最新浙教版初三数学知识点整理

合集下载

最新浙教版初中九年级《数学》上册全册期末总复习知识点考点整理复习汇总完整完美精品打印版

最新浙教版初中九年级《数学》上册全册期末总复习知识点考点整理复习汇总完整完美精品打印版

最新浙教版初中九年级《数学》上册全册期末总复习知识点考点整理复习汇总完整完美精品打印版最新浙教版初中九年级《数学》上册全册期末总复知识点考点重难点要点整理复汇总,是一份完整、完美、必备的复资料。

1.二次函数1.1 二次函数二次函数是形如y=ax²+bx+c (其中a,b,c是常数,a≠0)的函数。

a为二次项系数,b为一次项系数,c为常数项。

1.2 二次函数的图像二次函数y=ax²(a≠0)的图像是一条抛物线,关于y轴对称,顶点在坐标原点。

当a>0时,抛物线开口向上,顶点为最低点;当a0时)或向左(当m0时)或向下(当k<0时)平移|k|个单位得到,顶点为(m,k),对称轴为直线x=m。

1.3 二次函数的性质二次函数y=ax² (a≠0)的图像具有如下性质:1)对称轴为x=-b/2a;2)最值点为顶点,最大值为k (当a0时);3)图像开口方向由a的符号确定。

1.4 二次函数的应用运用二次函数求实际问题中的最大值或最小值,首先应当求出函数表达式和自变量的取值范围,然后通过配方变形,或利用公式求它的最大值或最小值。

注意:由此求得的最大值或最小值对应的自变量必须在自变量的取值范围内。

2.简单事件的概率2.1 事件的可能性根据事件是否发生的可能性,可以将事件分为三类:必然事件、不可能事件、不确定事件或随机事件。

2.2 简单事件的概率将事件发生可能性的大小称为事件发生的概率,一般用P 表示。

事件A发生的概率记为P(A)。

必然事件发生的概率为100%,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;随机事件的概率介于0与1之间,即0<P(随机事件)<1.如果事件发生的各种结果的可能性相同且互相排斥,结果总数为n,事件A包含其中的结果数为m(m≤n),那么事件A发生的概率为:P(A)=m/n。

使用公式P(A)=m/n来计算简单事件发生的概率,需要先确定所有结果的可能性相等,然后确定所有可能的结果总数n和事件A包含的结果数m。

新浙教版中考数学几何考点复习及解析

新浙教版中考数学几何考点复习及解析

新浙教版中考数学几何考点复习直线:没有端点,没有长度射线:一个端点,另一端无限延长,没有长度线段:两个端点,有长度一、图形的认知1、余角;补角:邻补角:二、平行线知识点1、对顶角性质:对顶角相等。

注意:对顶角的判断2、垂线、垂足。

过一点有条直线与已知直线垂直3、垂线段;垂线段长度==点到直线的距离4、过直线外一点只有一条直线与已知直线平行5、直线的两种关系:平行与相交(垂直是相交的一种特殊情况)6、如果a∥b,a∥c,则b∥c7、同位角、内错角、同旁内角的定义。

注意从文字角度去解读。

8、两直线平行====同位角相等、内错角相等、同旁内角互补三、命题、定理1、真命题;假命题。

4、定理:经过推理证实的,这样得到的真命题叫做定理。

四、平移1、平移性质:平移之后的图形与原图形相比,对应边相等,对应角相等五、平面直角坐标知识点1、平面直角坐标2、象限:坐标轴上的点不属于任何象限横坐标上的点坐标:(x,0)纵坐标上的点坐标:(0,y)3、距离问题:点(x,y)距x轴的距离为y的绝对值,距y轴的距离为x的绝对值坐标轴上两点间距离:点A(x1,0)点B(x2,0),则AB距离为x1-x2的绝对值点A(0,y1)点B(0,y2),则AB距离为y1-y2的绝对值4、角平分线:x=yx+y=05、若直线l与x轴平行,则直线l上的点纵坐标值相等若直线l与y轴平行,则直线l上的点横坐标值相等6、对称问题:7、距离问题(选讲):坐标系上点(x,y)距原点距离为坐标系中任意两点(x1,y1),(x2,y2)之间距离为8、中点坐标(选讲):点A(x1,0)点B(x2,0),则AB中点坐标为六、与三角形有关的线段1、三角形分类:不等边;等腰;等边三角形2、三角形两边之和大于第三边,两边之差小于第三边。

依据:两点之间,线段最短3、三角形的高:4三角形的中线:三角形的中线将三角形分为面积相等的两部分注:两个三角形周长之差为x,则存在两种可能:即可能是第一个△周长大,也有可能是第一个△周长小4、三角形的角平分线:七、与三角形有关的角1、三角形内角和定理:三角形三个内角的和等于180度。

