(完整版)模拟电子技术(模电)部分概念和公式总结

合集下载

电子技术基础模拟部分(模电)考试复习总结

电子技术基础模拟部分(模电)考试复习总结

CH5场效应管放大电路
• 内容:MOSFET及其放大电路;JFET;各种 放大器件电路性能比较。 • 重点:①了解场效应管的工作原理和场效应管 的输出特性、转移特性和主要参数;②掌握场 效应管放大电路的组成、工作原理和电路特点, 以及分析放大电路静态和动态参数的一般方法。
• 内容:BJT;基本放大电路;以及放大电路的 参数性能指标分析计算。 • 重点:①了解BJT的放大原理及输入、输出特 性曲线;②理解基本放大电路的组成和工作原 理;③掌握放大电路的静态、动态指标的分析 计算;④理解CE、CC、CB三种基本放大电路的 组成及特点;⑤掌握多级放大电路的分析计算; ⑥掌握放大电路频率响应的分析方法。
• 重点:①掌握虚短、虚断的重要概念;②掌握 由集成运算组成的基本运算电路及其分析方法。
CH3二极管及其基本电路
• 内容:半导体的基本知识;PN结的形成及特 性;二极管;二极管的基本电路及其分析方法; 特殊二极管。
• 重点:①二极管与稳压管的伏安特性和主要参 数;②二极管基本电路及其分析方法。
CH4BJT及其放大电路基础
小结(ch1-5)

CH1绪论
• 内容:电子学基本概念、信号的频谱、模拟信 号和数字信号、放大电路类型、放大电路的主 要性能指标。
• 重点:①了解四种类型的放大电路模型;②了 解输入电阻、输出电阻、增益、频率响应和非 线性失真等放大电路的主要性能指标的概念。
CH2信号的运算
• 内容:集成电路运算放大器;理想运算放大器; 基本线性运放电路及其他应用(集成运放均工 作在线性区)。

模电公式总结

模电公式总结

模电公式总结1. 基本电路参数1.1 电流公式•电流公式:$$I = \\frac{V}{R}$$–其中,I为电流,V为电压,R为电阻。

1.2 电压公式•电压公式:$$V = I \\cdot R$$–其中,V为电压,I为电流,R为电阻。

1.3 功率公式•功率公式:$$P = V \\cdot I$$–其中,P为功率,V为电压,I为电流。

2. 放大电路2.1 电压放大倍数•电压放大倍数:$$A_v = \\frac{V_o}{V_i}$$–其中,A_v为电压放大倍数,V_o为输出电压,V_i为输入电压。

2.2 增益•增益:$$G = \\frac{V_o - V_i}{V_i}$$–其中,G为增益,V_o为输出电压,V_i为输入电压。

3. 滤波电路3.1 截止频率•截止频率:$$f_c = \\frac{1}{2\\pi RC}$$–其中,f_c为截止频率,R为电阻,C为电容。

4. 频率响应4.1 相位差•相位差:$$\\phi = \\arctan(\\frac{X_L - X_C}{R})$$–其中,X_L为电感的电抗,X_C为电容的电抗,R为电阻。

4.2 增益•增益:$$|A_v| = \\sqrt{\\frac{X_L - X_C}{R}^2 + 1}$$–其中,|A_v|为增益,X_L为电感的电抗,X_C为电容的电抗,R为电阻。

5. 脉冲响应5.1 集成电路•脉冲响应:$$h(t) = V_i(t) \\ast g(t)$$–其中,h(t)为脉冲响应,V_i(t)为输入信号,g(t)为脉冲响应函数。

6. 非线性电路6.1 二极管方程•二极管方程:$$I_D = I_s(e^{\\frac{V_D}{V_t}} - 1)$$–其中,I_D为二极管正向电流,I_s为饱和电流,V_D为二极管正向电压,V_t为温度标准电压。

7. 反馈电路7.1 闭环增益•闭环增益:$$A_f = \\frac{A}{1 + A\\beta}$$–其中,A为开环增益,$\\beta$为反馈系数。

完整版)模拟电子技术基础-知识点总结

完整版)模拟电子技术基础-知识点总结

完整版)模拟电子技术基础-知识点总结共发射极、共基极、共集电极。

2.三极管的工作原理---基极输入信号控制发射结电流,从而控制集电极电流,实现信号放大。

3.三极管的放大倍数---共发射极放大倍数最大,共集电极放大倍数最小。

三.三极管的基本放大电路1.共发射极放大电路---具有电压放大和电流放大的作用。

2.共集电极放大电路---具有电压跟随和电流跟随的作用。

3.共基极放大电路---具有电压放大的作用,输入电阻较低。

4.三极管的偏置电路---通过对三极管的基极电压进行偏置,使其工作在放大区,保证放大电路的稳定性。

四.三极管的应用1.放大器---将弱信号放大为较强的信号。

2.开关---控制大电流的通断。

3.振荡器---产生高频信号。

4.稳压电源---利用三极管的负温度系数特性,实现稳定的输出电压。

模拟电子技术复资料总结第一章半导体二极管一.半导体的基础知识1.半导体是介于导体和绝缘体之间的物质,如硅Si、锗Ge。

2.半导体具有光敏、热敏和掺杂特性。

3.本征半导体是纯净的具有单晶体结构的半导体。

4.载流子是带有正、负电荷的可移动的空穴和电子,是半导体中的两种主要载流体。

5.杂质半导体是在本征半导体中掺入微量杂质形成的半导体。

根据掺杂元素的不同,可分为P型半导体和N型半导体。

6.杂质半导体的特性包括载流子的浓度、体电阻和转型等。

7.PN结是由P型半导体和N型半导体组成的结,具有单向导电性和接触电位差等特性。

8.PN结的伏安特性是指在不同电压下,PN结的电流和电压之间的关系。

二.半导体二极管半导体二极管是由PN结组成的单向导电器件。

1.半导体二极管具有单向导电性,即只有在正向电压作用下才能导通,反向电压下截止。

2.半导体二极管的伏安特性与PN结的伏安特性相似,具有正向导通压降和死区电压等特性。

3.分析半导体二极管的方法包括图解分析法和等效电路法等。

三.稳压二极管及其稳压电路稳压二极管是一种特殊的二极管,其正常工作状态是处于PN结的反向击穿区,具有稳压的作用。

(完整word版)模拟电子技术基础-知识点总结

(完整word版)模拟电子技术基础-知识点总结

模拟电子技术复习资料总结第一章半导体二极管一.半导体的基础知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。

