生物固氮及其发展前景分析解析
人工合成微生物固氮技术的研究现状
人工合成微生物固氮技术的研究现状随着人类社会的不断发展,人们对于农业生产和粮食安全的需求也日益增加。
其中,农作物的氮素需求量尤为关键。
于是,人们开始探究一种新的方法——微生物固氮技术。
微生物固氮技术是什么?微生物固氮技术是指利用一些可以独立生存的微生物,将氮态氮固定成大分子化合物,以提供农作物的氮素营养。
这一技术的核心是细菌通过转化生物大分子,将空气氮气转化为可供植物利用的氨态氮、亚硝酸态氮和硝酸态氮,从而达到提高作物产量的目的。
人工合成微生物固氮技术的研究现状当前,人工合成微生物固氮技术已经成为了固氮领域的一个重要研究方向。
国内外不少科研机构都在开展相关的研究工作。
首先就是在前沿科技领域——合成生物学领域,不断涌现着具有微生物固氮能力的新型生物。
例如,美国农业部2018年曾发表一篇论文介绍了一种新型的光合细菌——Rhodobacter sphaeroides,它在细菌界中具有很强的氮固定能力。
然而,这种细菌的分离和培养非常困难,因此,科学家们经过多年的探究,利用基因编辑技术和基因拼接技术,成功合成了带有Rhodobacter sphaeroides关键氮固定基因的新型微生物,从而形成了一项全新的微生物固氮技术。
其次,很多国内外大学都在开展微生物固氮的新型研究。
例如,中国农业大学生命科学学院的蒲龙教授团队一直在从事微生物固氮、根瘤菌与大豆互作等领域的研究。
他们也成功构建了一些新型的微生物固氮功能模块,并进行了一系列的检测和验证工作。
不仅如此,还有很多与微生物固氮技术相关的领域也在紧锣密鼓地开展着相关研究。
例如,一些光合细菌的应用研究、土壤微生物种群结构与功能变化的研究等等,都具备着推动微生物固氮技术实现更大突破的潜力。
微生物固氮技术的应用前景由于微生物固氮技术具有很高的氮转化效率、高附加值和环境友好度等优点,因此其在土地修复、农业生产等领域的应用可谓是无限广阔。
首先,微生物固氮技术能够辅助农业进行有机化生产。
生物固氮的研究进展及发展趋势
生物固氮的研究进展及发展趋势
生物固氮是一种自然界中重要的氮循环过程,其在农业和生态系统中具有重要的意义。
研究生物固氮的进展以及未来的发展趋势,对于提高农作物产量、节约化肥资源、增加土壤肥力以及保护环境都具有重大意义。
近年来,生物固氮的研究取得了一系列重要的进展。
首先,对于固氮微生物群落结构和功能的理解不断深化。
通过使用分子生物学技术,可以快速检测和鉴定土壤和根际中的固氮微生物,了解它们的多样性和分布情况。
此外,通过基因组学和转录组学等方法,可以深入研究固氮微生物的基因表达和代谢途径,进一步揭示其固氮机制。
其次,关于如何提高固氮效率的研究也取得了进展。
通过选择性培育具有高效固氮能力的微生物或植物品种,可以显著提高固氮效率。
同时,研究表明,与其他生物有机肥料和化学肥料的联合使用可以进一步提高固氮效率。
此外,通过调控固氮微生物与宿主植物的共生关系,可以提高植物对固氮微生物的利用效率。
在生物固氮的未来发展中,一方面,研究人员将继续深入探索固氮微生物的多样性和功能,通过开展元基因组学和功能基因组学研究,预期会发现更多新的固氮微生物。
另一方面,研究人员将努力开发新的技术和方法,以提高固氮效率。
例如,通过基因编辑和代谢工程等手段,改良固氮微生物的代谢途径和固氮酶的催化效率。
此外,研究人员还将关注固氮微生物与植物之间的信号交流和共生调控机制,以更好地控制和利用生物固氮过程。
综上所述,生物固氮研究取得了不少进展,并且未来的发展趋势也比较明确。
通过深入研究固氮微生物群落结构和功能,以及努力提高固氮效率,我们有望实现更加可持续和高效的氮肥利用,在农业生产和环境保护中发挥重要作用。
生物固氮技术在农业发展中的应用
生物固氮技术在农业发展中的应用生物固氮技术是一种利用生物体将空气中的氮气转化为可用氮源的技术。
氮素是植物生长和发育的关键元素,但是空气中的氮气不能被大部分植物直接利用,因此需要通过化学合成或者其他途径将氮转化为可用的形式,以提高农作物的产量和品质。
但是传统的氮肥使用存在很多问题,如氮肥的价格昂贵、对环境污染严重、对农作物生长的负面影响等。
与此相比,生物固氮技术则具有成本低、无污染、有利于土壤健康等优点,因此被越来越多的人关注和应用。
生物固氮技术主要通过利用植物与一些对氮气固定能力较强的微生物一起生长来实现。
这些微生物包括一些根瘤菌、蓝藻、细菌等。
这些微生物在植物根际中寄生,可以将空气中的氮气转化为氨等可用态氮,供植物吸收利用。
其中,根瘤菌通过与豆科植物的根系共生,形成根瘤,这些根瘤中包含有能够固定氮气的Rhizobia 细菌。
与此同时,细胞内的氮酸还能使植物形成更多的根系和分支,促进植物的生长发育。
这样一来,可以降低或者完全替代化学氮肥的使用,减轻了化学肥料对土壤的损伤和对环境的危害,保护了土壤和水资源的健康,同时还可以提高农作物的产量和品质。
实际上,生物固氮技术早在上世纪初就被人们开始重视和研究。
如今,生物固氮技术已经得到了广泛的应用。
在农业方面,生物固氮技术的应用已经涉及了农田、果园、蔬菜、林业等领域。
比如说,带毛豆和黑豆等豆科作物就被广泛地用于农业生产中。
在林业方面,还可以通过根瘤菌的共生来改良林木,提高林木的生长速度和质量。
这些应用不仅可以提高农作物的产量和品质,而且还可以保护土壤和水资源的健康。
此外,生物固氮技术还可以应用于城乡环境治理。
在城镇化进程中,城市化和工业化普遍存在着土地资源的大量占用和污染,而生物固氮可以改善土壤质地和结构,为环保提供多样化的可持续方案。
如广泛被作为生态环境治理手段的旱地固沙防护,就是通过林木的生长和根瘤菌的共生,使其能够在干燥贫瘠的地区生存,以此达到减轻土地沙化和土地退化等环境问题的治理。
生物固氮产业发展状况
一、生物固氮产业发展状况1、生物固氮产业发展的背景意义氮、磷、钾是作物的三大营养元素,氮素尤其重要。
虽然空气中氮气的含量接近80%,但由于氮气是惰性气体,不能为作物直接利用。
化学氮肥的施用,在补充作物氮素营养、提高作物产量、保障我国的粮食安全方面发挥了巨大作用,但近年来,其与生态环境及农业可持续发展的矛盾日益凸显:1)化学氮肥的过量及不合理施用,使氮肥利用率不足30%,造成大量资源的浪费;2)粮食产出与化肥投入比呈现逐年下降的趋势,化肥在保障粮食安全方面的作用逐渐减弱;3)带来了环境污染等一系列问题:污染水体:全国532条河流中,82%受到不同程度的氮污染,水体富营养化严重;污染大气:每年我国氮肥生产耗能1亿多吨标准煤,CO2净排放量可达4亿吨以上,加剧温室效应;破坏土壤结构:部分地区土壤有机质含量从5%~8%,已降到1%~2%,土壤板结严重;影响食品安全:豆科作物食用部分的硝酸盐含量随着氮肥施用量的增加而大幅度提高,人体摄入的硝酸盐约80%以上来自豆科作物, 34种豆科作物的350个样品分析测定中,硝酸盐含量超标占61.7%;加剧病虫害:在黑龙江等粮食主产区,每年生产季节发生病虫害面积达600万亩,其中70%是因氮肥过量引起的,造成直接经济损失达50亿元。
在世界性能源危机和环境污染的压力下,必须寻求一种高效利用资源、环境友好的农业生产途径。
生物固氮,是发生在含有固氮酶的微生物种类中,将氮气还原成氨的一种生物过程,此过程在自然条件下完成,不消耗能源,也不对环境产生污染。
在自然界中,已知200多属细菌中含有固氮菌株,根据其与植物的互作关系分为:共生固氮菌,联合固氮菌和自生固氮菌,其中,根瘤菌能够与豆科植物形成共生固氮体系,共生固氮效率最高;联合固氮菌与植物是一种松散的结合,定植于作物的根际和植物体内进行固氮,并可分泌植物激素促进作物生长;联合固氮和共生固氮都可为作物提供氮素,减少化肥使用,在环境污染越演越烈的今天备受关注,生物固氮的可功效为:1)在减少化学氮肥上的作用。
生物固氮在农业生产方面应用的研究现状与展望
(上转第 61 页)氮肥的 55%以上, 随着豆科种植业的发展,至 2002 年美 国化学氮肥消耗量已降至 1087 万吨左 右。1990 年,澳大利亚年消耗化学氮 肥 44 万 吨, 而 豆 科 植 物 根 瘤 菌 固 定 的氮素却有 140 万吨,是化学氮肥使 用量的 3 倍以上。巴西种植大豆全部 不用氮肥,只接种根瘤茵剂,大豆产 量仅次于阿根廷,为世界第二,每年 仅节约的氮肥价值就达 25 亿美元之多 [5]。
小镇在自然山水的基础上人为地营造了异国他乡轻松 宁静的环境,湖畔的木质桌椅、石板街道、古朴的街灯, 均采用不带刺激性淡雅古朴的原木色调,植物配置上也选 择了枝叶柔软的植物。轻松的氛围有利于放松人们的心情, 消除游客体力疲劳和调剂心理及精神上的疲惫。小镇在设 计上充分地满足了游客休闲游憩的需求。
2、茵特拉根酒店。 幽静的湖对面是茵特拉根酒店,米黄色的建筑加上几 个圆锥形塔尖,玻璃穹顶大堂典雅迷人,别墅群高低错落, 自由穿插,因地制宜,巧妙地利用自然而又融于自然之中。 山、别墅与眼前清澈的山海 景观完美结合,既延续了欧洲提倡自然庭园的思想,又使 建筑与园林融为一体,园林成了建筑的户外延续部分。酒 店在湖光山色中,与小镇交相辉映,浑然一体,湖水赋予 了酒店无限的灵气和清澈,似乎这些群山之中的别墅酒店 因为有了柔美清澈的水,出落成一个美得不食人间烟火的 童话城堡,这也许就是华侨城在设计上的独到之处吧。 结语 东部华侨城成功地将瑞士因特拉根小镇搬到了这里, 完全没有了中国风格,撷取瑞士阿尔卑斯山麓茵特拉根的 建筑、赛马特的花卉、谢菲尔德的彩绘等多种题材和元素, 实现了中欧山地建筑风格与三洲田优美自然景观的完美结 合。茶溪谷主题公园突出了环境生态和园林绿化,加强了 生态宣传,在设计上将环保节能低碳做到极致,湿地花园 更是将生态环保的科普主题溶入其中,这是中国大型生态 旅游区发展模式的跨越式探索和开创世界级度假旅游目的 地的发展创新试验。
生物固氮技术的应用与前景
生物固氮技术的应用与前景生物固氮技术,是指利用某些微生物或植物,通过固氮作用将空气中的氮气转化为植物可利用的氨基氮而形成一种新型的农业技术。
在农业生产中,应用生物固氮技术可以有效地提高土壤肥力,促进作物的生长与发育,减少农民施肥成本,改善农业生态环境等,因此被广泛地应用于农业生产中,具有广阔的发展前景。
一、生物固氮技术的应用生物固氮技术的应用非常广泛,主要应用于三大领域,具体如下:1.农业领域生物固氮技术的运用,可以改善土壤肥力,增加农田的生物量,提高农产品的产量和品质。
通过种植草坪、绿肥、豆科作物等来增加土壤中的氨基氮含量,不仅可以提高作物的产量,同时也可以降低农民的施肥成本,减轻农民的负担,特别是对一些贫困地区的农民来说,生物固氮技术的应用意义更加重大。
2.环境保护领域生物固氮技术的应用还可以改善环境。
