题进行解答即可.21.甲、乙两人原来的钱数的比是3:4,后来甲给乙50元,这时甲的钱数是乙的.甲、乙原来各有多少元钱?【答案】甲原来有225元,乙原来有300元【解析】甲乙原先的钱数比是3:4,现在甲的钱数是乙的;甲原先的钱数占甲乙两人总钱数的,甲现在的钱数占甲乙两人总钱数的;那么50元占甲乙两人总钱数的﹣=,前后甲乙两人总钱数不变,为50÷=525(元).那么,甲原有钱数为525×=225(元),乙的钱数就好求了.解:甲乙总钱数:50÷(﹣),=50÷,=525(元);甲原有钱数:525×,=525×,=225(元);乙原有钱数:525﹣225=300(元).答:甲原来有225元,乙原来有300元.点评:此题解答的关键在于先求出甲、乙两人的总钱数,然后用按比例分配的方法,解决问题.22.加工一批零件,第一天完成的个数与未完成的个数的比是1:2,如果再加工120个,就可以完成这批零件的一半,这批零件共有几个?【答案】这批零件共有720个【解析】把这批零件的总量看作单位“1”,则第一天完成了,再据“如果再加工120个,就可以完成这批零件的一半”可知,此时完成了总量的,所以120个的对应分率应是(),用对应量除以对应分率,就是这批零件的总量.解:120÷(﹣),=120÷,=720(个);答:这批零件共有720个.点评:解答此题的关键是先求出120的对应分率,进而求出零件总量.23.某工厂2002年二月份前4天用电2.8万度,照这样计算,全月共用电多少万度?【答案】全月共用电19.6万度【解析】首先分析2002年二月是多少天,因为2002年是平年,二月是平月有28天,根据题意,“照这样计算”,意思是每天的用电量是一定的,即用电总量与用电天数的比值一定,所以用电总量与用电天数成正比例.由此用比例解答.解:设全月用电x万度.2.8:4=x:284x=2.8×28x=x=19.6;答:全月共用电19.6万度.点评:此题的解答关键是抓住“照这样计算”这句话,判断出题中两种相关联的量成什么比例,然后设未知为x,列比例解答即可.24.工程队修一条路,开工9天修了270m,剩下630m.照这样计算,修完这条路共要多少天?【答案】修完这条路共要30天【解析】根据题意知道,工作效率一定,工作量和工作时间成正比例,由此列式解答即可.解:设修完这条路共要x天,270:9=(270+630):x,270:9=900:x,270x=900×9,x=,x=30;答:修完这条路共要30天.点评:判断出工作量和工作时间成正比例是解答此题的关键,主要问题要求的是修完这条路共要的时间,不是剩下的630米所需要的时间.25.只列式不计算(1)2.5与的和,除它们的差,商是多少?(2)最小的合数与的比值等于X与的比值,求X(列比例式)?【答案】①(2.5﹣)÷(2.5﹣);②4:=X:.【解析】①2.5与的和为2.5+,它们的差是2.5﹣,则它们的和除它们的差,商是:(2.5﹣)÷(2.5﹣);②最小的合数是4,最小的合数与的比为4:,X与的比为X:,最小的合数与的比值等于X与的比值,由此可得比例:4:=X:.解:①(2.5﹣)÷(2.5﹣);②4:=X:.点评:完成①时要注意除法中“除与除以”的区别.26.王明读一本书,读了若干页后,这时已读的页数和未读的页数的比是2:3,如果再读5页,这时已读的页数和未读的页数的比是9:11.这本书有多少页?【答案】这本书有100页【解析】本题总页数不变,所以把总页数看作单位“1”,根据“这时已读的页数和未读的页数的比是2:3,”可得:这时已读的页数占总页数,根据“这时已读的页数和未读的页数的比是9:11.”