2.特性---光敏、热敏和掺杂特性。

3.本征半导体----纯净的具有单晶体结构的半导体。

4. 两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。

5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。

体现的是半导体的掺杂特性。

*P型半导体: 在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。

*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。

6. 杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。

*体电阻---通常把杂质半导体自身的电阻称为体电阻。

*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。

7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。

* PN结的单向导电性---正偏导通,反偏截止。

8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。

*二极管伏安特性----同PN结。

*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。

*死区电压------硅管0.5V,锗管0.1V。

3.分析方法------将二极管断开,分析二极管两端电位的高低:若V阳>V阴( 正偏),二极管导通(短路);若V阳<V阴( 反偏),二极管截止(开路)。

1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。

2) 等效电路法➢直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低:若V阳>V阴( 正偏),二极管导通(短路);若V阳<V阴( 反偏),二极管截止(开路)。

*三种模型➢微变等效电路法三.稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。

模电必考知识点总结

模电必考知识点总结

模电必考知识点总结一、基本电路理论1. 电路基本定律欧姆定律、基尔霍夫定律、电路中的功率计算等基本电路定律是模拟电子技术学习的基础,了解和掌握这些定律对于学习模拟电子技术是非常重要的。

2. 电路分析了解如何对电路进行简化、等效电路的转换、戴维南定理和诺依曼定理等电路分析的基本方法。

3. 电路稳定性掌握电路的稳定性分析方法,包括如何对直流放大电路和交流放大电路进行稳定性分析。

4. 传输线理论了解传输线的基本特性,包括传输线的阻抗、反射系数、传输线的匹配等知识。

二、放大电路1. 二极管放大电路了解二极管的基本特性和放大电路的设计原理,包括共射放大电路、共集放大电路和共基放大电路等基本的二极管放大电路。

2. 晶体管放大电路了解晶体管放大电路的基本原理和设计方法,包括共射放大电路、共集放大电路和共基放大电路等基本的晶体管放大电路。

3. 放大电路的频率响应了解放大电路的频率响应特性,包括截止频率、增益带宽积等相关知识。

4. 反馈电路掌握反馈电路的基本原理和分类,了解正反馈和负反馈电路的特点和应用。

三、运算放大电路1. 运算放大器的基本特性了解运算放大器的基本特性,包括输入输出阻抗、放大倍数、共模抑制比等相关知识。

2. 运算放大器的电路应用了解运算放大器在反馈电路、比较电路、滤波电路、振荡电路等方面的应用,掌握运算放大器的基本应用方法。

四、滤波器电路1. RC滤波器和RL滤波器了解RC滤波器和RL滤波器的基本原理、特性和应用,包括一阶和二阶滤波器的设计和性能分析。

2. 增益电路和阻抗转换电路掌握增益电路和阻抗转换电路的设计原理和方法,了解它们在滤波电路中的应用。

3. 模拟滤波器设计了解低通滤波器、高通滤波器、带通滤波器和带阻(陷波)滤波器的设计方法和特性,掌握模拟滤波器的设计技巧。

五、功率放大电路1. BJT功率放大电路了解晶体管功率放大电路的基本原理和设计方法,包括类A、类B、类AB和类C功率放大电路的特点和应用。

模电 知识点总结

模电 知识点总结

模电知识点总结一、基本概念1. 电路元件:模拟电子技术的基本元件包括电阻、电容、电感、二极管、晶体管等。

其中,电阻用于限制电流,电容用于储存电荷,电感用于储存能量,二极管用于整流、开关等,晶体管用于放大、开关等。

2. 信号:在模拟电子技术中,信号是指随时间或空间变化的电压或电流。

常见的信号形式有直流信号、交流信号、脉冲信号等。

3. 放大器:放大器是模拟电子技术中的重要元件,用于放大输入信号的幅度。

常见的放大器有运放放大器、晶体管放大器等。

4. 滤波器:滤波器是用于选择特定频率范围内的信号,常用于滤除噪声、提取特定频率成分等。

5. 调制解调:调制是将基带信号调制到载波上,解调是将载波信号解调还原为基带信号。

调制解调技术是模拟电子技术中的重要应用之一。

二、基本电路1. 电阻电路:电阻是最基本的电路元件之一,常用于限制电流、调节电压和波形、分压等。

常见的电阻电路包括电压分压电路、电流分压电路、电阻网络等。

2. 电容电路:电容是能存储电荷的元件,常用于滤波、积分、微分等。

常见的电容电路包括RC电路、LC电路、多级滤波器等。

3. 电感电路:电感是储存能量的元件,常用于振荡器、磁耦合放大器等。

常见的电感电路包括RLC电路、振荡电路、滤波器等。

4. 滤波器电路:滤波器是用于选择特定频率范围内的信号的电路,常用于滤除杂散信号、提取特定频率成分等。

常见的滤波器包括低通滤波器、高通滤波器、带通滤波器、陷波滤波器等。

5. 放大器电路:放大器是用于放大电压、电流信号的电路,常用于信号调理、传感器信号放大、运算放大器电路等。

常见的放大器电路包括运算放大器电路、放大器电路、多级放大器电路等。

6. 混频器电路:混频器是用于将两路信号进行混频得到中频信号的电路,常用于调频收音机、超外差接收机等。

常见的混频器电路包括倍频器电路、调频接收机电路、超外差接收机电路等。

7. 调制解调电路:调制解调电路是用于调制解调信号的电路,常用于调制解调的通信系统、调幅收音机、调频收音机等。

模电基础知识总结

模电基础知识总结

模电基础知识总结导言模拟电子技术(Analog Electronics)是电子学的一个重要分支,包括分析和设计各种电子电路,以便于对在电子系统中表现为连续值的信号进行处理。