农业生产中过度使用化肥,会导致土地肥力下降,同时化肥还会污染地下水,污染环境。
利用生物固氮技术来提高土地肥力,可以有效地减少化肥的使用量,从而降低化肥对环境的污染。
3.生态修复领域利用生物固氮技术进行退化土地的修复,可以恢复土地的肥力,提高土地的西质,使得荒地成为有生命力的耕地。
同时,种植豆科作物还可以增加土壤有机质和微生物数量,改善土壤生态环境。
二、生物固氮技术的前景生物固氮技术在未来的发展中,将会有以下几个方面的发展趋势:1. 应用广泛程度还会进一步提升。
生物固氮技术虽然已经得到了广泛运用,但是在很多地区,尤其是发展中国家农村地区,生物固氮技术还没有得到充分的应用。
未来,生物固氮技术的应用范围还会进一步扩大。
2.技术手段不断创新。
生物固氮技术目前已经在很多方面取得了显著进展,但是目前仍存在着一些技术的不足之处。
未来,生物固氮技术的研究人员将继续创新技术,提高技术的精度、高效性和环境友好性。
3.绿色农业的快速发展。
随着人们对于环境污染和食品安全的重视,绿色农业的快速发展,成为未来农业发展的重要趋势。
生物固氮可促进农业持续发展
生物固氮可促进农业持续发展最近研究发现,化学氮肥用量的增加是中国空气中氨浓度稳步上升的重要原因,特别是在雾霾最严重的华北平原。
为尽快改变现状,我们建议,一是将动植物遗留的废弃物通过栽种食用菌等方式,将菌渣加适量化肥转变成农田肥料使用;二是充分发挥生物固氮作用。
通过这两项措施可大幅减少化学氮肥用量,既能培肥土壤,又能达到作物优势高产,促进农牧渔业持续发展和环境美好的目的。
我国食用菌产业历史悠久,且具备大力发展食用菌产业的优良条件。
生产食用菌的同时,产生了大量的菌渣。
其粗蛋白含量高于10%,肥用指标达到或超过了人粪尿、猪粪和牛粪的含量,是优质的有机肥。
施用这种有机肥,农作物中的硝酸盐和亚硝酸盐含量将会降低,消费者可得到更安全的农产品。
食用菌是一个“一箭三雕”的产业:收获了食用菌产品本身;减少了动植物废弃物对环境的污染;生产了大量的优质有机肥。
所以,发展食用菌产业不仅可以致富,还能变废弃物为资源和促进有机农业的发展。
每年全球生物固氮约为2亿吨纯氮,相当于当今全球工业氮肥的总量,其中与豆科植物共生的根瘤菌固定的氮占其中的60%~70%。
这一共生体系固定的氮不仅满足其宿主的需要,还可部分提供给附近的作物利用;而豆科植物根部含氮约占其总氮量的35%,可供后茬作物使用。
此外,近年研究发现,禾本科帮助豆科排除氮阻遏及其分泌物可促使豆科植物结瘤,实现互惠共高产。
因此,豆科植物与其他植物间套轮作可以少施化肥,且优质高产。
中国农业大学根瘤菌研究中心开展了一系列根瘤菌匹配筛选和大田接种实验,均证明接种相匹配的高效根瘤菌不仅能够替代化学氮肥,且提高了豆科作物产量和品质。
我国南方的水稻田及冬闲地,可以种植豆科紫云英、苕子、田菁等肥田作物,或种植豌豆、蚕豆等经济豆类;北方旱田、果园、草原等区域可广泛种植各种豆类作物或豆科牧草。
总之,根据实际情况,均接种与豆科品种相匹配且适应种植土壤的根瘤菌,广泛开展豆类与其他作物间套轮作,可大幅减少化学氮肥,实现我国生态农业的持续发展。
生物固氮技术在农业中的应用
生物固氮技术在农业中的应用生物固氮技术是一种将大气中的氮气转化为可以被植物利用的形式,从而提高土壤肥力和植物生长的技术。
随着人们对可持续农业的需求不断增加,生物固氮技术在农业中的应用逐渐受到关注。
一、生物固氮技术的原理和分类生物固氮技术是利用微生物将大气中的氮气转化为植物可吸收的氨态氮或硝态氮。
微生物通常是一些氮固氮菌,它们生长在植物根际或者土壤中,利用大气中的氮气进行固氮作用。
生物固氮技术可分为天然固氮和人工固氮两大类。
天然固氮包括在细菌和植物之间的固氮共生关系、植物对土壤中自由氮固氮菌的利用等,而人工固氮主要指的是利用人工手段增加土壤内氮固氮菌的数量或者引入天然的氮固氮菌来提高农业产量。
二、生物固氮技术在农业中的应用1.作物肥料作为农业生产的重要组成部分,肥料不仅关系到农产品的质量和产量,而且直接影响着生态环境的保护和持续发展。
生物固氮技术的应用使得农民们可以通过人工手段引入氮固氮菌,使土壤中的氮素供应增加并保持长期的肥力,从而提高作物的净产量和品质。
2.增加农产品产值在农业生产中,生物固氮技术的应用可以修改作物生产的方案,使得农作物在吸收氮素的同时,也吸收相应的固定内部铁、锌、硒等成分,增加对营养的吸收和吸附,从而使农产品产值水平相应提高。
3.调节土壤酸碱度生物固氮技术的应用还可以通过微生物的酶作用来调节土壤酸碱度,以及促进土壤中微生物的丰富性,使得细菌、真菌、放线菌和蓝细菌等微生物生态系统的平衡,减轻土壤的酸化和盐化的现象,保持土壤的生命力,延长土壤的使用寿命。
4.减轻化肥使用随着生物固氮技术的应用,农产品的净产量和品质显著提高,化肥使用的量也随之减少。
由于生物固氮技术可以转换大气中的氮气,从而提高土壤的肥力。
因此,在实际应用过程中,可以逐渐减少化肥的用量,减少对环境的影响,节约生产成本。
三、生物固氮技术应用的前景生物固氮技术是农业生产的重要组成部分,其应用前景十分广阔。
在当前的农业科技发展环境下,生物固氮技术正在得到更广泛的应用。
微生物固氮及其应用研究
微生物固氮及其应用研究随着环境污染和气候变化的加剧,农业生产面临着极大的压力。
为了提升粮食产量和生态环境的可持续性,农业科学家们不断探索新的技术和方法。
其中,微生物固氮技术被认为是一种非常有前途的技术。
本文将介绍微生物固氮的基本概念、机制及其应用研究。
一、微生物固氮的基本概念与机制微生物固氮是指一些特定的微生物能够利用氮气(N2)和氢气(H2)在高压和高温条件下生成氨(NH3)。
其中,氮气起到了提供N原子的作用,而氢气则是还原剂。
微生物固氮的机制可以概括为以下三个步骤:1. 氢化:氢气通过费托合成反应与氮气结合成亚氨基化合物(NH2)。
N2 + 3H2 → 2NH32. 还原:亚氨基化合物经过还原生成氨。
NH2 + H2 → NH3 + H2N3. 电子转移:负电荷的氢离子(H-)通过电子传递从一种还原物质转移到另一种还原物质。
NH3 + H2N → NH4+微生物固氮的机制非常复杂,其不同微生物之间的固氮能力也存在差异。
比如,霍乱弧菌能够利用氮气固氮,但是其固氮能力相对较低。
相反,一些根瘤菌具有良好的固氮能力。
二、微生物固氮的应用研究微生物固氮技术在农业生产中有着广阔的应用前景。
一方面,它可以作为农业生产的重要手段,提高农作物的产量和品质;另一方面,它还可为环境保护、可持续发展等领域提供支持。
1. 农业生产微生物固氮可以为农作物提供充足的氮素,进而提高作物品质和产量。
一些根瘤菌被广泛应用于豆科作物的生产中,如大豆、豌豆、菜豆等。
比如,在大豆生产中,根瘤菌能够促进大豆的根系生长,提高土壤中氮素的利用率,增加大豆产量并改善其品质。
2. 生态环境保护微生物固氮技术还可以改善土壤质量。
由于目前大量使用化肥等农业生产方式对土地造成了严重的污染,因此采用微生物固氮技术可以减少农业生产对土地的污染。
此外,微生物固氮还可以固定空气中的氮气,并将其转化为有机氮,补充土壤中的氮素,从而减少了对化肥和农药的依赖。
3. 可持续发展微生物固氮技术支持可持续农业发展。
中国生物固氮研究现状和展望
中国生物固氮研究现状和展望沈世华荆玉祥*(中国科学院植物研究所中国科学院光合作用和环境分子生理学重点实验室, 北京100093. *联系人, E-mail: yxjing@ )摘要生物固氮是生命科学中的重大基础研究课题之一, 它在生产实际中发挥着重要作用: 为植物特别是粮食作物提供氮素、提高产量、降低化肥用量和生产成本、减少水土污染和疾病、防治土地荒漠化、建立生态平衡和促进农业可持续发展. 本文在介绍国际生物固氮研究进展的同时, 着重叙述了生物固氮研究取得的重大进展和成果: 收集了根瘤菌资源, 建立了最大的数据库, 修正和发展了国际上对根瘤菌的分类; 发现了固氮基因, 证实了克氏杆菌固氮基因操纵子的连锁性及正调控基因的调节机制和对氧、温度的敏感性; 发现苜蓿根瘤菌结瘤调控基因nodD3的产物对结瘤基因表达的启动不受宿主类黄酮的作用; 发现苜蓿根瘤菌的碳利用基因和固氮生物氮代射和碳代谢基因表达及其调节的偶联作用; 化学合成了根瘤菌的结瘤因子; 在固氮基因表达调节基础上, 构建了固氮基因工程菌株, 并在生产中得到应用; 提出了化学模拟固氮酶的结构和功能, 固氮酶活性中心的模型和合成了模型化合物, 受到了国际高度评价. 根据国际上研究的趋势并结合国内的研究进展, 提出了生物固氮研究的发展方向, 建议在联合(内生)固氮菌固氮基因调控及其提供氮素的作用, 根瘤菌与豆科植物共生结瘤固氮的信号传递和分子相互作用, 氮、碳代谢和固氮与光合作用的偶联与共生结瘤固氮中功能基因组学等方面展开积极研究.关键词固氮生物固氮酶基因表达化学模拟微生物与植物相互作用功能基因组空气中约80%的氮气不能被植物直接利用, 只有固氮微生物具有将氮气转化成氨的能力, 人们称为生物固氮. 据联合国粮农组织(FAO)1995年粗略估计, 全球每年由生物固定的氮量已近2 × 106t(相当于4 × 108 t尿素), 约占全球植物需氮量的3/4. 所以, 生物固氮是地球上最大规模的天然氮肥工厂. 但是, 迄今为止所发现的绝大多数固氮微生物均不能在粮食作物水稻、小麦、玉米以及多种果树、蔬菜上固氮, 即使少数可以的话, 其固氮量也很少, 所以这些植物的高产不得不依赖化学氮肥. 30年后我国人口将达到16亿, 年需粮食6.4 × 108 t, 总计需尿素64 × 108 t. 按此需要, 至少还要新建很多氮肥厂, 投资上千亿元. 一方面, 适量使用化学氮肥可使粮食高产; 另一方面, 生产化学氮肥要大量消耗能源, 加重大气污染和温室效应. 大量施用化肥, 不仅提高农业生产成本, 而且导致水土污染, 影响健康和破坏生态平衡. 对于提高农业产量, 降低化肥用量和农业生产成本, 减少水土污染和疾病, 治理占我国国土面积约27%的荒漠化地区, 发展可持续农业, 生物固氮将起重要作用.研究生物固氮的作用机制有3个目的: (1) 提高固氮效率, 在理论上阐明影响固氮效率的原因, 在生产实际中提出有效措施; (2) 在研究根瘤菌与豆科植物相互作用和共生固氮的基础上, 扩大根瘤菌的宿主范围, 使其能在非豆科植物, 特别是主要粮食作物上固氮, 或将固氮基因转移到非豆科植物上, 实现其自主固氮; (3) 在研究固氮酶结构与功能的基础上, 进一步探讨化学模拟固氮酶作用机制, 发展化学催化理论, 改革目前合成氨工艺, 提供廉价氮肥.生物固氮是生命科学的重大问题之一, 是跨世纪的研究课题. 在当前生命科学的发展中由于基因组学和功能基因组学的建立和高新技术的创新, 又赋予生物固氮研究新的内涵和研究策略, 为实现固氮研究的目标增添了新的动力.