九年级中考数学圆的综合解答题压轴题提高专题练习及详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级中考数学圆的综合解答题压轴题提高专题练习及详细答案
一、圆的综合
1.(类比概念)三角形的内切圆是以三个内角的平分线的交点为圆心,以这点到三边的距离为半径的圆,则三角形可以称为圆的外切三角形,可以得出三角形的三边与该圆相切.以此类推,如图1,各边都和圆相切的四边形称为圆外切四边形
(性质探究)如图1,试探究圆外切四边形的ABCD两组对边AB,CD与BC,AD之间的数量关系
猜想结论:(要求用文字语言叙述)
写出证明过程(利用图1,写出已知、求证、证明)
(性质应用)
①初中学过的下列四边形中哪些是圆外切四边形(填序号)
A:平行四边形:B:菱形:C:矩形;D:正方形
②如图2,圆外切四边形ABCD,且AB=12,CD=8,则四边形的周长是.
③圆外切四边形的周长为48cm,相邻的三条边的比为5:4:7,求四边形各边的长.
【答案】见解析.
【解析】
【分析】
(1)根据切线长定理即可得出结论;
(2)①圆外切四边形是内心到四边的距离相等,即可得出结论;
②根据圆外切四边形的对边和相等,即可求出结论;
③根据圆外切四边形的性质求出第四边,利用周长建立方程求解即可得出结论.
【详解】
性质探讨:圆外切四边形的对边和相等,理由:
如图1,已知:四边形ABCD的四边AB,BC,CD,DA都于⊙O相切于G,F,E,H.
求证:AD+BC=AB+CD.
证明:∵AB,AD和⊙O相切,∴AG=AH,同理:BG=BF,CE=CF,DE=DH,
∴AD+BC=AH+DH+BF+CF=AG+BG+CE+DE=AB+CD,即:圆外切四边形的对边和相等.
故答案为:圆外切四边形的对边和相等;
性质应用:①∵根据圆外切四边形的定义得:圆心到四边的距离相等.
∵平行四边形和矩形不存在一点到四边的距离相等,而菱形和正方形对角线的交点到四边的距离相等.
故答案为:B,D;
②∵圆外切四边形ABCD,∴AB+CD=AD+BC.
∵AB=12,CD=8,∴AD+BC=12+8=20,∴四边形的周长是AB+CD+AD+BC=20+20=40.
故答案为:40;
③∵相邻的三条边的比为5:4:7,∴设此三边为5x,4x,7x,根据圆外切四边形的性质得:第四边为5x+7x﹣4x=8x.
∵圆外切四边形的周长为48cm,∴4x+5x+7x+8x=24x=48,∴x=2,∴此四边形的四边为
4x=8cm,5x=10cm,7x=14cm,8x=16cm.
【点睛】
本题是圆的综合题,主要考查了新定义圆的外切的性质,四边形的周长,平行四边形,矩形,菱形,正方形的性质,切线长定理,理解和掌握圆外切四边形的定义是解答本题的关键.
2.已知▱ABCD的周长为26,∠ABC=120°,BD为一条对角线,⊙O内切于△ABD,E,F,G 为切点,已知⊙O的半径为3▱ABCD的面积.
【答案】3
【解析】
【分析】
首先利用三边及⊙O的半径表示出平行四边形的面积,再根据题意求出AB+AD=13,然后利用切线的性质求出BD的长即可解答.
【详解】
设⊙O分别切△ABD的边AD、AB、BD于点G、E、F;
平行四边形ABCD的面积为S;
则S=2S△ABD=2×1
2
(AB·OE+BD·OF+AD·3(AB+AD+BD);
∵平行四边形ABCD的周长为26,
∴AB+AD=13,
∴3;连接OA;
由题意得:∠OAE=30°,
∴AG=AE=3;同理可证DF=DG,BF=BE;∴DF+BF=DG+BE=13﹣3﹣3=7,
即BD=7,
∴S=3(13+7)=203.
即平行四边形ABCD的面积为203.
3.如图,已知Rt△ABC中,C=90°,O在AC上,以OC为半径作⊙O,切AB于D点,且BC=BD.
(1)求证:AB为⊙O的切线;
(2)若BC=6,sinA=3
5
,求⊙O的半径;
(3)在(2)的条件下,P点在⊙O上为一动点,求BP的最大值与最小值.
【答案】(1)连OD,证明略;(2)半径为3;(3)最大值35+3 ,35-3.【解析】
分析:(1)连接OD,OB,证明△ODB≌△OCB即可.
(2)由sinA=3
5
且BC=6可知,AB=10且cosA=
4
5
,然后求出OD的长度即可.
(3)由三角形的三边关系,可知当连接OB交⊙O于点E、F,当点P分别于点E、F重合时,BP分别取最小值和最大值.
详解:(1)如图:连接OD、OB.
在△ODB和△OCB中:
OD=OC,OB=OB,BC=BD;
∴△ODB≌△OCB(SSS).
∴∠ODB=∠C=90°.
∴AB为⊙O的切线.
(2)如图:
∵sinA=3
5,∴
CB3
AB5
=,
∵BC=6,∴AB=10,∵BD=BC=6,
∴AD=AB-BD=4,
∵sinA=3
5,∴cosA=
4
5
,
∴OA=5,∴OD=3,
即⊙O的半径为:3.
(3)如图:连接OB,交⊙O为点E、F,
由三角形的三边关系可知:
当P点与E点重合时,PB取最小值.
由(2)可知:OD=3,DB=6,
∴22
3635
+=
∴PB=OB-OE=353.
当P点与F点重合时,PB去最大值,
PB=OP+OB=3+35
点睛:本题属于综合类型题,主要考查了圆的综合知识.关键是对三角函数值、勾股定理、全等三角形判定与性质的理解.
4.已知,如图:O1为x轴上一点,以O1为圆心作⊙O1交x轴于C、D两点,交y轴于M、N两点,∠CMD的外角平分线交⊙O1于点E,AB是弦,且AB∥CD,直线DM的解析式为y=3x+3.
(1)如图1,求⊙O1半径及点E的坐标.