几种常见的晶体模型PPT

合集下载

第一章-金属的晶体结构(共118张PPT)可修改全文

第一章-金属的晶体结构(共118张PPT)可修改全文
(3) 不需最小整数化; (4) 〔1 1 1〕
B面:
(1) 该面与z轴平行,因此x=1,y=2, z=∞; (2) 1/x=1,1/y=1/2,1/z=0; (3) 最小整数化1/x=2,1/y=1,1/z=0; (4) 〔2 1 0〕
C面:
(1) 该面过原点,必须沿y轴进行移动,因此x= ∞ ,y=-1,z=∞ (2) 1/x=0,1/y=-1,1/z=0; (3) 不需最小整数化;(4) 〔0 1 0〕
晶胞在三维空间的重复构成点阵
〔4〕晶格常数
在晶胞中建立三维坐标体系, 描述出晶胞的形状与大小
晶胞参数- 晶格常数:a、b、c 棱间夹角:α、β、γ
2 晶系与布拉菲点阵
依据点阵参数 的不同特点划分为七种晶系
(1) 三斜晶系
α≠β≠γ≠90° a≠ b≠ c
复杂单胞 底心单斜
(2) 单斜晶系
α=γ=90°≠β a≠ b≠ c
3 原子半径: r 2 a
4 配位数= 12
4
5 致密度= nv/V=(4×3πr3/4)/a3=0.74
γ-Fe(912~1394℃)、Cu、Ni、Al、Ag 等
——塑性较高
面心立方晶胞中原子半径与晶 格常数的关系
a
r 2a 4
(三)密排六方结构〔 h.c.p〕 〔 了解〕
金属:Zn、Mg、Be、α-Ti、α-Co等
具有光泽:吸收了能量从被激发态回到基态时所 产生的幅射;
良好的塑性:在固态金属中,电子云好似是 一种流动的万能胶,把所有的正离子都结合 在一起,所以金属键并不挑选结合对象,也 无方向性。当一块金属的两局部发生相对位 移时,金属正离子始终“浸泡〞在电子云中, 因而仍保持着金属键结合。这样金属便能经 受较大的变形而不断裂。

高三化学课件常见的晶胞模型

高三化学课件常见的晶胞模型
4r= 3a,空间利用率为68%
(4)设金属原子的摩尔质量为M g/mol,
则晶胞密度ρ为
体心六方晶胞
g/cm3
/
n
m
ρ=
=
−7 3 =

(×10 )
(×10 7)3
Hale Waihona Puke 2×10213=
g/cm
3
二、金属晶体
3、面心立方最密堆积(A 1 型或铜型)
典型代表 Ca Al Cu Ag Au Pd Pt
(4)金属镁形成的晶体中,每个镁原子周围与其距离最近的原子有6个。(×)
三、分子晶体
1、干冰(CO 2 )
2、冰(H 2 O)
3、碘晶体
(1)每个水分子最多与相邻的4个水分子,以氢键相连接
(2)含1 mol H2O的冰中,最多可形成2 mol“氢键”
碘晶体晶胞(长方体)
(3)1 mol液态水中氢键数小于2NA
四、离子晶体
1、氯化钠(型)
(1)每个晶胞中含4个Na+和4个Cl-
(2)每个Na+(Cl-)周围等距且紧邻的Cl-(Na+)有6个
每个Na+周围等距且紧邻的Na+有12个
ClNa+
在氯化钠晶胞中,
与每个Na+等距离且最近的几个Cl-所围成的空间几何构型为 正八面体
四、离子晶体
2、氯化铯(型)
则a=2r
简单六方晶胞
V球=
4
3
πr3 V晶胞=a3
空间利用率=V球/V晶胞×100%=52%
二、金属晶体
2、体心六方堆积(A 2 型或钾型)
典型代表 Li Na K Ba W Fe
(1)晶胞内含原子个数为 2
(2)配位数为 8