可得:这时已读的页数占总页数的,那么再读的5页对应的分率是:,然后根据分数除法的意义用5除以这个分率即可得出这本书有多少页.解:5÷(),=5÷,=100(页);答:这本书有100页.点评:这种类型的应用题一般情况下要把不变的量看作单位“1”,有时要把“和”看作单位“1”,有时要把“差”看作单位“1”(如年龄问题),这样便于统一单位“1”,进而找到数量对应的分率,再根据已知一个数的几分之几是多少,求这个数,用除法列式计算.27.(2010•深圳模拟)学校买来315本科普读物,按3:4的比借给五、六年级的同学,那么五年级比六年级少借多少本?【答案】五年级比六年级少借45本【解析】由题意得,把315本科普读物平均分成3+4=7份,又因五年级比六年级少一份,于是用除法可以求出每一份的数量,也就是五年级比六年级少的本数,问题即可得解.解:315÷(3+4)×(4﹣3),=315÷7×1,=45(本);答:五年级比六年级少借45本.点评:此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.28.一种药液,药与水的比例是1:100,现在有4.5克药,需要水多少克?【答案】需要水450克【解析】根据比的关系知:水的用量就是药的100÷1倍,再乘4.5就是需要水的重量.据此解答.解:100÷1×4.5,=100×4.5,=450(克).答:需要水450克.点评:本题的关键是求出需要水是药的多少倍,再根据乘法的意义列式解答.29.小巧、小乐、小倩三个好朋友共收集废旧电池420节,其中小倩收集的比小乐的少,小乐与小巧收集的废旧电池的比是4:5.他们三人各收集废旧电池多少节?【答案】小倩收集96节,小乐收集144节,小巧收集180节【解析】已知小倩收集的比小乐的少,把贝贝收集的数量看作单位“1”,小倩收集的数量相当于小乐的1﹣=,也就是小倩收集的与小乐收集的比是2:3;又知道小乐与小巧收集的废旧电池的比是4:5.由此可以求出他们三人收集数量的连比是8:12:15;求出总份数及每人收集的占总数的几分之几,然后根据一个数乘分数的意义,用乘法解答.解:小倩收集的与贝贝收集的比是2:3;小乐与丽丽收集的废旧电池的比是4:5.所以他们三人收集数量的连比是8:12:15;8+12+15=35(份),小倩:420×=96(节);小乐:420×=144(节);小巧:420×=180(节);答:小倩收集96节,小乐收集144节,小巧收集180节.点评:此题解答关键是求出他们三人收集数量的连比,然后根据按比例分配的方法解答.30.有两桶水:一桶8升,一桶13升,往两个桶中加进同样多的水后,两桶中水量之比是5:7,那麽往每个桶中加进去的水量是多少升?【答案】加进去的水量为4.5升【解析】由题意可知:设加进去的水量为x升,则会有(8+x):(13+x)=5:7,解此比例即可.解:设加进去的水量为x升,则会有(8+x):(13+x)=5:7,(8+x)×7=(13+x)×5,56+7x=65+5x,2x=9,x=4.5;答:加进去的水量为4.5升.点评:解答此题的关键是:设出未知数,利用比例解答比较容易理解.31.摩托车与汽车速度的比是10:9,两车同时从甲乙两地开出,在离两地中点6千米处相遇.甲、乙两地相距多少千米?【答案】甲、乙两地相距228千米【解析】从题意可知摩托车的速度快,相遇时,摩托车已经行过了中点,比全路程的一半多6千米,汽车行驶的路程就比全路程的一半少6千米,它们的路程差就是6×2=12千米,再求出速度差,然后用路程差除以速度差就是相遇时的时间,再根据速度和×相遇时间=总路程进而求出全程.解:设摩托车与汽车的速度分别为10和9,(10+9)×[6×2÷(10﹣9)],=19×12,="288" (千米);答:甲、乙两地相距228千米.