浙教版九年级数学期末知识点复习

浙教版九年级数学期末知识点复习

浙教版九年级数学期末知识点复习数学作为一门学科,是学生在学校教育中必修的一门科目。

九年级数学是初中最后一个学年的数学课程,也是初中数学知识点的总结和复习的阶段。

接下来,我们来一起复习一些浙教版九年级数学课程的重点内容。

一、代数运算代数运算是数学中的一个基础部分,它包括了各种代数运算法则以及代数式的化简、展开等内容。

九年级的代数运算主要包括整式和分式的四则运算,特别是分式的乘除运算和整式与分式的加减运算。

在这方面,需要注意运用因式分解、通分、约分等技巧来简化运算。

二、方程与不等式方程与不等式是数学中应用广泛的内容,特别是在问题求解中。

九年级的方程与不等式主要包括一元二次方程的解法、一次不等式的解法等。

在解方程和不等式的过程中,重点是要掌握等式与不等式两边的性质保持一致的原则。

三、平面几何平面几何是初中数学中的一个重点内容,其中包括了点、线、圆以及相应的性质和定理。

九年级的平面几何主要包括线段和角的运算、图形的相似与全等、三角形的性质等。

在这方面,需要掌握好投影定理、正弦定理、余弦定理等重要的几何定理。

四、统计与概率统计与概率是数学中的一门实用性较强的内容,九年级的统计与概率主要包括统计图的绘制和分析、事件的概率计算等。

在这方面,需要掌握好直方图、饼图、折线图等统计图的绘制方法,以及事件概率的计算公式和方法。

五、函数与图像函数与图像是数学中的一个重点和难点内容,也是数学与现实世界联系最为紧密的部分。

九年级的函数与图像主要包括函数概念的理解、一次函数、二次函数等基本函数的图像性质的掌握。

需要重点理解函数的定义域、值域、单调性、奇偶性等性质。

通过对以上几个重点内容的复习,同学们可以全面地回顾九年级数学的知识点。

同时,在复习过程中,也需要注意一些特殊的数学方法和思维方式,例如几何中的证明方法、方程的解题思路等。

同时,请同学们务必进行大量的练习和解题,加深对知识点的理解和应用。

总之,九年级数学的复习是初中数学学习的最后一个重要阶段,同学们需要做好总结和复习,以便顺利过渡到高中数学学习。

九年级数学浙教版知识点归纳总结

九年级数学浙教版知识点归纳总结

九年级数学浙教版知识点归纳总结数学作为一门学科,在九年级的学习中起到了至关重要的作用。

为了更好地帮助同学们复习和巩固九年级数学浙教版的知识点,特将各个章节的重点内容进行归纳总结,并提供一些解题技巧和注意事项,希望能够对同学们的学习有所帮助。

一、函数与方程1. 一元一次方程与一次函数- 一元一次方程的概念及解法- 一次函数的概念与图像特征- 一元一次方程与一次函数之间的关系2. 二元一次方程组- 二元一次方程组的概念及解法- 二元一次方程组的几何意义3. 二次根式与二次函数- 二次根式的概念及运算规则- 二次函数的概念与图像特征- 二次函数与二次根式之间的关系二、平面图形的认识1. 三角形- 三角形的分类及性质- 三角形的内角和与外角性质2. 平行四边形与菱形- 平行四边形的性质- 菱形的性质3. 等腰梯形与等腰直角梯形- 等腰梯形的性质及面积计算- 等腰直角梯形的性质及面积计算三、立体几何与空间图形1. 立体图形的认识- 立体图形的分类及性质- 立体图形的表面积和体积计算2. 圆锥与圆台- 圆锥与圆台的性质- 圆锥与圆台的体积计算3. 圆柱与圆球- 圆柱与圆球的性质- 圆柱与圆球的体积计算四、统计与概率1. 统计的基本概念- 数据的收集与整理- 数据的图表表示及分析2. 概率的初步认识- 随机事件及其概率- 两个独立事件的概率计算3. 抽样与推测- 抽样调查的基本原则- 样本推断与总体估计通过对九年级数学浙教版各章节的知识点进行归纳总结,我们可以清晰地了解到每个章节的重点内容。

在复习时,我们应该重点关注每个知识点的概念及相关的解题方法,掌握基本的计算技巧和推理能力。

除此之外,我们还要注重实际问题与数学模型之间的联系,培养数学思维和应用能力。

在解题过程中,我们需要注意以下几点:- 阅读题目时要认真理解题意,并推断出问题所需的数学思路。

- 分析问题时要分清已知条件和需求,合理运用已学知识进行问题求解。

(完整word版)浙教版初三数学知识点整理

(完整word版)浙教版初三数学知识点整理

第一章反比例函数知识点:1。

定义:形如y =xk (k 为常数,k ≠0)的函数称为反比例函数。

其中x是自变量,y 是函数,自变量x 的取值是不等于0的一切实数。

说明:1)y 的取值范围是一切非零的实数。

2)反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此其解析式也可以写成xy=k ;1-=kx y ;xk y 1=(k 为常数,k ≠0)3)反比例函数y =xk (k 为常数,k ≠0)的左边是函数,右边是分母为自变量x 的分式,也就是说,分母不能是多项式,只能是x 的一次单项式,如xy 1=,x y 213=等都是反比例函数,但21+=x y 就不是关于x 的反比例函数。

2. 用待定系数法求反比例函数的解析式由于反比例函数y =xk 只有一个待定系数,因此只需要知道一组对应值,就可以求出k 的值,从而确定其解析式。

3. 反比例函数的画法:1)列表;2)描点;3)连线注:(1)列表取值时,x ≠0,因为x =0函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y 值(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线(4)由于x ≠0,k ≠0,所以y ≠0,函数图象永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴4。

图像:反比例函数的图像属于双曲线。

反比例函数的图象既是轴对称图形又是中心对称图形。

有两条对称轴:直线y=x 和 y= -x ;对称中心是:原点5。

性质:反比例函数 y =xk(k 为常数,k ≠0)k 的取值 k <0k >0图像性质a)x 的取值范围是x ≠0;y 的取值范围是y ≠0;b)函数的图像两支分别位a) x 的取值范围是x ≠0;y 的取值范围是y ≠0;b)函数的图像两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大.于第一、第三象限,在每个象限内y值随x 值的增大而减小。