模拟电子技术是电子技术的核心内容之一,广泛应用于各种电子系统中。

本文将对模拟电子技术的基础知识进行总结。

电路基础电压、电流与电阻•电压:电荷的偏移量,单位为伏特(V)。

•电流:电荷单位时间通过导体的速度,单位为安培(A)。

•电阻:导体抵抗电流的能力,单位为欧姆(Ω)。

电路定律•欧姆定律: $ V = IR $•基尔霍夫定律:–基尔霍夫电压定律:节点电压之和为零。

–基尔霍夫电流定律:分支电流之和为零。

放大器放大器概述放大器是一种电子电路,用于增加信号的幅度。

放大器可以分为电压放大器、电流放大器和功率放大器等类型。

放大器特性•增益(Gain):输出信号幅度与输入信号幅度的比值。

•带宽(Bandwidth):放大器能够放大信号的频率范围。

•输入/输出阻抗:放大器的输入和输出接口的阻抗匹配对信号传输至关重要。

滤波器滤波器概述滤波器是一种能够选择特定频率信号的电路。

常见的滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

滤波器设计•利用电容和电感可以设计无源RC和RL滤波器。

•主动滤波器使用放大器来增强滤波效果。

•数字滤波器基于离散时间信号进行设计。

零件及器件二极管与晶体管•二极管:具有单向导电特性,用于整流和电压调节。

•晶体管:根据不同类型(NPN/PNP),可作为放大器、开关或振荡器使用。

集成电路•集成电路(IC):将多个电子元器件集合在一起形成的整体,方便应用到复杂的电路中。

结论本文对模拟电子技术领域的基础知识进行了总结,涵盖了电路基础、放大器、滤波器和常见零部件等内容。

这些基础知识是深入理解模拟电子技术的关键,也是进行电路设计和分析的基石。

希望读者通过本文的学习,能够对模拟电子技术有更深入的了解。

以上是本文对模拟电子基础知识的总结,希望对您有所帮助。

模电知识点总结专升本

模电知识点总结专升本

模电知识点总结专升本一、基本概念与原理模拟电子技术定义:模拟电子技术是指用电子器件制作的用来处理、传输、采集模拟信号的技术。

模拟信号与数字信号:模拟信号是连续变化的信号,可以用连续的函数来表示;数字信号是非连续的信号,只能取有限个值,用数值来表示。

信号的幅频特性:信号的幅频特性是指信号在传输过程中的幅度与频率的关系。

二、基本器件与电路二极管:具有非线性特性的电子器件,主要用于整流、放大、开关等电路中。

晶体管:可以放大电信号的器件,种类有NPN型和PNP 型两种,广泛应用于放大、开关、振荡电路中。

电容器:储存电荷的器件,主要用于滤波、耦合、定时等电路中。

变压器:变换交流电压的器件,主要用于功率增益、隔离等电路中。

三、半导体基础知识本征半导体:完全纯净的,没有杂质的半导体,具有较弱的导电能力且易受温度影响。

n型半导体与p型半导体:在本征半导体中插入不同元素形成的半导体类型,具有不同的载流子特性。

PN结:将p型半导体与n型半导体制作在同一片硅片上形成的结构,是半导体二极管的基础。

四、放大电路与反馈放大器基本原理:放大器用于放大信号的幅度,是模拟电子技术中的重要器件。

反馈电路概念及应用:反馈是将放大电路中的输出量(电流或电压)的一部分或全部通过一定方式作用到输入回路以影响放大电路输入量的过程。

反馈的类型包括电压串联负反馈、电流串联负反馈、电压并联负反馈和电流并联负反馈,用于减小非线性失真和噪声。

五、滤波器有源滤波器与无源滤波器的区别:有源滤波器由集成运放和R、C 组成,具有不用电感、体积小、重量轻等优点;而无源滤波器则主要由无源元件R、L和C组成。

六、其他重要概念与定理戴维南定理:一个含独立源、线性电阻和受控源的二端电路,对其两个端子来说都可等效为一个理想电压源串联内阻的模型。

这些知识点是模电专升本考试中的重要内容,理解和掌握这些知识点对于成功应对考试和深入学习模拟电子技术都至关重要。

同时,也要注意结合实际应用和实践经验,加深对知识点的理解和应用能力。

模电知识点复习总结

模电知识点复习总结

模电知识点复习总结模拟电子技术(模电)是电子工程中的重要基础学科之一,主要研究电路中的电压、电流以及能量的传输和转换。

下面是我对模电知识点的复习总结:一.基础知识1.电路基本定律:欧姆定律、基尔霍夫定律、电压分压定律、电流分流定律、功率定律。

2.信号描述与频域分析:时间域与频域的关系。

傅里叶级数和傅里叶变换的基本概念和应用。

3.理想放大器:增益、输入/输出电阻、输入/输出阻抗的概念和计算方法。

4.放大器基本电路:共射、共集、共基放大器的特点、电路结构和工作原理。

二.放大器设计1.放大器的参数:增益、输入/输出电阻、输入/输出阻抗。

2.放大器的稳定性:稳态稳定性和瞬态稳定性。

3.放大器的频率响应:截止频率、增益带宽积、输入/输出阻抗对频率的影响。

4.放大器的非线性失真:交趾略失真、交调失真、互调失真等。

5.放大电路的优化设计:负反馈、输入/输出阻抗匹配、增益平衡等。

三.运算放大器1.运算放大器的基本性质:增益、输入阻抗、输出阻抗、共模抑制比。

2.电压放大器:非反转放大器、反转放大器、仪表放大器、差分放大器。

3.运算放大器的应用电路:比较器、积分器、微分器、换相器、限幅器等。

4.运算放大器的非线性失真:输入失真、输出失真、交调失真等。

四.双向可调电源1.双向可调电源的基本原理:输入电压、输出电压和控制信号之间的关系。

2.双向可调电源的电路结构:移相电路、比较器、反相放大器、输出级等。

3.双向可调电源的控制方式:串行控制和并行控制。

五.滤波器设计1.常见滤波器类型:低通、高通、带通和带阻滤波器。

2.滤波器的频率响应特性:通频带、截止频率、衰减量。

3.滤波器的传输函数:频率选择特性、阶数选择。

4.滤波器的实现方法:RC、RL、LC和电子管等。

六.可控器件1.二极管:理想二极管模型、二极管的非理想特性、二极管的应用。

2.可控硅:双向可控硅、单向可控硅、可控硅的触发电路和应用。

3.功率晶体管:NPN、PNP型功率晶体管的特性参数、功率放大电路设计。

模电基础知识总结

模电基础知识总结

模电基础知识总结引言模拟电子技术(模电)是电子工程学科中的重要分支,主要研究电子电路中与连续信号相关的基本原理和技术。

模电技术广泛应用于各个领域,如通信、电力、医疗等。

本文将总结模电基础知识,包括基本概念、电路分析方法和重要定理等内容。

基本概念在正式学习模电之前,我们需要了解一些基本概念。

1. 电压和电流电压是指电荷在电路中移动时所产生的电势差,用单位伏特(V)表示。

而电流则是电荷在单位时间内通过某一点的数量,用单位安培(A)表示。

2. 电阻、电容和电感电阻(R)是指电路中抵抗电流流动的能力,其单位是欧姆(Ω)。

电容(C)是指电路中存储电荷的能力,其单位是法拉(F)。

电感(L)是指电路中储存磁能的元件,其单位是亨利(H)。

3. 信号与连续信号信号是指传递信息的载体,可以是电压、电流等形式。

连续信号是指在每个时间点上都有意义的信号,可以用连续函数表示。

电路分析方法为了能够分析和设计电路,我们需要掌握一些常用的电路分析方法。

1. 基尔霍夫定律基尔霍夫定律(KVL和KCL)是电路分析的基础。

KVL(基尔霍夫电压定律)指出沿着闭合回路的电压之和为零;KCL(基尔霍夫电流定律)指出进入和离开节点的电流之和为零。

2. 戴维南定理和诺尔顿定理戴维南定理指出任意线性电路都可以用一个等效电流源和一个等效电阻串联来代替;诺尔顿定理则指出任意线性电路都可以用一个等效电压源和一个等效电阻并联来替代。