本文叙述生物固氮的研究现状和发展, 着重介绍我国的研究概况和取得的成果, 并结合当前生命科学的进展, 展望生物固氮研究的前景.1生物固氮的研究现状当前, 国内外生物固氮研究已进入一个新阶段, 其特点是多学科交叉, 将基础研究和应用前景相结合, 开拓了思路. 当前生物固氮研究正在分子和原子水平上开展, 如: 固氮基因表达的铵阻遏和氧敏感机制; 共生结瘤固氮中植物与微生物相互关系的基因表达和调控; 根瘤菌结瘤因子的结构和生物合成; 根瘤菌及其宿主植物的基因组学、转录组学和蛋白质组学; 固氮酶的结构和功能及其化学模拟; 固氮效率的提高及其在农业和环境保护中的应用等. 这些研究要求生物学、农学、化学和物理学等学科的交叉和结合, 引入新概念和新技术, 综合进行.1.1固氮资源的发掘和应用生物固氮系统分为根瘤菌与豆科植物的共生结瘤固氮系统、联合(包括内生)固氮系统和自生固氮系统. 在共生固氮系统方面, 世界上有豆科植物19700种, 其中已知可以结瘤固氮的有2800多种, 占15%, 而对其共生固氮体系进行过研究的只占0.5%[1]. 不少国家, 特别是美洲和非洲国家, 积极发展种植大豆或其他豆科植物(美国大豆播种面积约占30%), 以发挥生物固氮作用, 减少化学氮肥用量, 取得了明显的经济效益. 在对联合(内生)固氮系统的研究中, 发现禾本科植物甘蔗内有内生固氮菌, 以光合产物为能源进行固氮, 可为甘蔗提供60%的氮素[2]. 这一发现为进一步开发联合(内生)固氮体系提供了突破空间和潜在的应用前景. 在自生固氮体系中, 发现一株嗜热放线菌(Streptomyces thermoautotrophicus)有耐氧的固氮酶[3], 为最终通过转基因手段实现非豆科植物自主固氮提供了可能的突破点.我国传统农业耕作过程中采用豆科植物与其他农作物套种、轮作等手段改良土壤环境, 提高农作物产量. 当前, 苜蓿等豆科植物在我国西部地区的开发及开展生态农业、退耕还林还草过程中正起着不可替代的作用. 我国共有豆科植物约1400多种. 多年来, 我国科学家以豆科植物根瘤菌为重点, 逐步摸清了我国豆科植物的根瘤菌资源, 进行了系统分类, 发现了一些新属、新种[4~7], 并建立了我国最大的根瘤菌数据库. 其中一个重要的发现是, 一种植物在不同的生态环境可与多种根瘤菌共生, 例如我国的大豆可与3个属、7个种的根瘤菌共生固氮, 而一种根瘤菌(如海南根瘤菌Rhizobium hanaese)可从13 属14种豆科植物的根瘤中分离. 其他很多植物与根瘤菌的关系也是如此. 这一研究说明豆科植物与根瘤菌共生的多样性, 修正并发展了传统的根瘤菌“寄主专一性”和植物“互接种族”的概念. 将为利用现代基因组学、功能基因组学和蛋白质组学手段, 探索最佳的结瘤固氮模式和微生物与植物相互作用的机理提供良好的研究材料.1.2生物固氮调控机理及植物与微生物的相互作用用自生固氮菌——克氏肺炎杆菌(Klebsiella pneumoniae) 研究固氮基因及其表达和调控机理, 有很多开创性工作, 如发现了固氮基因nifC,7个固氮基因nif操纵子连锁以及正调控基因nifA的调节机理及其对温度和氧的敏感性[8~10]. 豆科植物与根瘤菌之间的分子对话机理研究有了重大进展. 在能量供应方面, 弄清了根瘤菌在豆科植物根瘤中依靠植物提供四碳二羧酸糖作碳源用于固氮, 并发现了dctABD基因[11]; 重组根瘤菌已经构建成功, 并用于提高固氮效率[12,13]; 与粮食作物联合固氮的固氮螺菌(Azospirillum brasilence Yu62)的固氮调节机理也已逐步明朗, 为构建铵阻遏条件下也能固氮的基因工程菌株打下了理论基础[14]. 我国科学家在深入研究正调节基因(nifA)的表达及其产物(NifA)活性调节机制的基础上, 构建了不受铵阻遏的组成型表达的nifA质粒, 将其引入大豆根瘤菌(Bradyrhizobium japonica)和阴沟肠杆菌(Enterbacter cloacae)后, 固氮作用不受铵阻遏[15~19]. 用此基因工程菌株接种水稻可以增产[20,21]. 此外, 还开展了固氮基因负调节基因(nifL)的研究[22,23]. 我国分离的巴西固氮螺菌Yu62的固氮酶基因表达和活性双重调节机制研究已经比较清楚, 为构建耐铵泌铵的基因工程菌株和降低玉米化肥用量提供了理论基础[24~26]. 田间实验结果有实效, 施用工程菌株比不施用的对照增产21.1%, 比野生型菌剂增产8.5%. 在相同产量水平下可降低20%的氮肥使用量. 在共生固氮体系结瘤固氮基因表达调节研究的基础上, 发现苜蓿根瘤菌结瘤基因nodD3的表达不受苜蓿类黄酮物质的启动[27,28], 为扩大根瘤菌的宿主范围提供了理论根据. 同时, nodD3基因表达受到两个启动子的控制[29], 第2个启动子可以被NtrC激活[30]; 化学合成了苜蓿根瘤菌的结瘤因子[31]; 根据宿主植物对根瘤菌识别因子和固氮嫌氧机制的研究, 将豆科植物的凝集素基因和血红蛋白基因转入烟草和水稻, 获得基因表达, 为进一步研究非豆科植物和根瘤菌侵染的关系奠定了技术基础[32,33]. 近年来, 我国开展了特有的华癸根瘤菌(Sinorhizobium huakui)结瘤固氮基因表达调节的研究[34,35], 发现了微生物体内碳代谢与固氮及氮代谢的基因表达调节之间存在着偶联关系[36,37]. 这一发现不仅对生物固氮调控有重要意义, 也对基因表达调控基础研究有重要贡献, 为进一步研究光合和固氮之间的偶联提供了理论基础.1.3固氮酶的生物化学特性及其化学模拟国际上已经对固氮酶高分辨率的空间结构进行了研究, 阐明了其活性中心的原子簇FeMoco及其周围蛋白分子的三维结构[38,39]. Schmid等人[40]对棕色固氮菌缺失FeMoco的突变种nifB-Av1的钼铁蛋白组分做了晶体衍射结构分析, 发现4个亚单位中的1个构象发生了较大变化, 存在一个带正电的漏斗状(funnel)结构, 它足够容纳带负电的FeMoco的插入, 成为具有固氮功能的钼铁蛋白组分. 与此同时, 化学模拟固氮酶在温和条件下合成氨有了很大进展[41]. 在这个领域里我国也做了大量非常出色的工作: 固氮酶催化HD的形成绝对依赖于氮[42]; 在固氮酶催化还原N2的放氢机制中, 率先提出了双位点放H2模式, 对了解固氮酶催化机制有所发展[43]. 美国1992年用X光衍射确定固氮酶活性中心原子簇是由MoS3Fe和FeS3Fe3两个缺口的立方烷型簇合物组成[38], 通过3个非蛋白配体S桥联而成为一个笼(其顶端分别是Fe和Mo). 其实在此之前, 我国就已经合成了这两个簇合物[44]; 根据配位催化原理和化学探针思路, 提出活性中心原子簇笼应是活口的, N2还原成氨和质子还原成H2都是在笼内进行, 提出用于还原底物有两条质子通道的设想[45~47]. 这些进展对指导合成高效催化剂, 实现在温和条件下固氮有重要意义.1.4我国生物固氮研究成果的国际认可和曾经面临的困境“生物固氮”成为科学定义并开始大力研究已有114年的历史. 我国自1937年开始生物固氮研究, 已有65年历史. 20世纪70年代生物固氮研究在生物化学和分子遗传学等方面取得突破后, 我国也取得了一系列重要成果, 在国际上占有一定的地位, 在某些方面还具有重要影响. 因此, 国际生物固氮研究委员会主席W. Newton曾多次建议在中国召开国际生物固氮研究大会, 经研究决定2003年在北京召开第14届国际生物固氮大会.我国生物固氮研究的道路曲曲折折, 曾经有两种错误认识: 一是受到假冒伪劣生物固氮肥料的宣传的干扰, 认为生物固氮问题已经解决; 二是对国际和国内生物固氮研究的突破性进展了解不够, 认为难度大, 进展甚微, 国内经多年研究也未出成果. 两者的结果使我国的生物固氮研究面临严重困境.为防止困境再现, 经我国有关决策者和研究人员的共同努力, 恢复了固氮研究应有的地位. 这就为巩固研究成果, 继续发展, 不失时机地迎接生物固氮的重大突破的新时代的到来, 并把生物固氮研究中与生命科学其他学科相关的重大科学问题提高到一个新水平, 使其进一步为我国农业可持续发展做出重要贡献.2生物固氮研究的展望根据国际上生物固氮研究的发展和我国的具体情况, 我国生物固氮研究应着重下列几个方面.2.1联合(内生)固氮菌固氮基因调控及其在提供氮素中的作用联合或内生固氮菌大多数是自生固氮菌, 其固氮作用大小极易受外界环境因素(氧、铵、温度等)的制约. 在自然状态下有些固氮菌与植物有着松散的联合, 或进入植物成为内生菌, 这就为进一步利用这些固氮生物给植物提供氮素创造了更多的机会. 在研究固氮基因表达和调控的基础上, 有针对地进行固氮菌的遗传改造, 构建高效的固氮菌株, 以提高固氮效率, 减少化肥施用, 为作物提供更多的固氮量[13,14,20,21].2.2根瘤菌与豆科植物共生结瘤固氮的信号传递和分子相互作用豆科植物共生固氮由于其固氮作用的高效率, 始终是生物固氮研究的焦点之一. 根瘤菌与豆科植物之间的信号传递、相互识别、基因的顺序性表达和调节对根瘤的形成、发育和固氮作用的大小等有着错综复杂的联系. 苜蓿根瘤菌和苜蓿的共生结瘤固氮是共生固氮的模式系统, 研究最为集中, 但仍然有很长的路要走. 如果考虑到地区不同和自然环境的差异, 即使是同一模式系统也会有不同的差异表现, 更何况还有特异的共生固氮系统? 在分子水平上阐明两者相互作用的机理, 一方面旨在提高共生固氮的效率, 另一方面还可以为扩大根瘤菌宿主范围, 为实现粮食作物共生固氮提供理论依据和技术措施.2.3氮、碳代谢和固氮与光合作用的偶联氮、碳代谢是一切生物最基本的代谢作用, 而且是相互联系的. 固氮作用需要消耗作为能源的碳源. 植物共生固氮中固氮作用的能源直接来自光合作用. 固氮生物有选择性地利用碳源, 其中以四碳二羧酸糖的利用较好. 固氮生物在氮、碳代谢的基因表达中, 分别利用RNA聚合酶的σ54和σ70. 碳代谢调控蛋白CRP(carbon receptor protein)与结合在启动子上的σ54相互作用, 使依赖σ54的dctA和glnAp2等基因启动子的表达受到抑制[36,37], 其结果就在分子水平上将氮、碳代谢联系起来. 最近研究证明, CRP-cAMP同样抑制肺炎克氏杆菌nif基因的表达, 而且其抑制作用的大小与启动子上有无潜在的CRP结合位点直接相关[48,49].豆科植物是C3植物, 固氮作用需消耗光合作用能量的10%, 因此减产达5%, 固氮不增产[50]. 虽然在大豆根瘤菌中增加nifA正调控基因的拷贝数, 可以提高固氮作用, 增加产量[51,52], 但仍然需要植物提高光合作用效率, 才能满足既不施或少施氮肥, 又能达到增产的目的. 如何提高豆科植物的光合作用效率, 是光合作用和固氮作用的共同研究问题. 