数学知识点九年级浙教版

数学知识点九年级浙教版

数学知识点九年级浙教版数学是一门广泛应用于各个领域的学科,它涵盖了许多重要的知识点。

在九年级的数学课程中,我们将学习浙江教育版的数学知识。

一、整式与分式运算在九年级数学中,我们将学习整式与分式的运算。

整式就是由整数和字母的乘积和的形式,例如3x+2y。

分式是由分子和分母组成的表达式,例如2/3。

我们将学习如何进行整式的加减乘除运算,以及分式的加减乘除运算。

二、方程与不等式方程是指一个含有未知数的等式,例如2x+5=13。

我们学习如何解一元一次方程、一元一次方程组以及一元二次方程。

此外,我们还将学习如何利用方程来解决实际问题。

不等式则是包含不等关系的数学表达式,例如x>3。

我们将学习如何解一元一次不等式以及一元二次不等式。

三、函数与图像在九年级数学中,我们将学习函数与图像的概念。

函数是一种特殊的关系,它将一个自变量映射到一个因变量。

我们将学习函数的定义、函数图像的绘制以及函数的性质。

此外,我们还将学习线性函数、二次函数、反比例函数等常见函数的性质和图像特征。

四、平面图形的性质与计算九年级数学中,我们将学习平面图形的性质与计算。

我们将学习圆的性质,包括弦长、弧长、扇形面积等的计算公式。

此外,我们还将学习三角形的性质,例如勾股定理、正弦定理和余弦定理。

同时,我们将学习四边形、多边形以及圆柱、圆锥等的性质和计算方法。

五、统计与概率统计与概率也是九年级数学的重要内容。

我们将学习如何进行数据的收集、整理和分析,以及如何利用统计方法进行数据的总结和推断。

概率部分,我们将学习随机事件的概念、概率的计算方法以及概率在实际问题中的应用。

总结:数学知识点九年级浙教版涵盖了整式与分式运算、方程与不等式、函数与图像、平面图形的性质与计算,以及统计与概率等内容。

通过学习这些知识,我们可以提高自己的数学能力,并将其应用于实际问题中。

数学不仅是一门学科,更是一种思维方式,它培养了我们的逻辑思维和解决问题的能力。

希望同学们在九年级数学学习中取得好成绩!。

浙教版中考数学知识点总结

浙教版中考数学知识点总结

浙教版中考数学知识点总结一、代数知识点1. 方程与不等式代数方程和不等式是中考数学中的重要知识点。

学生需要掌握如何解一元一次方程和一元一次不等式,以及如何应用一元一次方程和一元一次不等式解决实际问题。

此外,学生还需要了解二元一次方程和一元一次绝对值不等式的解法及应用。

2. 函数基本概念函数是中考数学中重要的基本概念,学生需要了解函数的定义、定义域、值域、图像和性质。

此外,还需要掌握一次函数、二次函数、分段函数等的性质及应用。

3. 多项式多项式是中考数学中的重点内容,学生需要了解多项式的定义、加减乘除、因式分解、余式定理、因式定理等知识点,并能够熟练应用到解题过程中。

4. 方程与不等式组方程组和不等式组是中考数学中的重要内容,学生需要掌握如何解线性方程组和线性不等式组,并能够应用到实际问题中。

二、几何知识点1. 几何基本概念几何是中考数学中的一大重点,学生需要掌握点、线、面、角等基本概念,以及直线、射线、线段、平行线、垂直线、平行线段等性质及应用。

2. 四边形四边形是中考数学中的重要内容,学生需要了解平行四边形、矩形、菱形、正方形、梯形等的性质及应用。

3. 三角形三角形是中考数学中的一大难点,学生需要了解三角形的内角和、外角和、中线定理、高定理、正弦定理、余弦定理、解三角形等相关知识,并能够熟练应用到解题中。

4. 圆圆是中考数学中的一大重点,学生需要掌握圆的性质、圆的周长和面积、弧长、扇形面积、关于圆的直线、切线等相关知识。

5. 相似与全等相似与全等是中考数学中的重要内容,学生需要了解相似三角形的性质、相似条件、相似比、全等三角形的性质、全等判定条件等知识点。

三、数论知识点1. 整式的基本概念整式是中考数学中的重要内容,学生需要了解整式的概念、加减乘除、整式的因式分解、整式的乘法公式、整式的除法等知识点。

2. 整式的应用整式的应用是中考数学中的一大难点,学生需要能够应用整式解决实际问题,如代数式的值、图形的面积和周长等问题。

浙教版九年级全册初三数学(基础版)(全册知识点考点梳理、重点题型分类巩固练习)(家教、补习、复习用)

浙教版九年级全册初三数学(基础版)(全册知识点考点梳理、重点题型分类巩固练习)(家教、补习、复习用)

浙教版九年级全册初中数学全册知识点梳理及重点题型巩固练习二次函数y=ax 2(a ≠0)与y=ax 2+c(a ≠0)的图象与性质—知识讲解(基础)【学习目标】1.理解二次函数的概念,能用待定系数法确定二次函数的解析式;2.会用描点法画出二次函数y=ax 2(a≠0) 与()20y ax c a =+≠的图象,并结合图象理解抛物线、对称轴、顶点、开口方向等概念;3. 掌握二次函数y=ax 2(a≠0) 与()20y ax c a =+≠的图象的性质,掌握二次函数()20y axa =≠与()20y ax c a =+≠之间的关系;(上加下减).【要点梳理】要点一、二次函数的概念 1.二次函数的概念一般地,形如y=ax 2+bx+c (a≠0,a, b, c 为常数)的函数是二次函数. 若b=0,则y=ax 2+c ; 若c=0,则y=ax 2+bx ; 若b=c=0,则y=ax 2.以上三种形式都是二次函数的特殊形式,而y=ax 2+bx+c (a ≠0)是二次函数的一般式. 二次函数由特殊到一般,可分为以下几种形式: ①(a≠0);②(a≠0);③(a≠0);④(a≠0),其中;⑤(a≠0).要点诠释:如果y=ax 2+bx+c(a,b,c 是常数,a≠0),那么y 叫做x 的二次函数.这里,当a=0时就不是二次函数了,但b 、c 可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.2.二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标)(或称交点式).要点诠释:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.要点二、二次函数y=ax 2(a ≠0)的图象及性质 1.二次函数y=ax 2(a ≠0)的图象用描点法画出二次函数y=ax 2(a≠0)的图象,如图,它是一条关于y 轴对称的曲线,这样的曲线叫做抛物线.因为抛物线y=x 2关于y 轴对称,所以y 轴是这条抛物线的对称轴,对称轴与抛物线的交点是抛物线的顶点,从图上看,抛物线y=x 2的顶点是图象的最低点。