常见晶体模型及晶胞计算课件

常见晶体模型及晶胞计算课件

3、金属晶体:
①简单立方堆积 唯一金属——钋 简单立方堆积的配位数 =6
每个晶胞含 1 个原子
球半径为r 正方体边长为a r=a/2
空间利用率=
晶胞含有原子的体积 晶胞体积
×100%
=2r
②体心立方堆积(钾型)K、Na、Fe 体心立方堆积的配位数 =8 每个晶胞含 2 个原子
③六方最密堆积(镁型) Mg、Zn、Ti
常见晶体模型及晶胞计算
晶胞 描述晶体结构的基本单元
晶胞一般是平行六面体,整块晶体可看作是数量巨大的 晶胞“无隙并置”而成。
三种典型立方晶体结构
简单立方
体心立方
面心立方
晶胞中微粒的计算方法——均摊法
原则:晶胞任意位置上的一个原子如果是被n个图形晶胞 所共有,那么,每个晶胞对这个原子分得的份额是1/n。
右图所示。
①在1个晶胞中,X离为 ZnS

2、Cu单质的晶体的晶胞结构如下图。若Cu原子的半径是 r cm,则Cu单质的密度的计算公式是 (用NA表示阿伏伽德罗常数)
SUCCESS
THANK YOU
2019/7/9
SUCCESS
THANK YOU
2019/7/9
先求S
在镁型堆积中取出六方晶胞,平行六面体的底是
平行四边形,各边长a=2r,则平行四边形的面积:
S a a sin 60 3 a2 2
平行六面体的高: 再求h
h 2边长为a的四面体高
2 6 a 2 6 a
3
3
V球

2
cm(。2)晶胞的边长为acm,求NaCl晶 体的密度。
ρ=
M
/ NA×晶胞所含粒子数 晶胞的体积

晶体结构 PPT课件

晶体结构 PPT课件

结构可以看成是由C-C四面体共顶连接 而成。
金刚石的类型
晶格中N和B常替代C。N含量一般为 0.001% ~0.25%。按照N的含量将经金 刚石划分为不同类型/
Ⅰ型 (含N) Ⅰa型:N为N2、N3 、N n, 98%的天然无色--黄色钻石属于此类。 Ⅰb 型:N为孤N, 多数合成钻石属于此类。 Ⅰ型金刚石的主要用途:刀具、拉丝 模、砂轮、钻头等。
O2-位于立方晶胞晶棱的中点, Ca2+位于 立方晶胞的中心,配位数为12;Ti4+位于 晶胞的角顶,配位数为6;O 周围有4 个 Ca, 2个Ti。[TiO6]八面体共角顶连接。
CaTiO3的立方原始晶胞
Ti4+与八面体角顶的6个O2-配位
Ca2+
Ti4+ O2-
理想钙钛矿的晶胞
一般将等轴晶系钙钛矿结构称为理想 钙钛矿,典型代表是SrTiO3。这种结 构的钙钛矿很少见。只有当离子半径 满足(rA+rX) =1.414(rB+rX)。才能形成 理想的钙钛矿型结构。
方解石(CaCO3)的结构模型
每一个Ca2+与属于不同的CO32-离子团 中的六个氧离子配位,碳的氧离子配 位数为3 。
Ca2+与不同的CO32-离子团中的六个O2-配位,
(2)钙钛矿(CaTiO3)型晶体结构 高温下为等轴晶系,空间群Pm3m,
ao=0.385nm,Z=1。
钙钛矿结构可看成是较大的Ca2+和O2作立方最紧密堆积,Ti4+充填在由六个 氧形成的八面体空隙中。
10.1 元素单质的晶体结构
1.金属单质的晶体结构
典型的金属单质晶体,原子之间以金属键 结合,结构看成是由等大球紧密堆积而 成,原子配位数高。

第二章 晶体结构ppt课件

第二章 晶体结构ppt课件

1-1 晶向指数 [u v w]
建立步骤: ①建立坐标系。以某一阵点为坐标原点,三个棱边为 坐 标轴,并以点阵常数(a、b、c)作为各个坐标轴的单位长度; ②作 OP // AB ; ③确定P点的三个坐标值(找垂直投影); ④将坐标值化为互质的最小整数,并放入到[ ] 中,则 [uvw]即为所求;
1.晶体结构与空间点阵(续)
1-4 晶胞 ①定义:在空间点阵中,能够代表晶格中原子排列特征的最小单元体。 晶胞通常是平行六面体,将晶胞作三维的重复堆砌就构成了空间点 阵。 ②晶胞的选取原则:
几何形状与晶体具有同样的对称性; 平行六面体内相等的棱与角的数目最多; 当平行六面体棱间有直角时,直角数目最多; 在满足上述条件下,晶胞的体积应最小。
o o a a a c , 9 0 , 1 2 0 1 2 3