现有报道表明, 通过诱变获得高光效的大豆品种, 产量可提高30%左右[53]. 这一品种将为固氮和光合偶联研究提供了材料. 另一途径是通过转基因技术将C4植物的基因转入豆科植物, 使其变成C4植物. 这种可能性是存在的, 最近已经将玉米光合作用C4途径的基因转入水稻, 获得高光效增产幅度较大的转基因水稻[54~56], 这为获得C4豆科植物提供了借鉴.2.4共生固氮中包括蛋白质组学在内的功能基因组学研究共生固氮功能基因组学和蛋白质组学研究包括根瘤菌和宿主植物两个方面. 功能基因组学研究的前提是对目的生物的基因组进行全序列分析. 目前国际上已经对苜蓿根瘤菌基因组进行了全序列分析[57], 接着是大豆根瘤菌和百脉根根瘤菌(Rhizobium loti)基因组. 在宿主植物方面已经启动了对苜蓿Medicago sativa Lin)、大豆(Glycine max Lin)和百脉根(Lotus corniculatu)基因组序列的分析[58~60]. 这些研究成果将为固氮功能基因组和蛋白质组学研究奠定基础和建立技术平台. 目前, 固氮功能基因组和蛋白质组学已经陆续有所报道[61~63]. 固氮资源生物多样性研究表明, 不同根瘤菌可与同一豆科植物相互作用结瘤固氮, 但它们之间的结瘤固氮效率却大不相同. 同样, 同一根瘤菌可与不同属的豆科植物结瘤固氮[64]. 这一结果为开展共生固氮功能基因组学和蛋白质组学研究奠定了基础. 可以充分利用公布的苜蓿根瘤菌基因组序列, 通过RNA 和蛋白质差异显示法和微阵列法, 对不同苜蓿根瘤菌基因组及其突变株在共生条件下进行功能比较, 对不同根瘤菌在同一豆科植物结瘤的不同根瘤素基因表达进行比较, 将可大大推进共生结瘤固氮中微生物与植物相互作用机理的研究. 在此基础上, 还可寻找非豆科植物, 特别是禾本科植物中是否有以及有多少类似于豆科植物的根瘤素存在, 从而最终为非豆科植物的共生固氮和自主固氮提供策略和技术路线. 无疑, 共生固氮功能基因组和蛋白质组学研究将具有更为重大的科学意义和潜在的实际意义.致谢感谢沈善炯、李季伦和朱家壁教授对文稿的建议和修改及林敏、陈文新、周朝晖等教授所提供资料. 本工作为国家重点基础研究发展规划资助项目(批准号: 2001CB108904).参考文献1 Denarie J, Roche P. Rhizobium nodulation signals. In: Verma D PS. Molecular Signals in Plant-Microbe Communications. Boca Raton/Ann Arber/London: CRC Press, 1991. 296~3242 Pliverira A L M, Urquiaga S, Dobereiner J, et al. Biologicalnitrogen fixation (BNF) in micropropagated sugarcane plants inoculated with different endophytic diazotrophic bacteria. In: Pedrosa F O, Hungria M, Yates M G, eds. Nitrogen Fixation: From Molecules to Crop Productivity. Dordrecht/Boston/London: Kluwer Academic Publishers, 1999. 4253 Ribbe M, Gadkari D, Meyer O. N2 fixation by Streptomycesthermoautotrophicus involves a molybdenum-dinitrogenase and a manganese-superoxide oxidoreductanse that couple N2 reduction to the oxidation of superoxide produced from O2 by a molybdenum-CO dehydrogenase. J Biological Chemistry, 1997, 272: 26627~266334 Tan Z Y, Xu X T, Wang E T, et al. Phylogenic and geneticrelationoships of Mesorhizobium tianshanenese and related rhizobia. Int J Syst Bacteriol, 1997, 47: 874~8795 Wang E T, van Berkum P, Sui X H, et al. Diversity of rhizobiaassociated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium zmorpphae sp nov. Int J Syts Bacteriol, 1999, 49: 51~656 Tan Z Y, Wang E T, Peng G X, et al. Characterization of bacteriaisolated from wild legumes in the North-Western regions of China.Int J Syst Bacteriol, 1999, 49: 1457~14697 Yan A M, Wang E T, Kan F L, et al. Sinorhizobium melilotiiassociated with Medicago sativa and Melilotus spp. Int J Syst Bacteriol, 2000, 50: 1887~18918 Shen S C. Organization and regulation of nitrogen fixation genes:1974~1995. In: Kung S D, Yang S F, eds. Discoveries in Plant Biology. Vol Ⅲ. Dordrecht/Boston/London: World Scientific Press, 2000. 383~3929 朱家壁, 俞冠翘, 江群益, 等. 基因nifA产物对肺炎克氏杆菌(Klebsiella pneumoniae)gln突变型的Nif−表型的校正和固氮酶的组成型合成的作用. 中国科学, B辑, 1983, (8): 688~69610 Hu B, Zhu J B, Shen S C, et al. A promoter region binding proteinand DNA gyrase regulae anaerobic transcription of nifAL in Enterbacter cloacae. J Bacteriol, 2000, 182: 3920~392311 Wang Y P, Birkenhead K, Boesten B, et al. Genetic analysis andregulation of the Rhizobium melilotii genes controlling C4- dicarboxylic acid transport. Gene, 1989, 85: 135~14312 Bosworth A H, Williams M K, Albrecht K A, et al. Alfalfa yieldresponse to inoculation with recombinant strains of Rhizobiummelilotii with an extra copy of dctABD and/or modified nifAexpression. Appl Environ Microbiol, 1994, 60: 3815~383213 林敏, 尤崇杓, 刘永正, 等. 重组耐铵固氮菌株的田间长期定点释放试验. 生物技术学报, 1995, 1: 28~3314 李永兴, 李久蒂, 卢林刚, 等. 玉米联合固氮工程菌Enterobactergergivuae E7 在田间的接种效应. 中国农业科学, 2000, 33: 72~7715 Shen S C, wang S P, Yu G Q, et al. Expression of the nodulationand nitrogen fixation genes in Rhizobium melilotii during development. Genome, 1989, 31: 354~36016 王水平, 朱家璧, 俞冠翘, 等. 苜蓿根瘤菌(Rhizobium meliloti)nifA基因的异源表达及其产物的氧敏感性. 中国科学, B辑, 1990, (3): 261~26617 Deng X P, Shen S C. Structure and oxygen sensitivity of nifLApromoter of Enterobacter cloacae. Science in China, Ser B, 1995,38(1): 60~6618 赵洁平, 戴小密, 许玲, 等. 固氮正调节基因nifA促进大豆根瘤菌的结瘤效率. 科学通报, 2001, 46(23): 1984~198719 高云峰, 吴桐, 朱家璧, 等. 苜蓿根瘤菌固氮酶基因启动子P1转录起始点下游顺序(DS)的特性. 中国科学, C辑, 1996, 26(2): 100~10620 沈炳福. 水稻对耐铵工程固氮菌株的响应. 植物生理学报, 1995,21: 302~30621 张福星, 尤崇杓, 卢婉芳. 环境因子变化的水稻氮素吸收及接种效应的影响. 农业生物技术学报, 1995, 1: 93~9822 Hu B, Zhu J B, Shen S C, et al. A promoter region binding proteinand DNA gyrase regulae anaerobic transcription of nifAL in Enterbacter cloacae. J Bacteriol, 2000, 182: 3920~392323 Xiao H, Shen S C, Zhu J B. NifL, an antagonistic regulator ofNifA interacting with NifA. Science in China, Ser C, 1998, 41(3): 303~30824 何路红, 阎大来, 马旅雁. 