浙教版中考数学常用知识

浙教版中考数学常用知识

浙教版中考数学常用知识中考数学对于学生来说是一次重要的挑战,掌握浙教版中考数学的常用知识是取得好成绩的关键。

以下将为大家详细介绍浙教版中考数学中的一些常用知识。

一、数与代数1、实数实数包括有理数和无理数。

有理数可以表示为分数形式,包括整数、有限小数和无限循环小数。

无理数则是无限不循环小数,如π和√2。

在中考中,常常会考查实数的运算,包括加、减、乘、除、乘方和开方。

2、代数式代数式包括整式、分式和二次根式。

整式包括单项式和多项式,运算时需要注意合并同类项和去括号法则。

分式则要注意分母不能为零,化简时通常需要通分。

二次根式要注意被开方数必须是非负数,并且要掌握二次根式的化简和运算。

3、方程与不等式一元一次方程、二元一次方程组、一元二次方程是中考的重点。

解一元一次方程的步骤包括去分母、去括号、移项、合并同类项和系数化为 1。

二元一次方程组的解法有代入消元法和加减消元法。

一元二次方程的解法有直接开平方法、配方法、公式法和因式分解法。

同时,不等式的性质和一元一次不等式(组)的解法也是常考内容。

4、函数一次函数、反比例函数和二次函数是中考数学的核心考点。

一次函数的图像是一条直线,其表达式为 y = kx + b(k ≠ 0),要掌握其图像的性质和应用。

反比例函数的表达式为 y = k/x(k ≠ 0),图像是双曲线,要注意其对称性和增减性。

二次函数的表达式为 y = ax²+ bx + c(a ≠ 0),图像是抛物线,要掌握其顶点坐标、对称轴和最值等性质,并且能够灵活运用函数解决实际问题。

二、图形与几何1、三角形三角形的性质和判定是重点,包括三角形的内角和、外角性质、三边关系。

全等三角形的判定方法有 SSS、SAS、ASA、AAS 和 HL(直角三角形)。

相似三角形的判定方法有 AA、SAS、SSS,相似三角形的性质包括对应边成比例、对应角相等。

2、四边形平行四边形、矩形、菱形和正方形的性质和判定是常见考点。

浙教版初中数学知识点总结归纳

浙教版初中数学知识点总结归纳

浙教版初中数学知识点总结归纳初中数学是一门重要的基础学科,对于培养学生的逻辑思维和解决问题的能力有着至关重要的作用。

浙教版初中数学教材涵盖了丰富的知识点,以下为大家进行系统的总结归纳。

一、数与代数1、有理数有理数的概念:包括正有理数、零和负有理数。

有理数的运算:加、减、乘、除、乘方运算及其混合运算。

有理数的大小比较。

2、实数平方根与立方根:平方根的定义、性质,立方根的定义、性质。

实数的概念:包括有理数和无理数。

实数的运算:与有理数运算类似,但要注意无理数的运算。

3、代数式整式:单项式、多项式的概念,整式的加减乘除运算。

因式分解:提公因式法、公式法(平方差公式、完全平方公式)。

分式:分式的概念、分式的基本性质、分式的运算。

4、方程与不等式一元一次方程:解法及应用。

二元一次方程组:解法(代入消元法、加减消元法)及应用。

一元二次方程:一般形式、解法(配方法、公式法、因式分解法)、根的判别式、韦达定理及应用。

不等式:不等式的性质、一元一次不等式(组)的解法及应用。

二、图形与几何1、三角形三角形的基本性质:内角和定理、外角性质。

全等三角形:判定方法(SSS、SAS、ASA、AAS、HL)。

相似三角形:判定方法、性质及应用。

直角三角形:勾股定理、直角三角形的性质。

2、四边形平行四边形:性质、判定方法。

矩形、菱形、正方形:性质、判定方法。

3、圆圆的基本性质:垂径定理、圆心角、弧、弦之间的关系。

圆周角定理。

圆与直线的位置关系:相离、相切、相交。

正多边形和圆。

4、图形的变换平移、旋转、轴对称:性质及作图。

位似:概念及性质。

三、函数1、一次函数一次函数的表达式:y = kx + b(k、b 为常数,k ≠ 0)。

一次函数的图像与性质。

一次函数的应用。

2、反比例函数反比例函数的表达式:y = k/x(k 为常数,k ≠ 0)。

反比例函数的图像与性质。

反比例函数的应用。

3、二次函数二次函数的表达式:一般式 y = ax²+ bx + c(a ≠ 0)、顶点式 y = a(x h)²+ k(a ≠ 0)。

新浙教版初中数学知识点中考总结归纳

新浙教版初中数学知识点中考总结归纳

中考数学知识点中考总复习总结归纳第一章 有理数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等第二章 整式的加减考点一、整式的有关概念 (3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

2、单项式只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如c b a 235-是6次单项式。

考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

单项式和多项式统称整式。

用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。

(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。

4、整式的运算法则 整式的加减法:(1)去括号;(2)合并同类项。

(完整版)(完整版)浙教版初中数学知识点总结归纳,推荐文档

(完整版)(完整版)浙教版初中数学知识点总结归纳,推荐文档

