安徽省芜湖市2018年中考数学二模试卷

合集下载

2018届中考数学二模试卷(带答案) (22)

2018届中考数学二模试卷(带答案)  (22)

2018中考数学二模试卷一、选择题:1.下列运算正确的是()A.x3•x5=x15 B.(2x2)3=8x6C.x9÷x3=x3D.(x﹣1)2=x2﹣122.﹣|﹣3|的倒数是()A.﹣3 B.﹣C.D.33.下列事件中,必然事件是()A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角相等C.366人中至少有2人的生日相同D.实数的绝对值是非负数4.已知关于x的不等式组有且只有三个整数解,则a的取值范围是()A.﹣2≤a≤﹣1 B.﹣2≤a<﹣1 C.﹣2<a≤﹣1 D.﹣2<a<﹣15.下列图形既是轴对称图形又是中心对称图形的有()①平行四边形;②正方形;③等腰梯形;④菱形;⑤正六边形.A.1个B.2个C.3个D.4个6.如图,等边△ABC的周长为6π,半径是1的⊙O从与AB相切于点D的位置出发,在△ABC外部按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,则⊙O自转了()A.2周B.3周C.4周D.5周7.使代数式有意义的x的取值范围是()A.x≥0 B.C.x≥0且D.一切实数8.依次连接任意四边形各边的中点,得到一个特殊图形(可认为是一般四边形的性质),则这个图形一定是()A.平行四边形B.矩形 C.菱形 D.梯形9.将沿弦BC折叠,交直径AB于点D,若AD=4,DB=5,则BC的长是()A.3B.8 C. D.210.已知函数y=的图象在第一象限的一支曲线上有一点A(a,c),点B(b,c+1)在该函数图象的另外一支上,则关于一元二次方程ax2+bx+c=0的两根x1,x2判断正确的是()A.x1+x2>1,x1•x2>0B.x1+x2<0,x1•x2>0C.0<x1+x2<1,x1•x2>0D.x1+x2与x1•x2的符号都不确定二、填空题:11.已知y=x﹣1,则(x﹣y)2+(y﹣x)+1的值为.12.某班七个合作学习人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是.13.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共有了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为.14.如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则GT的长为.15.把一副三角板如图甲放置,其中AB=6,DC=7,∠ACB=∠DEC=90°,∠A=45°,∠D=30°,把三角板DCE 绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为.16.如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第10次“移位”后,则他所处顶点的编号是.三、解答题:17.先化简,再求值:(+)÷,其中x=•cot60°.18.如图,在平面直角坐标系xOy中,矩形OEFG的顶点E的坐标为(4,0),顶点G的坐标为(0,2),将矩形OEFG绕点O逆时针旋转,使点F落在y轴的点N处,得到矩形OMNP,OM与GF交于点A.(1)求图象经过点A的反比例函数的解析式;(2)设(2)中的反比例函数图象交EF于点B,直接写出直线AB的解析式.19.某校八年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:(1)求出样本容量,并补全直方图;(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的人数;(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生.现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.20.红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系如下表:未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为y1=t+25(1≤t≤20且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系式为y2=﹣t+40(21≤t≤40且t为整数).下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.21.某旅游区有一个景观奇异的望天洞,D点是洞的入口,游人从入口进洞游览后,可经山洞到达山顶的出口凉亭A处观看旅游区风景,最后坐缆车沿索道AB返回山脚下的B处.在同一平面内,若测得斜坡BD的长为100米,坡角∠DBC=10°,在B处测得A的仰角∠ABC=40°,在D处测得A的仰角∠ADF=85°,过D 点作地面BE的垂线,垂足为C.(1)求∠ADB的度数;(2)求索道AB的长.(结果保留根号)22.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.23.已知:在正方形ABCD中,AC、BD相交于点O,点E是射线AB上一点,点F是直线AD上一点,BE=DF,连结EF交线段BD于点G,交AO于点H.AB=3,AG=.(1)如图①点E在线段AB上,点F在线段AD延长线上.①求证:GE=GF;②求BE、EH的长;(2)如图②,点E在线段AB的延长线上,点F在线段AD上,请直接写出EH的长.24.如图,已知二次函数的图象过点O(0,0),A(4,0),B(2,﹣),M是OA的中点.(1)求此二次函数的解析式;(2)设P是抛物线上的一点,过P作x轴的平行线与抛物线交于另一点Q,要使四边形PQAM是菱形,求P点的坐标;(3)将抛物线在x轴下方的部分沿x轴向上翻折,得曲线OB′A(B′为B关于x轴的对称点),在原抛物线x轴的上方部分取一点C,连接CM,CM与翻折后的曲线OB′A交于点D.若△CDA的面积是△MDA面积的2倍,这样的点C是否存在?若存在求出C点的坐标,若不存在,请说明理由.参考答案与试题解析一、选择题:1.﹣|﹣3|的倒数是()A.﹣3 B.﹣C.D.3【考点】倒数;绝对值.【分析】根据负数的绝对值是它的相反数,可得绝对值表示的数,根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣|﹣3|=﹣3,﹣|﹣3|的倒数是﹣,故选:B.【点评】本题考查了倒数,先求出绝对值,再求出倒数.2.下列运算正确的是()A.x3•x5=x15 B.(2x2)3=8x6C.x9÷x3=x3D.(x﹣1)2=x2﹣12【考点】完全平方公式;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【分析】根据同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相除,底数不变指数相减;完全平方公式对各选项分析判断后利用排除法求解.【解答】解:A、x3•x5=x3+5=x8,故本选项错误;B、(2x2)3=23•x2×3=8x6,故本选项正确;C、x9÷x3=x9﹣3=x6,故本选项错误;D、(x﹣1)2=x2﹣2x+1,故本选项错误.故选B.【点评】本题考查了同底数幂的乘法,积的乘方,同底数幂的除法,以及完全平方公式,熟记性质与公式,理清指数的变化是解题的关键.3.下列事件中,必然事件是()A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角相等C.366人中至少有2人的生日相同D.实数的绝对值是非负数【考点】随机事件.【分析】根据概率、平行线的性质、负数的性质进行填空即可.【解答】解:A、抛掷1个均匀的骰子,出现6点向上的概率为,故A错误;B、两条平行线被第三条直线所截,同位角相等,故B错误;C、367人中至少有2人的生日相同,故C错误;D、实数的绝对值是非负数,故D正确;故选D.【点评】本题考查了必然事件、不可能事件、随机事件的概念.理解概念是解决这类基础题的主要方法.4.已知关于x的不等式组有且只有三个整数解,则a的取值范围是()A.﹣2≤a≤﹣1 B.﹣2≤a<﹣1 C.﹣2<a≤﹣1 D.﹣2<a<﹣1【考点】一元一次不等式组的整数解.【分析】首先解两个不等式,根据方程组只有三个整数解,即可得到一个关于a的不等式组,从而求得a的范围.【解答】解:,解①得:x>2,解②得:x<a+7,方程组只有三个整数解,则整数解一定是3,4,5.根据题意得:5<a+7≤6,解得:﹣2<a≤﹣1.故选C.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5.下列图形既是轴对称图形又是中心对称图形的有()①平行四边形;②正方形;③等腰梯形;④菱形;⑤正六边形.A.1个B.2个C.3个D.4个【考点】中心对称图形;轴对称图形.【分析】根据正多边形的性质和轴对称图形与中心对称图形的定义解答.【解答】解:①平行四边形,不是轴对称图形,是中心对称图形,故本小题错误;②正方形,既是轴对称图形又是中心对称图形,故本小题正确;③等腰梯形,是轴对称图形,不是中心对称图形,故本小题错误;④菱形,既是轴对称图形又是中心对称图形,故本小题正确;⑤正六边形,既是轴对称图形又是中心对称图形,故本小题正确.综上所述,既是轴对称图形又是中心对称图形的有②④⑤共3个.故选C.【点评】此题考查正多边形对称性.关键要记住偶数边的正多边形既是轴对称图形,又是中心对称图形,奇数边的正多边形只是轴对称图形.6.如图,等边△ABC的周长为6π,半径是1的⊙O从与AB相切于点D的位置出发,在△ABC外部按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,则⊙O自转了()A.2周B.3周C.4周D.5周【考点】直线与圆的位置关系;等边三角形的性质.【专题】压轴题.【分析】该圆运动可分为两部分:在三角形的三边运动以及绕过三角形的三个角,分别计算即可得到圆的自传周数.【解答】解:圆在三边运动自转周数:=3,圆绕过三角形外角时,共自转了三角形外角和的度数:360°,即一周;可见,⊙O自转了3+1=4周.故选:C.【点评】本题考查了圆的旋转与三角形的关系,要充分利用等边三角形的性质及圆的周长公式解答.7.使代数式有意义的x的取值范围是()A.x≥0 B.C.x≥0且D.一切实数【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据分式有意义的条件可得2x﹣1≠0,根据二次根式有意义的条件可得x≥0,解出结果即可.【解答】解:由题意得:2x﹣1≠0,x≥0,解得:x≥0,且x≠,故选:C.【点评】此题主要考查了分式有意义的条件,二次根式有意义的条件,二次根式中的被开方数是非负数;分式有意义的条件是分母不等于零.8.依次连接任意四边形各边的中点,得到一个特殊图形(可认为是一般四边形的性质),则这个图形一定是()A.平行四边形B.矩形 C.菱形 D.梯形【考点】三角形中位线定理;平行四边形的判定.【分析】首先根据题意画出图形,再连接AC,根据三角形的中位线得到HG∥AC,HG=AC,EF∥AC,EF= AC,可以推出EF=GH,EF∥GH,根据平行四边形的判定:一组对边平行且相等的四边形是平行四边形求出即可.【解答】解:这个图形一定是平行四边形,理由是:根据题意画出图形,如右图所示:连接AC,∵四边形ABCD各边中点是E、F、G、H,∴HG∥AC,HG=AC,EF∥AC,EF=AC,∴EF=GH,EF∥GH,∴四边形EFGH是平行四边形.故选:A.【点评】本题主要考查了平行四边形的判定,三角形的中位线,解决问题的关键是正确画出图形,证明EF=GH 和EF∥GH.9.将沿弦BC折叠,交直径AB于点D,若AD=4,DB=5,则BC的长是()A.3B.8 C. D.2【考点】圆周角定理;翻折变换(折叠问题);射影定理.【专题】计算题.【分析】若连接CD、AC,则根据同圆或等圆中,相等的圆周角所对的弦相等,求得AC=CD;过C作AB 的垂线,设垂足为E,则DE=AD,由此可求出BE的长,进而可在Rt△ABC中,根据射影定理求出BC的长.【解答】解:连接CA、CD;根据折叠的性质,知所对的圆周角等于∠CBD,又∵所对的圆周角是∠CBA,∵∠CBD=∠CBA,∴AC=CD(相等的圆周角所对的弦相等);∴△CAD是等腰三角形;过C作CE⊥AB于E.∵AD=4,则AE=DE=2;∴BE=BD+DE=7;在Rt△ACB中,CE⊥AB,根据射影定理,得:BC2=BE•AB=7×9=63;故BC=3.故选A.【点评】此题考查的是折叠的性质、圆周角定理、以及射影定理;能够根据圆周角定理来判断出△ACD是等腰三角形,是解答此题的关键.10.已知函数y=的图象在第一象限的一支曲线上有一点A(a,c),点B(b,c+1)在该函数图象的另外一支上,则关于一元二次方程ax2+bx+c=0的两根x1,x2判断正确的是()A.x1+x2>1,x1•x2>0B.x1+x2<0,x1•x2>0C.0<x1+x2<1,x1•x2>0D.x1+x2与x1•x2的符号都不确定【考点】根与系数的关系;反比例函数图象上点的坐标特征.【专题】计算题.【分析】根据点A(a,c)在第一象限的一支曲线上,得出a>0,c>0,再点B(b,c+1)在该函数图象的另外一支上,得出b<0,c+1>0,再根据x1•x2=,x1+x2=﹣,即可得出答案.【解答】解:∵点A(a,c)在第一象限的一支曲线上,∴a>0,c>0,ac=1,即a=,∵点B(b,c+1)在该函数图象的另外一支上,即第二象限上,∴b<0,c+1>0,b(c+1)=﹣1,即b=﹣,∴x1•x2=>0,x1+x2=﹣=,∴0<x1+x2<1,故选:C.【点评】本题考查了根与系数的关系,掌握根与系数的关系和各个象限点的特点是本题的关键;若x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的两个实数根,则x1+x2=﹣,x1x2=.二、填空题:11.已知y=x﹣1,则(x﹣y)2+(y﹣x)+1的值为1.【考点】代数式求值.【专题】整体思想.【分析】根据已知条件整理得到x﹣y=1,然后整体代入计算即可得解.【解答】解:∵y=x﹣1,∴x﹣y=1,∴(x﹣y)2+(y﹣x)+1=12+(﹣1)+1=1.故答案为:1.【点评】本题考查了代数式求值,注意整体思想的利用使运算更加简便.12.某班七个合作学习人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是6.【考点】中位数;算术平均数.【分析】根据平均数的定义先求出这组数据的x,再将这组数据从小到大排列,然后找出最中间的数即可.【解答】解:∵4、5、5、x、6、7、8的平均数是6,∴(4+5+5+x+6+7+8)÷7=6,解得:x=7,将这组数据从小到大排列为4、5、5、6、7、7、8,最中间的数是6;则这组数据的中位数是6.故答案为:6.【点评】此题考查了中位数,掌握中位数的概念是解题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).13.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共有了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为+=18.【考点】由实际问题抽象出分式方程.【分析】设原计划每天加工x套运动服,则采用了新技术每天加工(1+20%)x套运动服,根据共用了18天完成全部任务,列方程即可.【解答】解:设原计划每天加工x套运动服,则采用了新技术每天加工(1+20%)x套运动服,由题意得,+=18.故答案为:+=18.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.14.如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则GT的长为2.【考点】相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;正方形的性质.【分析】根据正方形的对角线平分一组对角可得∠ADB=∠CGE=45°,再求出∠GDT=45°,从而得到△DGT是等腰直角三角形,根据正方形的边长求出DG,再根据等腰直角三角形的直角边等于斜边的倍求解即可.【解答】解:∵BD、GE分别是正方形ABCD,正方形CEFG的对角线,∴∠ADB=∠CGE=45°,∴∠GDT=180°﹣90°﹣45°=45°,∴∠DTG=180°﹣∠GDT﹣∠CGE=180°﹣45°﹣45°=90°,∴△DGT是等腰直角三角形,∵两正方形的边长分别为4,8,∴DG=8﹣4=4,∴GT=×4=2.故答案为:2.【点评】本题考查了正方形的性质,等腰直角三角形的判定与性质.关键是掌握正方形的对角线平分一组对角.15.把一副三角板如图甲放置,其中AB=6,DC=7,∠ACB=∠DEC=90°,∠A=45°,∠D=30°,把三角板DCE 绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为5.【考点】旋转的性质.【专题】计算题.【分析】由∠ACB=∠DEC=90°,∠A=45°,∠D=30°得到∠DCE=60°,△ABC为等腰直角三角形,再根据旋转的性质得∠D1CE1=∠DCE=60°∠BCE1=15°,所以•∠D1CB=45°,于是可判断OC为等腰直角三角形ABC 斜边上的中线,则OC⊥AB,OC=OA=AB=3,则OD=CD﹣OC=4,然后在Rt△AOD1中根据勾股定理计算AD1.【解答】解:∵∠ACB=∠DEC=90°,∠A=45°,∠D=30°∴∠DCE=60°,△ABC为等腰直角三角形,∵三角板DCE绕着点C顺时针旋转15°得到△D1CE1,∴∠D1CE1=∠DCE=60°∠BCE1=15°,∴∠D1CB=45°,∴OC平分∠ACB,∴CO⊥AB,OA=OB,∴OC=OA=AB=×6=3,∴OD=CD﹣OC=7﹣3=4,在Rt△AOD1中,AD1===5.故答案为:5.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等腰直角三角形的性质和勾股定理.16.如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第10次“移位”后,则他所处顶点的编号是3.【考点】规律型:图形的变化类.【专题】应用题;压轴题.【分析】根据“移位”的特点,然后根据例子寻找规律,从而得出结论.【解答】解:∵小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”,∴3→4→5→1→2五个顶点五次移位为一个循环返回顶点3,同理可得:小宇从编号为2的顶点开始,四次移位一个循环,第10次“移位”,即连续循环两次,再移位两次,即第十次移位所处的顶点和第二次移位所处的顶点相同,故回到顶点3.故答案为:3.【点评】本题主要考查了通过特例分析从而归纳总结出一般结论的能力,难度适中.三、解答题:17.先化简,再求值:(+)÷,其中x=•cot60°.【考点】分式的化简求值;特殊角的三角函数值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,利用特殊角的三角函数值求出x的值,代入计算即可求出值.【解答】解:原式=•==,当x=•=时,则原式=.【点评】此题考查了分式的化简求值,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.18.如图,在平面直角坐标系xOy中,矩形OEFG的顶点E的坐标为(4,0),顶点G的坐标为(0,2),将矩形OEFG绕点O逆时针旋转,使点F落在y轴的点N处,得到矩形OMNP,OM与GF交于点A.(1)求图象经过点A的反比例函数的解析式;(2)设(2)中的反比例函数图象交EF于点B,直接写出直线AB的解析式.【考点】反比例函数综合题.【分析】(1)先根据两个角对应相等,即可证明△OGA和△OMN相似,要求反比例函数的解析式,则需求得点A的坐标,即要求得AG的长,根据旋转的两个图形全等的性质以及相似三角形的对应边的比相等可以求解;(2)要求直线AB的解析式,主要应求得点B的坐标.根据点B的横坐标是4和(1)中求得的反比例函数的解析式即可求得.再根据待定系数法进行求解.【解答】解:(1)∵∠OGA=∠M=90°∠GOA=∠MON∴△OGA∽△OMN,∴∴,解得AG=1.设反比例函数y=,把A(1,2)代入得k=2,∴过点A的反比例函数的解析式为:y=.(2)∵点B的横坐标为4,x=4代y=中y=,故(4,)设直线AB的解析式y=mx+n,把A(1,2)、B(4,)代入,得,解得.∴直线AB的解析式y=﹣x+.【点评】本题主要考查相似三角形的判定与性质,能够运用待定系数法求得函数的解析式,根据函数的解析式确定点的坐标.19.某校八年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:(1)求出样本容量,并补全直方图;(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的人数;(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生.现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图;列表法与树状图法.【专题】图表型.【分析】(1)根据B、E两组的发言人数的比求出B组发言人数所占的百分比,再根据条形统计图中B组的人数为10,列式计算即可求出被抽取的学生人数,然后求出C组、F组的人数,补全直方图即可;(2)根据扇形统计图求出F组人数所占的百分比,再用总人数乘以E、F两组人数所占的百分比,计算即可得解;(3)分别求出A、E两组的人数,确定出各组的男女生人数,然后列表或画树状图,再根据概率公式计算即可得解.【解答】解:(1)∵B、E两组发言人数的比为5:2,E组发言人数占8%,∴B组发言的人数占20%,由直方图可知B组人数为10人,所以,被抽查的学生人数为:10÷20%=50人,C组人数为:50×30%=15人,B组人数所占的百分比为:×100%=20%,F组的人数为:50×(1﹣6%﹣20%﹣30%﹣26%﹣8%),=50×(1﹣90%),=50×10%,=5,∴样本容量为50人.补全直方图如图;(2)F组发言的人数所占的百分比为:10%,所以,估计全年级在这天里发言次数不少于12次的人数为:500×(8%+10%)=90人;(3)A组发言的学生:50×6%=3人,所以有1位女生,2位男生,E组发言的学生:50×8%=4人,所以有2位女生,2位男生,列表如下:画树状图如下:共12种情况,其中一男一女的情况有6种,所以P(一男一女)==.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,本题根据B组的人数与所占的百分比求解是解题的关键,也是本题的突破口.20.红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系如下表:未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为y1=t+25(1≤t≤20且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系式为y2=﹣t+40(21≤t≤40且t为整数).下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.【考点】二次函数的应用.【专题】压轴题;阅读型;图表型.【分析】(1)从表格可看出每天比前一天少销售2件,所以判断为一次函数关系式;(2)日利润=日销售量×每件利润,据此分别表示前20天和后20天的日利润,根据函数性质求最大值后比较得结论;(3)列式表示前20天中每天扣除捐赠后的日销售利润,根据函数性质求a的取值范围.【解答】解:(1)设一次函数为m=kt+b,将和代入一次函数m=kt+b中,有,∴.∴m=﹣2t+96.经检验,其它点的坐标均适合以上解析式,故所求函数解析式为m=﹣2t+96;(2)设前20天日销售利润为p1元,后20天日销售利润为p2元.由p1=(﹣2t+96)(t+25﹣20)=(﹣2t+96)(t+5)=﹣t2+14t+480=﹣(t﹣14)2+578,∵1≤t≤20,∴当t=14时,p1有最大值578(元).由p2=(﹣2t+96)(﹣t+40﹣20)=(﹣2t+96)(﹣t+20)=t2﹣88t+1920=(t﹣44)2﹣16.∵21≤t≤40,此函数对称轴是t=44,∴函数p2在21≤t≤40上,在对称轴左侧,随t的增大而减小.∴当t=21时,p2有最大值为(21﹣44)2﹣16=529﹣16=513(元).∵578>513,故第14天时,销售利润最大,为578元;(3)p1=(﹣2t+96)(t+25﹣20﹣a)=﹣t2+(14+2a)t+480﹣96a 对称轴为t=14+2a.∵1≤t≤20,∴当t≤2a+14时,P随t的增大而增大,又∵每天扣除捐赠后的日利润随时间t的增大而增大,∴20≤2a+14,又∵a<4,∴3≤a<4.【点评】(1)熟练掌握各函数的性质和图象特征,针对所给条件作出初步判断后需验证其正确性;(2)最值问题需由函数的性质求解时,正确表达关系式是关键.同时注意自变量的取值范围.21.某旅游区有一个景观奇异的望天洞,D点是洞的入口,游人从入口进洞游览后,可经山洞到达山顶的出口凉亭A处观看旅游区风景,最后坐缆车沿索道AB返回山脚下的B处.在同一平面内,若测得斜坡BD的长为100米,坡角∠DBC=10°,在B处测得A的仰角∠ABC=40°,在D处测得A的仰角∠ADF=85°,过D 点作地面BE的垂线,垂足为C.(1)求∠ADB的度数;(2)求索道AB的长.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【专题】转化思想.【分析】(1)利用点D处的周角即可求得∠ADB的度数;(2)首先分析图形,根据题意构造直角三角形.本题涉及到两个直角三角形,应利用其公共边构造三角关系,进而可求出答案.【解答】解:(1)∵DC⊥CE,∴∠BCD=90°.又∵∠DBC=10°,∴∠BDC=80°.∵∠ADF=85°,∴∠ADB=360°﹣80°﹣90°﹣85°=105°.(2)过点D作DG⊥AB于点G.。