肺炎克氏杆菌nifA基因在巴西固氮基因表达的铵调节中的作用. 生物工程学报, 1995, 11: 385~388 25 马旅雁, 吴奥, 赵银锁. 巴西固氮螺菌Yu62 dragTG基因及其下游区域的定位诱变. 生物工程技术学报, 1999, 15: 281~28726 马旅雁, 李季伦. 巴西固氮螺菌Yu62 dragTG基因启动子区域的核苷酸序列及其功能分析.生物工程学报, 1997, 13: 343~34927 朱冰, 戴小密, 朱家璧, 等. 苜蓿根瘤菌nod D3P1启动子下游序列的调节功能. 科学通报, 1999, 44(21): 2308~231228 Yu G Q, Zhu J B, Gu J, et al. Evidence that the nodulationregulatory gene nodD3 of Rhizobium melilot i is transcribed from two separate promoters. Science in China, Ser B, 1993, 36: 225~ 23629 吴桐, 朱家璧, 俞冠翘, 等. 苜蓿根瘤菌多拷贝固氮基因启动子对根瘤发育的抑制. 中国科学, B辑, 1994, 24(10): 1053~105930 陈迪, 刘彦杰, 朱家璧, 等. 苜蓿根瘤菌(Sinorhizobium meliloti)nodD3P1启动子下游序列的缺失和互补分析. 中国科学, C辑, 2002, 32(6): 512~51831 Wang L, Li C, Wang Q, et al. Chemical synthesis of NodRm-1:thenodulation factor involved in Rhizobium melilotii-legume symbiosis. J Chem Soc Perkin Trans, 1994, 1: 621~62832 ZhangJ X, Jing Y, Shen S H, et al. Transformation of twonitrogen-fixation-related plant genes into tobacco and their expressions. Acta Botanica Sinica, 2000, 42: 834~84033 Zhang J X, Wang Y P, Sheng S H, et al. Transformation of pealectin gene and Parasponia haemoglobin gene into rice and their expressions. Acta Botanica Sinica, 2001, 43: 267~27434 金润之, 江群益, 沈思师, 等. 紫云英根瘤菌nif DNA的分子克隆. 科学通报, 1992, 37(17): 1603~160635 金润之, 朱劲松, 江群益, 等. 紫云英根瘤菌Ra159的巨大质粒上存在有nod和nif基因的证明. 微生物学报, 1993, 33: 170~173 36 Wang Y P, Kolb A, Buck M, et al. CRP interacts withpromoter-bound σ54 RNA polymerase and blocks transcriptional activation of the dctA promoter. EMBO J, 1998, 17: 786~79637 Tian Z X, Li Q S, Buck M, et al. The CRP-cAMP complex anddownregulation of the glnAp2 promoter provides a novel regulatory linkage between carbon metabolism and nitrogen assimilation in E. coli. Mol Microbiol, 2001, 4: 911~92438 Kim J, Rees D C. Structural models for the metal centers in thenitrogenase molybdenum-ion protein. Science, 1992, 257: 1677~ 168239 Chan M K, Ress D C. The nitrogenase FeMo-cofactor andP-cluster pair: 0.22 nm resolution structure. Science, 1993, 260: 797~794 40 Schmid B, Ribbe M W, Einsle O, et al. Structure of acofactor-deficient nitrogenase MoFe protein. Science, 2002, 296: 352~35641 Nishibayashi Y, Iwai S, Hidai M. Bimetallic system for nitrogenfixation: ruthenium-assisted protonation of coordinated N2 on tungsten with N2. Science, 1998, 279: 540~54242 Li J, Burris R. Influence of pN2 and pH2 on HD formation byvarious nitrogenase. Biochemistry, 1983, 22: 4472~448043 张振挥, 吴柏和, 李季伦. 固氮酶催化的放H2反应. 微生物学报, 1993, 33: 320~33044 吴新涛, 卢嘉锡. 固氮酶活性中心网兜模型的回顾和前瞻. 科学通报, 1995, 40(7): 577~58145 Tsai K R, Wan H L. On the structure-function relationship ofnitrogenase M-cluster and P-cluster pairs. J Cluster Sci, 1995, 6: 485~50146 周朝晖, 颜文斌, 张凤章, 等. 固氮酶催化作用机理及其化学模拟, 厦门大学学报, 2001, 40: 320~32947 Zhou Z H, Yan W B, Wan H L, et al. Synthesis and characterization ofhomochiral polymeric S-malato molybdate (Ⅵ): toward the potentially stereospecific formation and absolute configuration of iron-molybdenum cofactor in nitrogenase. J Inorganic Biochem, 2002, 90: 137~14348 李稚婷, 孙义成, 毛贤军, 等. 碳代谢总体调控蛋白CRP对肺炎克氏杆菌启动子的抑制作用. 科学通报, 2002, 47(15): 1133~113949 李稚婷, 张维佳, 王忆平. 碳代谢总体调控蛋白CRP对nifA启动子的抑制作用不依赖于该启动子上游CRP与nifA竞争的靶位点. 科学通报, 2002, 47(16): 1242~124650 Bergersen F J. The Central reaction of nitrogen fixation. Plant andSoil, 1971, Special Vol: 511~52451 陈昌斌, 戴小迷, 俞冠翘, 等. 组成型nifA对根瘤菌(Rhizobiumfredii) HN01 lux结瘤效率的促进作用. 科学通报, 1999, 44(5):529~53352 Li Y, Zhou J C. Influence of introduced extra nifA gene onrhizosphere colonization and competition for nodule occupancy by Sinorhizobium fredii strain HN02 NL. J Huazhong Agrecultural University, 2000, 19: 198~20353 Hao N B, Du W G, Ge Q Y, et al, Progress in the breeding ofsoybean for high photosynthetic efficiency. Acta Botanica Sinica, 2002, 44: 253~25854 Ku M S B, Agarie S, Nomura M, et al. High-level expression ofmaize phosphoenolpyruvate carboxylase in transgenic rice plants.Nat Biotech, 1999, 17: 76~8055 焦德茂, 李霞, 黄雪清, 等. 转PEPC基因水稻的光合CO2同化和叶绿素荧光特性. 