初中数学教学大纲七年级上册第1章有理数1.1从自然数到有理数正数负数0既不是正数也不是负数整数分数有理数1.2 数轴原点单位长度正方向数轴相反数1.3 绝对值1.4 有理数的大小比较第2章有理数的运算2.1有理数的加法加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)2.2 有理数的减法减去一个数,等于加上这个数的相反数2.3 有理数的乘法两数相乘,同号得正,异号得负,并把绝对值相乘任何数与零相乘,积为零互为倒数乘法交换律:a*b=b*a乘法结合律:(a*b)*c=a*(b*c)分配率:a*(b+c)=a*b+a*c2.4 有理数的除法两数相除,同号得正,异号得负,并把绝对值相除0除以任何一个不等于0的数都得0除以一个数(不等于0),等于乘以这个数的倒数2.5 有理数的乘方幂底数指数科学记数法2.6 有理数的混合运算先算乘方,再算乘除,最后算加减,如有括号,先进行括号里的运算2.7 近似数准确数近似数第3章实数3.1 平方根平方根开平方算数平方根3.2 实数无理数3.3 立方根3.4 实数的运算先算乘方和开方,再算乘除,最后算加减,如果遇到括号,则先进行括号里的运算第4章代数式4.1 用字母表示数4.2 代数式4.3 代数式的值4.4 整式单项式系数次数多项式常数项4.5 合并同类项把同类项的系数相加,所得结果作为系数,字母和字母的指数不变4.6 整式的加减第5章一元一次方程5.1 一元一次方程5.2 等式的基本性质5.3 一元一次方程的解法5.4 一元一次方程的应用第6章图形的初步认识6.1 几何图形6.2 线段、射线和直线6.3 线段的长短的比较两点之间线段最短6.4 线段的和差中点6.5 角与角的度量6.6 角的大小比较直角锐角钝角6.7 角的和差角的平分线6.8 余角和补角同角或等角的余角相等同角或等角的补角相等6.9 直线的相交对顶角相等连接直线外一点与直线上各点的所有线段中,垂线段最短初中数学教学大纲七年级下册第1章平行线1.1平行线1.2同位角、内错角、同旁内角1.3 平行线的判定同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行在同一平面内,垂直于同一条直线的两条直线互相平行1.4 平行线的性质两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补1.5图形的平移第2章二元一次方程组2.1 二元一次方程2.2 二元一次方程组2.3 解二元一次方程组代入消元法加减消元法2.4 二元一次方程组的应用2.5 三元一次方程组及其解法第3章整式的乘除3.1 同底数幂的乘法同底数幂相乘,底数不变,指数相加幂的乘方,底数不变,指数相乘积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘3.2 单项式的乘法3.3 多项式的乘法(a+n)(b+m)=ab+am+nb+mn3.4 乘法公式(a+b)(a-b)=a ²-b ²(a+b) ²=a ²+2ab+b ²(a-b) ²=a ²+2ab+b ²3.5 整式的化简3.6 同底数幂的除法同底数幂相除,底数不变,指数相减3.7 整式的除法(a+b+c) ÷m=a÷m+b÷m+c÷m (m≠0)第4章因式分解4.1 因式分解4.2 提取公因式法4.3 用乘法公式分解因式第5章分式5.1 分式分式中字母的取值不能使分母为零,当分母的值为零时,分式就没有意义5.2 分式的基本性质分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变最简分式5.3 分式的乘除5.4 分式的加减5.5 分式方程第6章数据与统计图表6.1 数据的收集与整理全面调查抽样调查总体个体样本样本的容量简单随机抽样 6.2 条形统计图和折线统计图6.3 扇形统计图6.4 频数与频率组距频数频数统计表频率6.5 频数直方图初中数学教学大纲八年级上册第1章三角形的初步认识1.1认识三角形三角形三个内角的和等于180°三角形任何两边的和大于第三边三角形的角平分线三角形的中线三角形的高线1.2定义与命题定义命题条件结论真命题假命题定理1.3证明三角形的外角等于与它不相邻的两个内角的和1.4全等三角形全等三角形的对应边相等,对应角相等1.5三角形全等的判定三边对应相等的两个三角形全等(简写成“边边边”或“SSS”)两边及其夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)两个角及其夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”)两角及其中一个角的对边对应相等的两个三角形全等(简写成“角角边”或“AAS”)线段垂直平分线上的点到线段两端的距离相等角平分线上的点到角两边的距离相等1.6 尺规作图第2章特殊三角形2.1 图形的轴对称对称轴垂直平分连结两个对称点的线段成轴对称的两个图形是全等图形2.2 等腰三角形2.3等腰三角形的性质定理等腰三角形的两个底角相等在同一个三角形中,等边对等角等边三角形的各个内角都等于60°等腰三角形的顶角平分线、底边上的中线和高线互相重合,简称等腰三角形的三线合一2.4 等腰三角形的判定定理如果一个三角形有两个角相等,那么这个三角形是等腰三角形在同一个三角形中,等角对等边三个角都相等的三角形是等边三角形有一个角是60°的等腰三角形是等边三角形2.5 逆命题和逆定理2.6 直角三角形直角三角形的两个锐角互余直角三角形斜边上的中线等于斜边的一半有两个角互余的三角形是直角三角形2.7 探索勾股定理直角三角形两条直角边的平方和等于斜边的平方a²+b²=c²如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形2.8 直角三角形全等的判定斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”“HL”)角的内部,到角两边距离相等的点,在这个角的平分线上第3章一元一次不等式3.1 认识不等式3.2不等式的基本性质a>b→a+c>b+c,a-c>b-ca<b→a+c<b+c,a-c<b-ca>b,且c>0→ac>bc,a/c>b/ca>b,且c<0→ac<bc,a/c<b/c3.3 一元一次不等式3.4 一元一次不等式组第4章图形与坐标4.1 探索确定位置的方法4.2 平面直角坐标系4.3 坐标平面内图形的轴对称和平移在直角坐标系中,点(a,b)关于x轴的对称点的坐标为(a,-b),关于y轴的对称点的坐标为(-a,b)第5章一次函数5.1 常量与变量5.2 函数5.3 一次函数一般地,函数y=kx+b(k,b都是常数,且k≠0) 叫做一次函数正比例函数比例系数待定系数法5.4 一次函数的图像对于一次函数y=kx+b(k,b为常数,且k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