3. 放大电路分析放大电路是模电中的重要内容,常见的放大电路有共射放大电路、共集放大电路和共基放大电路。

放大电路的分析主要包括电压增益、输入阻抗和输出阻抗等指标的计算。

重要定理除了上述的基本概念和电路分析方法,模电中还有一些重要的定理。

1. 超定定理超定定理指出当电路中的支路数目大于节点数目时,电路必有一个支路电流为零。

2. 麦克斯韦定理麦克斯韦定理是模电中的重要定理之一,它指出在电路中两点之间的总电势差等于通过该两点的环路电压之和。

(完整版)模拟电子技术(模电)部分概念和公式总结

(完整版)模拟电子技术(模电)部分概念和公式总结

(完整版)模拟电⼦技术(模电)部分概念和公式总结1、半导体:导电性能介于导体和绝缘体之间的物质。

特性:热敏性、光敏性、掺杂性。

2、本征半导体:完全纯净的具有晶体结构完整的半导体。

3、在纯净半导体中掺⼊三价杂质元素,形成P型半导体,空⽳为多⼦,电⼦为少⼦。

4、在纯净半导体中掺⼊五价杂质元素,形成N型半导体,电⼦为多⼦、空⽳为少⼦。

5、⼆极管的正向电流是由多数载流⼦的扩散运动形成的,⽽反向电流则是由少⼦的漂移运动形成的。

6、硅管Uo n和Ube:0.5V和0.7V ;锗管约为0.1V和0.3V。

7、稳压管是⼯作在反向击穿状态的:①加正向电压时,相当正向导通的⼆极管。

(压降为0.7V,)②加反向电压时截⽌,相当断开。

③加反向电压并击穿(即满⾜U﹥U Z)时便稳压为U Z。

8、⼆极管主要⽤途:开关、整流、稳压、限幅、继流、检波、隔离(门电路)等。

9、三极管的三个区:放⼤区、截⽌区、饱和区。

三种状态:⼯作状态、截⽌状态、饱和状态,放⼤时在放⼤状态,开关时在截⽌、饱和状态。

三个极:基极B、发射极E和集电极C。

⼆个结:即发射结和集电结。

饱和时:两个结都正偏;截⽌时:两个结都反偏;放⼤时:发射结正偏,集电结反偏。

三极管具有电流电压放⼤作⽤.其电流放⼤倍数β=I C / I B (或I C=β IB)和开关作⽤.10、当输⼊信号I i很微弱时,三极管可⽤H参数模型代替(也叫微变电路等效电路)。

11、失真有三种情况:⑴截⽌失真原因I B、I C太⼩,Q点过低,使输出波形正半周失真。

调⼩R B,以增⼤I B、I C,使Q点上移。

⑵饱和失真原因I B、I C太⼤,Q点过⾼,使输出波形负半周失真。

调⼤R B,以减⼩I B、I C,使Q点下移。

⑶信号源U S过⼤⽽引起输出的正负波形都失真,消除办法是调⼩信号源。

1、放⼤电路有共射、共集、共基三种基本组态。

(固定偏置电路、分压式偏置电路的输⼊输出公共端是发射极,故称共发射极电路)。

(完整版)模电知识总结

(完整版)模电知识总结

第一部分半导体的基本知识二极管、三极管的结构、特性及主要参数;掌握饱和、放大、截止的基本概念和条件。

1、导体导电和本征半导体导电的区别:导体导电只有一种载流子:自由电子导电半导体导电有两种载流子:自由电子和空穴均参与导电自由电子和空穴成对出现,数目相等,所带电荷极性不同,故运动方向相反。

2、本征半导体的导电性很差,但与环境温度密切相关。

3、杂质半导体(1)N型半导体——掺入五价元素(2)P型半导体——掺入三价元素4、PN结——P型半导体和N型半导体的交界面在交界面处两种载流子的浓度差很大;空间电荷区又称为耗尽层反向电压超过一定值时,就会反向击穿,称之为反向击穿电压5、PN结的单向导电性——外加电压正向偏置反向偏置6、二极管的结构、特性及主要参数(1)P区引出的电极——阳极;N区引出的电极——阴极温度升高时,二极管的正向特性曲线将左移,反向特性曲线下移。

二极管的特性对温度很敏感。

其中,Is为反向电流,Uon为开启电压,硅的开启电压——0.5V,导通电压为0.6~0.8V,反向饱和电流<0.1μA,锗的开启电压——0.1V,导通电压为0.1~0.3V,反向饱和电流几十μA。

(2)主要参数1)最大整流电流I:最大正向平均电流2)最高反向工作电流U:允许外加的最大反向电流,通常为击穿电压U的一半3)反向电流I:二极管未击穿时的反向电流,其值越小,二极管的单向导电性越好,对温度越敏感4)最高工作频率f:二极管工作的上限频率,超过此值二极管不能很好的体现单向导电性7、稳压二极管在反向击穿时在一定的电流范围内(或在一定的功率耗损范围内),端电压几乎不变,表现出稳压特性,广泛应用于稳压电源和限幅电路中。