科学通报, 2001, 46(5): 411~41856 Huang X Q, Jiao D M, Chi W, et al. Characteristics of CO2exchange and chlorophyll fluorescence of transgenic rice with C4 genes. Acta Botanica Sinica, 2002, 44: 405~41257 Galibert F, Finan T M, Long S L, et al. The composite genome ofthe legume symbiont Sinorhizobium melilotii. Science, 2001, 293: 668~67258 Bell C J, Dixon R A, Farmer A D, et al. The Medicago genomeinitiative: A model legume database. Nucleic Acids Res, 2001, 29(1): 114~11759 Shoemaker R, Keim P, Vodkin L, et al. A compilation of soybeanESTs: generation and analysis. Genome, 2002, 45: 329~33860 Marek LF, Mudge J, Damielle L, et al. Soybean genomic survey:BAC-end sequences near RFLP and SSR markers. Genome, 2001, 44: 572~58161 Panter S, Thomson R, de Bruxelles G, et al. Identification withproteomics of novel proteins associated with the peribacteroid membrane of soybean root nodules. Molecular Plant-Microbe Interactions, 2000, 13: 325~33362 Mathesius U, Keijzers G, Natera S H, et al. Establishment of aroot proteome reference map for the model legume Medicago truncatula using the expressed sequence tag database for peptide mass fingerprinting. Proteomics, 2001, 1: 1424~144063 Natera S H, Guerreiro N, Djoefievic M A. Proteome analysis ofdifferentially displayed proteins as a tool for the investigation of symbiosis. Mol Plant-Microbe Interact, 2000, 13: 995~100964 张海瑜, 张海予, 李小红, 等. 一株能在苜蓿上结瘤的费氏中华根瘤菌. 微生物学报, 2001, 41: 129~132(2002-08-28收稿, 2002-11-28收修改稿)・动 态・ 第14届国际固氮大会将在北京召开 生物固氮与光合作用是自然界给予人类的两大贡献,它们分别提供了植物生长的氮源和碳源, 从而提供了人类社会发展的最基础的物质条件, 是农业生物学最基础的研究课题.国际固氮大会是生物固氮研究领域规模最大、规格最高、权威性最强的国际学术会议. 它每两年召开一次, 此前历届都由欧美各国主办, 本届大会是首次在中国召开,这也是亚洲首次取得举办权. 大会将于2003年11月1~6日在北京国际会议中心举行. 在国际固氮管理委员会的大力支持下, 囊括国际上本研究领域最著名专家学者(36人)的国际顾问委员会以及囊括国内本研究领域最著名专家学者(30人, 其中包括6位中国科学院院士)的国家委员会已经成立.大会预计将有1000名左右中外科学家参加, 将特邀本研究领域最著名的专家学者到会并做大会报告, 其中包括国际固氮管理委员会成员10名、国际固氮咨询委员会成员36名及其他大会特邀报告人40名左右.本届大会将包括4个全会和12个分会. 全会议题为: 1. 生物固氮基础研究; 2. 可持续农业与生物固氮的限制性因素; 3. 生物固氮研究前沿(新技术、基因组研究、固氮生物体系); 4. 根瘤菌-豆科植物共生体系. 分会议题为: 1. 固氮酶的生物化学及其化学模拟; 2. 固氮遗传与调控;3. 根际联合固氮及其内生固氮;4. 放线菌共生体系与林业;5. 光合固氮菌;6. 固氮微生物及其相关植物的基因组研究;7. 固氮微生物在可持续农业及其生物修复中的应用;8. 胁迫应答(耐盐)及其他生物固氮限制因素;9. 固氮体系的系统发育及其共生进化; 10和11. 根瘤菌-豆科植物共生体系; 12. 与发展中国家合作的生物固氮研究等当前生物固氮研究领域的各个方面.详细情况请参照网站提供的信息. 会议费用及要求等信息将在网站上公布.联系方式: 地 址: 北京大学生命科学学院(100871)联系人: 李凤梅王忆平电 话:010-6275 1006传 真: 010-6275 6325E-mail:mm307@。
生物固氮作用增加农业产量降低化肥用量
生物固氮作用增加农业产量降低化肥用量固氮作为一种重要的生命过程,对维持地球生态平衡和促进农业发展起着至关重要的作用。
生物固氮作用是指通过一系列生物过程将氮气转化为可供植物吸收利用的氨或亚硝酸盐,从而增加土壤中的有效氮含量。
在农业生产中,利用生物固氮作用可以达到增加农业产量和降低化肥用量的目的。
本文将从生物固氮作用的概念、作用机制以及如何利用生物固氮作用来增加农业产量和降低化肥用量三个方面来阐述这个问题。
生物固氮作用是指一系列微生物或植物通过固定空气中的氮气并将其转化为氨或亚硝酸盐的过程。
在这个过程中,微生物主要通过两种方式来进行固氮:自由生活固氮和共生固氮。
自由生活固氮是指一些自由生活的固氮微生物通过自身代谢能力将空气中的氮气转化为可供植物利用的化合物。
常见的自由生活固氮微生物包括氮肥杆菌、光合细菌等。
而共生固氮是指一些微生物与植物共生形成根瘤或菌茎,在共生体内进行固氮过程。
典型的共生固氮植物包括豆科植物、菌根植物等。
通过这些自然过程,生物固氮作用可以将大量的氮元素转化为可供植物吸收的形式,从而给农业生产带来巨大益处。
生物固氮作用通过将氮气转化为植物可吸收的形式,提供了植物生长所需的养分,从而增加了农业产量。
首先,生物固氮作用增加了土壤中可供植物吸收利用的氮含量。
在正常情况下,土壤中的氮元素主要以有机氮和无机氮的形式存在,其中大部分无机氮以硝酸盐的形式存在。
通过生物固氮作用,氮气可以直接转化为氨或亚硝酸盐,而这些化合物对植物具有高度的生物利用度。
其次,生物固氮作用还可以降解土壤中的有机氮,将其转化为植物可以吸收的亚硝酸盐。
这进一步提高了土壤中的有效氮含量,为农作物的生长提供了充分的氮源。
利用生物固氮作用可以降低对化肥的依赖,从而减少化肥用量。
传统的农业生产中,为了增加土壤中的氮含量,常常需要大量投入化肥。
然而,这种做法不仅增加了农民的生产成本,还对环境造成了一定的污染。
化肥的过度使用会导致土壤中氮的积累和流失,进而污染地表水和地下水。
生物固氮的研究进展
生物固氮的研究进展一、本文概述生物固氮,指的是生物体(特别是某些微生物)在无氧或低氧条件下,将大气中的氮气(N₂)转化为氨(NH₃)或其他含氮化合物的过程。
这一过程对于全球氮循环和生物圈的氮素供应具有至关重要的作用。
本文旨在概述生物固氮的研究进展,包括固氮微生物的种类与特性、固氮机制、固氮效率的提高方法,以及生物固氮在农业、环保和工业生产等领域的应用前景。
我们将重点介绍近年来在分子生物学、基因工程和生物技术等方面的新发现和新进展,以期为推动生物固氮的深入研究和实际应用提供参考。
二、生物固氮的微生物学基础生物固氮,又称生物氮固定,是指某些微生物在常温常压下,将大气中的氮气(N₂)转化为氨(NH₃)或其它含氮化合物的过程。
这一生物过程在地球氮循环中起着至关重要的作用,为许多生态系统和农作物提供了必要的氮源。
生物固氮的微生物主要包括两大类:自生固氮菌和共生固氮菌。
自生固氮菌,如圆褐固氮菌,能够在无植物存在的情况下独立进行固氮作用。
而共生固氮菌,如根瘤菌,必须与植物形成共生关系,在植物根部形成根瘤结构,才能有效固氮。
固氮过程的核心是固氮酶的作用。
固氮酶是一种由铁蛋白和钼铁蛋白组成的复合酶,能够在ATP的供能下,将N₂还原为NH₃。
这一过程中,铁蛋白起到传递电子的作用,而钼铁蛋白则是固氮反应的催化中心。
固氮微生物具有独特的生理生态特性,以适应其在各种环境条件下的固氮生活。
例如,它们能够分泌多种胞外酶,分解有机物质以获取能量和营养;同时,它们还能够形成特殊的细胞结构,如根瘤,以提高固氮效率。
固氮效率受到多种因素的影响,包括环境因素(如温度、湿度、光照等)、土壤条件(如pH值、有机质含量等)以及微生物自身的遗传特性。
因此,在农业生产中,通过调控这些因素,可以有效提高生物固氮的效率和效果。
随着分子生物学和基因工程技术的快速发展,对固氮微生物的遗传机制和固氮酶的作用机制有了更深入的了解。
这为通过基因工程手段改良固氮微生物、提高其固氮效率提供了可能。
生物固氮作用
➢生物固氮(biological nitrogen fixation)是指大气中的分 子氮通过微生物固氮酶的催化而还原成氨的过程。 ➢生物固氮优点:成本低; 固氮量大; 有利于生态环境保护。
二、固氮微生物概念
➢固氮微生物(nitrogen-fixing organisms, diazotrophs)主 要是指具有固氮功能的细菌,还包括有固氮功能的蓝 藻和放线菌。 ➢固氮微生物的类型 自生固氮微生物 共生固氮微生物 联合固氮微生物
自生固氮
共生固氮
联合固氮
固氮微生物的三种固氮方式
三、生物固氮作用的机理
N2+8e-+8H++ 28ATP
固氮酶
厌氧
NH3+H2+28ADP+ 28Pi
(一)固氮酶的特性:
组分:Ⅰ— 钼铁蛋白,其中钼原子构成酶活中心, 传递电子和质子;
Ⅱ— 铁蛋白。 只有铁蛋白和钼铁蛋白的同时存在,固氮 酶才具有固氮的作用。
四、生物固氮作用的意义
➢ 促进氮循环 ➢ 增加土壤的含氮量 ➢ 有利于农作物增产
五、生物固氮的研究前景
➢ 提高固氮效率; ➢ 将固氮基因进行转移,扩大固氮作物的范围; ➢ 用遗传工程培育不依赖固氮微生物的自主固氮
的子N2为2NH3,共需28个ATP。 ATP来源:呼吸、厌氧呼吸、发酵或光合磷
酸化。
(三)所需电子及来源:
还原1分子N2为2NH3,共需8个电子。
电子来源: 1.呼吸、发酵或光合作用形成的还原力:如 NAD(P)+H+、H2、丙酮酸,这类电子供体 提供的电子须由电子载体携带。 2.非生理性电子供体:是一类强还原性的化学 物质,如连二亚硫酸钠。
生物固氮及其在土壤改良中的应用
生物固氮及其在土壤改良中的应用氮是植物生长必需的元素之一,而土壤是氮的主要来源之一。
然而,土壤中的氮却存在着循环不畅、损失较多的问题,导致土壤质量下降,给植物生长带来了一定的限制,在农业生产中成为一大难题。
而生物固氮有望成为解决土壤氮素问题的有效手段之一。
一、生物固氮的概念和过程生物固氮是指通过某些特定的微生物通过代谢作用将氮气转化为植物可利用的氨态氮,以满足植物生长所需。
生物固氮的过程主要有两种,一种是腐生固氮,指的是通过分解有机物质释放的氮气转化为氨态氮;另一种是共生固氮,指的是微生物和植物之间的共生关系中,微生物通过转化空气中的氮气为植物提供氨态氮,而植物也为微生物提供生存所需的营养和生境条件,两者共生互利。
二、生物固氮在土壤改良中的应用1. 降低化肥使用量现代农业中广泛使用的化肥中含有大量的氮素元素,而大量的氮素元素在土壤中不断循环,其中一部分被植物吸收利用,但大部分则流失或转化为更为有害的氧化亚氮、亚硝酸等物质,影响了土壤的健康和植物的生长。