安徽省芜湖市数学中考二模试卷

安徽省芜湖市数学中考二模试卷

安徽省芜湖市数学中考二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下列说法错误的是()A . (﹣4)2的平方根是4B . ﹣1的立方根是﹣1C . 是2的平方根D . 5是25的算术平方根2. (2分) (2018七下·宝安月考) 设一个锐角与这个角的补角的差的绝对值为α,则()A . 0°<α<90°B . 0°<α≤90°C . 0°<α<90°或90°<α<180°D . 0°<α<180°3. (2分) (2016七上·潮南期中) 冥王星围绕太阳公转的轨道半径长度约为5 900 000 000千米,这个数用科学记数法表示是()A . 5.9×1010千米B . 5.9×109千米C . 59×108千米D . 0.59×1010千米4. (2分)如图,该几何体的主视图是()A .B .C .D .5. (2分)一元一次不等式组的解集在数轴上表示出来,正确的是()A .B .C .D .6. (2分)如图,C是以AB为直径的⊙O上一点,已知AB=5,BC=3,则圆心O到弦BC的距离是()A . 1.5B . 2C . 2.5D . 37. (2分)(2018·莱芜) 某校举行汉字听写大赛,参赛学生的成绩如下表:成绩(分)8990929495人数46857对于这组数据,下列说法错误的是()A . 平均数是92B . 中位数是92C . 众数是92D . 极差是68. (2分)(2018·台湾) 如图,△ABC,△FGH中,D,E两点分别在AB,AC上,F点在DE上,G、H两点在BC上,且DE∥BC,FG∥AB,FH∥AC,若BG:GH:HC=4:6:5,则△ADE与△FGH的面积比为何?()A . 2:1B . 3:2C . 5:2D . 9:4二、填空题 (共6题;共6分)9. (1分) (2018七上·孝南月考) -的相反数是________;倒数是________;绝对值是________ .10. (1分)分解因式:2m2﹣2=________11. (1分)在函数y=中,自变量x的取值范围是________ .12. (1分) (2016七下·嘉祥期末) 如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BAC.下面是部分推理过程,请你将其补充完整:∵AD⊥BC于D,EG⊥BC于G (已知)∴∠ADC=∠EGC=90°∴AD∥EG________.∴∠1=∠2________.________ =∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3________.∴AD平分∠BAC________.13. (1分) (2016九上·桑植期中) 如果一个正比例函数的图象与反比例函数y=﹣的图象交于A(x1 ,y1)、B(x2 , y2)两点,那么(x2﹣x1)(y2﹣y1)的值为________.14. (1分) (2016七上·兴业期中) 填在下面各正方形中的四个数之间都有一定的规律,按此规律得出b=________.三、解答题 (共9题;共78分)15. (5分)计算。

2017-2018学年安徽省芜湖市九年级第二次模拟考试数学卷

2017-2018学年安徽省芜湖市九年级第二次模拟考试数学卷

2017-2018学年芜湖市九年级第二次模拟考试数学试卷注意:1.数学试卷分两部分,第一部分4页,共31题;第二部分为加试试卷4页,共8题;总共8页,共39题。

报考各类高中的考生全做;只参加毕业考试的考生无加试试卷。

请您仔细核对每页试卷下页码和题数,核实无误后再答题.2.请你仔细思考、认真答题,不要过于紧张,祝考试顺利!一、填空题(本大题共15小题,每小题2分,满分30分)1. 亲爱的同学们,在我们的生活中处处有数学的身影.请看图,折叠一张三角形纸片,把三角形的三个角拼在一起,就得到 一个著名的几何定理,请你写出这一定理的结论:“三角形的三个内角和等于_______°.” 2. 按照神舟号飞船环境控制与生命保障分系统的设计指标,“神舟”五号飞船返回舱的温度为21℃±4℃.该返回舱的最高温度为________℃. 3. 点A (-2,1)在第_______象限. 4. 分解因式:a 2-1=_______. 5. 不等式组2030x x ->⎧⎨+>⎩的解集为________.6. 已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_______.7. 已知方程2390x x m -+=的一个根是1,则m 的值是________.8. 用48米长的竹篱笆在空地上,围成一个绿化场地,现有两种设计方案,一种是围成正方形的场地;另一种是围成圆形场地.现请你选择,围成 ________(圆形、正方形两者选一)场在面积较大. 9. 已知数据x 1,x 2,…,x n 的平均数是x ,则一组新数据x 1+8,x 2+8,…,x n +8的平均数是____.10. 在直角三角形ABC 中,∠C =90°,已知sin A =35,则cos B =_______.11. 如图,已知CD 是Rt △ABC 的斜边上的高,其中AD =9cm ,BD=4cm ,那么CD 等于_______cm.12. 二次函数y=x 2-2x +1的对称轴方程是x =_______. 13. 在直径为10m 的圆柱形油槽内装入一些油后,截面如图所示,如果油面宽AB =8m ,那么油的最大 深度是______m.14. 等腰梯形是__________对称图形.15. 对甲、乙两台机床生产的零件进行抽样测量,其平均数、方差计算结果如下:机床甲:x 甲=10,2S 甲=0.02;机床乙:x 乙=10,2S 乙=0.06,由此可知:________(填甲(第1题图) A D BC (第11题图) (第13题图)或乙)机床性能好.二、单项选择题(本大题共10小题,每小题3分,满分30分)16. 下列四个实数中是无理数的是 ( ).A.2.5B.103C.πD.1.414 17. 一个容量为50的样本,在整理频率分布时,将所有频率相加,其和是 ( ).A.50B.0.02C.0.1D.118. 如果t>0,那么a+t 与a 的大小关系是 ( ).A.a+t >aB.a+t <aC.a+t ≥aD.不能确定19. 如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带________去配. ( ). A.① B.② C.③ D.①和②20. 数据”1,2,1,3,1”的众数是 ( ).A.1B.1.5C.1.6D.321. 在银行存款准备金不变的情况下,银行的可贷款总量与存款准备金率成反比例关系.当存款准备金率为7.5%时,某银行可贷款总量为400亿元,如果存款准备金率上调到8%时,该银行可贷款总量将减少________亿. ( ). A.20 B.25 C.30 D.3522. 如果两圆只有两条公切线,那么这两圆的位置关系是 ( ). A.内切 B.外切 C.相交 D.外离23. 一个多边形的每一个外角都等于72°,这个多边形是 ( ). A.正三角形 B.正方形 C.正五边形 D.正六边形24. 小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块矿石的体积.如果他量出玻璃杯的内直径d,把矿石完全浸没在水中,测出杯中水面上升了高度h,则小明的这块矿石体积是 ( ). A.24d h πB.22d h πC.2d h πD.24d h π25. 分式2231x x x +--的值为0,则x 的取值为 ( ).A.x =-3B.x =3C.x =-3或x =1D.x =3或x =-1三、解答题(本大题共3小题,每小题5分,满分15分)26. 计算:230120.125200412-⎛⎫-⨯++- ⎪⎝⎭27. 解方程组32528x y x y +=⎧⎨-=⎩(第19题图) ③① ② ①②28. 在△ABC 中,∠A ,∠B 都是锐角,且sin A =12,tan BAB =10,求△ABC 的面积.四、(本大题共2小题,第29题8分,第30题9分,共17分)29. 如图,AB 是⊙O 的直径, ⊙O 过BC 的中点D,DE ⊥AC .求证: △BDA ∽△CED .30. 某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5米3的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1米3污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x 件,每月纯利润y 元:① 求出y 与x 的函数关系式.(纯利润=总收入-总支出) ② 当y =106000时,求该厂在这个月中生产产品的件数.五、(本大题满分8分)31.小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:① 星期二收盘时,该股票每股多少元?(2分)② 周内该股票收盘时的最高价,最低价分别是多少?(4分)③已知买入股票与卖出股票均需支付成交金额的千分之五的交易费。

安徽省十校联考2018年中考数学二模试卷(含答案)

安徽省十校联考2018年中考数学二模试卷(含答案)

安徽省十校联考2018年中考数学二模试卷(解析版)一.选择题1.一元二次方程5x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A. 5,﹣1B. 5,4C. 5,﹣4D. 5x2,﹣4x2.下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.把抛物线y=﹣经()平移得到y=﹣﹣1.A. 向右平移2个单位,向上平移1个单位B. 向右平移2个单位,向下平移1个单位C. 向左平移2个单位,向上平移1个单位D. 向左平移2个单位,向下平移1个单位4.一个直角三角形的两条直角边长的和为20cm,其中一直角边长为xcm,面积为ycm2,则y与x的函数的关系式是()A. y=10x﹣x2B. y=10xC. y= ﹣xD. y=x(10﹣x)5.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A. 6B. 5C. 4D. 36.近几年,我国经济高速发展,但退休人员待遇持续偏低,为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅2012年月退休金为1500元,2014年达到2160元.设李师傅的月退休金从2012年到2014年年平均增长率为x,则可列方程为()A. 1500(1+x)2=2160B. 1500(1+x)2=2060C. 1500+1500(1+x)+1500(1+x)2=2160D. 1500(1+x)=21607.学校早上8时上第一节课,45分钟后下课,这节课中分针转动的角度为()A.45°B.90°C.180°D.270°8.如图,在⊙O中,半径OC⊥弦AB于P,且P为OC的中点,则∠BAC的度数是()A. 45°B. 60°C. 25°D. 30°9.二次函数y=ax2+bx+c的图象如图所示,关于此二次函数有以下四个结论:①a<0;②c>0;③b2﹣4ac>0;④ab>0,其中正确的有()个.A. 1B. 2C. 3D. 410.如图,边长为2a的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是()A. aB. aC.D.二.填空题11.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是________.12.关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,则a的值是________.13.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=6cm,则⊙O的半径为________ cm.14.如图,抛物线y1=(x﹣2)2﹣1与直线y2=x﹣1交于A、B两点,则当y2≥y1时,x的取值范围为________.三.解答题15.解方程:4x2﹣12x+5=0.16.已知二次函数图象经过点A(﹣3,0)、B(1,0)、C(0,﹣3),求此二次函数的解析式.四.解答题17.如图,已知△ABC的顶点A,B,C的坐标分别是A(﹣1,﹣1),B(﹣4,﹣3),C(﹣4,﹣1).①作出△ABC关于原点O中心对称的图形;②将△ABC绕原点O按顺时针方向旋转90°后得到△A1B1C1,画出△A1B1C1,并写出点A1的坐标.18.已知函数y=x2﹣mx+m﹣2.求证:不论m为何实数,此二次函数的图象与x轴都有两个不同交点.五.解答题19.已知抛物线y=﹣x2+2x+2(1)求该抛物线的对称轴、顶点坐标以及y随x变化情况;(2)在如图的直角坐标系内画出该抛物线的图象.20.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.六.解答题21.在如图中,每个正方形由边长为1的小正方形组成:(1)观察图形,请填写下列表格:(2)在边长为n(n≥1)的正方形中,设黑色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.七.解答题。