点评:本题是相遇问题,关键理解当摩托车行到离两地中点处6千米时和汽车相遇,说明它们的路程差是2个6千米,再根据路程差÷速度差求出相遇时间,根据全程=速度和×相遇时的时间来求解,即可解决问题.32.汇文书店优惠出售一批图书,第一天卖了这批图书的40%,第二天又卖了600本,这时已经卖出的本数和没有卖的本数之比是11:4,这批图书共有多少本?【答案】这批图书共有1800本【解析】这时已经卖出的本数和没有卖的本数之比是11:4,即买出的占总数的,又第一天卖了这批图书的40%,所以第二天卖出的占总数的﹣40%,根据分数除法的意义可知,这批图书共有600÷(﹣40%)本.解:600÷(﹣40%)=600÷(﹣),=600,=1800(本).答:这批图书共有1800本.点评:首先根据已卖出与未卖出的比求出已卖出的占总数的分率是完成本题的关键.33.(2011•北海模拟)有甲乙两个长方形,它们的周长相等,甲的长与宽之比是3:2,乙的长与宽之比是7:6.甲与乙的面积之比是864:87521:1010:7.【答案】【解析】甲的长与宽之比是3:2,3+2=5,说明两条长的和占周长的,则长占周长的÷2=,两条宽的和占周长的,则宽占周长的÷2=;乙的长与宽之比是7:6,7+6=13,说明两条长的和占周长的,则长占周长的÷2=,两条宽的和占周长的,则宽占周长的÷2=;因为周长相等,根据“长方形的面积=长×宽”得出:两个长方形的面积比就是:(×):(×);进行化简即可.解:因为由分析知:甲长占周长的÷2=,宽占周长的÷2=;乙长占周长的÷2=,宽占周长的÷2=;所以两个长方形的面积比就是:(×):(×);=:,=;故答案为:.点评:解答此题的关键:先把两个长方形的长和宽分别转化为周长的几分之几,进而根据长方形的面积计算方法分别求出面积,然后进行比即可.34.(2012•宝应县模拟)甲、乙、丙三人共有钱2280元,甲、乙两人钱数的比是2:7,乙、丙两人钱数的比是3:7.三人各有钱多少元?【答案】甲有钱180元,乙有630元,丙有1470元【解析】把“甲:乙=2:7”理解为甲的钱数是乙的钱数的,把“乙:丙=3:7”理解为丙的钱数是乙的钱数的,这时把乙的钱数看作单位“1”,根据“对应数÷对应分率=单位“1”的量”解答求出乙的钱数,进而根据一个数乘分数的意义,分别求出另两个人的钱数.解:乙:2280÷(1++),=2280÷,=630(元);甲:630×=180(元);丙:630×=1470(元);答:甲有钱180元,乙有630元,丙有1470元.点评:解答此题的关键:把两个数的比理解为一个数是另一个数的几分之几,进而判断出单位“1”,根据对应数÷对应分率=单位“1”的量”进行解答.35.(2012•河西区模拟)画一个上底和下底比为2:1的梯形.【答案】见解析【解析】根据题干,先确定这个梯形的上底与下底:设这个梯形的上底是2厘米,则下底是1厘米,根据梯形的上底与下底互相平行的性质,即可画出这个梯形.解:设这个梯形的上底是2厘米,则下底是1厘米,根据梯形的上底与下底互相平行的性质,画出互相平行的两条线段分别为2厘米,1厘米;再把线段的两个端点顺次连接起来即可得出这个梯形:点评:此题考查梯形的上下底互相平行的性质的灵活应用.36.(2013•黄冈模拟)校园里杨树与柳树的棵数比是3:5,杨树有180棵,柳树有多少棵.【答案】柳树有300棵【解析】根据“杨树与柳树的棵数比是3:5,”知道杨树是柳树的棵数的,的单位“1”是柳树的棵数,由此根据分数除法的意义,列式解答即可解:杨树与柳树的棵数比是3:5,”知道杨树是柳树的棵数的,180÷,=180×,。