菱方:简单菱方 o a b c , 9 0

单斜:简单单斜 底心单斜
a b c ,
9 0
o
三斜:简单三斜
a b c ,
9 0
第二章 晶体结构
第一节 晶体的特征
各项异性 晶体由于具有按照一定几何规律排列的内 部结构,空间不同方向上原子排列的特征不同, 如原子间距及周围环境,因而在一般情况下, 单晶体的许多宏观物理量(如弹性模量、电阻 率、热膨胀悉数、折射率、强度及外表面化学 性质等)的大小是随测试方向的不同而改变的, 这个性质称为各项异性。晶体断裂的解理性就 是晶体具有各项异性的最明显例子。
晶体具有确定的熔点
熔点是晶体物质的结晶状态与非结晶状态互相转 变的临界温度,晶体熔化时发生体积变化。 晶体有一些其他共同特征:晶体中存在不完整性, 晶体内原子排列并不是理想的有序排列,而是有 缺陷的;晶体的原子周期排列促成晶体有一些共 同的性质,如均匀性、自限性和对称性等。

(完整版)常见晶胞模型

(完整版)常见晶胞模型

氯化钠晶体(1)NaCl晶胞中每个Na+等距离且最近的Cl-(即Na+配位数)为6个NaCl晶胞中每个Cl-等距离且最近的Na+(即Cl-配位数)为6个(2)一个晶胞内由均摊法计算出一个晶胞内占有的Na+4_个;占有的Cl-4个。

(3)在该晶体中每个Na+周围与之最接近且距离相等的Na+共有12个;与每个Na+等距离且最近的Cl-所围成的空间几何构型为正八面体CsCl晶体(注意:右侧小立方体为CsCl晶胞;左侧为8个晶胞)(1)CsCl晶胞中每个Cs+等距离且最近的Cl-(即Cs+配位数)为8个CsCl晶胞中每个Cl-等距离且最近的Cs+(即Cl-配位数)为8个,这几个Cs+在空间构成的几何构型为正方体。

(2)在每个Cs+周围与它最近的且距离相等的Cs+有6个这几个Cs+在空间构成的几何构型为正八面体。

(3)一个晶胞内由均摊法计算出一个晶胞内占有的Cs+ 1个;占有的Cl- 1个。

CaF2晶体(1))Ca2+立方最密堆积,F-填充在全部四面体空隙中。

(2)CaF2晶胞中每个Ca2+等距离且最近的F-(即Ca2+配位数)为8个CaF2晶胞中每个F-等距离且最近的Ca2+(即F-配位数)为4个(3)一个晶胞内由均摊法计算出一个晶胞内占有的Ca2+4个;占有的F-8个。

ZnS晶体:(1)1个ZnS晶胞中,有4个S2-,有4个Zn2+。

(2)Zn2+的配位数为4个,S2-的配位数为 4个。

Si O金刚石 金刚石晶胞 金刚石晶胞分位置注释(1)金刚石晶体a 、每个金刚石晶胞中含有8个碳原子,最小的碳环为6元环,并且不在同一平面(实际为椅 式结构),碳原子为sp 3杂化,每个C 以共价键跟相邻的_4_个C 结合,形成正四面体。

键角109°28’b 、每个碳原子被12个六元环共用,每个共价键被6个六元环共用c 、12g 金刚石中有2mol 共价键,碳原子与共价键之比为 1:2 (2)Si 晶体由于Si 与碳同主族,晶体Si 的结构同金刚石的结构。

高中化学3.2.3共价晶体

高中化学3.2.3共价晶体
延展性 差 。
1.怎样从原子结构角度理解金刚石、硅和锗的熔点和硬度
依次下降?
结构相似的原子晶体,原子半径越小,键长越短,
键能越大,晶体熔点越高:金刚石>硅>锗
2.“具有共价键的晶体叫做共价晶体”。这种说法对吗?为什么?
不对,分子晶体中通常也含有共价键,如CO2、O2,
某些离子晶体中也含共价键,如NaOH、NH4Cl
(3)某些氧化物:二氧化硅(SiO2)、Al2O3晶体(刚玉)
某些共价晶体的熔点和硬度
共价晶体 金刚石 氮化硼 碳化硅 石英
熔点/0C
硬 度
>3550
10
3000
9.5
2700
9.5