〖中考零距离-新课标〗2018年安徽省芜湖市中考数学模拟试题及答案解析

〖中考零距离-新课标〗2018年安徽省芜湖市中考数学模拟试题及答案解析

2018年安徽省芜湖市中考数学模拟试卷一、选择题(本题共10小题,每小题4分,共40分)1.在实数﹣2,0,2,3中,最小的实数是()A.﹣2 B.0 C.2 D.32.如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.3.若代数式在实数范围内有意义,则x的取值范围是()A.x≥﹣3 B.x>3 C.x≥3 D.x≤34.福布斯2015年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以242亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为()A.0.242×1010美元B.0.242×1011美元C.2.42×1010美元D.2.42×1011美元5.在一次中学生田径运动会上,参加跳高的15名运动员的成绩如表:成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80人数 1 2 4 3 3 2那么这些运动员跳高成绩的众数是()A.4 B.1.75 C.1.70 D.1.656.下列代数运算正确的是()A.(x3)2=x5B.(2x)2=2x2C.x3•x2=x5D.(x+1)2=x2+17.如图,AB为⊙O的直径,延长AB至点D,使BD=OB,DC切⊙O于点C,点B是的中点,弦CF交AB于点E.若⊙O的半径为2,则CF=()A.3 B.2 C.3 D.8.将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()A.10cm B.13cm C.14cm D.16cm9.如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是()A. B.C.D.10.如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=()A.B.C.D.二、填空题(本题共4小题,每题5分,共20分)11.反比例函数y=的图象有一支位于第一象限,则常数a的取值范围是.12.如图,直线a∥b,∠1=110°,∠2=65°,则∠3的度数为.13.分解因式:2x2y﹣12xy+18y= .14.如图,四边形ABCD是矩形纸片,AB=2,对折矩形纸片ABCD,使AD与BC重合,折痕为EF,展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN交BC于点G.有如下结论:①∠ABN=60°;②AM=1;③△BMG是等边三角形;④P为线段BM上一动点,H是BN的中点,则PN+PH的最小值是.其中正确结论的序号是.三、(本题共3小题,每题8分,共16分)15.计算:﹣1﹣31﹣(3.14﹣π)0+2015.16.已知直线y=2x﹣b经过点(1,﹣1),求关于x的不等式2x﹣b≥0的解集.17.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.四、(本题共1小题,每题8分,共16分)18.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).(1)画出△ABC关于点B成中心对称的图形△A1BC1;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标.五、(本题共2小题,每题10分,功0分)19.如图,海中有一灯塔P,它的周围8海里内有暗礁.海轮以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?20.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是;扇形统计图中的圆心角α等于;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.六、(本题12分)21.如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点.过点B作BE∥AD,交⊙O于点E,连接ED(1)求证:ED∥AC;(2)若BD=2CD,设△EBD的面积为S1,△ADC的面积为S2,且S12﹣16S2+4=0,求△ABC的面积.七、(本题12分)22.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?八、(本大题14分)23.设△ABC是锐角三角形,∠A,∠B所对的边长分别为a、b,其边上的高分别为m,n,∠ACB=θ.(1)用θ和b的关系式表示m;(2)若a>b,试比较a+m与b+n的大小;(3)如图,在△ABC中作一个面积最大的正方形,假设a>b,问正方形的一边在三角形的哪条边上的正方形面积最大?试写出求解过程.参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)1.在实数﹣2,0,2,3中,最小的实数是()A.﹣2 B.0 C.2 D.3【考点】实数大小比较.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣2<0<2<3,最小的实数是﹣2,故选:A.2.如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】俯视图是从物体上面看所得到的图形.【解答】解:从几何体的上面看俯视图是,故选:D.3.若代数式在实数范围内有意义,则x的取值范围是()A.x≥﹣3 B.x>3 C.x≥3 D.x≤3【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵代数式在实数范围内有意义,∴x﹣3≥0,解得x≥3.故选C.4.福布斯2015年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以242亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为()A.0.242×1010美元B.0.242×1011美元C.2.42×1010美元D.2.42×1011美元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将242亿用科学记数法表示为:2.42×1010.故选:C.5.在一次中学生田径运动会上,参加跳高的15名运动员的成绩如表:成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80人数 1 2 4 3 3 2那么这些运动员跳高成绩的众数是()A.4 B.1.75 C.1.70 D.1.65【考点】众数.【分析】根据众数的定义找出出现次数最多的数即可.【解答】解:∵1.65出现了4次,出现的次数最多,∴这些运动员跳高成绩的众数是1.65;故选:D.6.下列代数运算正确的是()A.(x3)2=x5B.(2x)2=2x2C.x3•x2=x5D.(x+1)2=x2+1【考点】幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.【分析】根据幂的乘方与积的乘方、同底数幂的乘法法则及完全平方公式,分别进行各选项的判断即可.【解答】解:A、(x3)2=x6,原式计算错误,故A选项错误;B、(2x)2=4x2,原式计算错误,故B选项错误;C、x3•x2=x5,原式计算正确,故C选项正确;D、(x+1)2=x2+2x+1,原式计算错误,故D选项错误;故选:C.7.如图,AB为⊙O的直径,延长AB至点D,使BD=OB,DC切⊙O于点C,点B是的中点,弦CF交AB于点E.若⊙O的半径为2,则CF=()A.3 B.2 C.3 D.【考点】切线的性质.【分析】根据垂径定理求出CF=2CE,根据切线的性质求出∠OCD,求出∠COE的度数,解直角三角形求出CE即可.【解答】解:连接OC,∵点B是的中点,AB为⊙O的直径,∴CE=EF,CF⊥AB,∴∠CEO=90°,∵DC切⊙O于C,∴∠OCD=90°,∵OB=BD=OC=2,∴∠D=30°,∴∠COE=60°,∴CE=OC×sin60°=2×=,∴CF=2CE=2,故选B.8.将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()A.10cm B.13cm C.14cm D.16cm【考点】一元二次方程的应用.【分析】设正方形铁皮的边长应是x厘米,则做成没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据长方体的体积计算公式列方程解答即可.【解答】解:正方形铁皮的边长应是x厘米,则没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据题意列方程得,(x﹣3×2)(x﹣3×2)×3=300,解得x1=16,x2=﹣4(不合题意,舍去);答:正方形铁皮的边长应是16厘米.故选:D.9.如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是()A. B.C.D.【考点】动点问题的函数图象.【分析】根据平行线的性质可得∠EDF=∠B=60°,根据三角形内角和定理即可求得∠F=30°,然后证得△EDB是等边三角形,从而求得ED=DB=2﹣x,再根据直角三角形的性质求得EF,最后根据三角形的面积公式求得y与x函数关系式,根据函数关系式即可判定.【解答】解:∵△ABC是等边三角形,∴∠B=60°,∵DE∥AC,∴∠EDF=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;∵∠ACB=60°,∠EDC=60°,∴△EDB是等边三角形.∴ED=DB=2﹣x,∵∠DEF=90°,∠F=30°,∴EF=ED=(2﹣x).∴y=ED•EF=(2﹣x)•(2﹣x),即y=(x﹣2)2,(x<2),故选A.10.如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=()A.B.C.D.【考点】相似三角形的判定与性质;翻折变换(折叠问题).【分析】借助翻折变换的性质得到DE=CE;设AB=3k,CE=x,则AE=3k﹣x;根据相似三角形的判定与性质即可解决问题.【解答】解:设AD=k,则DB=2k,∵△ABC为等边三角形,∴AB=AC=3k,∠A=∠B=∠C=∠EDF=60°,∴∠EDA+∠FDB=120°,又∵∠EDA+∠AED=120°,∴∠FDB=∠AED,∴△AED∽△BDF,∴,设CE=x,则ED=x,AE=3k﹣x,设CF=y,则DF=y,FB=3k﹣y,∴,∴,∴=,∴CE:CF=4:5.故选:B.解法二:解:设AD=k,则DB=2k,∵△ABC为等边三角形,∴AB=AC=3k,∠A=∠B=∠C=∠EDF=60°,∴∠EDA+∠FDB=120°,又∵∠EDA+∠AED=120°,∴∠FDB=∠AED,∴△AED∽△BDF,由折叠,得CE=DE,CF=DF∴△AED的周长为4k,△BDF的周长为5k,∴△AED与△BDF的相似比为4:5∴CE:CF=DE:DF=4:5.故选:B.二、填空题(本题共4小题,每题5分,共20分)11.反比例函数y=的图象有一支位于第一象限,则常数a的取值范围是a.【考点】反比例函数的性质.【分析】根据反比例函数的性质:当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小可得2a﹣1>0,再解不等式即可.【解答】解:∵反比例函数y=的图象有一支位于第一象限,∴2a﹣1>0,解得:a>.故答案为:a.12.如图,直线a∥b,∠1=110°,∠2=65°,则∠3的度数为45°.【考点】平行线的性质.【分析】根据“两直线平行,内错角相等”得出∠2=∠4=65°,再结合三角形的外角知识即可得出结论.【解答】解:在图中标上角的序号,如图所示.∵a∥b,∠2=65°,∴∠2=∠4=65°.∵∠1=∠3+∠4,∠1=110°,∴∠3=110°﹣65°=45°.故答案为:45°.13.分解因式:2x2y﹣12xy+18y= 2y(x﹣3)2.【考点】因式分解-提公因式法.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=2y(x2﹣6x+9)=2y(x﹣3)2,故答案为:2y(x﹣3)2键.14.如图,四边形ABCD是矩形纸片,AB=2,对折矩形纸片ABCD,使AD与BC重合,折痕为EF,展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN交BC于点G.有如下结论:①∠ABN=60°;②AM=1;③△BMG是等边三角形;④P为线段BM上一动点,H是BN的中点,则PN+PH的最小值是.其中正确结论的序号是①③④.【考点】四边形综合题.【分析】①首先根据EF垂直平分AB,可得AN=BN;然后根据折叠的性质,可得AB=BN,据此判断出△ABN为等边三角形,即可判断出∠ABN=60°;②首先根据∠ABN=60°,∠ABM=∠NBM,求出∠ABM=∠NBM=30°;然后在Rt△ABM 中,根据AB=2,求出AM的大小即可;③根据∠ABM=∠MBN=30°,∠BNM=∠BAM=90°,推得∠MBG=∠BMG=∠BGM=60°,即可推得△BMG是等边三角形;④首先根据△BMG是等边三角形,点N是MG的中点,判断出BN⊥MG,即可求出BN 的大小;然后根据E点和H点关于BM称可得PH=PE,因此P与Q重合时,PN+PH=PN+PE=EN,据此求出PN+PH的最小值是多少即可.【解答】解:①如图1,连接AN,∵EF垂直平分AB,∴AN=BN,根据折叠的性质,可得AB=BN,∴AN=AB=BN.∴△ABN为等边三角形.∴∠ABN=60°,∠PBN=60°÷2=30°,即结论①正确;②∵∠ABN=60°,∠ABM=∠NBM,∴∠ABM=∠NBM=60°÷2=30°,∴AM=AB•tan30°=2×,即结论②不正确;③∵∠ABM=∠MBN=30°,∠BNM=∠BAM=90°,∴∠BMG=∠BNM﹣∠MBN=90°﹣30°=60°,∴∠MBG=∠ABG﹣∠ABM=90°﹣30°=60°,∴∠BGM=180°﹣60°﹣60°=60°,∴∠MBG=∠BMG=∠BGM=60°,∴△BMG为等边三角形,即结论③正确.④∵△BMG是等边三角形,点N是MG的中点,∴BN⊥MG,∴BN=BG•sin60°=,根据条件易知E点和H点关于BM对称,∴PH=PE,∴P与Q重合时,PN+PH的值最小,此时PN+PH=PN+PE=EN,∵EN==,∴PN+PH=,∴PN+PH的最小值是,即结论④正确;故答案为:①③④.三、(本题共3小题,每题8分,共16分)15.计算:﹣1﹣31﹣(3.14﹣π)0+2015.【考点】实数的运算;零指数幂.【分析】原式利用算术平方根定义,零指数幂法则计算即可得到结果.【解答】解:原式=5﹣1﹣31﹣1+2015=1987.16.已知直线y=2x﹣b经过点(1,﹣1),求关于x的不等式2x﹣b≥0的解集.【考点】一次函数与一元一次不等式.【分析】把点(1,﹣1)代入直线y=2x﹣b得到b的值,再解不等式.【解答】解:把点(1,﹣1)代入直线y=2x﹣b得,﹣1=2﹣b,解得,b=3.函数解析式为y=2x﹣3解2x﹣3≥0得x≥.17.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.【考点】全等三角形的判定与性质.【分析】欲证明OE=OF,只需推知BD平分∠ABC,所以通过全等三角形△ABD≌△CBD (SSS)的对应角相等得到∠ABD=∠CBD,问题就迎刃而解了.【解答】证明:∵在△ABD和△CBD中,,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,∴BD平分∠ABC.又∵OE⊥AB,OF⊥CB,∴OE=OF.四、(本题共1小题,每题8分,共16分)18.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).(1)画出△ABC关于点B成中心对称的图形△A1BC1;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标.【考点】作图-位似变换;作图-旋转变换.【分析】(1)利用关于点对称的性质得出A1,C1,坐标进而得出答案;(2)利用关于原点位似图形的性质得出对应点位置进而得出答案.【解答】解:(1)如图所示:△A1BC1,即为所求;(2)如图所示:△A2B2C2,即为所求,C2点坐标为:(﹣6,4).五、(本题共2小题,每题10分,功0分)19.如图,海中有一灯塔P,它的周围8海里内有暗礁.海轮以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?【考点】解直角三角形的应用-方向角问题.【分析】易证△ABP是等腰三角形,过P作PD⊥AB,求得PD的长,与6海里比较大小即可.【解答】解:过P作PD⊥AB.AB=18×=12海里.∵∠PAB=30°,∠PBD=60°∴∠PAB=∠APB∴AB=BP=12海里.在直角△PBD中,PD=BP•sin∠PBD=12×=6海里.∵6>8∴海轮不改变方向继续前进没有触礁的危险.20.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是30 ;扇形统计图中的圆心角α等于144°;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.【考点】列表法与树状图法;扇形统计图;利用频率估计概率.【分析】(1)根据题意列式求值,根据相应数据画图即可;(2)根据题意列表,然后根据表中数据求出概率即可.【解答】解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;故答案为:30,144°;补全统计图如图所示:(2)根据题意列表如下:设竖列为小红抽取的跑道,横排为小花抽取的跑道,小红小花 1 2 3 4 51 (2,1)(3,1)(4,1)(5,1)2 (1,2)(3,2)(4,2)(5,2)3 (1,3)(2,3)(4,3)(5,3)4 (1,4)(2,4)(3,4)(5,4)5 (1,5)(2,5)(3,5)(4,5)记小红和小花抽在相邻两道这个事件为A,∴.六、(本题12分)21.如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点.过点B作BE∥AD,交⊙O于点E,连接ED(1)求证:ED∥AC;(2)若BD=2CD,设△EBD的面积为S1,△ADC的面积为S2,且S12﹣16S2+4=0,求△ABC的面积.【考点】相似三角形的判定与性质;解一元二次方程-配方法;圆周角定理.【分析】(1)由AD是△ABC的角平分线,得到∠BAD=∠DAC,由于∠E=∠BAD,等量代换得到∠E=∠DAC,根据平行线的性质和判定即可得到结果;(2)由BE∥AD,得到∠EBD=∠ADC,由于∠E=∠DAC,得到△EBD∽△ADC,根据相似三角形的性质相似三角形面积的比等于相似比的平方即可得到结果.【解答】(1)证明:∵AD是△ABC的角平分线,∴∠BAD=∠DAC,∵∠E=∠BAD,∴∠E=∠DAC,∵BE∥AD,∴∠E=∠EDA,∴∠EDA=∠DAC,∴ED∥AC;(2)解:∵BE∥AD,∴∠EBD=∠ADC,∵∠E=∠DAC,∴△EBD∽△ADC,且相似比k=,∴=k2=4,即s1=4s2,∵﹣16S2+4=0,∴16﹣16S2+4=0,即=0,∴S2=,∵====3,∴S△ABC=.七、(本题12分)22.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?【考点】二次函数的应用.【分析】(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P与x的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x的取值范围,再根据(1)中所求得的销售量y(盒)与每盒售价x(元)之间的函数关系式即可求解.【解答】解:(1)由题意得,y=700﹣20(x﹣45)=﹣20x+1600;(2)P=(x﹣40)(﹣20x+1600)=﹣20x2+2400x﹣64000=﹣20(x﹣60)2+8000,∵x≥45,a=﹣20<0,∴当x=60时,P最大值=8000元,即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)由题意,得﹣20(x﹣60)2+8000=6000,解得x1=50,x2=70.∵抛物线P=﹣20(x﹣60)2+8000的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润.又∵x≤58,∴50≤x≤58.∵在y=﹣20x+1600中,k=﹣20<0,∴y随x的增大而减小,∴当x=58时,y最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒.八、(本大题14分)23.设△ABC是锐角三角形,∠A,∠B所对的边长分别为a、b,其边上的高分别为m,n,∠ACB=θ.(1)用θ和b的关系式表示m;(2)若a>b,试比较a+m与b+n的大小;(3)如图,在△ABC中作一个面积最大的正方形,假设a>b,问正方形的一边在三角形的哪条边上的正方形面积最大?试写出求解过程.【考点】相似三角形的判定与性质;解直角三角形.【分析】(1)根据三角函数的定义即可得到结论;(2)根据(1)的结论得到n=asinθ,代入得到(a﹣b)(1﹣sinθ),根据不等式的性质即可得到结论;(3)根据相似三角形的性质得到HK=,同理H′G′=,设△ABC的面积我S,于是得到HK==<==H′G′,即可得到结论.【解答】解:(1)∵∠B所对的边长分别为b,∠A边上的高分别为m,∴∠sinθ=,∴m=bsinθ;(2)同(1)的结论可得n=asinθ,则(a+m)﹣(b+n)=(a﹣b)(1﹣sinθ),∵a>b,sinθ<1,∴(a﹣b)(1﹣sinθ)>0,∴a+m>b+n;(3)∵HK∥BC,∴△AHK∽△ABC,∴,∵BC=a,AD=m,∴HK=,同理H′G′=,设△ABC的面积为S,∴HK==<==H′G′,∴正方形的边在AC上时面积最大.2016年6月6日。