比和比例应用题

比和比例应用题

1、用一条长108厘米的铁丝,做成一个长方形模型,要求长、宽、高的比为2:3:4,。

如果
每个面都用铁皮包上做成铁盒,这个铁盒的体积是多少?
2、王大爷在一块长30米、宽18米的长方形菜地里种黄瓜和西红柿,已知种黄瓜和西红柿
的土地面积之比是4:5。

问:黄瓜和西红柿各种了多少平方米?
3、工程队修一段公路,已经修好的和未修好的比是1:2,如果再修1.5千米,刚好修完这段
公路的一半。

这段公路全长多少千米?
4、师徒两人共同加工一批零件,师傅和徒弟加工零件个数的比为4:1,已知徒弟比师傅少
加工600个。

这批零件共有多少个?
5、青年运输队计划三天运完一批货物。

第一天运了480吨,占这批货物的40%。

第二天运
的和第三天运的吨数是3:5.第三天运的货物是多少吨?
6、为了搞好环境,市政府决定今年在街道两旁种植树木60000棵,其中樟树和银杏树共占
2/3,樟树和银杏树的比是3:2.樟树有多少棵?
7、甲、乙、丙三个仓库共有粮食140吨,已知甲仓与乙仓的吨数比是3:2,乙仓与丙仓的吨数比是4:5。

这三个仓库各存粮多少吨?
8、甲、乙两桶油共130千克,将甲桶油的2/7倒入乙桶后,甲桶与乙桶油的比为7:6,原来甲、乙两桶各有油多少千克?
9、甲、乙两校原有人数的比是6:5,甲校毕业了200人,乙校毕业了125人后,两校人数的比为8:7,原来两校各有多少人?
10、小红和小芳都积攒了一些零用钱,她们所积攒钱数的比是7:5,在支援灾区捐款活动中,小红捐了26元,小芳捐了10元。

,这时她们所剩的钱数相等,小红原来有多少钱?。

人教版小升初比和比例应用题专题练习一

人教版小升初比和比例应用题专题练习一
【详解】解:设需要x辆汽车才能运完,
6.8×5=8.5×x
34=8.5x
x=34÷8.5
x=4
答:需要4辆汽车才能运完。
【点睛】解答此题的关键是弄清楚哪两种量成何比例,进而列比例求解。
12.80米
【分析】根据题意知道,总工作量一定,工作时间和工作效率成反比例,由此列式解答即可。
【详解】解:设实际每天修x米,
(3)若每个小方格的面积表示1平方厘米,缩小后三角形的面积是()平方厘米。
参考答案:
1.84本;126本
【分析】设原来共有x本书,未未又买来24本书后,现在共有(x+24)本,莱拉的图书数量没变,根据原来总本数÷原来总份数×原来莱拉对应份数=现在总本数÷现在总份数×现在莱拉对应份数,列出方程,求出x的值是原来总本数,原来总本数÷原来总份数,求出一份数,一份数分别乘原来未未和莱拉的对应份数即可求出他们原来的本数。
【详解】3÷4= =9:12=七成五=75%
【点睛】此题主要是考查除式、小数、分数、百分数、比、折数、成数之间的关系及转化,利用它们之间的关系和性质进行转化即可。
7.320千米
【分析】根据“甲车和乙车的速度比是5∶3”可知,相遇时甲车和乙车的路程之比也是5∶3,则相遇时甲车比乙车多(5-3)份,已知两车在距中点40千米处相遇,那么甲车比乙车多行(40×2)千米;用甲车比乙车多行的路程除以甲车比乙车多的份数,求出一份数,再用一份数乘总份数(5+3)份,即可求出A、B两地的距离。
【详解】一份数:
(40×2)÷(5-3)
=80÷2
=40(千米)
全程:
40×(5+3)
=40×8
=320(千米)
答:A、B两地相距320千米。
【点睛】本题考查比的应用,根据行驶的时间一定,两车的路程比等于速度比,找出相遇时甲车比乙车多行的路程以及多的份数,进而求出一份数是解题的关键。