(1)稳压管的伏安特性(2)主要参数1)稳定电压U:规定电流下稳压管的反向击穿电压2)稳定电流I:稳压管工作在稳定状态时的参考电流。

电流低于此值时稳压效果变坏,甚至根本不稳压,只要不超过稳压管的额定功率,电流越大稳压效果越好。

基本模电知识点总结

基本模电知识点总结

基本模电知识点总结模拟电子技术(Analog Electronics)是电子科学的分支之一,主要研究和应用模拟信号的处理和传输技术。

模电技术是电子工程领域的一个重要部分,涉及到模拟电路设计、分析、测试和应用等方面。

下面将从模拟电路的基本概念、模拟信号的特点、基本模拟电路及其应用、模电技术的发展趋势等方面,对模拟电子技术的基本知识点进行总结。

一、基本模拟电路概念1. 模拟电路的定义模拟电路是指用电子元件组成,能够对模拟信号进行处理、传输、放大和滤波的电路系统。

模拟电路主要处理和传输模拟信号,它可以对连续变化的信号进行处理、放大、滤波、调节和合成,通常用于模拟信号处理、数据采集和控制系统等领域。

2. 模拟信号和数字信号模拟信号是一种连续变化的信号,它的数值可以在一定范围内连续变化,而数字信号是一种离散的信号,它的数值只能取有限个值。

模拟信号在传输和处理过程中受到噪声和失真的影响较大,而数字信号在传输和处理过程中不易受到噪声和失真的影响,因此数字信号在信息处理和通信系统中得到了广泛的应用。

模拟信号与数字信号是模拟电路和数字电路的基本处理对象,它们在现代电子技术中有着重要的地位和作用。

3. 模拟电路的分类根据信号类型和处理功能的不同,模拟电路可以分为放大电路、滤波电路、调节电路、混频电路、示波器电路等。

放大电路是一种可以对输入信号进行放大处理的电路系统,它可以将微弱的信号放大到可观的程度,并保持信号的形状和频率特性不变。

滤波电路是一种可以对输入信号进行滤波处理的电路系统,它可以滤除不需要的频率成分,使目标信号成为滤波后的输出。

调节电路是一种可以对输入信号进行调节处理的电路系统,它可以对信号的幅度、相位、频率和波形进行调节,以满足特定的系统要求。

混频电路是一种可以对两个或多个输入信号进行混频处理的电路系统,它可以实现不同频率信号的频率变换和幅度调制。

示波器电路是一种可以对输入信号进行显示和测量的电路系统,它可以显示输入信号的波形和测量信号的频率、幅度和相位等参数。

电子技术模拟电路知识点总结

电子技术模拟电路知识点总结

电子技术模拟电路知识点总结一、模拟电路基础概念模拟电路处理的是连续变化的信号,与数字电路处理的离散信号不同。

在模拟电路中,电压和电流可以在一定范围内取任意值。

这是理解模拟电路的关键起点。

二、半导体器件1、二极管二极管是最简单的半导体器件之一,具有单向导电性。

当正向偏置时,电流容易通过;反向偏置时,电流极小。

二极管常用于整流电路,将交流转换为直流。

2、三极管三极管分为 NPN 型和 PNP 型。

它具有放大电流的作用,通过控制基极电流,可以实现对集电极电流的控制。

三极管在放大电路中应用广泛。

3、场效应管场效应管分为结型和绝缘栅型。

它是电压控制型器件,输入电阻高,噪声小,常用于集成电路中。

三、基本放大电路1、共射放大电路共射放大电路具有较大的电压放大倍数和电流放大倍数,但输入电阻较小,输出电阻较大。

2、共集放大电路共集放大电路又称射极跟随器,电压放大倍数接近 1,但输入电阻高,输出电阻小,具有良好的跟随特性。

3、共基放大电路共基放大电路具有较高的频率响应和较好的高频特性。

四、集成运算放大器集成运算放大器是一种高增益、高输入电阻、低输出电阻的直接耦合放大器。

1、理想运算放大器特性具有“虚短”和“虚断”的特点。

“虚短”指两输入端电位近似相等,“虚断”指两输入端电流近似为零。

2、运算放大器的应用包括比例运算电路、加法运算电路、减法运算电路、积分运算电路和微分运算电路等。

五、反馈电路反馈可以改善放大器的性能。

1、正反馈和负反馈正反馈会使系统不稳定,但在某些特定情况下,如正弦波振荡器中会用到。

负反馈能稳定放大倍数、改善频率特性等。

2、四种反馈组态电压串联负反馈、电压并联负反馈、电流串联负反馈和电流并联负反馈,它们对电路性能的影响各不相同。

六、功率放大电路功率放大电路的主要任务是向负载提供足够大的功率。

1、甲类、乙类和甲乙类功率放大电路甲类功放效率低,但失真小;乙类功放效率高,但存在交越失真;甲乙类功放则是介于两者之间。

模电知识点总结pdf手写

模电知识点总结pdf手写

模电知识点总结pdf手写模电知识点总结PDF手写一、引言模拟电子技术(模电)作为电子工程中的一个重要分支领域,是电子技术中的基础知识之一。

它主要研究电子电路中的模拟信号的处理与传输,包括模拟电路的设计、分析与测试等内容。

对于学习和掌握模电知识,一个全面的知识点总结是必不可少的。

本文将结合PDF手写的方式,对模电知识点进行总结,具体内容如下。

二、基本概念与基础知识1.模拟电路与数字电路的区别:模拟电路处理的是连续的模拟信号,数字电路处理的是离散的数字信号。

2.模拟电路的基本组成:电源、信号处理元件(如电容、电感、二极管等)、放大器、滤波器等。

3.基本电路元件的特性:电阻、电容、电感的特性参数及相关计算方法。

4.电路分析方法:基尔霍夫定律、戴维南定理、超节点定理、等效电路等。

三、放大器设计与分析1.放大器的基本概念:放大器用于增大信号的幅度,常见的放大器有共射极放大器、共集极放大器、共基极放大器等。

2.放大器的频率特性:通频带、增益带宽积、低频响应、高频响应等。

3.放大器参数的计算方法:增益、输入阻抗、输出阻抗等。

4.放大器的稳定性分析:极点与零点分布、稳定性判据、稳定性设计等。

四、滤波器设计与分析1.滤波器的基本概念:滤波器用于对信号进行滤波,常见的滤波器有低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。

2.滤波器的频率响应特性:频率响应曲线、通频带、阻带、滤波器的增益等。

3.滤波器的设计方法:积分法、微分法、频率转换法、电流増强法等。

4.滤波器的实际应用:音频滤波器、图像滤波器、通信系统中的滤波器等。

五、运算放大器1.运算放大器的基本概念与模型:运算放大器的输入端、输出端、电源端及运算放大器的非理想性。

2.运算放大器的基本运算电路:比较电路、求和电路、积分电路、微分电路等。

3.运算放大器的常用应用电路:反馈放大器、积分放大器、微分放大器等。

4.运算放大器的理想运算:虚短法、虚断法、理想运算法、实际运算法等方法。

模电知识点总结

模电知识点总结

模电知识点总结第一篇:模电知识点总结第一章绪论1.掌握放大电路的主要性能指标:输入电阻,输出电阻,增益,频率响应,非线性失真2.根据增益,放大电路有那些分类:电压放大,电流放大,互阻放大,互导放大第二章预算放大器1.集成运放适合于放大差模信号2.判断集成运放2个输入端虚短虚断如:在运算电路中,集成运放的反相输入端是否均为虚地。