安徽省芜湖市数学中考二模试卷

安徽省芜湖市数学中考二模试卷

安徽省芜湖市数学中考二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分) (2018七上·余干期末) 设a是一个负数,则数轴上表示数﹣a的点在()A . 原点的左边B . 原点的右边C . 原点的左边和原点的右边D . 无法确定2. (1分) (2019七上·句容期末) 如图所示的几何体的主视图是()A .B .C .D .3. (1分)下列运算正确的是A .B .C .D .4. (1分) (2020九下·北碚月考) 如图,在平面直角坐标系中,等腰Rt△ABC与等腰Rt△CDE关于原点O 成位似关系,相似比为1:3,∠ACB=∠CED=90°,A,C,E是x轴正半轴上的点,B,D是第一象限的点,BC=2,则点D的坐标是()A . (9,6)B . (8,6)C . (6,9)D . (6,8)5. (1分)(2018·宁晋模拟) 若关于x的一元二次方程x2+bx+c=0的两个根分别为x1=1,x2=2,那么抛物线y=x2+bx+c的对称轴为直线()A . x=1B . x=2C . x=D . x=﹣6. (1分)(2019·兰坪模拟) 某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述正确的是()姓名小红小明小东小亮小丽小华成绩(分)110106109111108110A . 众数是110B . 方差是16C . 平均数是109.5D . 中位数是1097. (1分) (2019七下·邵武期中) 如图,把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24m,MG=8m,MC=6m,则阴影部分地的面积是()m2.A . 168B . 128C . 98D . 1568. (1分) (2017八上·泸西期中) 如图,AC⊥BC,DE是AB的垂直平分线,∠CAE=30°,则∠B=()A . 30°B . 35°C . 40°D . 45°9. (1分)如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:①∠C=∠E;②△ADE∽△FDB;③∠AFE=∠AFC;④FD=FB.其中正确的结论是()A . ①③B . ②③C . ①④D . ②④10. (1分) (2019九上·宝安期中) 如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM= MF.其中正确结论的是()A .B .C .D .二、填空题 (共5题;共6分)11. (1分)一个不透明的布袋中分别标着数字1,2,3,4的四个乒乓球,先从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于4的概率为________ .12. (1分) (2019七下·韶关期末) 如图,,,,则 ________.13. (1分) (2016九上·通州期末) 如图,弦AB的长等于⊙O的半径,那么弦AB所对的圆周角的度数是________.14. (1分) (2017八上·上城期中) 如图,中,为中点,在上,且.若,,则 ________.15. (2分)如图,在△ABC中,∠ACB=90°,AC=6,BC=8,动点E从点A出发沿着线段AB向终点B运动,速度为每秒3个单位长度,过点E作EF⊥AB交直线AC于点F,连结CE.设点E的运动时间为t秒.(1)当点F在线段AC上(不含端点)时,①求证:△ABC∽△AFE;②当t为何值时,△CEF的面积为1.2;(2)在运动过程中,是否存在某时刻t,使△CEF为等腰三角形?若存在,求出t的值;若不存在,请说明理由.三、解答题 (共7题;共16分)16. (1分) (2019七上·覃塘期中) 计算:(1);(2);(3)17. (3分) (2020九下·长春月考) 每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:收集数据:整理数据:课外阅读平均时间等级D C B A人数3a8b分析数据:平均数中位数众数80m n请根据以上提供的信息,解答下列问题:(1)填空:a=________;b=________;m=________;n=________;(2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;18. (2分)(2020·平阳模拟) 如图,已知在中,,点O在边上,以为半径的与边切于点D,与,边的另一交点分别为E,F.(1)求证: .(2)若,,求的半径.19. (2分) (2017七下·上饶期末) 已知方程组的解中,x为非正数,y为负数.(1)求a的取值范围;(2)化简|a﹣3|+|a+2|.20. (2分)(2020·河北模拟) 在△ABC中,AD平分∠BAC,E是BC上一点,BE=CD,EF∥AD交AB于F点,交CA的延长线于P,CH∥AB交AD的延长线于点H,(1)求证:△APF是等腰三角形;(2)猜想AB与PC的大小有什么关系?证明你的猜想。

2018年安徽省初中毕业学业考试数学模拟卷(2)含答案

2018年安徽省初中毕业学业考试数学模拟卷(2)含答案

2018年安徽省初中毕业学业考试数学模拟卷二(卷Ⅰ)本卷共计3大题,时间45分钟,满分92分一、选择题(本大题共10小题,每小题4分,满分40分)1.设a 是实数,则|a |-a 的值·········································( )A .可以是负数B .不可能是负数C .必是正数D .可以是正数也可以是负数 2.下列运算正确的是( )A .2a ×3a =6aB .(x -2)(x -3)=x 2-6C .(x -2)2=x 2-4D .(ab 3)2=a 2b 6 3.一种细菌在放大1000倍的电子显微镜下看到其直径约为1.8毫米,那么用科学记数法表示它的直径约为·······( )A .18×10-7米B .1.8×10-7米C .1.8×10-6米D .1.8×10-5米4.如图是一个几何体的三视图,则这个几何体的侧面积是·····························( ) A .12πcm 2 B .8πcm 2 C .6πcm 2 D .3πcm 25.如图,数轴上表示2、5的对应点分别为C 、B ,点C 是AB 的中点,则点A 表示的数是···············( ) A .- 5 B .2- 5 C .4- 5 D .5-2 6.将一副常规的三角尺按如图方式放置,则图中∠AOB 的度数为·························( ) A .75︒ B .95︒ C .105︒ D .120︒7.一次函数y =kx +b (k ≠0)与反比例函数y =k x(k ≠0)的图象如图,则下列结论中正确的是···············( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.小红、小明在玩“剪子、包袱、锤子”游戏,小红给自己一个规定,一直不出“锤子”.设在一个回合中,小红、小明在胜的概率分别是P 1、P 2,则下列结论正确的是······································( )A .P 1=P 2B .P 1>P 2C .P 1<P 2D .P 1≤P 29.如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、 8cm ,AE ⊥BC 于点E ,则AE 的长是···········( ) A .53cm B .25cmC .245cmD .485cm10.如图,已知正方形ABCD 的边长为4,E 是BC 边上的一个动点,AE ⊥EF , EF 交DC 于F , 设BE =x ,FC =y ,则当点E 从点B 运动到点C 时,y 关于x 的函数图象是( )A .B .C .D . 二、填空题(本大题共4小题,每小题5分,满分20分) 11.因式分解:a 2-b 2-2b -1= .12.如图,在半径为5,圆心角等于45°的扇形AOB 内部作一个正方形CDEF ,使点C 在OA 上,点D 、E 在OB 上,点F 在AB上,则阴影部分的面积为(结果保留π).13.如图,在平行四边形ABCD 中,AB =6,AD =9,∠BAD 的平分线交BC 于E ,交DC 的延长线于F , BG ⊥AE 于G ,BG =42,则△EFC 的周长为________.14.如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(﹣1,0),其部分图 第9题图 第13题图 第12题图 第10题图第7题图第6题图第5题图第4题图①4ac <b 2; ②当y >0时,x 的取值范围是-1<x <3;③3a +c <0; ④关于x 的方程ax 2+(b -1)x +c =0有两个不相等的实数根; 其中结论正确的序号是 . 三、本大题共2小题,每小题8分,满分16分 15.计算:(12)-2-(2016-π)0-2sin45°+|1-2|16. 学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加d cm ,如图所示.已知每个菱形图案的边长103 cm ,其一个内角为60°.(1)若d =26,则该纹饰要231个菱形图案,求纹饰的长度L ;(2)当d =20时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案?四、本大题共2小题,每小题8分,满分16分17.在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (-2,1), B (-1,4), C (-3,,2). (1)在y 轴的左侧,以原点O 为位似中心,将△ABC 放大2倍后得到△A 1B 1C 1, 请在图中画出△A 1B 1C 1,并直接写出C 1点坐标; (2)将△ABC 绕着点O 顺时针旋转90°后得到△A 2B 2C2,请在图中画出△A 2B 2C 2, 并求出线段BC 旋转过程中所扫过的面积(结果保留π).18.某中学团委会为研究该校学生的课余活动情况,采取抽样的方法,从阅读、运动、娱乐、其它等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图(如图1,图2),请你根据图中提供的信息解答下列问题: (1)在这次研究中,一共调查了多少名学生? (2)“其它”在扇形图中所占的圆心角是多少度? (3)补全频数分布折线图.第14题图2018年安徽省初中毕业学业考试数学模拟卷二(卷Ⅱ)本卷共计4大题,时间50分钟,满分58分五、本大题共2小题,每小题10分,满分20分19.如图,马路的两边CF ,DE 互相平行,线段CD 为人行横道,马路两侧的A ,B 两点分别表示车站和超市.CD 与AB 所在直线互相平行,且都与马路两边垂直,马路宽20米,A ,B 相距62米,∠A =67°,∠B =37°. (1)求CD 与AB 之间的距离;(2)某人从车站A 出发,沿折线A →D →C →B 去超市B ,求他沿折线A →D →C →B 到达超市比直接横穿马路多走多少米?( 参考数据:sin 67°≈1213,cos67°≈513,tan67°≈125, )sin 37°≈35,sin 37°≈45,tan37°≈3420.已知:如图,⊙O 是Rt △ABC 的外接圆,∠ABC =90°,点P 是⊙O 外一点,P A 切⊙O 于点A ,且P A =PB . (1)求证:PB 是⊙O 的切线; (2)已知P A =23,BC =2,求⊙O 的半径.六、本大题满分12分21.为了保护环境,某开发区综合治理指挥部决定购买A ,B 两种型号的污水处理设备共10台.已知用90万元购买A 型号的污水处理设备的台数与用75万元购买B 型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备 A 型 B 型 价格(万元/台) m m -3 月处理污水量(吨/台)220180(1)求m 的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,求出每月最多处理污水量的吨数.七、本大题满分12分22.如图,已知抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l且与x轴交于点H.(1)求该抛物线的解析式;(2)若E是抛物线AD段上的一个动点(E与A、D不重合),设点E的横坐标为m,△ADE的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.八、本大题满分14分23.阅读下列材料,回答问题:(1)提出问题:如图1,在等边△ABC中,点M是边BC上的任意一点(不含端点B、C),联结AM,以AM为边作等边△AMN,联结CN.求证:∠ABC=∠ACN.(2)类比探究:如图2,在等边△ABC中,点M是边BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN 还成立吗?请说明理由.(3)拓展延伸:如图3,在等腰△ABC中,BA=BC,点M是边BC上的任意一点(不含端点B、C),联结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.联结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.图1 图2 图32018年安徽省初中毕业学业考试数学模拟卷二参考答案一、选择题答案题号 1 2 3 4 5 6 7 8 9 10答案 B D C B C C D A C A二、填空题答案题号11 12 13 14答案(a+b+1)(a-b-1) 58π-328 ①②④三、简答题答案15.答案:2 ;16.答案:(1) 6010 cm ;(2) 300个;17.答案:(1) 图略C1(-6,4) ;(2) π;18.答案:(1) 100 人;(2) 36°;(3) 图略;19.答案:(1) 24米;(2) 24米;20.答案:(1) 证明略;(2) 2 ;21.答案:(1)m=18 ;(2) 最多处理的污水量为2000吨;22.答案:(1) y=x2-2x+3 ;(2) ①S=-m2-4m-3 ②存在最大面积为1,此时点E(-2,3) ;23.答案:(1) 证明略;(2)证明略;(3) 相等,理由略;。

2018届中考数学二模试卷(带答案) (4)

2018届中考数学二模试卷(带答案)  (4)