比和比例应用题

比和比例应用题

比和比例应用题1、洗衣机厂计划20天生产洗衣机1600台,生产5天后由于改进技术,效率提高25%,完成计划还要多少天?2、小刚读一本书,第一天读全书的2/15,第二天比第一天多读了6页,这时已读页数与剩下的页数的比是3:7,小刚再读多少页就能读完这本书?3、甲乙两车由A、B两地同时出发相向而行,甲乙两车速度比是2:3,已知甲走全程用了5.5小时,两车多少小时在中途相遇?4、如图,ABCD是一个梯形,E是AD的中点,直线CE把梯形分成甲乙两部分,它们的面积之比是9:4,求上底AB与下底CD长度的比。

5、有两只小甲虫,以相同的速度,同时从B点分别在大小两圆周上爬,大圆的半径是24厘米,小圆的半径是15厘米,小圆上的小甲虫至少爬几圈时与大圆上的小甲虫距离最远?B 6、小明和小强原有图画纸张数的比是4:3,小明又买来15张,小强用掉8张,现有图画纸张数的比是5:2,原来两人各有多少张图画纸?7、3个苹果的价钱与4个梨的价钱一样,5个梨的价钱与6个柿子价钱一样。

现在买了3个苹果,6个梨,4个柿子共花8元。

苹果、梨、柿子每个价钱是多少元?8、甲乙两个仓库原存放化肥吨数的比是7:5,如果从甲仓库调运650吨化肥到乙仓库,那么现在甲乙两仓库存放化肥的吨数比是3:4,原来甲仓库存放化肥多少吨?9、某班在一次数学考试中,平均成绩是78分,男女生各自的平均成绩是75.5分和81分,这个班男女生人数的比是多少?10、化肥厂计划生产化肥1400吨,由于改进技术5天完成了计划的25%,照这样剩下的任务还需多少天完成?11、小明三天读完一本书,第一天读全书的一半少32页,第二天读全书的1/4,第三天读的页数是第一天读的页数的4/5,这本书有多少页?12、快慢两列车的长分别是150米、200米,它们相向行驶在平行轨道上,若坐在慢车上的人见快车驶过窗口的时间是6秒,则坐在快车上的人见慢车驶过窗口所用的时间是几秒钟?13、一个分数,分子与分母之和是100。

比和比例应用题专项训练1

比和比例应用题专项训练1

比和比例应用题姓名:一、判断。

1.某班男生有8人,女生有10人,男生与女生人数之比是0.8。

()2.甲、乙二人同时走同一条路,甲走完需20分钟,乙走完需30分钟,甲和乙的速度比是2∶3。

()3.在比例尺是8∶1的图纸上,2厘米的线段表示零件的实际长16厘米。

()4.两个圆的周长比是2∶3,面积之比是4∶9。

()二、应用题。

1、在一幅地图上,5厘米的长度表示地面上150千米的距离,求这幅地图的比例尺。

2、在比例尺是1∶6000000的地图上,量得甲地到乙地的距离是25厘米,求两地间的实际距离。

若一架飞机以每小时750千米的速度从北京飞往南京,大约需要多少小时?3、混凝土的配料是水泥∶黄沙∶石子=1∶2∶3。

现在要浇制混凝土楼板40块,每块重0.3吨,需要水泥、黄沙、石子各多少吨做原料?4、一艘轮船,从甲港开往乙港,每小时航行25千米,8小时可以到达目的地.从乙港反回甲港,每小时航行20千米,几小时可以到达?5、某工人要做504个零件,他5天做了120个,照这样的速度,余下的还要做多少天?6、一间大厅,用边长6分米的方砖铺地,需用324块;若改铺边长4分米的方砖,需要多用几块?7、一根皮带带动两个轮子,大轮直径30厘米,小轮直径10厘米;小轮每分钟转300转,大轮每分钟转几转?8、一件工程,如果34人工作需20天完成,若要提前3天完工,现在需要增加几名工人?9、一本文艺书,每天读6页,20天可以读完,要提前8天看完,每天要比原来多看几页?10、羊毛衫厂共有工人538人,分三个车间,第一车间比第三车间少12人,已知第二车间与第三车间的人数比是3∶4。