3.运放组成的运算电路一般均引入负反馈4.当集成运放工作在非线性区时,输出电压不是高电平,就是低电平。

5.根据输入输出表达式判断电路种类同相:两输入端电压大小接近相等,相位相等。

反相:虚地。

第三章二极管及其基本电路1.二极管最主要的特征:单向导电性2.半导体二极管按其结构的不同,分为面接触型和点接触型3.面接触型用于整流。

点接触型用于高频电路和数字电路4.杂质半导体中少数载流子浓度只与温度有关5.掺杂半导体中多数载流子主要来源于掺杂6.在常温下硅二极管的开启电压为0.5伏,锗二极管的开启电压为0.1伏7.硅二极管管压降0.7伏,锗二极管管压降0.2伏8.PN结的电容效应是势垒电容,扩散电容9.PN结加电压时,空间电荷区的变化情况正向电压:外电场将多数载流子推向空间电荷区,使其变窄,削弱内电场,扩散加剧反向电压:外电场使空间电荷区变宽,加强内电场,阻止扩散运动进行10.当PN结处于正向偏置时,扩散电容大.当PN结反向偏置时,势垒电容大11.稳压二极管稳压时,工作在反向击穿区.发光二极管发光时,工作在正向导通区 12.稳压管称为齐纳二极管13.光电二极管是将光信号转换为电信号的器件,它在PN结反向偏置状态下运行,反向电压下进行,反向电流随光照强度的增加而上升14.如何用万用表测量二极管的阴阳极和判断二极管的质量优劣?用万用表的欧姆档测量二极管的电阻,记录下数值,然后交换表笔在测量一次,记录下来.两个结果,应一大一小,读数小的那次,黑表笔接的是阳极,红表笔接的是阴极.这个读数相差越多,二极管的质量越好.当两个读数都趋于无穷大时,二极管断路.当两个读数都趋于零时,二极管短路第四章双极结型三极管及放大电路1.半导体三极管又称双极结型三极管,简称BJT是放大器的核心器件2.采用微变等效电路求放大电路在小信号运用时,动态特性参数3.晶体三极管可以工作在: 放大区,发射结正偏,集电极反偏饱和区,发射结集电极正偏截止区,发射结集电极反偏4.NPN,PNP,硅锗管的判断5.工作在放大区的三极管,若当Ib以12μA增大到22μA时,Ic 从1mA变为2mA,β约为1006.直流偏置电路的作用是给放大电路设置一个合适的静态工作点,若工作点选的太高——饱和失真。

模拟电子技术概念总结

模拟电子技术概念总结

模拟电子技术概念总结篇一:模拟电子技术基础_知识点总结第一章半导体二极管1.本征半导体?单质半导体材料是具有4价共价键晶体结构的硅Si和锗Ge。

?导电能力介于导体和绝缘体之间。

?特性:光敏、热敏和掺杂特性。

?本征半导体:纯净的、具有完整晶体结构的半导体。

在一定的温度下,本征半导体内的最重要的物理现象是本征激发(又称热激发),产生两种带电性质相反的载流子(空穴和自由电子对),温度越高,本征激发越强。

?空穴是半导体中的一种等效+q的载流子。

空穴导电的本质是价电子依次填补本征晶体中空位,使局部显示+q电荷的空位宏观定向运动。

?在一定的温度下,自由电子和空穴在热运动中相遇,使一对自由电子和空穴消失的现象称为复合。

当热激发和复合相等时,称为载流子处于动态平衡状态。

2.杂质半导体?在本征半导体中掺入微量杂质形成的半导体。

体现的是半导体的掺杂特性。

?P型半导体:在本征半导体中掺入微量的3价元素(多子是空穴,少子是电子)。

?n型半导体:在本征半导体中掺入微量的5价元素(多子是电子,少子是空穴)。

?杂质半导体的特性?载流子的浓度:多子浓度决定于杂质浓度,几乎与温度无关;少子浓度是温度的敏感函数。

?体电阻:通常把杂质半导体自身的电阻称为体电阻。

?在半导体中,存在因电场作用产生的载流子漂移电流(与金属导电一致),还才能在因载流子浓度差而产生的扩散电流。

3.Pn结?在具有完整晶格的P型和n型半导体的物理界面附近,形成一个特殊的薄层(Pn结)。

?Pn结中存在由n区指向P区的内建电场,阻止结外两区的多子的扩散,有利于少子的漂移。

?Pn结具有单向导电性:正偏导通,反偏截止,是构成半导体器件的核心元件。

?正偏Pn结(P+,n-):具有随电压指数增大的电流,硅材料约为0.6-0.8V,锗材料约为0.2-0.3V。

?反偏Pn结(P-,n+):在击穿前,只有很小的反向饱和电流is。

?Pn结的伏安(曲线)方程:4.半导体二极管?普通的二极管内芯片就是一个Pn结,P区引出正电极,n区引出负电极。

模拟电子技术基础中常用公式

模拟电子技术基础中常用公式

模拟电子技术基础中的常用公式7.1 半导体器件基础GS0101 由理论分析可知,二极管的伏安特性可近似用下面的数学表达式来表示: )1()(-=T DV u sat R D e I i式中,i D 为流过二极管的电流,u D 。

为加在二极管两端的电压,V T 称为温度的电压当量,与热力学温度成正比,表示为V T = kT/q 其中T 为热力学温度,单位是K ;q 是电子的电荷量,q=1.602×10-19C ;k 为玻耳兹曼常数,k = 1.381×10-23 J /K 。

室温下,可求得V T = 26mV 。

I R(sat)是二极管的反向饱和电流。

GS0102 直流等效电阻R D直流电阻定义为加在二极管两端的直流电压U D 与流过二极管的直流电流I D 之比,即 DD D I U R = R D 的大小与二极管的工作点有关。

通常用万用表测出来的二极管电阻即直流电阻。

不过应注意的是,使用不同的欧姆档测出来的直流等效电阻不同。

其原因是二极管工作点的位置不同。

一般二极管的正向直流电阻在几十欧姆到几千欧姆之间,反向直流电阻在几十千欧姆到几百千欧姆之间。

正反向直流电阻差距越大,二极管的单向导电性能越好。

GS0103 交流等效电阻r d Q DD d di du r )(= r d 亦随工作点而变化,是非线性电阻。

通常,二极管的交流正向电阻在几~几十欧姆之间。

需要指出的是,由于制造工艺的限制,即使是同类型号的二极管,其参数的分散性很大。

通常半导体手册上给出的参数都是在一定测试条件下测出的,使用时应注意条件。

GS0104 I Zmin <Iz <I Zmax其中稳定电流I Z 是指稳压管正常工作时的参考电流。

I Z 通常在最小稳定电流I Zmin 与最大稳定电流I Zmax 之间。

其中I Zmin 是指稳压管开始起稳压作用时的最小电流,电流低于此值时,稳压效果差;I Zmax 是指稳压管稳定工作时的最大允许电流,超过此电流时,只要超过额定功耗,稳压管将发生永久性击穿。

模电常用公式

模电常用公式
模拟电路 常用公式
第一章
iD I S (e 1)
vD VT
第二章
I E I B IC
IC I B
IC I E
第二章 共射电路
26( mV ) rbe 300() (1 ) I EQ ( mA)
Vo RL Av Vi rbe
Ri Vi Ii RB // Ri RB // rbe
2
gm
2I DQ VGSQ Vth
第三章 共源放大电路
AV gm Rd
rgs=∞
Ro Rd
第三章 共栅放大电路
Av gm ( RD // RL )
1 Ris gm
Ri Rss // Ris Ro Rod // RD RD
第四章 放大电路的频率响应
f (1 o ) f fT fT
fT 0 f
f fT f
第四章 放大电路的频率响应
gm ICQ VT
gm Cb'e Cb'c 2 fT
CM (1 gm RL' )Cb'c
CM ' [1 1/ ( gm RL' )]Cb'c Cb'c
第四章 放大电路的频率响应
1 1 1 1 1 1.1 2 2 2 ... 2 fH fH1 fH 2 fH 3 f Hm
Ro Rc
第二章 功放
1 Vom 2 Po 2 RL
PDC Vom Vcc RL 2