1710 1410 1211
7
6.5 6.0
Байду номын сангаас
3.共价晶体的物理性质
熔点 高 ,硬度 大 , 难 溶于一般溶剂, 不 导电,
原子,晶体结构中存在以_____
O(或Si)
中心、_________原子为顶点的正四面
体结构。
A
(2)晶体中存在的作用力有________。
A.共价键 B.离子键 C.配位键
D.范德华力 E.氢键
(3)美国Lawrence Livermore国家实验室(LLNL)的
V.Lota.C.S.Yoo和Cynn成功地在高压下将CO2转化为具有类似
4
109°28′
sp3
②键角为__________,碳原子采取了______杂化。
12
③最小碳环由____个C组成且不在同一平面内,每个C被_____个最小环
6
1/2
1
共用,每个环平均拥有______个C,平均拥有____个C-C键。

七大晶系详细图解

七大晶系详细图解

七大晶系详细图解已知晶体的形态已经超过了四万种,但是万物都会有规律,晶体自然也是有的。

它们都是按七种结晶方式模式发育的,即七大晶系.晶体即是一种以三维方向发育的的几何体,为了表示三维空间,分别用三、四跟人为添加的轴来表示晶体的长宽高以及中心.三条轴分别用X、Y、Z(U)(Z轴也可叫做“主轴")来表示,而为了更好表示轴之间的度数,我们用α、β、γ来表示轴角。

就这样出现了七种不同的晶系模式:立方晶系(也称等轴晶系)、四方晶系、三方晶系、六方晶系、正交晶系(也称斜方晶系)、单斜晶系、三斜晶系。

其中又按照对称程度又分为高级晶族、中级晶族、低级晶族。

高级晶族中只有一个立方晶系;中级晶族有六方、四方、三方三个晶系;低级晶族有正交、单斜、三斜三个晶系。

一、立方晶系立方晶系的三个轴的长度是一样的,即X=Y=Z,且互相垂直,即α=β=γ=90°,对称性最强。

具有4个立方体对角线方向三重轴特征对称元素的晶体归属立方晶系.属于立方晶系的有:面心立方晶胞、体心立方晶胞、简单立方晶胞。

这个晶系的晶体并不是只有狭义的正方体一种形状,四面体、八面体、十二面体形状的晶体都属于立方晶系。

它们从不同角度看高低宽窄都差不太多,相对晶面和相邻晶面都相似,横截面和竖截面一样.最典型立方晶系的晶体为:氯化钠。

常见立方晶系晶体模型图:晶体实物图:二、四方晶系四方晶系四方晶系的三条晶轴互相垂直,即α=β=γ=90°。

其中两个水平轴(X 轴、Y轴)长度一样,Z轴的长度可长可短,通俗的说:四方晶系的晶体大多是四棱的柱状体,有的是长柱体,有的是短柱体,即其晶胞必具有四方柱的形状.横截面为正方形,四个柱面是对称的,即相邻和相对的柱面都是一样的,但和顶端不对称.所有主晶面交角都是90.特征对称元素为四重轴。

如果Z轴发育,它就是长柱状甚至针状;如果两个横轴(X轴、Y轴)发育大于Z轴,那么晶体就会呈现四方板状,最有代表的就是磷酸二氢钠和硫酸镍β了.常见的立方晶系的晶体模型图:注:柱体的棱角发育成窄小晶面,此种晶体又叫“复四方"-—四个主柱面,四个小柱面。

七大晶系图解

七大晶系图解

晶体的七大晶系是十分专业的问题,它有时是鉴别晶体的关键,鉴藏矿晶的人多少应该知道一些。

概论已知晶体形态超过四万种,它们都是按七种结晶模式发育生长,即七大晶系。

晶体是以三维方向发育的几何体,为了表示三维空间,分别用三、四根假想的轴通过晶体的长、宽、高中心,这几根轴的交角、长短不同而构成七种不同对称、不同外观的晶系模式:等轴晶系,四方晶系,三方晶系,六方晶系,斜方晶系,单斜晶系,三斜晶系上图是七大晶系的理论模型,在同一水平面上,请大家仔细分辨它们的区别。