三个车间各有多少人?11、学校把购进的图书的60%按2∶3∶4分配给四、五、六三个年级。

已知六年级分得56本,学校共购进图书多少本?12、小明居住的院内有4家,上月付水费39.2元,其中张叔叔家有2人,王奶奶家有4人,李阿姨家有3人,小明家有5人,若按人口计算,他们四家各应付水费多少元?三、判断下列各题中的两种量成什么比例,为什么?1、买相同电脑,购买电脑的台数与总价。

比和比例应用题

比和比例应用题

比和比例应用题(基础)例1、学校合唱队共有126名学生,其中男、女队总人数之比是2︰7,合唱队男、女队员各有多少名?例2、甲、乙两站间的铁路长372千米。

两列火车同时出发相向开出,2.4小时后相遇,相遇时两车所行的路程比是16︰15。

求这两列火车的速度各是多少千米/小时?例3、小明读一本书。

第一天读了总页数的13,第二天读的页数与第一天读的页数比是6︰5,还剩下64页没有读。

全书共有多少页?例4、顺达服装厂有甲、乙两个车间,甲车间与乙车间人数比是3︰5,如果从甲车间调150人到乙车间,则甲、乙车间人数比是3︰7。

求原来甲、乙两个车间各个多少人?例5、在比例尺是1︰15000000的地图上,量得甲地到乙地长是5厘米,如果改画在比例尺是1︰20000000的地图上,甲地到乙地应画多少厘米?例6、如图所示,为方便学生上、下学,育才小学准备修一条直通人民大道的小路。

要使这少米?例7、飞机4小时飞行1760千米,用同样的速度从甲城飞往乙城共飞行7小时。

甲、乙两城相距多少千米?(用比例方法解)例8、把一根长3米的圆钢锯成60厘米一段,共需20分钟。

如果改成锯成50厘米一段,需要几分钟?例9、一列火车从甲城开往乙城,每小时行50千米,4.8小时可到达。

如果速度提高15,可以提前几小时到达?例10、一辆汽车计划每小时行60千米,从甲地到乙地要7.5小时,实际3小时行了150千米。

照这样计算,行完全程要几小时?例11、一辆客车在甲、乙两地之间行驶,往返一次共用4小时,客车去时每小时行45千米,回时每小时行30千米。

甲、乙两地之间的距离是多少千米?例12、甲、乙二人合做一项工程,6天后,乙因事离开,再由甲单独工作10天完成。

已知甲、乙二人工作效率比是3︰4。

乙单独完成这项工程需几天?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

研究目标:
比和比例是进一步学习更多数学知识的重要基础,比和除法、分数都有实质性的联系。

有了“比”,处理分数、百分数及有关倍的问题,就将更加灵活方便。

例题1
甲、乙两列火车同时从两地相向开出。

已知甲列车每小时行驶120 千米,乙列车每小时行驶90 千米
(1)甲、乙两车的速度比是()
2)甲、乙两车相遇时所行的路程比是()
3)甲、乙两车各自行完全程所用的时间比是()
练习 1
(1)一段路,甲要12 分钟走完,乙要15 分钟走完,甲、乙二人速度的最简整数比是多少?
2)制造一个零件,甲需 6 分,乙需 5 分,丙需 4.5分,现在有1590 个零件的任务,分配给他们三人,且要求在相同时间内完成,每人应该分配到多
少零件的任务?
3)师徒两人在同一时间内共做100 个零件,师傅每 6 分做一个,徒弟每9 分做一个。

当他们完成任务时,各做了多少个零件?
研究目标:
比和比例是进一步学习更多数学知识的重要基础,比和除法、分数都有实质性的联系。

有了“比”,处理分数、百分数及有关倍的问题,就将更加灵活方便。

例题2
甲、乙加工一批零件,甲先加工1.5小时,乙再加入,完成任务时,甲完成
这批零件的-,已知甲、乙工效比是3:2。

甲单独加工要几小时?
8
练习2
(1)有两组工人,效率的比为7:8,人数的比是5:6,工作时间的比为12:11。


两组所完成的工作量的比。

(2)甲、乙两辆汽车从相距190千米的A、B两地相向开出,在途中相遇,已知
甲、乙两车的速度比为4:3,相遇时所用时间的比为5:6,求相遇时甲、乙两辆汽车各行了多少千米?
(3)有两组工人要做790个零件,效率比是7:8,人数比是5:6,工作时间比是
12:11。