Vom
4 VCC

第三章 场效应管
kp W iD (vGS VGS ( th) )2 2 L

模电期末总结

模电期末总结

模电期末总结一、引言模拟电子技术(简称模电)是电子工程中的一门基础课程,主要涉及电路的基本原理和分析方法。

在本学期的模电课程中,我们通过学习电路理论、实验操作和综合设计等多个方面,逐渐掌握了模电的基本知识和技能。

期末考试是对我们整个学期所学内容的总结和检验,本文旨在总结本学期所学的模电知识,回顾学习过程中的收获与不足,并对今后的学习和应用做出一些思考。

二、学习内容回顾1.电路基本概念与元件特性在模电课程的起始部分,我们学习了电路基本概念和元器件的特性。

电路是指由导线、电源和元器件等组成的连接关系形成的路径。

元器件包括电阻、电容和电感等,它们对电路的性质有着重要影响。

2.基本电路理论在学习了基本概念后,我们进一步学习了电路的基本理论,包括欧姆定律、基尔霍夫定律和电路的等效原理等。

这些理论为我们分析和解决电路问题提供了基础。

3.放大电路放大电路是模电课程的重点内容之一,我们学习了放大电路的基本理论和设计方法,例如共射放大器、共集放大器和共基放大器等。

通过这些学习,我们理解了放大电路的工作原理和特点。

4.反馈电路反馈电路是模电课程的另一个重要内容,我们学习了反馈电路的基本理论和分类。

反馈电路能够改变电路的性能和特性,通过学习反馈电路,我们能够更好地理解和掌握电路的控制和调节。

5.运算放大器运算放大器是模电课程的核心内容之一,它是一个非常重要且应用广泛的电子元件。

我们学习了运放的基本特性、运算放大器的基本运算电路和运放的频率响应等。

通过学习运算放大器,我们能够更好地进行电路设计和分析。

三、学习方法总结在整个学期的学习过程中,我总结了几种有效的学习方法,以提高学习效果和学习能力。

1.系统化学习模电是一门知识系统庞大的课程,学习者需要系统化地学习和掌握。

我通过查阅教材、参考资料和相关论文,建立了一个完整的知识框架,将各个知识点有机地串联起来,形成了自己的学习系统。

2.理论与实践相结合模电这门课程注重实践操作,理论只是工具,真正的学习在于实践。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、半导体:导电性能介于导体和绝缘体之间的物质。

特性:热敏性、光敏性、掺杂性。

2、本征半导体:完全纯净的具有晶体结构完整的半导体。

3、在纯净半导体中掺入三价杂质元素,形成P型半导体,空穴为多子,电子为少子。

4、在纯净半导体中掺入五价杂质元素,形成N型半导体,电子为多子、空穴为少子。

5、二极管的正向电流是由多数载流子的扩散运动形成的,而反向电流则是由少子的漂移运动形成的。

6、硅管Uo n和Ube:0.5V和0.7V ;锗管约为0.1V和0.3V。

7、稳压管是工作在反向击穿状态的:①加正向电压时,相当正向导通的二极管。

(压降为0.7V,)②加反向电压时截止,相当断开。

③加反向电压并击穿(即满足U﹥U Z)时便稳压为U Z。

8、二极管主要用途:开关、整流、稳压、限幅、继流、检波、隔离(门电路)等。

9、三极管的三个区:放大区、截止区、饱和区。

三种状态:工作状态、截止状态、饱和状态,放大时在放大状态,开关时在截止、饱和状态。

三个极:基极B、发射极E和集电极C。

二个结:即发射结和集电结。

饱和时:两个结都正偏;截止时:两个结都反偏;放大时:发射结正偏,集电结反偏。

三极管具有电流电压放大作用.其电流放大倍数β=I C / I B (或I C=β I B)和开关作用.10、当输入信号I i很微弱时,三极管可用H参数模型代替(也叫微变电路等效电路)。

11、失真有三种情况:⑴截止失真原因I B、I C太小,Q点过低,使输出波形正半周失真。

调小R B,以增大I B、I C,使Q点上移。

⑵饱和失真原因I B、I C太大,Q点过高,使输出波形负半周失真。

调大R B,以减小I B、I C,使Q点下移。

⑶信号源U S过大而引起输出的正负波形都失真,消除办法是调小信号源。

1、放大电路有共射、共集、共基三种基本组态。

(固定偏置电路、分压式偏置电路的输入输出公共端是发射极,故称共发射极电路)。

共射电路的输出电压U0与输入电压U I反相,所以又称反相器。

共集电路的输出电压U0与输入电压U I同相,所以又称同相器。

2、差模输入电压U id=U i1-U i2指两个大小相等,相位相反的输入电压。

(是待放大的信号)共模输入电压U iC= U i1=U i2指两个大小相等,相位相同的输入电压。

(是干扰信号)差模输出电压U0d 是指在U id作用下的输出电压。

共模输出电压U0C是指在U iC作用下的输出电压。

差模电压放大倍数A ud= U0d / /U id是指差模输出与输入电压的比值。

共模放大倍数A uc =U0C /U iC是指共模输出与输入电压的比值。

(电路完全对称时A uc =0)共模抑制比K CRM=A ud /A uc是指差模共模放大倍数的比,电路越对称K CRM越大,电路的抑制能力越强。

3、差分电路对差模输入信号有放大作用,对共模输入信号有抑制作用,即差分电路的用途:用于直接耦合放大器中抑制零点漂移。

(即以达到U I =0,U0=0的目的)4、电压放大器的主要指标是电压放大倍数A U和输入输出电阻R i ,R0 。

功率放大器的主要指标要求是(1)输出功率大,且不失真;(2)效率要高,管耗要小,所以功率放大电路通常工作在甲乙类(或乙类)工作状态,同时为减小失真,采用乙类互补对称电路。