而生物固氮可以降低植物对化肥的依赖,减少化肥的使用量,从而保护土壤环境和水资源。
2. 提高土壤质量生物固氮能够提高土壤中的氮含量,增加土壤肥力,改善土壤质量,从而促进植物的生长。
此外,生物固氮还可以提高土壤中微生物的数量和种类,增加土壤中的生物多样性。
3. 推动农业可持续发展生物固氮的应用不仅可以提高土壤质量,减少化肥使用量,还有利于推动农业的可持续发展。
通过大规模实践,发现生物固氮不仅可以增加作物产量,并且可以减少生产成本,提高农业效益,推动农业产业升级和可持续发展。
三、生物固氮技术的发展和前景随着生物科技的不断发展和应用,生物固氮技术也得到了快速发展和应用。
新技术的开发和推广,使得生物固氮的效率和应用范围得到了不断拓展。
例如,通过模拟微生物固氮的过程,人工制造了固氮微生物的活性固氮菌剂,这种固氮剂能够直接应用到土壤中,有效提高土壤中氮的含量,并且能够抵制一些致病菌的侵袭。
生物固氮及其发展前景分析解析
生物固氮及其发展前景摘要:本论文主要介绍生物固氮概念、固氮微生物及其种类和生物固氮发展前景。
关键词:生物固氮固氮微生物固氮生化机制生物固氮展望引言:生物固氮是一个具有重大理论意义和实用价值的生化过程。
生物固氮反应是一种及其温和及零污染排放的生化反应,它比人类发明的化学固氮有这无比的优越性,因后者需要消耗大量的石油原料和特殊的催化剂,并须要在高温(~300℃)、高压(~300个大气压)下进行。
此外,若不合理地使用氮肥,还会降低农产品的质量,破坏土壤结构和降低肥力,以及造成坏境污染(如湖泊的水华和海洋的赤潮)等恶果。
我国在近半个世纪当中,化肥产量猛增近6000倍,其有害影响已不断出现。
因此,我们应深刻认识到,只有深入研究、开发和利用固氮微生物,才能更好的发展生态农业和达到土地可持续利用的战略目标。
如果把光合作用旱作是地球上最重要的生化反应,则生物固氮作用便是地球上仅次于光合作用的生物化学反应,因为它为整个生物圈中一切生物的生存和繁荣发展提供了不可或缺和可持续供应的还原态氮化物的源泉。
内容:⒈生物固氮定义:指大气中的分子氮通过微生物固氮酶的催化而还原成氨的过程,生物界中只有原核生物才具有固氮能力。
⒉固氮微生物的种类⒉1 自生固氮菌⒉⒈1好氧:化能异养、化能自养、光能自养⒉⒈2兼性厌氧:化能异养、光能异样⒉⒈3厌氧:化能异养、光能自养⒉2 共生固氮菌⒉⒉1根瘤:豆科植物、非豆科被子植物⒉⒉2植物:地衣、满江红⒉3 联合固氮菌⒉⒊1根际(热带、温带)⒉⒊2叶面⒉⒊3动物肠道⒊固氮的生化机制⒊1生物固氮反应的6要素⒊⒈1ATP的供应由于N≡N分子中存在3个共价键,故要把这种极端的分子打开就得花费巨大能量。
固氮过程中把N2还原成2NH3时消耗的大量ATP(N2:ATP=1:(18~24)是由呼吸、厌氧呼吸、发酵或光合磷酸化作用提供的。
⒊⒈2还原力[H]及其传递载体固氮反应中所需大量的还原力(N2︰[H]=1︰8)必须以NAD(P)H+H﹢的形成提供。
生物固氮的研究进展及发展趋势
参考内容
生物固氮研究的新进展及其在农 业和环境中的应用
摘要
生物固氮,指的是生物通过一系列生理生化过程,将空气中的氮气转化为可 用于农业和环境中的氮素养分的过程,其在现代农业中扮演着举足轻重的角色。 本次演示将综述生物固氮的研究历史、现状及其未来的发展方向,并深入探讨其 在农业和环境领域的应用和重要性。
谢谢观看
引言
生物固氮指的是某些微生物和植物通过特殊的生理生化过程,将空气中的氮 气转化为有机氮化物的过程。这种转化对于农业和环境都至关重要。在农业领域, 生物固氮可以提供植物生长所需的氮素,从而提高作物的产量和质量。在环境领 域,生物固氮有助于减少氮素污染,从而缓解水体富营养化等问题。因此,对生 物固氮的研究具有重要的理论和实践意义。
研究现状
1.根瘤菌固氮
根瘤菌是与豆科植物共生的一种特殊微生物,能够将大气中的氮气转化为有 机氮化物。近年来,研究者们在根瘤菌的生态学、遗传学和分子生物学等方面取 得了重要进展。例如,研究发现根瘤菌的结瘤基因和固氮基因之间存在复杂的调 控机制,为深入理解根瘤菌的共生固氮提供了线索。然而,根瘤菌的共生固氮效 率受到土壤环境、气候变化等多种因素的影响,仍面临许多挑战。
在环境领域,生物固氮对于缓解水体富营养化等问题也具有积极意义。例如, 通过向污染水体中添加固定氮的微生物,可以减少水体中的氨氮等有害物质,改 善水质。
未来展望
未来生物固氮的研究将集中在以下几个方面:首先,随着基因组学和代谢组 学的快速发展,对微生物和植物的互作机制的研究将更加深入,这将有助于揭示 生物固氮的内在规律,为提高生物固氮的效率和产量提供理论依据;其次,新型 生物技术的应用,如基因编辑技术等,将为生物固氮研究开辟新的途径;最后, 针对不同环境条件下的生物固氮研究也将得到进一步拓展,
生物固氮的研究进展及发展趋势
r i ne bi o l og i c a l n i t r o ge n f i x a t i o n . ni t r o g e n f i xa t i o n i n g e no mi c s a nd pr o t e o mi cs , e s pe c i a l l y
hi g hl i g ht e d t he mo l e c ul a r di a l o g ue be t we e n r hi z o b i um a nd l e g ume s .Me a nwhi l e,we a l s o a na — l yz e d t he de v e l o pme nt t r e n d 0 f BNF a nd s um ma r i z e d t he di r e c t i on s o f ma i n r e s e a r c h o n BNF. I n t he e nd.we r e vi e we d t he r e s e a r c h o f Ch i ne s e bi o l o g i c a l ni t r o g e n f i x a t i on,a c c o r di ng t o t he s De c i f i c s i t ua t i 0 n 0 f Chi na。we p ut f o r wa r d t he s t r a t e g i e s a nd me t ho ds o f s pr e a d o f Chi ne s e bi —
固氮菌研究现状及前景分析
固氮菌研究现状及前景分析摘要固氮菌所进行的生物固氮作用是土壤中氮素的主要来源,也是固氮微生物参与自然界氮素循环的主要环节,固氮菌主要包括自生固氮菌、共生固氮菌和联合固氮菌,涵盖固氮细菌和固氮蓝细菌两者共59个属。
本文将对固氮菌固氮作用的应用、基因工程育种在固氮菌研究上的应用以及固氮菌的最新研究进展等方面进行展开阐述,并进一步展望固氮菌的前景。
关键词固氮菌基因工程育种应用前景·AbstractBiological nitrogen-fixing is the main source of nitrogen in soil, also is the mainprocess that N-fixing bacteria take part in natural nitrogen cycle. N-fixing bacteriainclude free-living nitrogen fixing bacteria, symbiotic nitrogen fixing bacteria andassociative nitrogen fixing bacteria. This article will introduce the application ofnitrogen bacteria and the perspective of nitrogen fixing bacteria.KeywordNitrogen-fixing bacteria Genetic-engineering Application Perspective 固氮微生物包括自生固氮菌、共生固氮菌以及联合固氮菌三大类型。
对固氮菌的研究在农业生产,增加作物产量以及合成蛋白质等方面有着极其重要的应用。
本文叙述了生物固氮研究取得的重大进展和成果,包括发现了固氮基因,证实了克氏杆菌固氮基因操纵子的连锁性及正调控基因的调节机制和对氧、温度的敏感性;发现根瘤菌结瘤调控基因nodD3的产物对结瘤基因表达的启动不受宿主类黄酮的作用;发现根瘤菌的碳利用基因和固氮生物氮代射和碳代谢基因表达及其调节的偶联作用;在固氮基因表达调节基础上,构建了固氮基因工程菌株,并在生产中得到应用。
生物固氮技术在生态修复中的应用
生物固氮技术在生态修复中的应用随着人类对自然环境的破坏日益严重,生态修复已经成为了人们不得不面对的大问题。
而生物固氮技术作为一种生态修复手段,正受到越来越多的关注。
在本文中,我们将会探讨生物固氮技术在生态修复中的应用,阐述它的原理、特点和研究进展。
一、生物固氮技术的原理与特点生物固氮技术是指利用一些特定的生物微生物,利用它们的固氮功能,将空气中的氮固定成有机氮,从而补充土壤的氮素。
这些微生物中包括了许多细菌、蓝藻和共生的根瘤菌等。
生物固氮技术有着很多的特点。
首先,它可以补充土壤中短缺的氮素,促进农作物的生长。
其次,使用这种技术不需要施用化肥或化学农药,从而避免了化学物质的污染风险。
此外,这种技术还可以增加土壤的持水能力,改善土壤结构。
因此,生物固氮技术被广泛地应用于生态修复、农业生产和生态保护等领域中。
二、生物固氮技术在生态修复中的应用生态修复是指利用各种手段促进自然环境的恢复和修复。
而生物固氮技术则是其中一种有效的手段。
接下来,我们将会讨论生物固氮技术在生态修复中的具体应用案例。
1. 过剩养分的去除过剩的养分是垃圾堆肥和污水处理过程中最主要的问题之一。
这些养分如果不得当处理,将会对周围环境造成污染和危害。
生物固氮技术可以通过将细菌引入到垃圾堆肥中,使其固定氮并将其转化为可供植物使用的形式,从而将垃圾堆肥转变为创建健康的土壤的有效手段。
2. 保护水域重建水域重建的目标是让水体周边的生态环境恢复和发展。
而生物固氮技术可以通过在水体周边种植植物,利用细菌固氮为植物生长提供所需的养分。
这种技术不仅可以促进植物的生长,还可以改善水质。
3. 石漠化治理石漠化是各种形式的荒漠化的一种,主要出现在土地受到人为破坏的地区。
治理方法包括表层覆盖,种植草地等。
而生物固氮技术则可以通过种植土壤界面的植物,来维持土壤结构,从而减少水土流失。