求两组工人各做多少个零件?
研究目标:
比和比例是进一步学习更多数学知识的重要基础,比和除法、分数都有实质性的联系。

有了“比”,处理分数、百分数及有关倍的问题,就将更加灵活方便。

例题3
甲、乙两个仓库原有粮食吨数的比是5:4,甲仓库运走36吨后,两仓库粮食吨数的比是3:4,甲仓库原有粮食多少吨?
练习3
1
(1)甲、乙两个仓库存放的货物重量比是4:3,把甲仓库货物的-运到乙仓库,
3 这时乙仓库的货物重量比甲仓库多100吨,甲仓库原有货物多少吨?
1
(2)甲、乙两人各加工100个零件,甲比乙迟2-小时开工,结果同时完成,
2
甲乙两人的工作效率比是5:2。

甲每小时加工多少个零件?
(3)两个相同的瓶子装满酒精溶液,一个瓶中酒精与水的体积之比是3:1,而另一个瓶中酒精与水的比是4:1,若把两瓶酒精溶液混合,混合液中酒精和
水的体积之比是多少?
比和比例应用题(一)
研究目标:
比和比例是进一步学习更多数学知识的重要基础,比和除法、分数都有实质性的联系。

有了“比”,处理分数、百分数及有关倍的问题,就将更加灵活方便。

例题4 某车间有140 名职工,分成三个生产作业组,已知第一组和第二组人数的比是2:3,第二组和第三组人数的比是4:5,这三个生产组各有多少人?
练习 4
(1)一个长方形,长与宽的比是2:1,宽与高的比是3:2,求长与高的比
2)一个长方形,长与宽的比是2:1,宽与高的比是3:2,如果长方形的全部棱长之和是220 厘米,求长方形的体积。

3)有甲、乙、丙三家零售商店,已知某天甲店与乙店销售额的比是3:4,乙店与丙店销售额的比为 2.5:3,如果这天乙店的销售额比甲、丙两店的销售总额少931 元,求这天三家商店的销售额各是多少元?
比和比例应用题(一)
研究目标:
比和比例是进一步学习更多数学知识的重要基础,比和除法、分数都有实质性的
联系。

有了“比”,处理分数、百分数及有关倍的问题,就将更加灵活方便。

例题5
甲、乙两个瓶子装的酒精溶液体积的比是2:5,甲瓶中酒精与水的体积比是3:1, 乙瓶中酒精与水的体积的比是4:1,现在把两瓶溶液倒入一个大瓶中混合,这时酒精与水的体积比是多少?
练习5
(1)某班在一次数学考试中,平均成绩是
78分,男、女生各自的平均成绩是
75.5分和81分,这个班男、女生人数的比是多少?
(2)甲走的路程比乙多-,乙用的时间却比甲多-,求甲、乙的速度比
3 4
(3)—个长方形与一个正方形的周长比为6:5,长方形的长是宽的1-倍,求
5 这个长
方形与正方形的面积之比。