浙教版九年级上册数学知识点归纳

浙教版九年级上册数学知识点归纳

浙教版九年级上册数学知识点归纳知识点一:代数基础
- 代数表达式的定义和性质
- 一元一次方程及其应用
- 一元一次方程组及其解法
- 不等式的表示和解法
知识点二:几何图形与综合
- 平行线和平行四边形的性质
- 三角形的性质和分类
- 相似三角形的判定和性质
- 圆的元素和性质
- 综合运算与应用
知识点三:数与式
- 分数的计算和运用
- 百分数的计算和运用
- 十字相乘法的运用
- 字母代数式的计算
知识点四:统计与概率
- 统计图表的分析和应用
- 事件和概率的基本概念
- 事件的独立性和互斥性
- 抽样和调查的方法和应用知识点五:函数
- 函数的基本概念和记法
- 函数关系式的表示和运算- 函数图象的性质和分析
- 一次函数和二次函数的应用知识点六:立体几何
- 空间几何图形的表示和性质
- 空间几何图形的计算和变换
- 柱体、圆柱和圆锥的应用
以上是浙教版九年级上册数学的知识点归纳。

通过学习这些知识点,能够帮助同学们更好地理解数学的基础知识,提高数学解题能力。

中考数学浙教版知识点归纳

中考数学浙教版知识点归纳

中考数学浙教版知识点归纳中考数学是学生学习生涯中的一个关键阶段,它不仅考察学生对数学基础知识的掌握,还考察学生的逻辑思维能力和解决问题的能力。

以下是针对浙教版中考数学知识点的归纳:一、数与代数1. 有理数:包括正数、负数和零,理解有理数的四则运算规则。

2. 无理数:了解无理数的概念,如圆周率π。

3. 代数式:掌握代数式的加减乘除运算,以及代数式的化简。

4. 一元一次方程:解一元一次方程的一般步骤,包括移项、合并同类项、系数化为1。

5. 二元一次方程组:了解二元一次方程组的解法,如代入法和消元法。

6. 一元二次方程:掌握一元二次方程的解法,包括因式分解法、配方法和公式法。

二、几何1. 平面图形:包括线段、角、三角形、四边形、圆等基本图形的性质和计算。

2. 相似与全等:理解相似三角形和全等三角形的判定条件。

3. 圆的性质:掌握圆周角、切线、弧长等圆的基本性质。

4. 空间几何:包括立体图形的表面积和体积的计算,如长方体、圆柱、圆锥等。

三、统计与概率1. 数据的收集与处理:了解数据的收集方法,数据的分类和整理。

2. 统计图表:掌握条形统计图、折线统计图、饼状图的绘制和解读。

3. 平均数、中位数和众数:理解这些统计量的意义和计算方法。

4. 概率:了解概率的基本概念,包括事件的独立性、互斥性等。

四、函数与方程1. 一次函数:理解一次函数的图象和性质,包括斜率和截距。

2. 二次函数:掌握二次函数的图象和性质,包括顶点、对称轴等。

3. 反比例函数:了解反比例函数的图象和性质。

五、综合应用1. 解决实际问题:将数学知识应用于解决实际问题,如速度、距离、时间问题,成本、利润问题等。

2. 数学建模:初步了解数学建模的概念,能够用数学方法描述和解决实际问题。

结束语:通过以上对中考数学浙教版知识点的归纳,希望能够帮助同学们更好地复习和掌握中考数学的主要内容。

数学学习不仅需要记忆和理解,更需要通过大量的练习来提高解题能力。

浙教版九年级上册数学知识点归纳

浙教版九年级上册数学知识点归纳

浙教版九年级上册数学知识点归纳本文将对浙教版九年级上册数学的重点知识进行归纳总结。

第一章函数1.1 函数概念函数是一种特殊的关系,每个自变量都恰好对应一个因变量,可以用函数符号 $y=f(x)$ 表示。

1.2 函数图像根据函数的定义,可以绘制函数的图像。

函数图像的横坐标为自变量,纵坐标为因变量。

对于一些常见的函数,比如直线函数、二次函数、指数函数、对数函数等,它们的图像具有一些特殊的形状和性质,需要重点掌握。

1.3 函数的应用函数在数学中有着广泛的应用。

比如可以用函数描述物体的运动状态,可以用函数表示生长的趋势等等。

第二章数据的收集和整理2.1 统计调查统计调查是指通过各种方式对数据进行收集和整理,得到有用的信息。

2.2 数据的分布特征在对数据进行分析时,需要了解数据的分布特征,比如数据的最大值、最小值、平均数、中位数、众数等等。

2.3 统计图表统计图表是一种将数据可视化的方式。

常见的统计图表包括直方图、折线图、饼图、散点图等等。

第三章平面图形的认识3.1 基本概念在平面几何中,有着许多基本的概念,比如点、线、面、角等等。

3.2 直线与角直线和角是平面几何中的基本内容。

线段和射线都是直线的特殊情况,需要掌握相应的性质。

角的概念和类型也需要熟悉。

3.3 三角形三角形是平面几何中的基本图形,需要掌握三角形的分类、性质、内角和外角和等角定理等知识点。

3.4 四边形四边形也是平面几何中的基本图形。

需要掌握四边形的分类、性质和面积计算等知识点。

结语本文对浙教版九年级上册数学的重点知识进行了归纳总结,旨在帮助学生更好地掌握数学知识,提高数学成绩。

新浙教版中考数学必背公式大全

新浙教版中考数学必背公式大全

1同角或等角的补角相等2同角或等角的余角相等3过两点有且只有一条直线4两点之间线段最短5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于 180°18推论 1 直角三角形的两个锐角互余19推论 2 三角形的一个外角等于和它不相邻的两个内角的和20推论 3 三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理( SAS)有两边和它们的夹角对应相等的两个三角形全等23角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24推论( AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理( SSS)有三边对应相等的两个三角形全等26斜边、直角边公理( HL )有斜边和一条直角边对应相等的两个直角三角形全等27 定理 1 在角的平分线上的点到这个角的两边的距离相等 28 定理 2 到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论 3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论 1三个角都相等的三角形是等边三角形36推论 2有一个角等于 60°的等腰三角形是等边三角形37定理线段垂直平分线上的点和这条线段两个端点的距离相等38逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上39在直角三角形中,如果一个锐角等于 30°那么它所对的直角边等于斜边的一半40直角三角形斜边上的中线等于斜边上的一半41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理 1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理 3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边 a、b 的平方和、等于斜边 c 的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长 a、b、c 有关系 a^2+b^2=c^2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理n 边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理 1 平行四边形的对角相等53 平行四边形性质定理 2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理 3 平行四边形的对角线互相平分56 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形59 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形60 矩形性质定理 1 矩形的四个角都是直角61 矩形性质定理 2 矩形的对角线相等62 矩形判定定理 1 有三个角是直角的四边形是矩形63 矩形判定定理 2 对角线相等的平行四边形是矩形64菱形性质定理 1 菱形的四条边都相等65 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积 =对角线乘积的一半,即 S=(a×b)÷267菱形判定定理 1 四边都相等的四边形是菱形68菱形判定定理 2 对角线互相垂直的平行四边形是菱形69正方形性质定理 1 正方形的四个角都是直角,四条边都相等70正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理 1 关于中心对称的两个图形是全等的72定理 2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74对角线相等的梯形是等腰梯形75平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等76 推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰77 推论 2 经过三角形一边的中点与另一边平行的直线,必平分第三边78 等腰梯形性质定理等腰梯形在同一底上的两个角相等79等腰梯形的两条对角线相等80等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形81(1)比例的基本性质如果 a: b=c: d,那么 ad=bc 如果 ad=bc,那么 a:b=c:d 82 (2)合比性质如果 a/b=c/d,那么( a±b)/ b=(c±d)/ d83(3)等比性质如果 a/b=c/d= =m /n(b+d+ +n≠0),那么(a+c+ +m )/( b+d+ +n )=a/b84三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半85梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L= ( a+b)÷2 S=L ×h86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91相似三角形判定定理 1 两角对应相等,两三角形相似( ASA)92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理 2 两边对应成比例且夹角相等,两三角形相似( SAS)94判定定理 3 三边对应成比例,两三角形相似( SSS)95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96性质定理 1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97性质定理 2 相似三角形周长的比等于相似比98性质定理 3 相似三角形面积的比等于相似比的平方99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理不在同一直线上的三点确定一个圆。