2018中考数学二模试卷一、选择题1.下列计算正确的是()A.a+2a=3a2B.(a2b)3=a6b3 C.(a m)2=a m+2D.a3•a2=a62.比较﹣3,1,﹣2的大小,下列判断正确的是()A.﹣3<﹣2<1 B.﹣2<﹣3<1 C.1<﹣2<﹣3 D.1<﹣3<﹣23.根据世界贸易组织(WTO)秘书处初步统计数据,2013年中国货物进出口总额为4160000000000美元,超过美国成为世界第一货物贸易大国.将这个数据用科学记数法可以记为()A.4.16×1012美元B.4.16×1013美元C.0.416×1012美元D.416×1010美元4.下列图形中,既是轴对称图形又是中心对称图形的是()A.B. C. D.5.如图,几何体是由一些正方体组合而成的立体图形,则这个几何体的左视图是()A. B.C.D.6.如图,△ABC中,D,E分别是边AB,AC的中点.若DE=2,则BC=()A.2 B.3 C.4 D.57.将一个n边形变成n+1边形,内角和将()A.减少180° B.增加90°C.增加180° D.增加360°8.一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是()A.m>1 B.m=1 C.m<1 D.m≤19.如图,反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,直线AB与x轴交于点C,则△AOC的面积为()A.8 B.10 C.12 D.2410.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象,则下列叙述正确的个数为()(1)乙车的速度为80km/h(千米/小时);(2)a=40,m=1;(3)甲车共行驶了7h;(4)乙车一定行驶了h或h,两车恰好距离50km.A.1个B.2个C.3个D.4个二、填空题11.计算|﹣|+的值是.12.在函数y=中,自变量x的取值范围是.13.因式分解:a3﹣4a=.14.不等式组﹣2≤x+1<1的解集是.15.方程=的根x=.16.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是.17.如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是.18.在△ABC中,AB=AC,AB的中垂线于AC所在的直线相交所得的锐角为40°,则底角∠B的大小为.19.如图,已知△ABC是等边三角形,AB=4+2,点D在AB上,点E在AC上,△ADE沿DE折叠后点A恰好落在BC上的A′点,且DA′⊥BC.则A′B的长是.20.如图,四边形ABCD中,AC、BD是对角线,△ABC是等边三角形,∠ADC=30°,AD=3,BD=5,则△ACD的面积为.三、解答题21.先化简,再求值:,其中x=cos30°+tan45°.22.如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.23.近年来,各地“广场舞”噪音干扰的问题倍受关注,相关人员对本地区15﹣65岁年龄段的市民进行了随机调查,并制作了如图相应的统计图.市民对“广场舞”噪音干扰的态度有以下五种:A.没影响B.影响不大C.有影响,建议做无声运动D.影响很大,建议取缔E.不关心这个问题根据以上信息解答下列问题:(1)根据统计图填空求m的值为多少,A区域所对应的扇形圆心角为多少度;(2)在此次调查中,“不关心这个问题”的有25人,请问一共调查了多少人?(3)将条形统计图补充完整.24.已知,在△ABC中,E,M,N分别是AB,AC,BC的中点,CF∥AB,连接MN,连接并延长EM,与直线CF交于F,连接FN交直线AB于点D,交AC于O点.(1)如图(1),BA=BC,求证:四边形FMNC为菱形;(2)如图(2),连接MB,NE,在不添加任何辅助线的情况下,请直接写出图(2)中的所有平行四边形(BE为边的除外).25.郑州市花卉种植专业户王有才承包了30亩花圃,分别种植康乃馨和玫瑰花,有关成本、销售额见下表:(1)2012年,王有才种植康乃馨20亩、玫瑰花10亩,求王有才这一年共收益多少万元?(收益=销售额﹣成本)(2)2013年,王有才继续用这30亩花圃全部种植康乃馨和玫瑰花,计划投入成本不超过70万元.若每亩种植的成本、销售额与2012年相同,要获得最大收益,他应种植康乃馨和玫瑰花各多少亩?(3)已知康乃馨每亩需要化肥500kg,玫瑰花每亩需要化肥700kg,根据(2)中的种植亩数,为了节约运输成本,实际使用的运输车辆每次装载化肥的总量是原计划每次装载总量的2倍,结果运输全部化肥比原计划减少2次.求王有才原定的运输车辆每次可装载化肥多少千克?26.如图,已知:PA切⊙O于A,割线PBC交⊙O于B,C,PD⊥AB于D,延长PD交AO的延长线于E,连接CE并延长,交⊙O于F,连接AF.(1)求证:PD•PE=PB•PC;(2)求证:PE∥AF;(3)连接AC,若AE:AC=1:,AB=2,求EF的长.27.如图,直线y=﹣x+3交y轴于点A,交x轴与点B,抛物线y=﹣x2+bx+c经过点A和点B,点P为抛物线上直线AB上方部分上的一点,且点P的横坐标为t,过P作PE∥x轴交直线AB于,作PH⊥x轴于H,PH交直线AB于点F.(1)求抛物线解析式;(2)若PE的长为m,求m关于t的函数关系式;(3)是否存在这样的t值,使得∠FOH﹣∠BEH=45°?若存在,求出t值,并求tan∠BEH的值,若不存在,请说明理由.参考答案与试题解析一、选择题1.下列计算正确的是()A.a+2a=3a2B.(a2b)3=a6b3 C.(a m)2=a m+2D.a3•a2=a6【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【专题】计算题.【分析】分别进行合并同类项、积的乘方和幂的乘方、同底数幂的乘法运算,然后选择正确答案.【解答】解:A、a+2a=3a,故A选项错误;B、(a2b)3=a6b3,故B选项正确;C、(a m)2=a2m,故C选项错误;D、a3•a2=a5,故D选项错误.故选:B.【点评】本题考查了积的乘方和幂的乘方、同底数幂的乘法、合并同类项等知识,掌握运算法则是解答本题的关键.2.比较﹣3,1,﹣2的大小,下列判断正确的是()A.﹣3<﹣2<1 B.﹣2<﹣3<1 C.1<﹣2<﹣3 D.1<﹣3<﹣2【考点】有理数大小比较.【分析】本题是对有理数的大小比较,根据有理数性质即可得出答案.【解答】解:有理数﹣3,1,﹣2的中,根据有理数的性质,∴﹣3<﹣2<0<1.故选:A.【点评】本题主要考查了有理数大小的判定,难度较小.3.根据世界贸易组织(WTO)秘书处初步统计数据,2013年中国货物进出口总额为4160000000000美元,超过美国成为世界第一货物贸易大国.将这个数据用科学记数法可以记为()A.4.16×1012美元B.4.16×1013美元C.0.416×1012美元D.416×1010美元【考点】科学记数法—表示较大的数.【专题】常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4160000000000有13位,所以可以确定n=13﹣1=12.【解答】解:4 160 000 000 000=4.16×1012.故选:A.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.下列图形中,既是轴对称图形又是中心对称图形的是()A.B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既是轴对称图形,也是中心对称图形,符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选:A.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.如图,几何体是由一些正方体组合而成的立体图形,则这个几何体的左视图是()A. B.C.D.【考点】简单组合体的三视图.【专题】常规题型.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个正方形,第二层是左边一个正方形,故选:D.【点评】本题考查简单组合体的三视图,从左边看得到的图形是左视图.6.如图,△ABC中,D,E分别是边AB,AC的中点.若DE=2,则BC=()A.2 B.3 C.4 D.5【考点】三角形中位线定理.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得BC=2DE.【解答】解:∵D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,∴BC=2DE=2×2=4.故选:C.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.7.将一个n边形变成n+1边形,内角和将()A.减少180° B.增加90°C.增加180° D.增加360°【考点】多边形内角与外角.【专题】计算题.【分析】利用多边形的内角和公式即可求出答案.【解答】解:n边形的内角和是(n﹣2)•180°,n+1边形的内角和是(n﹣1)•180°,因而(n+1)边形的内角和比n边形的内角和大(n﹣1)•180°﹣(n﹣2)•180=180°.故选:C.【点评】本题主要考查了多边形的内角和公式,是需要识记的内容.8.一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是()A.m>1 B.m=1 C.m<1 D.m≤1【考点】根的判别式.【分析】根据根的判别式,令△≥0,建立关于m的不等式,解答即可.【解答】解:∵方程x2﹣2x+m=0总有实数根,∴△≥0,即4﹣4m≥0,∴﹣4m≥﹣4,∴m≤1.故选:D.【点评】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.9.如图,反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,直线AB与x轴交于点C,则△AOC的面积为()A.8 B.10 C.12 D.24【考点】反比例函数图象上点的坐标特征;坐标与图形性质;待定系数法求一次函数解析式.【专题】代数几何综合题;待定系数法.【分析】根据已知点横坐标得出其纵坐标,进而求出直线AB的解析式,求出直线AB与x轴横坐标交点,即可得出△AOC的面积.【解答】解:∵反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,∴x=﹣1,y=6;x=﹣3,y=2,∴A(﹣1,6),B(﹣3,2),设直线AB的解析式为:y=kx+b,则,解得:,则直线AB的解析式是:y=2x+8,∴y=0时,x=﹣4,∴CO=4,∴△AOC的面积为:×6×4=12.故选:C.【点评】此题主要考查了反比例函数图象上点的坐标特征以及待定系数法求一次函数解析式,得出直线AB 的解析式是解题关键.10.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象,则下列叙述正确的个数为()(1)乙车的速度为80km/h(千米/小时);(2)a=40,m=1;(3)甲车共行驶了7h;(4)乙车一定行驶了h或h,两车恰好距离50km.A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】(1)根据函数图象可得乙车行驶3.5﹣2=1小时与甲车相遇解答;(2)根据乙的速度,求出a的值和m的值解答;(3)再求出甲车行驶的路程y与时间x之间的解析式解答;(4)由解析式之间的关系建立方程解答.【解答】解:(1)120÷(3.5﹣2)=80km/h(千米/小时),故正确;(2)由题意,得m=1.5﹣0.5=1.120÷(3.5﹣0.5)=40(km/h),则a=40.故正确(3)当1.5<x≤7时,甲车y与x之间的函数关系式为y=40x﹣20,当y=260时,260=40x﹣20,解得:x=7,故正确(4)当0≤x≤1时,设甲车y与x之间的函数关系式为y=k1x,由题意,得:40=k1,则y=40x当1<x≤1.5时,y=40;当1.5<x≤7时,设甲车y与x之间的函数关系式为y=k2x+b,由题意,得:,解得:k2=40,b=﹣20,则y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k3x+b3,由题意得:,解得:k3=80,b=﹣160,则y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.﹣2=,﹣2=.所以乙车行驶小时或小时,两车恰好相距50km,故正确.故选:D.【点评】本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的运用,解答时求出一次函数的解析式是关键.二、填空题11.计算|﹣|+的值是.【考点】实数的运算.【专题】计算题.【分析】原式利用绝对值的代数意义化简,合并即可得到结果.【解答】解:原式=﹣+=,故答案为:【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.12.在函数y=中,自变量x的取值范围是x≠3.【考点】函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,3﹣x≠0,解得x≠3.故答案为:x≠3.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.因式分解:a3﹣4a=a(a+2)(a﹣2).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).【点评】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.14.不等式组﹣2≤x+1<1的解集是﹣3≤x<0.【考点】解一元一次不等式组.【分析】分别解每一个不等式,再求解集的公共部分即可.【解答】解:解不等式﹣2≤x+1得x≥﹣3,解不等式x+1<1得x<0,故不等式组的解集为﹣3<x<0.故答案为:﹣3<x<0.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.15.方程=的根x=﹣1.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x=﹣1,经检验x=﹣1是分式方程的解.故答案为:﹣1.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.16.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是.【考点】列表法与树状图法.【专题】图表型.【分析】列举出所有情况,看两次都摸到红球的情况占总情况的多少即可.【解答】解:∴一共有12种情况,有2种情况两次都摸到红球,∴两次都摸到红球的概率是=.故答案为.【点评】本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是.【考点】弧长的计算;垂径定理;解直角三角形.【分析】连接OC,先根据勾股定理判断出△ACE的形状,再由垂径定理得出CE=DE,故=,由锐角三角函数的定义求出∠A的度数,故可得出∠BOC的度数,求出OC的长,再根据弧长公式即可得出结论.【解答】解:连接OC,∵△ACE中,AC=2,AE=,CE=1,∴AE2+CE2=AC2,∴△ACE是直角三角形,即AE⊥CD,∵sinA==,∴∠A=30°,∴∠COE=60°,∴=sin∠COE,即=,解得OC=,∵AE⊥CD,∴=,∴===.故答案是:.【点评】本题考查的是垂径定理,涉及到直角三角形的性质、弧长公式等知识,难度适中.18.在△ABC中,AB=AC,AB的中垂线于AC所在的直线相交所得的锐角为40°,则底角∠B的大小为65°或25°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】作出图形,分①DE与线段AC相交时,根据直角三角形两锐角互余求出∠A,再根据等腰三角形两底角相等列式计算即可得解;②DE与CA的延长线相交时,根据直角三角形两锐角互余求出∠EAD,再求出∠BAC,然后根据等腰三角形两底角相等列式计算即可得解.【解答】解:①DE与线段AC相交时,如图1,∵DE是AB的垂直平分线,∠AED=40°,∴∠A=90°﹣∠AED=90°﹣40°=50°,∵AB=AC,∴∠ABC=(180°﹣∠A)=(180°﹣50°)=65°;②DE与CA的延长线相交时,如图2,∵DE是AB的垂直平分线,∠AED=40°,∴∠EAD=90°﹣∠AED=90°﹣40°=50°,∴∠BAC=180°﹣∠EAD=180°﹣50°=130°,∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣130°)=25°,综上所述,等腰△ABC的底角∠B的大小为65°或25°.故答案为:65°或25°.【点评】本题考查了线段垂直平分线上的性质,等腰三角形两底角相等的性质,直角三角形两锐角互余的性质,难点在于要分情况讨论,作出图形更形象直观.19.如图,已知△ABC是等边三角形,AB=4+2,点D在AB上,点E在AC上,△ADE沿DE折叠后点A恰好落在BC上的A′点,且DA′⊥BC.则A′B的长是2.【考点】翻折变换(折叠问题).【专题】几何综合题.【分析】设A′B=x,根据等边三角形的性质可得∠B=60°,根据直角三角形两锐角互余求出∠BDA′=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2A′B,然后利用勾股定理列式表示出A′D,再根据翻折的性质可得AD=A′D,最后根据AB=BD+AD列出方程求解即可.【解答】解:设A′B=x,∵△ABC是等边三角形,∴∠B=60°,∵DA′⊥BC,∴∠BDA′=90°﹣60°=30°,∴BD=2A′B=2x,由勾股定理得,A′D===x,由翻折的性质得,AD=A′D=x,所以,AB=BD+AD=2x+x=4+2,解得x=2,即A′B=2.故答案为:2.【点评】本题考查了翻折变换的性质,等边三角形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理,熟记各性质并用A′B表示出相关的线段是解题的关键.20.如图,四边形ABCD中,AC、BD是对角线,△ABC是等边三角形,∠ADC=30°,AD=3,BD=5,则△ACD的面积为3.【考点】全等三角形的判定与性质;勾股定理.【专题】计算题.【分析】如图,以CD为边作等边△CDE,连接AE,根据三角形ABC与三角形CDE为等边三角形,利用等边三角形的性质得到两对边相等,利用等式的性质得到夹角相等,利用SAS得到三角形BCD与三角形ACE 全等,利用全等三角形对应边相等得到BD=AE,求出AE的长,由∠ADC+∠CDE=∠ADE=90°,得到三角形ADE为直角三角形,利用勾股定理求出DE的长,即为DC的长,在三角形ADC中,利用三角形的面积公式即可求出三角形ADC面积.【解答】解:如图,以CD为边作等边△CDE,连接AE,∵△ABC与△CDE为等边三角形,∴∠BCD=∠BCA+∠ACD=∠DCE+∠ACD=∠ACE,在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴BD=AE,∵∠ADC=30°,∴∠ADE=90°,在Rt△ADE中,AE=5,AD=3,根据勾股定理得:DE==4,∴CD=DE=4,则S=AD•DC•sin30°=×3×4×=3.故答案为:3.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.三、解答题21.先化简,再求值:,其中x=cos30°+tan45°.【考点】分式的化简求值;特殊角的三角函数值.【分析】先根据分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可.【解答】解:原式=÷=÷=•=,∵x=cos30°+tan45°=+1,∴原式==+.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22.如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.【考点】作图-旋转变换;作图-平移变换.【分析】(1)按A到A1的平移方向和平移距离,即可得到B和C对应点,从而得到平移后的图形;(2)把B1和C1绕点A1旋转90°,得到对应点即可得到对应图形;(3)利用勾股定理和弧长公式即可求解.【解答】解:(1)△A1B1C1就是所求的图形;(2)△A1B2C2就是所求的图形;(3)B到B1的路径长是:=2,B1到B2的路径长是:=π.则路径总长是:2+π.【点评】本题考查了图形的平移和旋转,以及弧长公式,理解图象的旋转过程中每个点经过的路径是弧是关键.23.近年来,各地“广场舞”噪音干扰的问题倍受关注,相关人员对本地区15﹣65岁年龄段的市民进行了随机调查,并制作了如图相应的统计图.市民对“广场舞”噪音干扰的态度有以下五种:A.没影响B.影响不大C.有影响,建议做无声运动D.影响很大,建议取缔E.不关心这个问题根据以上信息解答下列问题:(1)根据统计图填空求m的值为多少,A区域所对应的扇形圆心角为多少度;(2)在此次调查中,“不关心这个问题”的有25人,请问一共调查了多少人?(3)将条形统计图补充完整.【考点】条形统计图;扇形统计图.【分析】(1)根据有理数的减法,可得m的值;根据A类所占的百分比乘以360°,可得答案;(2)根据E类的人数除以E类所占的百分比,可得答案;(3)根据调查的人数乘以给出建议的人数所占的百分比,可得给出建议的人数,再根据有理数的减法,可得25﹣35的人数,根据25﹣35的人数,可得答案.【解答】解:(1)m%=1﹣33%﹣20%﹣5%﹣10%=32%,m=32,A区域所对应的圆心角,20%×360°=72°;(2)一共调查的人数为25÷5%=500人,(3)500×(32%+10%)=210(人),25﹣35岁的人数为210﹣30﹣70﹣40﹣10=60(人),将条形统计图补充完整如图所示.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.已知,在△ABC中,E,M,N分别是AB,AC,BC的中点,CF∥AB,连接MN,连接并延长EM,与直线CF交于F,连接FN交直线AB于点D,交AC于O点.(1)如图(1),BA=BC,求证:四边形FMNC为菱形;(2)如图(2),连接MB,NE,在不添加任何辅助线的情况下,请直接写出图(2)中的所有平行四边形(BE为边的除外).【考点】菱形的判定;平行四边形的判定.【分析】(1)首先利用三角形中位线的性质得出ME BC,MN AB,进而利用平行四边形的判定和菱形的判定方法得出即可;(2)利用三角形中位线的性质结合平行四边形的判定得出即可.【解答】(1)证明:∵E,M,N分别是AB,AC,BC的中点,BA=BC,∴ME BC,MN AB,∴四边形MEBN是平行四边形,又∵ME=MN,∴四边形FMNC为菱形;(2)解:所有平行四边形(BE为边的除外)有:▱FMNC,▱MAEN,▱MBDN,▱FMBN,▱MENC.【点评】此题主要考查了菱形的判定和平行四边形的判定等知识,熟练应用三角形中位线定理是解题关键.25.郑州市花卉种植专业户王有才承包了30亩花圃,分别种植康乃馨和玫瑰花,有关成本、销售额见下表:(1)2012年,王有才种植康乃馨20亩、玫瑰花10亩,求王有才这一年共收益多少万元?(收益=销售额﹣成本)(2)2013年,王有才继续用这30亩花圃全部种植康乃馨和玫瑰花,计划投入成本不超过70万元.若每亩种植的成本、销售额与2012年相同,要获得最大收益,他应种植康乃馨和玫瑰花各多少亩?(3)已知康乃馨每亩需要化肥500kg,玫瑰花每亩需要化肥700kg,根据(2)中的种植亩数,为了节约运输成本,实际使用的运输车辆每次装载化肥的总量是原计划每次装载总量的2倍,结果运输全部化肥比原计划减少2次.求王有才原定的运输车辆每次可装载化肥多少千克?【考点】一次函数的应用;分式方程的应用;一元一次不等式的应用.【专题】应用题.【分析】(1)根据一年的收益等于两种花的收益之和列式计算即可得解;(2)设种康乃馨x亩,则种玫瑰花(30﹣x)亩,根据总成本列出不等式求出x的取值范围,然后设总收益为W,表示出收益的函数关系式,再根据一次函数的增减性解答;(3)设原定运输车辆每次可装载话费mkg,根据实际运输的饲料比原计划运输的饲料减少了2次列出方程,求解即可.【解答】解:(1)由题意得,20×(3﹣2.4)+10×(2.5﹣2)=20×0.6+10×0.5=17(万元),答:王有才这一年共收益17万元;(2)设种康乃馨x亩,则种玫瑰花(30﹣x)亩,根据题意得,2.4x+2(30﹣x)≤70,解得:x≤25,设总收益为W,则W=(3﹣2.4)x+(2.5﹣2)×(30﹣x),=0.1x+15,∵k=0.1>0,∴W随x的增大而增大,∴当x=25时,获得最大收益,答:要获得最大收益,应种植康乃馨25亩,种植玫瑰花5亩;(3)设原定运输车辆每次可装载饲料mkg,则实际每次装载2mkg,需要运输的饲料吨数为:500×25+700×5=16000kg,根据题意得,﹣=2,解得:m=4000,经检验,m=4000是原方程的解.答:王有才原定的运输车辆每次可装载花肥4 000 kg.【点评】本题考查了一次函数的应用以及分式方程的应用,表示出与总收益的函数关系式,找出题中等量关系并列出方程是解题的关键.26.如图,已知:PA切⊙O于A,割线PBC交⊙O于B,C,PD⊥AB于D,延长PD交AO的延长线于E,连接CE并延长,交⊙O于F,连接AF.(1)求证:PD•PE=PB•PC;(2)求证:PE∥AF;(3)连接AC,若AE:AC=1:,AB=2,求EF的长.【考点】切线的性质;切割线定理;相似三角形的判定与性质.【专题】证明题;综合题.【分析】(1)欲证PD•PE=PB•PC,在此题所给的已知条件中,∠APE的余弦值在△APD和△APE中,有两种表示方法,从而得出一个等积式,根据切割线定理,再得到一个等积式,从而借助于PA2得到PD•PE=PB•PC;(2)可证△PBD∽△PEC,再根据相似三角形的性质和圆内接四边形的性质得到∠PEC=∠AFC,根据平行线的判定即可得出结论;(3)分别证明△PAB∽△PCA,△AEF∽△APB,得出两个比例式,联立有=,再代值即可求出EF的长.【解答】(1)证明:∵PA切⊙O于点A,∴AO⊥PA.∵PD⊥AB,∴=cos∠APE=.∴PA2=PD×PE…①∵PBC是⊙O的割线,PA为⊙O切线,∴PA2=PB×PC…②联立①②,得PD•PE=PB•PC;(2)证明:∵PD•PE=PB•PC(已证),∴,∵∠BPD为公共角,∴△BDP∽△EPC,∴∠PBD=∠PEC,∵四边形ABCF内接圆,∴∠ABP=∠AFC,∴∠AFC=∠PEC,∴PE∥AP;(3)解:∵AP是⊙O的切线,∴∠PAB=∠PCA,∵∠APB=∠CPA,∴△PAB∽△PCA,∴=…①,∵∠PAE=∠ADP=90°,∴∠APD+∠PAD=90°,∠APD+∠AEP=90°,∴∠PAB=∠AEP=∠FAE,∵∠ABP=∠F,∴△AEF∽△APB,∴=,即=…②联立①②,有=,∴EF=AE×=×2=.【点评】此题考查了三角函数、切割线定理,以及相似的判定和性质,比较全面,有一定的难度.27.如图,直线y=﹣x+3交y轴于点A,交x轴与点B,抛物线y=﹣x2+bx+c经过点A和点B,点P为抛物线上直线AB上方部分上的一点,且点P的横坐标为t,过P作PE∥x轴交直线AB于,作PH⊥x轴于H,PH交直线AB于点F.(1)求抛物线解析式;(2)若PE的长为m,求m关于t的函数关系式;(3)是否存在这样的t值,使得∠FOH﹣∠BEH=45°?若存在,求出t值,并求tan∠BEH的值,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由直线AB的解析式可求得A、B两点的坐标,代入抛物线解析式可求得b、c,可求得抛物线解析式;(2)由P点坐标表示出E点的纵坐标,代入直线AB解析式,可求得E点横坐标,则可用t表示出PE的长,可得到m关于t的函数关系式;(3)过E作EG⊥x轴于点G,则可用t表示出GH和EG,由三角形外角的性质和已知条件可证得∠EHG=∠FOH,可证明△FOH∽△EHG,根据相似三角形的性质可求得t的值,则可求得tan∠EHG,结合∠BEH=∠FOH﹣45°,则可求得tan∠BEH的值.【解答】解:(1)在直线y=﹣x+3中,令x=0可得y=3,令y=0可得x=3,∴A(0,3),B(3,0),∵抛物线y=﹣x2+bx+c过A、B两点,∴把A、B两点的坐标代入可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)∵P点在抛物线上,∴P点坐标为(t,﹣t2+2t+3),∵PE∥x轴,∴E点纵坐标为﹣t2+2t+3,。