研究目标:
正确理解并灵活运用比和比例这些基本知识,可以使一些较复杂的数量关系简化,便于我们分析和理解有关的问题。

例题1
一辆汽车从甲地开往乙地,每小时行40千米,返回时每小时行50 千米,结果返
回时比去时的时间少48 分钟,求甲、乙两地之间的路程。

练习 1
(1)一辆汽车从甲地开往乙地,去时每小时行48 千米,返回时,每小时行56 千米,返回比去时少用 1 小时,求甲、乙两地的路程。

2)某人从A 城步行到 B 城办事,每小时走 5 千米,回来时骑自行车,每小时行15 千米,往返共用 6 小时,求A、B 两成之间的路程。

3)一辆汽车从甲地去乙地,每小时行45 千米,返回时每小时多行20%。

往返共用去11 小时。

甲地到乙地共有多少千米?
研究目标:
正确理解并灵活运用比和比例这些基本知识,可以使一些较复杂的数量关系简化,便于我们分析和理解有关的问题。

例题2
甲和乙同时从A、B 两地相向走来,甲每小时走7.5 千米,两人相遇后,乙再走22.5千米到A地,甲再走2小时到B地,乙每小时走多少千米?
练习 2
(1)甲、乙两人步行的速度比是7:5,甲、乙分别由A、B 两地同时出发,如果相向而行,0.5 小时后相遇,如果他们同向而行,那么甲追上乙需要多少
小时?
2)一批货物已经运走了65%,还剩下280 吨,这批货物运走了多少吨?
3)甲、乙两人进行百米赛跑,当甲到达终点时,乙距终点还有6米。

如果甲在起跑线后面 6 米,与乙同时跑,谁先到达终点?这时另一个距终点还有几米?
比和比例应用题(二)
研究目标:
正确理解并灵活运用比和比例这些基本知识,可以使一些较复杂的数量关系简化,便于我们分析和理解有关的问题。

例题3
化肥厂经过改革日产量比原来的20吨提高了25%,原来30天的产量,现在需要多少天能完成?
练习3
(1)有一项搬运砖的任务,25个人去搬需6小时可以完成。

如果相同工效的人数增
加到30人,运完这批砖能减少几小时?
(2)甲、乙两辆汽车同时从A B两个城市相对开出,经过12小时相遇后,甲车
继续向前开到B城还要6小时,已知甲车每小时比乙车快25千米, 求A、B
两个城市间的公路长多少千米?
(3)师、徒两人加工一批零件,徒弟共加工3小时,师傅再参加工作,完成时,
徒弟加工了这批零件的3,已知师徒工效比是2:5,师徒单独加工各要几
8
小时?
研究目标:
正确理解并灵活运用比和比例这些基本知识,可以使一些较复杂的数量关系简化,便于我们分析和理解有关的问题。

例题4
在一群学生中,如果走了15 名女生,那么剩下的男女人数比为2:1。

在这之后,
如果再走45 名男生,那么剩下的男女人数比为1:5,原先有多少名女生?
练习 4
(1)大、小两瓶油共重 2.7千克,大瓶的油用去0.2 千克后,剩下的油与小瓶内油的重量比是3:2,求大、小瓶里原来各装多少千克油?
2)甲、乙两厂原有人数的比是7:6,从甲厂调走36 人后,甲乙两厂人数的比是2:3 ,甲、乙两厂原来各有多少人?
3)甲、乙两厂原有人数的比是7:6,从甲厂调36 人到乙厂后,甲、乙两厂人数的比是2:3,甲、乙两厂原来各有多少人?
研究目标:
正确理解并灵活运用比和比例这些基本知识,可以使一些较复杂的数量关系简化,便于我们分析和理解有关的问题。

例题5
甲、乙两个长方形容器,底面积的比是4:3,甲中水深5 厘米,乙中水深 2 厘米。

再往两个容器中注入同样多的水,这时水深恰好相等,甲容器中水面上升几厘米?
练习 5
(1)甲、乙两个圆柱容器,底面积的比是5:4,甲中水深8 厘米,乙中水深 5 厘米,向两容器中注入同样多的水,使两容器中水深相等,乙容器中水深几
厘米?
2)甲乙两个长方形容器,甲底面长 6 分米,宽 4 分米,乙容器底面长8 分米,宽 2 分米,甲中水深8 分米,乙中水深 6 分米,向两容器注入同样
多的水后,水深恰好相等。

两容器中现在水深多少分米?
(3)AB两圆柱容器,底面积的比是2:3, A中水深4厘米,B中水深6厘米, 向两容器中注入同样多的水,水深恰好相等。

两容器现在水深是多少厘米?。

相关文档
最新文档