4. 荒漠化治理荒漠化是世界面临的严重问题之一,如果不及时处理将会造成巨大的生态、经济和社会影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物固氮及其发展前景摘要:本论文主要介绍生物固氮概念、固氮微生物及其种类和生物固氮发展前景。
关键词:生物固氮固氮微生物固氮生化机制生物固氮展望引言:生物固氮是一个具有重大理论意义和实用价值的生化过程。
生物固氮反应是一种及其温和及零污染排放的生化反应,它比人类发明的化学固氮有这无比的优越性,因后者需要消耗大量的石油原料和特殊的催化剂,并须要在高温(~300℃)、高压(~300个大气压)下进行。
此外,若不合理地使用氮肥,还会降低农产品的质量,破坏土壤结构和降低肥力,以及造成坏境污染(如湖泊的水华和海洋的赤潮)等恶果。
我国在近半个世纪当中,化肥产量猛增近6000倍,其有害影响已不断出现。
因此,我们应深刻认识到,只有深入研究、开发和利用固氮微生物,才能更好的发展生态农业和达到土地可持续利用的战略目标。
如果把光合作用旱作是地球上最重要的生化反应,则生物固氮作用便是地球上仅次于光合作用的生物化学反应,因为它为整个生物圈中一切生物的生存和繁荣发展提供了不可或缺和可持续供应的还原态氮化物的源泉。
内容:⒈生物固氮定义:指大气中的分子氮通过微生物固氮酶的催化而还原成氨的过程,生物界中只有原核生物才具有固氮能力。
⒉固氮微生物的种类⒉1 自生固氮菌⒉⒈1好氧:化能异养、化能自养、光能自养⒉⒈2兼性厌氧:化能异养、光能异样⒉⒈3厌氧:化能异养、光能自养⒉2 共生固氮菌⒉⒉1根瘤:豆科植物、非豆科被子植物⒉⒉2植物:地衣、满江红⒉3 联合固氮菌⒉⒊1根际(热带、温带)⒉⒊2叶面⒉⒊3动物肠道⒊固氮的生化机制⒊1生物固氮反应的6要素⒊⒈1ATP的供应由于N≡N分子中存在3个共价键,故要把这种极端的分子打开就得花费巨大能量。
固氮过程中把N2还原成2NH3时消耗的大量ATP(N2:ATP=1:(18~24)是由呼吸、厌氧呼吸、发酵或光合磷酸化作用提供的。
⒊⒈2还原力[H]及其传递载体固氮反应中所需大量的还原力(N2︰[H]=1︰8)必须以NAD(P)H+H﹢的形成提供。
[H]由低电势的电子载体铁氧还蛋白(ferredoxin,一种硫铁蛋白)或黄素氧还蛋白(Fld,一种黄素蛋白)传递至固氮酶上。
⒊⒈3固氮酶固氮酶是一种复合蛋白,由固二氮酶还原酶两种相互分离的蛋白构成,它们对氧都高度敏感。
固二氮酶是一种含铁和钼的蛋白,铁和钼组成一个称为“FeMoCo”的辅助因子,它是还原N2的活性中心。
而固二氮酶还原酶则是只含铁的蛋白。
某些固氮菌处于不同生长条件下时,还可合成其他不含钼的固氮酶,称为“替补固氮酶”,具有适应极度缺钼环境下还能正常进行生物固氮的功能。
⒊⒈4还原底物--N2.⒊⒈5镁离子⒊⒈6严格的厌氧微环境。
⒊2测定固氮酶活力的乙炔还原法测定固氮酶活力的经典方法曾有过粗放的微量氏定氮法和烦琐的同位素法等。
1996年,M.J.Dilworth和R.Scholhorn等人分别发表了既灵敏又简单的利用气相色谱仪测定固氮酶活性的乙炔还原法,大大推动了固氮生化的研究。
已知固氮生化除了能催化N2→NH3的反应,还可能催化许多反应,包括2H﹢+2e﹣→H2和C2H2→C2H4等反应,在后一反应中,这两种气体量的微小变化也能用气相色谱仪检测出来。
测定时,只要把带测测细菌制成悬浮液,放在含有10%C2H2空气(对好氧菌)或C2H2的氮气(对厌氧菌)的密闭容器中,经适当培养后,按不同时间用针筒抽取少量的气体至气相色谱仪测定,即可获得是否固氮及固氮强度等准确数据。
由于乙炔还原法的灵敏高度、设备较简单、成本低廉和操作方便,故很快成为任何研究固氮实验室中的常规方法。
⒊3固氮的生化途径目前所知道的生物固氮的总反应是:N2+8[H]+16~24ATP→2NH3+H2+16~24ADP+16~24Pi整个固氮过程主要经历以下几个环节:①由Fd或Fld向氧化型固二氮酶还原酶的铁原子提供一个电子,使其还原;②还原型的固二氮酶还原酶与ATP﹣Mg结合,改变了构象;③固二氮酶在“FeMoCo”的Mo位点上与分子氮结合,并与固二氮酶还原酶﹣Mg﹣ATP复合物反应,形成了一个1:1复合物,即完整的固氮酶;④在固氮酶分子上,有一个电子从固氮酶还原酶﹣Mg﹣ATP复合物转移到固氮酶的铁原子上,这时固氮酶还原酶重新转变为氧化态,同时ATP也就水解成ADP+Pi;⑤通过上述过程连续6次(用打点子的箭头表示)的运转,才可使固二氮酶释放2个NH3分子;⑥还原一个N2分子,理论上仅需6个电子,而实际测定却需8个电子,其中2个消耗在产H2。
必须强调指出的是,上述一切生化反应都必须受活细胞中各种“氧障”的严密保护,以保证固氮酶免受失活。
⒊4固氮酶的产氢反应固氮酶除能催化N2→NH3外,还具有催化2H﹢+2e﹣→H2反应的氢化酶的活性。
当固氮菌在缺N2环境下,也只是把75%的还原力[H]去还原N2,而把另外25%的[H]以产H2的方式浪费掉了。
然而,在大多数固氮菌中,还存在另一种经典的氧化酶,它能将被固氮菌浪费了的分子氢重新激活,以回收一部分还原力[H]和ATP。
⒋生物固氮的应用及其前景大气中的氮,必须通过以生物固氮为主的固氮作用,才能被植物吸收利用。
动物直接或间接地以植物为食物。
动物体内的一部分蛋白质在分解过程中产生的尿素等含氮废物,以及动植物遗体中的含氮物质,被土壤中的微生物分解后形成氨,氨经过土壤中的硝化细菌的作用,最终转化成硝酸盐,硝酸盐可以被植物吸收利用。
在氧气不足的情况下,土壤中的另一些细菌可以将硝酸盐转化成亚硝酸盐并最终转化成氮气,氮气则返回到大气中。
除了生物固氮以外,生产氮素化肥的工厂以及闪电等也可以固氮,但是,同生物固氮相比,它们所固定的氮素数量很少。
可见,生物固氮在自然界氮循环中具有十分重要的作用。
⒋1农业应用生物固氮在农业生产中具有十分重要的作用。
氮素是农作物从土壤中吸收的一种大量元素,土壤每年因此要失去大量的氮素。
如果土壤每年得不到足够的氮素以弥补损失,土壤的含氮量就会下降。
土壤可以通过两条途径获得氮素:一条是含氮肥料(包括氮素化肥和各种农家肥料)的施用;另一条是生物固氮。
科学家在20世纪80年代推算过,全世界每年施用的氮素化肥中的氮素大约有8*10^7t,而自然界每年通过生物固氮所提供的氮素,则高达4*10^8t。
对豆科作物进行根瘤菌拌种,是提高豆科作物产量的一项有效措施。
播种前,将豆科作物的种子沾上与该种豆科作物相适应的根瘤菌,这显然有利于该种豆科作物结瘤固氮。
特别是新开垦的农田和未种植过豆科作物的土壤中,根瘤菌很少,并且常常不能使豆科作物结瘤固氮,更需要进行根瘤菌拌种。
对比实验表明,在其他条件相同的情况下,经过根瘤菌拌种的豆科作物,可以增产10%~20%。
⒋2研究简况1886年在第59届德国科学家和医生学术讨论会上,德国学者赫尔利格尔(Hermann Hellriegel)首次提出令人惊奇的试验结果,即当大豆生长在缺氮的土壤中时,大豆的根瘤也能使其良好生长,其机理在于其根瘤具有固氮功能。
在当时称之为根生杆菌,现在称之为大豆根瘤菌的细菌对豆科植物根部的根瘤形成具有特殊的刺激作用。
在根瘤菌内,根瘤菌将大气中的氮还原为能被植物吸收利用的氨,豆科宿主在吸收了这些氨之后又能将其转变为含氮有机化合物,以供其生长发育之需。
通过对根瘤菌进行接种培养后于1895年就获得了具有很强固氮能力的根瘤菌菌种。
通过添加灭菌草木灰等吸附剂之后,大批根瘤菌被施用到三叶草、豌豆和小扁豆等豆科作物的种植地中以提高其产量。
现在已经知道,在自然界具有固氮功能的生物种类很多,其中有自养固氮生物和异养固氮生物这两大类型。
在异养固氮生物中因宿主植物的差异而被划分为豆科植物共生固氮菌和非豆科植物共生固氮菌。
尽管固氮生物多种多样,但在其固氮过程中都需要共同的固氮基因(nif)的参与。
在共生固氮生物中固氮体系非常复杂,除了nif基因在固氮过程中起关键性作用之外,其它基因的协同作用也非常重要。
由于根瘤菌具有的特殊功能,大批热心的研究者对其特征特性,对寄主的侵染方式、固氮机制和商业价值等进行了系统的研究。
本世纪80年代以来,学者们一方面从分子水平进一步研究根瘤菌在豆科植物上的固氮机理和改造根瘤菌,试图培育出活性更强的根瘤菌;另一方面利用人工诱导方式诱发非豆科作物根部结瘤,试图利用根瘤菌的特殊功能使非豆科作物也能共生固氮,以便减少农田中氮肥的施用量,降低农作物的生产成本。
除此之外,在70年代末,由于在放线菌中发现了弗兰克氏菌(Frankia)与多种非豆科树木能共生结瘤并具有固氮效应,因而在生物固氮研究中又产生了一个新的分支,即以研究弗兰克氏菌的分类、功能、分布和应用前景为主要内容的新领域。
从现有的研究结果来看,与豆科植物的根瘤菌的固氮体系相比,利用弗兰克氏菌具有广谱侵染的特性,对建立新的固氮技术体系可能具有更大的意义,应用前景更广阔。
⒋3展望据测算,在大气中氮素含量为3.9×1015吨;在全球耕地内生物固氮量理论上可达到4400万吨,约相当于全世界每年生产的化肥总量;全球林地面积约为4.1亿公顷,其固氮总量可达到4000万吨。
由于在氮素化肥生产中伴随着能源耗费和日趋严重的环境污染问题,人们逐渐认识到农林业生产完全依赖化肥终非良策,于是,生物固氮研究日益受到各国政府的重视。
通过适当方式固定大气中的游离氮素,将其转变为能参与生物体新陈代谢的氨态氮是地球上维持生产力的一个重要的生态反应。
从战略上来考虑,正确的农业生产政策应该是既要增加粮食生产,又不要损害土地的持久生产力,而生物固氮正好能同时满足这两个目的。
应用现代科学技术建立和完善生物固氮体系已经成为解决人类目前所面临的人口、粮食、能源和环境等问题的重要技术措施。
近20年来生物固氮已经成为一个多学科的综合性研究项目,分别在分子、细胞、个体和生态等多层次水平上,从微观到宏观不断地展开着探索性研究。
从目前的研究现状来看,试图通过基因工程将nif 基因从豆科植物转移到非豆科农作物中难度比较大,在短期内很难实现,而采用细胞工程方法将根瘤菌导入非宿主农作物细胞内则切实可行。
除此之外,由于Frankia菌具有对宿主的侵染范围宽、固氮活性比较强和对氧气不敏感等特性,在生物固氮研究中对Frankia菌的研究将更为重要,有可能由此会找到新的突破口。
在Frankia菌与农作物之间建立起新的共生固氮体系将具有更大的可能性。
这项研究已呈现出新的苗头,值得进一步探索。
生物固氮研究已经引起越来越多的人的关注。
在这方面的研究今后主要包括基础理论和应用基础这两个方面。
在基础理论研究中主要围绕着诱发非豆科作物结瘤的最佳条件和提高共生固氮效能,其中包括诱导根瘤菌侵入主要农作物共生结瘤的有效方法;提高非豆科农作物共生结瘤固氮的效能;根瘤菌导入非豆科宿主细胞的途径、共生部位和共生机理;采用适当的技术措施诱导Frankia菌与主要农作物结瘤固氮;Frankia菌共生结瘤固氮的机理等等。