2018届中考数学二模试卷(带答案) (2)

2018届中考数学二模试卷(带答案)  (2)

2018年中考数学二模试卷一、选择题(本大题共12小题,共36分.每小题只有一个选项符合题意.请考生用2B铅笔在答题卷上将选定的答案标号涂黑)1.在平面直角坐标系中,下面的点在第一象限的是()A.(1,2) B.(﹣2,3)C.(0,0) D.(﹣3,﹣2)2.计算:﹣1﹣2=()A.1 B.﹣1 C.﹣2 D.﹣33.下列长度的三条线段能组成三角形的是()A.1,2,3 B.3,4,5 C.3,1,1 D.3,4,74.在Rt△ABC中,∠C=90°,AB=5,BC=3,则∠A的余弦值为()A.B.C.D.5.一个几何体的三视图完全相同,该几何体可以是()A.圆锥 B.圆柱 C.长方体D.球6.下列计算正确的是()A.(a+b)2=a2+b2B.(﹣2a)3=﹣6a3C.(a2b)3=a5b2 D.(﹣a)6÷(﹣a)2=a47.下列事件中,属于确定事件的个数是()(1)打开电视,正在播广告;(2)投掷一枚普通的骰子,掷得的点数小于10;(3)射击运动员射击一次,命中10环;(4)在一个只装有红球的袋中摸出白球.A.0 B.1 C.2 D.38.不等式组的解集在数轴上可表示为()A.B.C.D.9.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形10.计算﹣的结果是()A.﹣B.C.D.11.方程:+=1的解是()A.x=﹣1 B.x=3 C.x=﹣1或x=3 D.x=1或x=﹣31212.如图,在平面直角坐标系中有一正方形AOBC,反比例函数y=经过正方形AOBC对角线的交点,半径为(4﹣2)的圆内切于△ABC,则k的值为()A.4B.4 C.2D.2二、填空题(本大题共6小题,每小题3分,共18分,请把答案填写在答题卷指定的位置上)13.若二次根式有意义,则x的取值范围是.14.“神舟七号”舱门除了有气压外,还有光压,开门最省力也需要用大约568000斤的臂力.用科学记数法表示568000为.15.分解因式:1﹣x2=.16.甲、乙、丙、丁四位同学在本学期的四次数学测试中,他们成绩的平均数相同,方差分别为S甲2=5.5,S乙2=7.3,S丙2=8.6,S丁2=4.5,则成绩最稳定的是.17.如图,以O为位似中心,把五边形ABCDE的面积扩大为原来的4倍,得五边形A 1B1C1D1E1,则OD:OD1=.18.点E是平行四边形ABCD边BC的中点,平行四边形ABCD的面积是m,则四边形ABEF的面积是.三、解答题(本大题共8小题,共66分,解答应写出文字说明、证明过程或验算步骤)19.计算:4cos45°+(﹣1)2015﹣+()﹣2.20.如图,方格纸中的每个小正方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上,O、M都在格点上.(1)画出△ABC关于直线OM对称的△A1B1C1;(2)画出将△ABC绕点O按顺时针方向旋转90°后得到的△A2B2C2(3)△A1B1C1与△A2B2C2组成的图形是轴对称图形码?如果是轴对称图形,请画出对称轴.21.已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.22.小明对所在班级的“小书库”进行了分类统计,并制作了如下的统计图表:根据上述信息,完成下列问题:(1)图书总册数是册,a=册;(2)请将条形统计图补充完整;(3)数据22,20,18,a,12,14中的众数是,极差是;(4)小明从这些书中任意拿一册来阅读,求他恰好拿到数学或英语书的概率.23.某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个.(1)求第一次每个书包的进价是多少元?(2)若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,问最低可打几折?24.已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y1>y2成立的自变量x的取值范围;(3)如果点C与点A关于x轴对称,求△ABC的面积.25.如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于F.(1)求证:∠DCP=∠DAP;(2)若AB=2,DP:PB=1:2,且PA⊥BF,求对角线BD的长.26.如图,半径为1的⊙M经过直角坐标系的原点O,且分别与x轴正半轴、y轴正半轴交于点A、B,∠OMA=60°,过点B的切线交x轴负半轴于点C,抛物线过点A、B、C.(1)求点A、B的坐标;(2)求抛物线的函数关系式;(3)若点D为抛物线对称轴上的一个动点,问是否存在这样的点D,使得△BCD是等腰三角形?若存在,求出符合条件的点D的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共12小题,共36分.每小题只有一个选项符合题意.请考生用2B铅笔在答题卷上将选定的答案标号涂黑)2.在平面直角坐标系中,下面的点在第一象限的是()A.(1,2) B.(﹣2,3)C.(0,0) D.(﹣3,﹣2)【考点】点的坐标.【专题】计算题.【分析】满足点在第一象限的条件是:横坐标是正数,纵坐标也是正数,结合选项进行判断即可.【解答】解:因为第一象限的条件是:横坐标是正数,纵坐标也是正数,而各选项中符合纵坐标为正,横坐标也正的只有A(1,2).故选:A.【点评】本题主要考查了平面直角坐标系中第四象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).1.计算:﹣1﹣2=()A.1 B.﹣1 C.﹣2 D.﹣3【考点】有理数的减法.【分析】根据有理数的减法运算进行计算即可得解.【解答】解:﹣1﹣2=﹣3,故选D.【点评】本题考查了有理数的减法,将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).3.下列长度的三条线段能组成三角形的是()A.1,2,3 B.3,4,5 C.3,1,1 D.3,4,7【考点】三角形三边关系.【专题】应用题.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.【解答】解:根据三角形的三边关系,知A、1+2=3,不能组成三角形,故A错误;B、3+4>5,能够组成三角形;故B正确;C、1+1<3,不能组成三角形;故C错误;D、3+4=7,不能组成三角形,故D错误.故选:B.【点评】本题考查了三角形的三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数,难度适中.4.在Rt△ABC中,∠C=90°,AB=5,BC=3,则∠A的余弦值为()A.B.C.D.【考点】锐角三角函数的定义;勾股定理.【专题】计算题.【分析】先根据勾股定理,求出AC的值,然后再由余弦=邻边÷斜边计算即可.【解答】解:在Rt△ABC中,∵∠C=90°,AB=5,BC=3,∴AC=4,∴cosA==.故选C.【点评】本题考查了锐角三角函数的定义和勾股定理,牢记定义和定理是解题的关键.5.一个几何体的三视图完全相同,该几何体可以是()A.圆锥 B.圆柱 C.长方体D.球【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:A、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;B、圆柱的主视图、左视图都是长方形,俯视图是圆形;故本选项错误;C、长方体的主视图为长方形、左视图为长方形或正方形、俯视图为长方形或正方形;故本选项错误;D、球体的主视图、左视图、俯视图都是圆形;故本选项正确.故选D.【点评】本题考查了简单几何体的三视图,锻炼了学生的空间想象能力.6.下列计算正确的是()A.(a+b)2=a2+b2B.(﹣2a)3=﹣6a3C.(a2b)3=a5b2 D.(﹣a)6÷(﹣a)2=a4【考点】同底数幂的除法;幂的乘方与积的乘方;完全平方公式.【分析】根据完全平方公式、幂的乘方和同底数幂的除法计算判断即可.【解答】解:A、(a+b)2=a2+2ab+b2,错误;B、(﹣2a)3=﹣8a3,错误;C、(a2b)3=a6b3,错误;D、(﹣a)6÷(﹣a)2=a4,正确;故选D.【点评】此题考查完全平方公式、幂的乘方和同底数幂的除法,关键是根据法则进行计算.7.下列事件中,属于确定事件的个数是()(1)打开电视,正在播广告;(2)投掷一枚普通的骰子,掷得的点数小于10;(3)射击运动员射击一次,命中10环;(4)在一个只装有红球的袋中摸出白球.A.0 B.1 C.2 D.3【考点】随机事件.【分析】确定事件就是一定发生的事件或一定不会发生的事件,根据定义即可确定.【解答】解:(1)(3)属于随机事件;(4)是不可能事件,属于确定事件;(2)是必然事件,属于确定事件;故属于确定事件的个数是2,故选:C.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.不等式组的解集在数轴上可表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】计算题.【分析】首先解出不等式组x的取值范围,然后根据x的取值范围,找出正确答案;【解答】解:不等式组,解①得:x≥﹣1,解②得:x<2,则不等式组的解集是:﹣1≤x<2.故选B.【点评】本题考查了不等式组的解法及在数轴上表示不等式的解集,把不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形【考点】多边形内角与外角.【专题】应用题.【分析】任何多边形的外角和是360度,内角和等于外角和的一半则内角和是180度,可知此多边形为三角形.【解答】解:根据题意,得(n﹣2)•180°=180°,解得:n=3.故选D.【点评】本题主要考查了已知多边形的内角和求边数,可以转化为方程的问题来解决,难度适中.10.计算﹣的结果是()A.﹣B.C.D.【考点】分式的加减法.【分析】首先通分,然后根据同分母的分式加减运算法则求解即可求得答案.【解答】解:﹣===﹣.故选A.【点评】此题考查了分式的加减运算法则.题目比较简单,注意解题需细心.11.方程:+=1的解是()A.x=﹣1 B.x=3 C.x=﹣1或x=3 D.x=1或x=﹣312【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+3=x2,即(x﹣3)(x+1)=0,解得:x=3或x=﹣1,经检验x=3与x=﹣1都为分式方程的解.故选C.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.12.如图,在平面直角坐标系中有一正方形AOBC,反比例函数y=经过正方形AOBC对角线的交点,半径为(4﹣2)的圆内切于△ABC,则k的值为()A.4B.4 C.2D.2【考点】反比例函数综合题.【分析】根据正方形的性质得出AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,进而根据半径为(4﹣2)的圆内切于△ABC,得出CD的长,从而得出DO的长,再利用勾股定理得出DN的长进而得出k的值.【解答】解:设正方形对角线交点为D,过点D作DM⊥AO于点M,DN⊥BO于点N;设圆心为Q,切点为H、E,连接QH、QE.∵在正方形AOBC中,反比例函数y=经过正方形AOBC对角线的交点,∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,QH⊥AC,QE⊥BC,∠ACB=90°,∴四边形HQEC是正方形,∵半径为(4﹣2)的圆内切于△ABC,∴DO=CD,∵HQ2+HC2=QC2,∴2HQ2=QC2=2×(4﹣2)2,∴QC2=48﹣32=(4﹣4)2,∴QC=4﹣4,∴CD=4﹣4+(4﹣2)=2,∴DO=2,∵NO2+DN2=DO2=(2)2=8,∴2NO2=8,∴NO2=4,∴DN×NO=4,即:xy=k=4.故选B.【点评】本题考查了反比例函数综合题,涉及正方形的性质以及三角形内切圆的性质以及待定系数法求反比例函数解析式,根据已知求出CD的长度,进而得出DN×NO=4是解决问题的关键.二、填空题(本大题共6小题,每小题3分,共18分,请把答案填写在答题卷指定的位置上)13.若二次根式有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【点评】此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.14.“神舟七号”舱门除了有气压外,还有光压,开门最省力也需要用大约568000斤的臂力.用科学记数法表示568000为 5.68×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于568000有6位,所以可以确定n=6﹣1=5.【解答】解:568 000=5.68×105.故答案为:5.68×105.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.15.分解因式:1﹣x2=(1+x)(1﹣x).【考点】因式分解-运用公式法.【专题】因式分解.【分析】分解因式1﹣x2中,可知是2项式,没有公因式,用平方差公式分解即可.【解答】解:1﹣x2=(1+x)(1﹣x).故答案为:(1+x)(1﹣x).【点评】本题考查了因式分解﹣运用公式法,熟练掌握平方差公式的结构特点是解题的关键.16.甲、乙、丙、丁四位同学在本学期的四次数学测试中,他们成绩的平均数相同,方差分别为S甲2=5.5,S乙2=7.3,S丙2=8.6,S丁2=4.5,则成绩最稳定的是丁.【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=5.5,S乙2=7.3,S丙2=8.6,S丁2=4.5,丁的方差最小,∴成绩最稳定的是丁同学,故答案为:丁.【点评】此题主要考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.如图,以O为位似中心,把五边形ABCDE的面积扩大为原来的4倍,得五边形A1B1C1D1E1,则OD:OD1=1:2.【考点】位似变换.【分析】根据五边形ABCDE的面积扩大为原来的4倍,利用相似图形面积的比等于相似比的平方,即可得出答案.【解答】解:∵以O为位似中心,把五边形ABCDE的面积扩大为原来的4倍,得五边形A1B1C1D1E1,则OD:OD1=1:2,故答案为:1:2.【点评】此题主要考查位似图形的性质,根据面积的比等于相似比的平方是解决问题的关键.18.点E是平行四边形ABCD边BC的中点,平行四边形ABCD的面积是m,则四边形ABEF的面积是m.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】设出△EFC的面积为a,根据△AFD∽△CFE和AD=2EC,求出△AFD的面积,根据DF=2FE,求出△DFC的面积,计算得到a=m,得到答案.【解答】解:设△EFC的面积为a,∵E是BC的中点,∴BC=2EC,则AD=2EC,∵AD∥BC,∴△AFD∽△CFE,∴△AFD的面积为4a,∵DF=2FE,∴△DFC的面积为2a,∴△ADC的面积为6a,则四边形ABEF的面积为5a,又∵平行四边形ABCD的面积是m,即12a=m,a=m,∴四边形ABEF的面积m.故答案为:m.【点评】本题考查的是面积的计算,掌握相似三角形的面积比等于相似比的平方是解题的关键,解答时,注意等高的两个三角形的面积比等于底的比.三、解答题(本大题共8小题,共66分,解答应写出文字说明、证明过程或验算步骤)19.计算:4cos45°+(﹣1)2015﹣+()﹣2.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用特殊角的三角函数值计算,第二项利用乘方的意义计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=4×﹣1﹣+36=2﹣+35.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,方格纸中的每个小正方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上,O、M都在格点上.(1)画出△ABC关于直线OM对称的△A1B1C1;(2)画出将△ABC绕点O按顺时针方向旋转90°后得到的△A2B2C2(3)△A1B1C1与△A2B2C2组成的图形是轴对称图形码?如果是轴对称图形,请画出对称轴.【考点】作图-旋转变换;作图-轴对称变换.【专题】作图题.【分析】(1)根据网格结构找出点A、B、C关于直线OM的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C绕点O顺时针旋转90°后的对应点A2、B2、C2的位置,然后顺次连接即可;(3)根据轴对称的概念作出判断并画出对称轴.【解答】解:(1)△A1B1C1如图;(2)△A2B2C2如图;(3)是轴对称,如图直线l为对称轴.【点评】本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.21.已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.【考点】作图—复杂作图;全等三角形的判定.【专题】压轴题.【分析】(1)①以B为圆心,任意长为半径画弧,交AB、BC于F、N,再以F、N为圆心,大于FN长为半径画弧,两弧交于点M,过B、M画射线,交AC于D,线段BD就是∠B的平分线;②分别以A、B为圆心,大于AB长为半径画弧,两弧交于X、Y,过X、Y画直线与AB交于点E,点E 就是AB的中点;(2)首先根据角平分线的性质可得∠ABD的度数,进而得到∠ABD=∠A,根据等角对等边可得AD=BD,再加上条件AE=BE,ED=ED,即可利用SSS证明△ADE≌△BDE.【解答】解:(1)作出∠B的平分线BD;作出AB的中点E.(2)证明:∵∠ABD=×60°=30°,∠A=30°,∴∠ABD=∠A,∴AD=BD,在△ADE和△BDE中∴△ADE≌△BDE(SSS).【点评】此题主要考查了复杂作图,以及全等三角形的判定,关键是掌握基本作图的方法和证明三角形全等的判定方法.22.小明对所在班级的“小书库”进行了分类统计,并制作了如下的统计图表:根据上述信息,完成下列问题:(1)图书总册数是100册,a=14册;(2)请将条形统计图补充完整;(3)数据22,20,18,a,12,14中的众数是14,极差是10;(4)小明从这些书中任意拿一册来阅读,求他恰好拿到数学或英语书的概率.【考点】条形统计图;众数;极差;概率公式.【专题】数形结合.【分析】(1)用其他类的册数除以频率即可求出总本数,再减去已知的本书即可求出a的值.(2)根据上题求出的结果将统计图补充完整即可.(3)根据众数与极差的概念直接解答即可.(4)根据概率的求法,用数学与英语书的总本数除以总本数即可解答.【解答】解:(1)总本数=14÷0.14=100本,a=100﹣22﹣20﹣18=12﹣14=14本.(2)如图:(3)数据22,20,18,a,12,14中a=14,所以众数是14,极差是22﹣12=10;(4)(20+18)÷100=0.38,即恰好拿到数学或英语书的概率为0.38.故答案为100,14,14,10.【点评】本题考查的是条形统计图和统计表的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个.(1)求第一次每个书包的进价是多少元?(2)若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,问最低可打几折?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设第一次每个书包的进价是x元,根据某商店第一次用300元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个可列方程求解.(2)设最低可以打x折,根据若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,可列出不等式求解.【解答】解:(1)设第一次每个书包的进价是x元,﹣20=x=50.经检验得出x=50是原方程的解,且符合题意,答:第一次书包的进价是50元.(2)设最低可以打y折.2400÷(50×1.2)=4080×20+80×0.1y•20﹣2400≥480y≥8故最低打8折.【点评】本题考查理解题意能力,第一问以数量做为等量关系列方程求解,第二问以利润做为不等量关系列不等式求解.24.已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y1>y2成立的自变量x的取值范围;(3)如果点C与点A关于x轴对称,求△ABC的面积.【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】(1)先根据点A的坐标求出反比例函数的解析式为y1=,再求出B的坐标是(﹣2,﹣2),利用待定系数法求一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围x<﹣2 或0<x<1.(3)根据坐标与线段的转换可得出:AC、BD的长,然后根据三角形的面积公式即可求出答案.【解答】解:(1)∵函数y1=的图象过点A(1,4),即4=,∴k=4,即y1=,又∵点B(m,﹣2)在y1=上,∴m=﹣2,∴B(﹣2,﹣2),又∵一次函数y2=ax+b过A、B两点,即,解之得.∴y2=2x+2.综上可得y1=,y2=2x+2.(2)要使y1>y2,即函数y1的图象总在函数y2的图象上方,如图所示:当x<﹣2 或0<x<1时y1>y2.(3)由图形及题意可得:AC=8,BD=3,∴△ABC的面积S△ABC=AC×BD=×8×3=12.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式.以及三角形面积的求法,这里体现了数形结合的思想.25.如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于F.(1)求证:∠DCP=∠DAP;(2)若AB=2,DP:PB=1:2,且PA⊥BF,求对角线BD的长.【考点】相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;菱形的性质.【专题】几何综合题;压轴题.【分析】(1)根据菱形的性质得CD=AD,∠CDP=∠ADP,证明△CDP≌△ADP即可;(2)由菱形的性质得CD∥BA,可证△CPD∽△FPB,利用相似比,结合已知DP:PB=1:2,CD=BA,可证A为BF的中点,又PA⊥BF,从而得出PB=PF,已证PA=CP,把问题转化到Rt△PAB中,由勾股定理,列方程求解.【解答】(1)证明:∵四边形ABCD为菱形,∴CD=AD,∠CDP=∠ADP,∴△CDP≌△ADP,∴∠DCP=∠DAP;(2)解:∵四边形ABCD为菱形,∴CD∥BA,CD=BA,∴∠CDP=∠FBP,∠BFP=∠DCP,∴△CPD∽△FPB,∴===,∴CD=BF,CP=PF,∴A为BF的中点,又∵PA⊥BF,∴PB=PF,由(1)可知,PA=CP,∴PA=PB,在Rt△PAB中,PB2=22+(PB)2,解得PB=,则PD=,∴BD=PB+PD=2.【点评】本题考查了全等三角形、相似三角形的判定与性质,菱形的性质及勾股定理的运用.关键是根据菱形的四边相等,对边平行及菱形的轴对称性解题.26.如图,半径为1的⊙M经过直角坐标系的原点O,且分别与x轴正半轴、y轴正半轴交于点A、B,∠OMA=60°,过点B的切线交x轴负半轴于点C,抛物线过点A、B、C.(1)求点A、B的坐标;(2)求抛物线的函数关系式;(3)若点D为抛物线对称轴上的一个动点,问是否存在这样的点D,使得△BCD是等腰三角形?若存在,求出符合条件的点D的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)由题意可直接得出点A、B的坐标为A(1,0),B(0,);(2)再根据BC是切线,可求出BC的长,即得出点C的坐标,由待定系数法求出抛物线的解析式;(3)先假设存在,看能否求出符合条件的点D即可.【解答】解:(1)∵MO=MA=1,∠OMA=60°,∴∠ABO=30°,∴OB=,∴A(1,0),B(0,);(2)∵BC是切线,∴∠ABC=90°,∴∠ACB=30°,∴AC=4,∴C(﹣3,0),设抛物线的解析式为y=ax2+bx+c,将点A、B、C代入得,,解得∴抛物线的解析式为y=﹣x2﹣x+;(3)设在对称轴上存在点D,使△BCD是等腰三角形,对称轴为直线x=﹣1,设点D(﹣1,m),分3种情况讨论:①BC=BD;=2,解得m=±+;②BC=CD;=2,解得m=±2;③BD=CD;=,解得:m=0,∴符合条件的点D的坐标为,(﹣1,+),(﹣1,﹣+),(﹣1,2),(﹣1,﹣2),(﹣1,0).【点评】本题是二次函数的综合题,其中涉及到的知识点有抛物线的公式的求法和等腰三角形判定等知识点,是各地中考的热点和难点,解题时注意数形结合等数学思想的运用,同学们要加强训练,属于中档题.。