九年级数学浙教版知识点

九年级数学浙教版知识点

九年级数学浙教版知识点随着社会的不断发展,数学已经成为了一门重要的学科。

九年级是学生们进行数学学习的关键时期,也是他们在数学方面建立稳固基础的时候。

而九年级数学浙教版是我国教育部推行的一套数学教材,它涵盖了许多重要的数学知识点。

一、代数方程数学中的代数方程是一种基本的数学模型,它用字母表示未知量,通过各种运算得到等式。

九年级数学中,代数方程是一个重要的知识点。

学生需要学习如何解一元一次方程、二元一次方程以及一元二次方程等。

通过解方程,学生能够培养逻辑思维和分析问题的能力。

二、平面几何平面几何是研究图形在平面内性质和相互关系的学科。

在九年级数学中,平面几何是一个重要且基础的知识点。

学生需要学习直线与角的性质、相交线与平行线的关系、平行线与比例、多边形的性质等内容。

通过学习平面几何,学生能够培养几何思维和空间想象能力。

三、概率与统计概率与统计是现实生活中应用广泛的数学分支。

在九年级数学中,学生将接触到概率与统计的基础概念和应用方法。

学生需要学习如何计算事件的概率、如何进行数据统计和分析等内容。

通过学习概率与统计,学生能够培养数据分析和判断能力。

四、数列与函数数列与函数是代数学中的重要内容。

在九年级数学中,学生将学习数列与函数的基本概念和性质。

学生需要学习等差数列、等比数列的概念、性质和运算规律,以及函数的概念、性质和图像等。

通过学习数列与函数,学生能够培养数学建模和问题求解的能力。

五、立体几何立体几何是研究图形在三维空间内性质和相互关系的学科。

在九年级数学中,学生将学习立体几何的基本概念和性质。

学生需要学习如何计算立体图形的表面积和体积,如何判定立体图形的相似性等。

通过学习立体几何,学生能够培养空间想象和推理能力。

以上只是九年级数学浙教版的一些重要知识点,还有许多其他内容,如数论、函数图像与变换、平面向量等。

九年级的数学学习对学生的以后学习以及应用数学都具有重要意义。

因此,学生应重视数学学习,不断巩固基础,培养数学思维,为将来的发展打下坚实的数学基础。

初中浙教版数学知识点总结

初中浙教版数学知识点总结

初中浙教版数学知识点总结一、数与代数1. 有理数的运算- 正数、负数、整数、分数、小数的概念- 有理数的加、减、乘、除运算- 乘方、开方运算- 绝对值的概念及运算- 有理数的比较大小2. 整式的运算- 单项式、多项式的概念- 整式的加减、乘法、除法运算- 因式分解:提公因式、公式法、分组分解法3. 代数式的化简与求值- 代数式的化简- 代数式的求值:直接代入、化简后代入4. 一元一次方程与不等式- 方程的建立、解法:移项、合并同类项、系数化为1 - 不等式的建立、解法:移项、合并同类项、系数化为1 - 线性方程组的解法:代入法、消元法5. 二元一次方程组- 二元一次方程组的建立- 解法:代入法、消元法(加减消元、代数乘法消元)6. 一元二次方程- 一元二次方程的建立- 解法:直接开平方法、配方法、公式法、因式分解法7. 函数的概念与性质- 函数的定义、表示法- 函数的性质:定义域、值域、映射、单调性、奇偶性- 函数图像的绘制与识别8. 一次函数与反比例函数- 一次函数的概念、图像(直线)与性质- 反比例函数的概念、图像(双曲线)与性质9. 二次函数- 二次函数的概念、图像(抛物线)与性质- 顶点、对称轴的求法- 最大值、最小值问题10. 序列与数列- 等差数列的概念、通项公式、前n项和公式- 等比数列的概念、通项公式、前n项和公式- 数列的求和:分组求和、错位相减法二、几何1. 平面图形的认识- 点、线、面的基本性质- 角的概念:邻角、对顶角、同位角、内错角- 直线与角的关系:平行、相交、垂直2. 三角形- 三角形的分类:按边分类、按角分类- 三角形的性质:内角和定理、外角性质、三角形的中位线- 等腰三角形、等边三角形的性质与判定 - 直角三角形的性质与勾股定理3. 四边形- 四边形的分类与性质- 平行四边形的性质与判定- 矩形、菱形、正方形的性质与判定- 梯形的性质与中位线定理4. 圆的基本性质- 圆的定义、圆心、弦、直径、半径- 圆的基本性质:弧、弦、直径的关系 - 圆周角定理、圆心角定理5. 圆的计算- 扇形、弧长、圆锥的体积计算- 切线的性质与判定- 圆与圆、圆与多边形的位置关系6. 空间几何- 空间图形的基本概念:点、线、面、体 - 空间直线与平面的位置关系- 空间图形的计算:体积、表面积7. 相似与全等- 全等三角形的判定与性质- 相似三角形的判定与性质- 相似多边形的判定与性质- 相似比的计算与应用8. 解析几何初步- 坐标系的建立与应用- 直线、圆的解析表达式- 点、线、圆之间的距离与角度计算三、统计与概率1. 统计- 数据的收集、整理与描述- 频数、频率、频数分布表的概念与绘制 - 平均数、中位数、众数的计算与意义 - 方差、标准差的概念与计算2. 概率- 随机事件的概念与分类- 概率的定义与计算-。

新浙教版中考数学必背公式大全

新浙教版中考数学必背公式大全

. .1同角或等角的补角相等2同角或等角的余角相等3过两点有且只有一条直线4两点之间线段最短5过一点有且只有一条直线和直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于 180°18推论 1 直角三角形的两个锐角互余19推论 2 三角形的一个外角等于和它不相邻的两个内角的和20推论 3 三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理〔 SAS〕有两边和它们的夹角对应相等的两个三角形全等23角边角公理〔 ASA〕有两角和它们的夹边对应相等的两个三角形全等24推论〔 AAS〕有两角和其中一角的对边对应相等的两个三角形全等25边边边公理〔 SSS〕有三边对应相等的两个三角形全等26斜边、直角边公理〔 HL 〕有斜边和一条直角边对应相等的两个直角三角形全等27 定理 1 在角的平分线上的点到这个角的两边的距离相等 28 定理 2 到一个角的两边的距离一样的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等〔即等边对等角〕31推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论 3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等〔等角对等边〕35推论 1三个角都相等的三角形是等边三角形36推论 2有一个角等于 60°的等腰三角形是等边三角形37定理线段垂直平分线上的点和这条线段两个端点的距离相等38逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上39在直角三角形中,如果一个锐角等于 30°那么它所对的直角边等于斜边的一半40直角三角形斜边上的中线等于斜边上的一半41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理 1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理 3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边 a、b 的平方和、等于斜边 c 的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长 a、b、c 有关系 a^2+b^2=c^2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理n 边形的内角的和等于〔n-2〕×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理 1 平行四边形的对角相等53 平行四边形性质定理 2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理 3 平行四边形的对角线互相平分56 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形59 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形60 矩形性质定理 1 矩形的四个角都是直角61 矩形性质定理 2 矩形的对角线相等62 矩形判定定理 1 有三个角是直角的四边形是矩形63 矩形判定定理 2 对角线相等的平行四边形是矩形64菱形性质定理 1 菱形的四条边都相等65 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积 =对角线乘积的一半,即 S=〔a×b〕÷267菱形判定定理 1 四边都相等的四边形是菱形68菱形判定定理 2 对角线互相垂直的平行四边形是菱形69正方形性质定理 1 正方形的四个角都是直角,四条边都相等70正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理 1 关于中心对称的两个图形是全等的72定理 2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74对角线相等的梯形是等腰梯形75平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等76 推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰77 推论 2 经过三角形一边的中点与另一边平行的直线,必平分第三边78 等腰梯形性质定理等腰梯形在同一底上的两个角相等79等腰梯形的两条对角线相等80等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形81〔1〕比例的根本性质如果 a: b=c: d,那么 ad=bc 如果 ad=bc,那么 a:b=c:d 82 〔2〕合比性质如果 a/b=c/d,那么〔 a±b〕/ b=〔c±d〕/ d83〔3〕等比性质如果 a/b=c/d= =m /n〔b+d+ +n≠0〕,那么〔a+c+ +m 〕/〔 b+d+ +n 〕=a/b84三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半85梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L= 〔 a+b〕÷2 S=L ×h86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边〔或两边的延长线〕,所得的对应线段成比例88 定理如果一条直线截三角形的两边〔或两边的延长线〕所得的对应线段成比例,那么这条直线平行于三角形的第三边89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他两边〔或两边的延长线〕相交,所构成的三角形与原三角形相似91相似三角形判定定理 1 两角对应相等,两三角形相似〔 ASA〕92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理 2 两边对应成比例且夹角相等,两三角形相似〔 SAS〕94判定定理 3 三边对应成比例,两三角形相似〔 SSS〕95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96性质定理 1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97性质定理 2 相似三角形周长的比等于相似比98性质定理 3 相似三角形面积的比等于相似比的平方99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理不在同一直线上的三点确定一个圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章反比例函数知识点:1.定义:形如y =xk (k 为常数,k ≠0)的函数称为反比例函数。

其中x是自变量,y 是函数,自变量x 的取值是不等于0的一切实数。

说明:1)y 的取值范围是一切非零的实数。

2)反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此其解析式也可以写成xy=k ;1-=kx y ;xk y 1=(k 为常数,k ≠0)3)反比例函数y =x k(k 为常数,k ≠0)的左边是函数,右边是分母为自变量x 的分式,也就是说,分母不能是多项式,只能是x 的一次单项式,如xy 1=,x y 213=等都是反比例函数,但21+=x y 就不是关于x 的反比例函数。