面向观众的轴称x 轴,与画面平行的横轴称y 轴,竖直的轴称z 轴,也可叫“主轴”请看图一,等轴晶系简介等轴晶系的三个轴长度一样,且相互垂直,对称性最强。

这个晶系的晶体通俗地说就是方块状、几何球状,从不同的角度看高低宽窄差不多。

如正方体、八面体、四面体、菱形十二面体等,它们的相对晶面和相邻晶面都相似,这种晶体的横截面和竖截面一样。

此晶系的矿物有黄铁矿、萤石、闪锌矿、石榴石,方铅矿等。

请看这种晶系的几种常见晶体的理论形态:等轴晶系的三个晶轴(x 轴y 轴z 轴)一样长, 互相垂直常见的等轴晶系的晶体模型图金刚石晶体八面体和立方体的聚形的方铅矿黄铁矿四方晶系简介四方晶系的三个晶轴相互垂直,其中两个水平轴(x 轴、y 轴)长度一样,但z 轴的长度可长可短。

通俗地说,四方晶系的晶体大都是四棱的柱状体,(晶体横截面为正方形,但有时四个角会发育成小柱面,称“复四方”),有的是长柱体,有的是短柱体。

再,四方晶系四个柱面是对称的,即相邻和相对的柱面都一样,但和顶端不对称(不同形);所有主晶面交角都是九十度交角。

请看模型图:四方晶系的晶体如果z 轴发育,它就是长柱状甚至针状;如果两个横轴(x 、y)发育大于竖轴z 轴,那么该晶体就是四方板状,最有代表性的就是钼铅矿。

请看常见的一些四方晶系的晶体模型:这个晶系常见的矿物有锡石、鱼眼石、白钨矿、符山石、钼铅矿等。

请看实物图片:符山石的晶体锡石的长柱状晶体(顶端另有斜生的小晶体)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几种常见的晶体模型
1
1.原子晶体
2
2.分子晶体
3
3.离子晶体
离子晶体中的配位数是指一个离子周围最邻近 的异电性离子的数目。
F
决定离子晶体结构的因素有:几何因素、电荷
Ca
因素、键性因素。
4
几种碳酸盐的热分解温度和阳离子半径
碳酸盐
MgCO3
CaCO3
SrCO3
BaCO3
热分解温度 /℃
402
900
1172
1360
阳离子半径 /pm
66
99
112
135
金属阳离子的半径越小,分解温度越小。
5
4.石墨晶体
石墨晶体中,既有共价键, 又有金属键,还有范德华 力。
思考:石墨为什么会导电?
6
5.常见金属晶体的原子堆积模型
7
➢ 二维平面堆积方式
I型
II 型
非密置层
行列对齐四球一空 非最紧密排列
密置层
行列相错三球一空 最紧密排列
又称为A1型或铜型,典型代表 Cu、Ag、Au,配位数为 12,
空间利用率74%
又称为A2型或钾型,典型代表 Na、K、Fe,配位数为 8,空
间利用率68%
又称为A3型或镁型,典型代表 Mg、Zn、Ti,配位数为 12,
空间利用率74% 20
14
Ⅲ.六方最密堆积
第一种: 将第三层球对准第一层的球
A
12
B
6
3
54
A
B
于是每两层形成一个周期,
A
即 AB AB 堆积方式,形成
六方堆积。
配位数 12 ( 同层 6,上下层各 3 ) 15
16
Ⅳ:面心立方最密堆积
第三层的另一种排列方 式,是将球对准第一层的 2 ,4,6 位,不同于 AB 两 层的位置,这是 C 层。
8
➢ 三维空间堆积方式
Ⅰ. 简单立方堆积
9
10
Ⅱ. 体心立方堆积
11
12
密置层的堆积方式 第一层 :
13
第二层 :对第一层来讲最紧密的堆积方式是将球对准1 ,3,5 位。 ( 或对准 2,4,6 位,其情形是一样的 )
12
6
3
54
12
6
3
54
,பைடு நூலகம்
AB
关键是第三层,对第一、二层来说,第三层可以有两 种最紧密的堆积方式。
12
6
3
54
12
6
3
54
12
6
3
54
17
第四层再排 A,于是形成
ABC ABC 三层一个周期。
A
这种堆积方式可划分出面心
立方晶胞。
C
B
12
A
6
3
C
54
B
A
配位数 12
( 同层 6, 上下层各 3 )
18
19
堆积模型
简单立方 堆积
面心立方 最密堆积
体心立 方堆积
六方最 密堆积
晶胞
详解
典型代表Po,配位数为 6,空 间利用率52%
相关文档
最新文档