2018届中考数学二模试卷(带答案) (1)

2018届中考数学二模试卷(带答案)  (1)

2018年中考数学二模试卷一、选择题(共12小题,每小题3分,满分36分)1.我国雾霾天气多发,PM2.5颗粒被称为大气污染的元凶.PM2.5是指直径小于或等于2.5微米的颗粒物,已知1毫米=1000微米,用科学记数法表示2.5微米是多少毫米.()A.2.5×10﹣3B.0.25×103C.2.5×103D.25×1062.﹣的相反数是()A.3 B.﹣3 C.D.﹣3.下列运算正确的是()A.x2•x3=x6B.3﹣2=﹣6 C.(x3)2=x5D.40=14.下列说法正确的是()A.相切两圆的连心线经过切点 B.长度相等的两条弧是等弧C.平分弦的直径垂直于弦 D.相等的圆心角所对的弦相等5.如图,等边△DEF的顶点分别在等边△ABC的各边上,且DE⊥BC于E,若AB=1,则DB的长为()A.B.C.D.6.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°7.一组数据﹣2,1,0,﹣1,2的极差和方差分别是()A.4和2 B.4和1 C.3和2 D.2和18.若一次函数y=kx+b的图象经过第二、三、四象限,则反比例函数y=的图象在()A.一、三象限B.二、四象限C.一、二象限D.三、四象限9.现有一圆心角为90°,半径为12cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为()A.cm B.2cm C.3cm D.6cm10.下列图中阴影部分面积与算式|﹣|+()2+2﹣1的结果相同的是()A.B.C.D.11.如图,⊙O是以原点为圆心,为半径的圆,点P是直线y=﹣x+6上的一点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A.3 B.4 C.6﹣D.3﹣112.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1 B.2 C.3 D.4二、填空题(本大题共有6小题,每小题3分,共18分)13.使有意义的x的取值范围是.14.因式分解:x3﹣xy2=.15.如果|a﹣1|+(b+2)2=0,则(a+b)2015的值是.16.一个直角三角形两条直角边的长分别为6cm,8cm,则这个直角三角形的内心与外心之间的距离是cm.17.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,联结DE,F为线段DE上一点,且∠AFE=∠B.若AB=5,AD=8,AE=4,则AF的长为.18.阅读材料:设一元二次方程ax2+bx+c=0的两根为x1,x2,则两根与方程系数之间有如下关系式x1+x2=﹣,x1•x2=根据该材料填空,已知x1,x2是方程x2+3x+1=0的两实数根,则的值为.三、解答题(本大题共有8小题,共66分)19.(1)计算:(﹣1.414)0﹣|﹣2|+﹣3tan30°(2)化简求值:(﹣)÷,其中x=1+,y=1﹣.20.如图,将小旗ACDB放于平面直角坐标系中,得到各顶点的坐标为A(﹣6,12),B(﹣6,0),C (0,6),D(﹣6,6).以点B为旋转中心,在平面直角坐标系内将小旗顺时针旋转90°.(1)画出旋转后的小旗A′C′D′B′;(2)写出点A′,C′,D′的坐标;(3)求出线段BA旋转到B′A′时所扫过的扇形的面积.21.如图,一次函数y=kx+b的图象l与坐标轴分别交于点E、F,与双曲线y=﹣(x<0)交于点P(﹣1,n),且F是PE的中点.(1)求直线l的解析式;(2)若直线x=a与l交于点A,与双曲线交于点B(不同于A),问a为何值时,PA=PB?22.我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共件,其中b班征集到作品件,请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.23.京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.24.如图,已知,⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.(1)求证:AG与⊙O相切.(2)若AC=6,AB=8,BE=3,求线段OE的长.25.如图1,抛物线y=nx2﹣11nx+24n (n<0)与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.(1)填空:点B的坐标为(),点C的坐标为();(2)连接OA,若△OAC为等腰三角形.①求此时抛物线的解析式;②如图2,将△OAC沿x轴翻折后得△ODC,点M为①中所求的抛物线上点A与点C两点之间一动点,且点M的横坐标为m,过动点M作垂直于x轴的直线l与CD交于点N,试探究:当m为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.26.如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD 交DE于N.(1)①∠MPN=;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.我国雾霾天气多发,PM2.5颗粒被称为大气污染的元凶.PM2.5是指直径小于或等于2.5微米的颗粒物,已知1毫米=1000微米,用科学记数法表示2.5微米是多少毫米.()A.2.5×10﹣3B.0.25×103C.2.5×103D.25×106【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:2.5微米=0.0025毫米=2.5×10﹣3毫米,故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.﹣的相反数是()A.3 B.﹣3 C.D.﹣【考点】相反数.【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣的相反数是,故选C【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.下列运算正确的是()A.x2•x3=x6B.3﹣2=﹣6 C.(x3)2=x5D.40=1【考点】负整数指数幂;同底数幂的乘法;幂的乘方与积的乘方;零指数幂.【分析】利用同底数幂、负指数、零指数以及幂的乘方的性质求解即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、x2•x3=x5,故本选项错误;B、3﹣2==,故本选项错误;C、(x3)2=x6,故本选项错误;D、40=1,故本选项正确.故选D.【点评】此题考查了同底数幂、负指数、零指数以及幂的乘方的性质.注意掌握指数的变化是解此题的关键.4.下列说法正确的是()A.相切两圆的连心线经过切点 B.长度相等的两条弧是等弧C.平分弦的直径垂直于弦 D.相等的圆心角所对的弦相等【考点】切线的性质;圆的认识;垂径定理;圆心角、弧、弦的关系.【分析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.(1)等弧指的是在同圆或等圆中,能够完全重合的弧.长度相等的两条弧,不一定能够完全重合;(2)此弦不能是直径;(3)相等的圆心角所对的弦相等指的是在同圆或等圆中.【解答】解:A、根据圆的轴对称性可知此命题正确.B、等弧指的是在同圆或等圆中,能够完全重合的弧.而此命题没有强调在同圆或等圆中,所以长度相等的两条弧,不一定能够完全重合,此命题错误;B、此弦不能是直径,命题错误;C、相等的圆心角指的是在同圆或等圆中,此命题错误;故选A.【点评】本题考查知识较多,解题的关键是运用相关基础知识逐一分析才能找出正确选项.5.如图,等边△DEF的顶点分别在等边△ABC的各边上,且DE⊥BC于E,若AB=1,则DB的长为()A.B.C.D.【考点】等边三角形的性质;全等三角形的判定与性质;含30度角的直角三角形;勾股定理.【分析】根据等边三角形性质,直角三角形性质求△BDE≌△AFD,得BE=AD,再求得BD的长.【解答】解:∵∠DEB=90°∴∠BDE=90°﹣60°=30°∴∠ADF=180﹣30°﹣90°=90°同理∠EFC=90°又∵∠A=∠B=∠C,DE=DF=EF∴△BED≌△ADF≌△CFE∴AD=BE设BE=x,则BD=2x,∴由勾股定理得BE=,∴BD=.故选C.【点评】本题利用了:1、等边三角形的性质,2、勾股定理,3、全等三角形的判定和性质.6.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°【考点】平行线的判定.【分析】根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行分别进行分析即可.【解答】解:A、根据内错角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;B、∠2=∠3,不能判断直线l1∥l2,故此选项符合题意;C、根据同位角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;D、根据同旁内角互补,两直线平行可判断直线l1∥l2,故此选项不合题意;故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.7.一组数据﹣2,1,0,﹣1,2的极差和方差分别是()A.4和2 B.4和1 C.3和2 D.2和1【考点】方差;极差.【分析】根据极差、平均数、方差的公式计算.【解答】解:极差就是这组数中最大值与最小值的差,为2﹣(﹣2)=4;平均数=(﹣2﹣1+0+1+2)÷5=0,方差S2=[(﹣2)2+(1)2+(0)2+(﹣1)2+(2)2]=2.故选A.【点评】本题考查了极差和方差的定义.8.若一次函数y=kx+b的图象经过第二、三、四象限,则反比例函数y=的图象在()A.一、三象限B.二、四象限C.一、二象限D.三、四象限【考点】反比例函数的性质;一次函数的性质.【分析】先由一次函数的性质判断出k,b的正负,再根据反比例函数的性质即可得出结果.【解答】解:∵一次函数y=kx+b的图象经过第二、三、四象限,∴k<0,b<0,kb>0,反比例函数y=中,kb>0,∴图象在一、三象限.故选A.【点评】本题考查了反比例函数的性质,应注意y=中k的取值.9.现有一圆心角为90°,半径为12cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为()A.cm B.2cm C.3cm D.6cm【考点】弧长的计算;勾股定理.【专题】压轴题.【分析】利用底面周长=展开图的弧长可得.【解答】解:=2πR,解得R=3cm,再利用勾股定理可知,高=3cm.故选C.【点评】解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后再利用勾股定理可求得值.10.下列图中阴影部分面积与算式|﹣|+()2+2﹣1的结果相同的是()A.B.C.D.【考点】二次函数的性质;一次函数的性质;反比例函数的性质.【专题】压轴题.【分析】先把算式的值求出,然后根据函数的性质分别求出四个图中的阴影部分面积,看是否与算式的值相同,如相同,则是要选的选项.【解答】解:原式=++==.A、作TE⊥X轴,TG⊥Y轴,易得,△GTF≌△ETD,故阴影部分面积为1×1=1;B、当x=1时,y=3,阴影部分面积1×3×=;C、当y=0时,x=±1,当x=0时,y=﹣1.阴影部分面积为[1﹣(﹣1)]×1×=1;D、阴影部分面积为xy=×2=1.故选B.【点评】解答A时运用了全等三角形的性质,B、C、D都运用了函数图象和坐标的关系,转化为三角形的面积公式来解答.11.如图,⊙O是以原点为圆心,为半径的圆,点P是直线y=﹣x+6上的一点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A.3 B.4 C.6﹣D.3﹣1【考点】一次函数综合题.【专题】计算题;压轴题.【分析】由P在直线y=﹣x+6上,设P(m,6﹣m),连接OQ,OP,由PQ为圆O的切线,得到PQ⊥OQ,在直角三角形OPQ中,利勾股定理列出关系式,配方后利用二次函数的性质即可求出PQ的最小值.【解答】解:∵P在直线y=﹣x+6上,∴设P坐标为(m,6﹣m),连接OQ,OP,由PQ为圆O的切线,得到PQ⊥OQ,在Rt△OPQ中,根据勾股定理得:OP2=PQ2+OQ2,∴PQ2=m2+(6﹣m)2﹣2=2m2﹣12m+34=2(m﹣3)2+16,则当m=3时,切线长PQ的最小值为4.故选:B.【点评】此题考查了一次函数综合题,涉及的知识有:切线的性质,勾股定理,配方法的应用,以及二次函数的性质,熟练掌握二次函数的性质是解本题的关键.12.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.【解答】解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;故①错误;当x=1时,y=1+b+c=1,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故选B.【点评】主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.二、填空题(本大题共有6小题,每小题3分,共18分)13.使有意义的x的取值范围是x≤1.【考点】二次根式有意义的条件.【专题】计算题.【分析】根据二次根式的被开方数为非负数,即可得出x的范围.【解答】解:∵有意义,∴1﹣x≥0,解得:x≤1.故答案为:x≤1.【点评】此题考查了二次根式有意义的条件,属于基础题,解答本题的关键是熟练掌握二次根式的被开方数为非负数.14.因式分解:x3﹣xy2=x(x﹣y)(x+y).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y).故答案为:x(x﹣y)(x+y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.如果|a﹣1|+(b+2)2=0,则(a+b)2015的值是﹣1.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a﹣1=0,b+2=0,解得a=1,b=﹣2,所以,(a+b)2015=(1﹣2)2015=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.一个直角三角形两条直角边的长分别为6cm,8cm,则这个直角三角形的内心与外心之间的距离是cm.【考点】三角形的内切圆与内心;三角形的外接圆与外心.【分析】利用在Rt△ABC,可求得AB=10cm,根据内切圆的性质可判定四边形OECE是正方形,所以用r分别表示:CE=CD=r,AE=AN=6﹣r,BD=BN=8﹣r;再利用AB作为相等关系求出r=2cm,则可得AN=4cm,N为圆与AB的切点,M为AB的中点,根据直角三角形中外接圆的圆心是斜边的中点,即M为外接圆的圆心;在Rt△OMN中,先求得MN=AM﹣AN=1cm,由勾股定理可求得OM=cm.【解答】解:如图,在Rt△ABC,∠C=90°,AC=8cm,BC=6cm,∴AB=10cm,设Rt△ABC的内切圆的半径为r,则OD=OE=r,∵∠C=90°,∴CE=CD=r,AE=AN=6﹣r,BD=BN=8﹣r,∴8﹣r+6﹣r=10,解得r=2cm,∴AN=4cm,在Rt△OMN中,MN=AM﹣AN=1cm,∴OM=cm.【点评】此题考查了直角三角形的外心与内心概念,及内切圆的性质.17.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,联结DE,F为线段DE上一点,且∠AFE=∠B.若AB=5,AD=8,AE=4,则AF的长为2.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】如图,证明AE⊥AD,求出DE的长度;证明△ADF∽△DEC,得到;运用AD=8,DE=4,CD=AB=5,求出AF的长度,即可解决问题.【解答】解:如图,∵四边形ABCD为平行四边形,∴AD∥BC,∠B=∠ADC;而AE⊥BC,∴AE⊥AD,∠ADF=∠DEC;∴DE2=AE2+AD2=16+64=80,∴DE=4而∠AFE=∠B,∴∠AFE=∠ADC,即∠ADF+∠DAF=∠ADF+∠EDC,∴∠DAF=∠EDC;∴△ADF∽△DEC,∴;而AD=8,DE=4,CD=AB=5,∴AF=2.故答案为2.【点评】该题以平行四边形为载体,以相似三角形的判定及其性质的应用为考查的核心构造而成;应牢固掌握相似三角形的判定及其性质.18.阅读材料:设一元二次方程ax2+bx+c=0的两根为x1,x2,则两根与方程系数之间有如下关系式x1+x2=﹣,x1•x2=根据该材料填空,已知x1,x2是方程x2+3x+1=0的两实数根,则的值为7.【考点】根与系数的关系.【专题】压轴题;阅读型.【分析】根据一元二次方程根与系数的关系,可以求得两根之积或两根之和,根据=,代入数值计算即可.【解答】解:∵x1,x2是方程x2+3x+1=0的两个实数根,∴x1+x2=﹣3,x1x2=1.∴===7.故答案为:7.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.三、解答题(本大题共有8小题,共66分)19.(1)计算:(﹣1.414)0﹣|﹣2|+﹣3tan30°(2)化简求值:(﹣)÷,其中x=1+,y=1﹣.【考点】分式的化简求值;实数的运算;零指数幂;特殊角的三角函数值.【分析】(1)先利用零指数幂法则,绝对值及特殊角的三角函数化简,再利用实数的运算顺序求解即可,(2)先化简,再代入求值即可.【解答】解:(1)(﹣1.414)0﹣|﹣2|+﹣3tan30°=1﹣2++3﹣,=2,(2)(﹣)÷,=•,=,当x=1+,y=1﹣,原式===.