2. 用待定系数法求反比例函数的解析式 由于反比例函数y =xk只有一个待定系数,因此只需要知道一组对应值,就可以求出k 的值,从而确定其解析式。

3. 反比例函数的画法:1)列表;2)描点;3)连线注:(1)列表取值时,x ≠0,因为x =0函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y 值 (2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线(4)由于x ≠0,k ≠0,所以y ≠0,函数图象永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴4. 图像:反比例函数的图像属于双曲线。

反比例函数的图象既是轴对称图形又是中心对称图形。

有两条对称轴:直线y=x 和 y= -x ;对称中心是:原点 5. 性质:反比例函数y =xk(k 为常数,k ≠0) k 的取值 k <0k >0图像性质a) x 的取值范围是x ≠0;y 的取值范围是y ≠0; b) 函数的图像两支分别位于第二、第四象限,在每个象限内y 值随x 值的增大而增大。

a) x 的取值范围是x ≠0;y 的取值范围是y ≠0;b) 函数的图像两支分别位于第一、第三象限,在每个象限内y 值随x 值的增大而减小。

说明:1)反比例函数的增减性不连续,在讨论函数增减问题时,必须有“在每一个象限内”这一条件。

2)反比例函数图像的两个分只可以无限地接近x 轴、y 轴,但与x 轴、y 轴没有交点。

3)越大,图象的弯曲度越小,曲线越平直. 越小,图象的弯曲度越大.4)对称性:图象关于原点对称,即若(a ,b )在双曲线的一支上,则(,)在双曲线的另一支上. 图象关于直线对称,即若(a ,b )在双曲线的一支上,则(,)和(,)在双曲线的另一支上.6. 反比例函数y =xk(k ≠0)中的比例系数k 的几何意义表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。

如图,过双曲线y =xk(k ≠0)上的任意一点P (x , y )做x 轴、y 轴的垂线PA 、PB ,所得矩形OBPA 的面积S=PA ·PB=∣xy ∣=∣k ∣。

推出:过双曲线上的任意一点做坐标轴的垂线,连接原点,所得三角形的面积为2k7. 经典例题考察:1)反比例关系与反比例函数的区别和联系:如果xy=k (k ≠0),那么x 与y 这两个量成反比例的关系,这里的x 、y 可以表示单独的一个字母,也可以代表多项式或单项式。

例如y -1与x+1成反比例,则11+=-x k y ;若y 与x 2 成反比例,则2xky =成反比例关系,x 和y 不一定是反比例函数;但反比例函数x ky =(k ≠0)必成反比例关系。

2)坐标系中的求不规则图形的面积3)反比例函数与一次函数、正比例函数的综合题 8 反比例函数与一次函数的联系.(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.8. 实际问题与反比例函数的应用1)步骤:分析问题,列解析式建立反比例函数模型→利用反比例函数解决相关问题,建立反比例函数模型是解决问题的关键。

思路:题目中已明确两变量的函数关系,常利用待定系数法求出函数解析式。

题目中不能确定变量间的函数关系,找出等量关系,将变量联系起来就能得到函数关系式,并解决问题。

2)反比例函数的应用(1)反比例函数在几何问题中的应用。

求实际问题中的面积 (2)反比例函数在其他学科中的应用,a) 物理学中,电压一定时,电阻R 与电流强度I 成反比例函数,RU I =b) 当在一个可以改变体积的容器中装入一定质量的气体时,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积v 的反比例函数,解析式可以表达为vk=ρ c) 收音机刻度盘的波长l 与频率f 关系式: fk l =d) 压力F 一定时,压强P 与受力面积S 成反比例关系,即SF P =e) 当汽车输出功率P 一定时,汽车行驶速度v 与汽车所受的负载即阻力F 成反比例关系,FPv =(3) 反比例函数在日常生活中的应用:路程问题、工程问题等。

注:实际问题中一定要注意自变量x 的取值范围。

重点:反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.难点:(1)反比例函数及其图象的性质的理解和掌握.反比例函数的图像是双曲线,在利用它的增、减性解题时,必须注意“在每一象限内”的条件。

(2)反比例函数的应用:从实际问题中抽象出反比例函数的模型。

用待定系数法求出反比例函数的解析式,再用反比例函数的规律解决实际问题。

考点:与反比例函数有关的问题,几乎在历届中考中都可以找到。

其主要命题点为:(1)反比例函数的定义;(2)反比例函数的图像及性质;(3)求反比例函数的解析式;(4)反比例函数与实际问题的应用;(5)反比例函数与一次函数的综合。

题型主要有选择题、填空题、还有解答题。

二次函数知识点:1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2.二次函数2ax y =的性质 (1)抛物线2ax y =)(0≠a 的顶点是坐标原点,对称轴是y 轴.(2)函数2ax y =的图像与a 的符号关系.① 0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.6.抛物线的三要素:开口方向、对称轴、顶点. ①a 决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=.(2)配方法:运用配方法将抛物线的解析式化为()k h x a y +-=2的形式, 得到顶点为(h ,k ),对称轴是h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.★用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失★9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线ab x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab (即a 、b 同号)时,对称轴在y 轴左侧;③0<ab(即a 、b 异号)时,对称轴在y 轴右侧.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ):①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab .10.几种特殊的二次函数的图像特征如下:11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式.(2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=.12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(c ,0)(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程 02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离.(4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组⎩⎨⎧++=+=cbx ax y nkx y 2的解的数目来确定: ①方程组有两组不同的解时⇔l 与G 有两个交点;②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故 acx x a b x x =⋅-=+2121, ()()a a ac b a ca b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=--=-=-=444222122122121 13.二次函数与一元二次方程的关系:(1)一元二次方程c bx ax y ++=2就是二次函数c bx ax y ++=2当函数y 的值为0时的情况.(2)二次函数c bx ax y ++=2的图象与x 轴的交点有三种情况:有两个交点、有一个交点、没有交点;当二次函数c bx ax y ++=2的图象与x 轴有交点时,交点的横坐标就是当0=y 时自变量x 的值,即一元二次方程02=++c bx ax 的根.(3)当二次函数c bx ax y ++=2的图象与x 轴有两个交点时,则一元二次方程c bx ax y ++=2有两个不相等的实数根;当二次函数c bx ax y ++=2的图象与x 轴有一个交点时,则一元二次方程02=++c bx ax 有两个相等的实数根;当二次函数c bx ax y ++=2的图象与x 轴没有交点时,则一元二次方程02=++c bx ax 没有实数根14、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式. 15.二次函数的应用:(1)二次函数常用来解决最优化问题,这类问题实际上就是求函数的最大(小)值;(2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值.15.解决实际问题时的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.重难点:二次函数的图像与性质,二次函数与一元二次方程的关系,用二次函数解决实际问题。

相关文档
最新文档