为减小交越失真采用甲乙类互补对称电路。

5、多级放大电路的耦合方式有:直接耦合:既可以放大交流信号,也可以放大直流信号或缓慢变化的交流信号;耦合过程无损耗。

常用于集成电路。

但各级工作点互相牵连,会产生零点漂移。

阻容耦合:最大的优点是各级工作点互相独立,但只能放大交流信号。

耦合过程有损耗,不利于集成。

变压器耦合:与阻容耦合优缺点同,已少用。

1、射极输出器特点:如图F-a(为共集电路,又称同相器、跟随器)①电压放大倍数小于近似于1,U O与U i同相。

②输入电阻很大。

③输出电阻很小,所以带负载能力强。

反馈是指将输出信号的一部分或全部通过一定的方式回送到输入端。

1、反馈有正反馈(应用于振荡电路)和负反馈(应用于放大电路)之分。

2、反馈有直流反馈,其作用:稳定静态工作点。

有交流反馈,其作用:改善放大器性能。

包括:①提高电压放大倍数的稳定度;②扩展通频带;③减小非线性失真;④改善输入输出电路。

3、反馈放大电路的基本关系式:A f=A /(1+AF),其(1+AF)称反馈深度,当(1+AF)远远大于是1时为深度负反馈,其A f=1/ F,即负反馈后的放大倍数大大下降,且仅由反馈网络参数就可求放大倍数,而与运放器内部参数无关。

4、负反馈有四种类型:电压串联负反馈;电压反馈可减小输出电阻,从而稳定输出电压。

电压并联负反馈;电流串联负反馈;电流反馈可增大输出电阻,从而稳定输出电流。

电流并联负反馈。

串联反馈可增大输入电阻。

并联反馈可减小输入电阻。

5、对集成运算放大器反馈类型的经验判断方法是:当反馈元件(或网络)搭回到反相输入端为负反馈;搭回到同相输入端为正反馈。

当反馈元件(或网络)搭回到输入端为并联反馈,搭回到输入端的另一端为串联反馈。

当反馈元件(或网络)搭在输出端为电压反馈,否则为电流反馈。

而一般的判断方法:若反馈信号使净输入减少,为负反馈,反之为正反馈。

(用瞬时极性判断)若满足Ui=Uid+Uf 为串联反馈,满足Ii=Iid+If为并联反馈。

若反馈信号正比输出电压,为电压反馈,反馈信号正比输出电流,为电流反馈。

(A)(B)如(A)图,经验判断:反馈元件搭回到反相输入端,所以是负反馈;反馈元件搭回到输入端,所以是并联反馈;反馈元件搭在输出端,所以是电压反馈,所以图是电压并联负反馈。

如(B)图,由瞬时极性判得电路有两级的电流并联负反馈。

反馈元件为Rf(因Rf搭在输入端,所以是并联,但不是搭在输出端,所以是电流反馈,即If是正比于输出电流IC2)A、半波整流:U0=0.45U2 (U2为输入电压的有效值)B、半波整流滤波:U0= U2C、桥式整流:U0=0.9 U2D、桥式整流滤波:U0=1.2 U2E、桥式整流滤波:U0=1.4 U2 (空载)补充知识:三极管由两个PN结组成。

从结构看有三个区、两个结、三个极。

(参考P40)三个区:发射区——掺杂浓度很高,其作用是向基区发射电子。

基区——掺杂浓度很低,其作用是控制发射区发射的电子。

集电区——掺杂浓度较高,但面积最大,其作用是收集发射区发射的电子。

两个结:集电区——基区形成的PN结。

叫集电结。

(J C)基区——发射区形成的PN结。

叫发射结。

(J e)5、三极管的输出特性(指输出电压U CE与输出电流I C的关系特性)有三个区:①饱和区:特点是U CE﹤0.3V,无放大作用,C-E间相当闭合.其偏置条件J C, J e都正偏.②截止区:特点是U BE ≦0, I B=0, I C=0,无放大. C-E间相当断开..其偏置条件J C, J e都反偏.③放大区: 特点是U BE大于死区电压, U CE﹥1V, I C=β I B.其偏置条件J e正偏J C反偏.所以三极管有三种工作状态,即饱和状态,截止状态和放大状态,作放大用时应工作在放大状态,作开关用时应工作在截止和饱和状态.6、当输入信号I i很微弱时,三极管可用H参数模型代替(也叫微变电路等效电路)(参考图B)7、对放大电路的分析有估算法和图解法估算法是:⑴先画出直流通路(方法是将电容开路,信号源短路,剩下的部分就是直流通路),求静态工作点I BQ、I CQ、U CEQ。

⑵画交流通路,H参数小信号等效电路求电压放大倍数A U输入输出电阻R I和R0。

(参考P58图2.2.5)图解法:是在输入回路求出I B后,在输入特性作直线,得到工作点Q,读出相应的I BQ、U BEQ而在输出回路列电压方程在输出曲线作直线,得到工作点Q,读出相应的I CQ、U CEQ加入待放大信号u i从输入输出特性曲线可观察输入输出波形,。

若工作点Q点设得合适,(在放大区)则波形就不会发生失真。

(参考P52图2.2.2)8、失真有三种情况:⑴截止失真:原因是I B、I C太小,Q点过低,使输出波形后半周(正半周)失真。

消除办法是调小R B,以增大I B、I C,使Q点上移。

⑵饱和失真:原因是I B、I C太大,Q点过高,使输出波形前半周(负半周)失真。

消除办法是调大R B,以减小I B、I C,使Q点下移。

⑶信号源U S过大而引起输出的正负波形都失真,消除办法是调小信号源。

练习:1、射极输出器又称跟随器,其主要特点是电压放大倍数小于近似于1、输入电阻很大、输出电阻很小。

2、三极管放大电路主要有三种组态,分别是:共基极电路、共集电极电路、共发射极电路。

3、了解差分电路的结构特点,掌握电路的主要作用:抑制零点漂移,R E的作用及共模信号、差模信号、共模抑制比K CMR等概念。

K CMR越大,电路的抗干扰能力就强。

4、直流负反馈的作用是稳定工作点,交流负反馈的作用是改善放大器的性能:如减少非线性失真;提高电压放大倍数的稳定度;扩展通频带。

电压负反馈还可减少输出电阻、稳定输出电压;电流负反馈可以提高输出电阻、稳定输出电流;而串联负反馈可以提高输入电阻;并联负反馈可以减小输入电阻。

其1+AF称反馈深度。

5、完全纯净的具有晶体结构完整的半导体称为本征半导体,当掺入五价微量元素便形成N型半导体,其电子为多数载流子,空穴为少数载流子。

当掺入三价微量元素便形成P型半导体,其空穴为多子,而电子为少子。

二、分析计算题1.会画固定偏置电路、分压式偏置电路,射极输出器等交流放大电路的直流通路和微变等效电路。

会求静态工作点、电压放大倍数和输入输出电阻。

2..会求各种电流源的基准电流和电流I O。

3.会分析基本差分析电路,乙类功放电路工作原理。

4.会计算集成运放组成反相比例器、同相比例器,跟随器、反号器、反相加法器、减法器、积分微分器等的输出电压U0及电路特点。

5..会分析单门限比较器、画传输特性。

6 会分析由集成模拟乘法器组成的乘法、除法、平方、开方运算。

7.会分析各种整流、滤波、稳压电路及U0、I0、I D U RM的计算。

相关文档
最新文档