基于最小风险的贝叶斯决策
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用拉格朗日乘子法将条件极值转化为 无条件极值
分别对分界点t和 求导
这率种 1在最限小定的一决类策错规误则率也称2为为常N数ey而m使an另-P一ea类rs错on误
最小错误率贝叶斯决策的似然比形式 最小风险贝叶斯决策的似然比形式
际中要列出合适的决策表是很不容易的
与最小错误率贝叶斯决策的关系
wenku.baidu.com
差别在于是否考虑风险,即错误损失
最小风险决策可看作加权形式的最小错误率决策, 加权值即损失函数取特定形式时二者可能等价,如 损失函数取0-1形式
定义损失函数
2.2.3 限定一类错误率,使另一类 错误率最小的 两类别决策
条件极值问题
决策空间:所有可能采取的各种决策所 组成的集合,用A表示
每个决策或行动都将带来一定的损失, 它通常是决策和自然状态的函数
一般决策表
相关的数学表示
条件期望损失
由于引入损失的概念,在制定决策时不 能仅考虑最小错误率,所采取的决策是 否使损失最小也是必须考虑的
损失的数学表示,跟决策相关——条件期 望损失,条件风险
2.2.2 基于最小风险的贝叶斯决策
问题的提出:风险的概念
风险与损失紧密相连,如病情诊断、商品销售、股 票投资等问题
日常生活中的风险选择,即所谓的是否去冒险
最小风险贝叶斯决策正是考虑各种错误造成损 失不同而提出的一种决策规则
对待风险的态度:“宁可错杀一千,也不放走 一个”
以决策论的观点
对于特定的x采取决 策αi 的期望损失
期望风险
最小风险贝叶斯决策
最小风险贝叶斯决策步骤
最小风险贝叶斯决策示例
最小风险贝叶斯决策示例
最小风险贝叶斯决策的讨论
除了要有符合实际情况的先验概率 和类条
件概率密度
,j=1,…,c外,还要有合适
的损失函数 i,j , i=1,…,a ,j=1,…,c.但实
分别对分界点t和 求导
这率种 1在最限小定的一决类策错规误则率也称2为为常N数ey而m使an另-P一ea类rs错on误
最小错误率贝叶斯决策的似然比形式 最小风险贝叶斯决策的似然比形式
际中要列出合适的决策表是很不容易的
与最小错误率贝叶斯决策的关系
wenku.baidu.com
差别在于是否考虑风险,即错误损失
最小风险决策可看作加权形式的最小错误率决策, 加权值即损失函数取特定形式时二者可能等价,如 损失函数取0-1形式
定义损失函数
2.2.3 限定一类错误率,使另一类 错误率最小的 两类别决策
条件极值问题
决策空间:所有可能采取的各种决策所 组成的集合,用A表示
每个决策或行动都将带来一定的损失, 它通常是决策和自然状态的函数
一般决策表
相关的数学表示
条件期望损失
由于引入损失的概念,在制定决策时不 能仅考虑最小错误率,所采取的决策是 否使损失最小也是必须考虑的
损失的数学表示,跟决策相关——条件期 望损失,条件风险
2.2.2 基于最小风险的贝叶斯决策
问题的提出:风险的概念
风险与损失紧密相连,如病情诊断、商品销售、股 票投资等问题
日常生活中的风险选择,即所谓的是否去冒险
最小风险贝叶斯决策正是考虑各种错误造成损 失不同而提出的一种决策规则
对待风险的态度:“宁可错杀一千,也不放走 一个”
以决策论的观点
对于特定的x采取决 策αi 的期望损失
期望风险
最小风险贝叶斯决策
最小风险贝叶斯决策步骤
最小风险贝叶斯决策示例
最小风险贝叶斯决策示例
最小风险贝叶斯决策的讨论
除了要有符合实际情况的先验概率 和类条
件概率密度
,j=1,…,c外,还要有合适
的损失函数 i,j , i=1,…,a ,j=1,…,c.但实