【点评】本题主要考查了分式的化简求值,实数的运算,零指数幂及特殊角的三角函数,解题的关键是正确的化简及实数的运算顺序,零指数幂法则及特殊角的三角函数.20.如图,将小旗ACDB放于平面直角坐标系中,得到各顶点的坐标为A(﹣6,12),B(﹣6,0),C (0,6),D(﹣6,6).以点B为旋转中心,在平面直角坐标系内将小旗顺时针旋转90°.(1)画出旋转后的小旗A′C′D′B′;(2)写出点A′,C′,D′的坐标;(3)求出线段BA旋转到B′A′时所扫过的扇形的面积.【考点】作图-旋转变换;扇形面积的计算.【专题】作图题.【分析】(1)根据平面直角坐标系找出A′、C′、D′、B′的位置,然后顺次连接即可;(2)根据旋转的性质分别写出点A′,C′,D′的坐标即可;(3)先求出AB的长,再利用扇形面积公式列式计算即可得解.【解答】解:(1)小旗A′C′D′B′如图所示;(2)点A′(6,0),C′(0,﹣6),D′(0,0);(3)∵A(﹣6,12),B(﹣6,0),∴AB=12,∴线段BA旋转到B′A′时所扫过的扇形的面积==36π.【点评】本题考查了利用旋转变换作图,扇形的面积计算,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.21.如图,一次函数y=kx+b的图象l与坐标轴分别交于点E、F,与双曲线y=﹣(x<0)交于点P(﹣1,n),且F是PE的中点.(1)求直线l的解析式;(2)若直线x=a与l交于点A,与双曲线交于点B(不同于A),问a为何值时,PA=PB?【考点】反比例函数与一次函数的交点问题.【专题】数形结合.【分析】(1)先由y=﹣,求出点P的坐标,再根据F为PE中点,求出F的坐标,把P,F的坐标代入求出直线l的解析式;(2)过P作PD⊥AB,垂足为点D,由A点的纵坐标为﹣2a+2,B点的纵坐标为﹣,D点的纵坐标为4,列出方程求解即可.【解答】解:由P(﹣1,n)在y=﹣上,得n=4,∴P(﹣1,4),∵F为PE中点,∴OF=n=2,∴F(0,2),又∵P,F在y=kx+b上,∴,解得.∴直线l的解析式为:y=﹣2x+2.(2)如图,过P作PD⊥AB,垂足为点D,∵PA=PB,∴点D为AB的中点,又由题意知A点的纵坐标为﹣2a+2,B点的纵坐标为﹣,D点的纵坐标为4,∴得方程﹣2a+2﹣=4×2,解得a1=﹣2,a2=﹣1(舍去).∴当a=﹣2时,PA=PB.【点评】本题主要考查了反比例函数与一次函数的交点,解题的重点是求出直线l的解析式.22.我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是抽样调查(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共12件,其中b班征集到作品3件,请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由全面调查和抽样调查的定义可知王老师采取的调查方式是抽样调查;由题意得:所调查的4个班征集到的作品数为:5÷=12(件),B作品的件数为:12﹣2﹣5﹣2=3(件);继而可补全条形统计图;(2)四个班平均每个班征集作品件数=总数÷4,全校作品总数=平均每个班征集作品件数×班级数;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽中一男一女的情况,再利用概率公式即可求得答案.【解答】解:(1)王老师采取的调查方式是抽样调查;所调查的4个班征集到的作品数为:5÷=12(件),B作品的件数为:12﹣2﹣5﹣2=3(件);补全图2,如图所示:(2)12÷4=3,3×20=60;(3)画树状图得:∵共有20种等可能的结果,恰好抽中一男一女的有12种情况,∴恰好抽中一男一女的概率为:=.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.23.京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.【考点】分式方程的应用.【专题】压轴题.【分析】(1)设甲单独完成这项工程所需天数,表示出乙单独完成这项工程所需天数及各自的工作效率.根据工作量=工作效率×工作时间列方程求解;(2)根据题意,甲乙合作工期最短,所以须求合作的时间,然后计算费用,作出判断.【解答】解:(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要x天.根据题意,得.解得x=90.经检验,x=90是原方程的根.∴x=×90=60.答:甲、乙两队单独完成这项工程分别需60天和90天.(2)设甲、乙两队合作完成这项工程需要y天,则有.解得y=36.需要施工费用:36×(8.4+5.6)=504(万元).∵504>500.∴工程预算的施工费用不够用,需追加预算4万元.【点评】此题考查分式方程的应用,涉及方案决策问题,所以综合性较强.24.如图,已知,⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.(1)求证:AG与⊙O相切.(2)若AC=6,AB=8,BE=3,求线段OE的长.【考点】切线的判定;勾股定理;圆周角定理;相似三角形的判定与性质.【专题】证明题;几何综合题.【分析】(1)连接OA,由OA=OB,GA=GE得出∠ABO=∠BAO,∠GEA=∠GAE;再由EF⊥BC,得出∠BFE=90°,进一步由∠ABO+∠BEF=90°,∠BEF=∠GEA,最后得出∠GAO=90°求得答案;(2)BC为直径得出∠BAC=90°,利用勾股定理得出BC=10,由△BEF∽△BCA,求得EF、BF的长,进一步在△OEF中利用勾股定理得出OE的长即可.【解答】(1)证明:如图,连接OA,∵OA=OB,GA=GE∴∠ABO=∠BAO,∠GEA=∠GAE∵EF⊥BC,∴∠BFE=90°,∴∠ABO+∠BEF=90°,又∵∠BEF=∠GEA,∴∠GAE=∠BEF,∴∠BAO+∠GAE=90°,即AG与⊙O相切.(2)解:∵BC为直径,∴∠BAC=90°,AC=6,AB=8,∴BC=10,∵∠EBF=∠CBA,∠BFE=∠BAC,∴△BEF∽△BCA,∴==∴EF=1.8,BF=2.4,∴0F=0B﹣BF=5﹣2.4=2.6,∴OE==.【点评】本题考查了切线的判定:过半径的外端点与半径垂直的直线是圆的切线.也考查了勾股定理、相似三角形的判定与性质以及圆周角定理的推论.25.如图1,抛物线y=nx2﹣11nx+24n (n<0)与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.(1)填空:点B的坐标为((3,0)),点C的坐标为((8,0));(2)连接OA,若△OAC为等腰三角形.①求此时抛物线的解析式;②如图2,将△OAC沿x轴翻折后得△ODC,点M为①中所求的抛物线上点A与点C两点之间一动点,且点M的横坐标为m,过动点M作垂直于x轴的直线l与CD交于点N,试探究:当m为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.【考点】二次函数综合题.【分析】(1)根据二次函数与x轴交点坐标求法,解一元二次方程即可得出;(2)①利用菱形性质得出AD⊥OC,进而得出△ACE∽△BAE,即可得出A点坐标,进而求出二次函数解析式;=S△AMN+S△CMN求出即可.②首先求出过C、D两点的坐标的直线CD的解析式,进而利用S四边形AMCN【解答】解:(1)∵抛物线y=nx2﹣11nx+24n (n<0)与x轴交于B、C两点(点B在点C的左侧),∴抛物线与x轴的交点坐标为:0=nx2﹣11nx+24n,解得:x1=3,x2=8,∴OB=3,OC=8,故B点坐标为(3,0),C点坐标为:(8,0);(2)①如图1,作AE⊥OC,垂足为点E∵△OAC是等腰三角形,∴OE=EC=×8=4,∴BE=4﹣3=1,又∵∠BAC=90°,∴△ACE∽△BAE,∴=,∴AE2=BE•CE=1×4,∴AE=2,∴点A的坐标为(4,2),把点A的坐标(4,2)代入抛物线y=nx2﹣11nx+24n,得n=﹣,∴抛物线的解析式为y=﹣x2+x﹣12,②∵点M的横坐标为m,且点M在①中的抛物线上,∴点M的坐标为(m,﹣m2+m﹣12),由①知,点D的坐标为(4,﹣2),则C、D两点的坐标求直线CD的解析式为y=x﹣4,∴点N的坐标为(m,m﹣4),∴MN=(﹣m2+m﹣12)﹣(m﹣4)=﹣m2+5m﹣8,=S△AMN+S△CMN=MN•CE=(﹣m2+5m﹣8)×4,∴S四边形AMCN=﹣(m﹣5)2+9,=9.∴当m=5时,S四边形AMCN【点评】此题主要考查了二次函数与坐标轴交点坐标求法以及菱形性质和四边形面积求法等知识,根据已知得出△ACE∽△BAE是解决问题的关键.26.如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD 交DE于N.(1)①∠MPN=60°;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.【考点】四边形综合题.【专题】几何综合题;压轴题.【分析】(1)①运用∠MPN=180°﹣∠BPM﹣∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN求解,(2)连接OE,由△OMA≌△ONE证明,(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.,【解答】解:(1)①∵六边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°又∴PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°,∴∠MPN=180°﹣∠BPM﹣∠NPC=180°﹣60°﹣60°=60°,故答案为;60°.②如图1,作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,MP+PN=MG+GH+HP+PL+LK+KN∵正六边形ABCDEF中,PM∥AB,作PN∥CD,∵∠AMG=∠BPH=∠CPL=∠DNK=60°,∴GM=AM,HP=BP,PL=PC,NK=ND,∵AM=BP,PC=DN,∴MG+HP+PL+KN=a,GH=LK=a,∴MP+PN=MG+GH+HP+PL+LK+KN=3a.(2)如图2,连接OE,∵六边形ABCDEF是正六边形,AB∥MP,PN∥DC,∴AM=BP=EN,∵∠MAO=∠OEN=60°,OA=OE,在△ONE和△OMA中,∴△OMA≌△ONE(SAS)∴OM=ON.(3)如图3,连接OE,由(2)得,△OMA≌△ONE∴∠MOA=∠EON,∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形,∴∠AFE=∠AOE=120°,。

2018年中考数学二模试卷含答案

2018年中考数学二模试卷含答案

2018年中考数学二模试卷一、选择题(本大题共20小题,每小题3分,共60分)1.(﹣)﹣1的倒数是()A.B.C.﹣ D.﹣2.下列计算正确的是()A.(﹣3a)2+4a2=a2B.3a2﹣(﹣2a)2=﹣a2C.3a•4a2=12a2D.(3a2)2÷4a2=a23.已知点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.4.下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.化简÷(1+)的结果是()A.B.C.D.6.长方体的主视图、俯视图如图所示(单位:m),则其左视图面积是()A.4m2B.12m2C.1m2D.3m27.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=1968.2017年“端午节”期间,小明与小亮两家准备从东营港、黄河入海口、龙悦湖中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家都抽到东营港的概率是()A.B.C.D.9.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.0012410.某班七个合作学习小组人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是()A.5 B.5.5 C.6 D.711.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A.B.5 C.4 D.12.如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k 的值为()A.3 B.6 C.D.13.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A. cm B. cm C. cm D.4cm14.如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于()A.OM的长B.2OM的长C.CD的长D.2CD的长15.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.16.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD;其中正确结论的是()A.①②③B.①②④C.①③④D.②③④17.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=10cm,且tan∠EFC=,那么该矩形的周长为()A.72cm B.36cm C.20cm D.16cm18.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF 于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个B.3个C.4个D.5个19.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个20.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.二、填空题(本小题共4小题,每小题3分,共12分)21.因式分解2x4﹣2= .22.方程=的解为.23.如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当r=时,S为.24.如图,在平面直角坐标系中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B、BA 为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1、B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C2017的坐标是.三、解答题(本题共5小题,48分)25.(8分)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?26.(8分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.27.(10分)已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1),易证BD+AB=CB,过程如下:过点C 作CE ⊥CB 于点C ,与MN 交于点E ∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE .∵四边形ACDB 内角和为360°,∴∠BDC+∠CAB=180°. ∵∠EAC+∠CAB=180°,∴BD+AB=CB .∴∠EAC=∠BDC 又∵AC=DC , ∴△ACE ≌△DCB , ∴AE=DB ,CE=CB , ∴△ECB 为等腰直角三角形,∴BE=CB .又∵BE=AE+AB , ∴BE=BD+AB .(1)当MN 绕A 旋转到如图(2)和图(3)两个位置时,BD 、AB 、CB 满足什么样关系式,请写出你的猜想,并对图(3)给予证明. (2)MN 在绕点A 旋转过程中,当∠BCD=30°,BD=时,则CD= ,CB= .28.(10分)如图1,在Rt △ABC 中,∠BAC=90°,AD ⊥BC 于点D ,点O 是AC 边上一点,连接BO 交AD 于F ,OE ⊥OB 交BC 边于点E . (1)求证:△ABF ∽△COE ; (2)当O 为AC 的中点,时,如图2,求的值; (3)当O 为AC 边中点,时,请直接写出的值.29.(12分)如图,已知抛物线y=x 2+bx+c 经过△ABC 的三个顶点,其中点A (0,1),点B (﹣9,10),AC ∥x 轴,点P 是直线AC 下方抛物线上的动点. (1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.2018年中考数学二模试卷参考答案与试题解析一、选择题(本大题共20小题,每小题3分,共60分)1.(﹣)﹣1的倒数是()A.B.C.﹣ D.﹣【考点】6F:负整数指数幂;17:倒数.【分析】先计算负整数指数幂,再依据倒数的定义可得.【解答】解:∵(﹣)﹣1=﹣,∴(﹣)﹣1的倒数为﹣,故选:C.【点评】本题主要考查负整数指数幂和倒数的定义,熟练掌握负整数指数幂是解题的关键.2.下列计算正确的是()A.(﹣3a)2+4a2=a2B.3a2﹣(﹣2a)2=﹣a2C.3a•4a2=12a2D.(3a2)2÷4a2=a2【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=9a2+4a2=13a2,不符合题意;B、原式=3a2﹣4a2=﹣a2,符合题意;C、原式=12a3,不符合题意;D、原式=9a4÷4a2=a2,不符合题意,故选B【点评】此题考查了整式的混合运算,熟练掌握公式及法则是解本题的关键.3.已知点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.【考点】R6:关于原点对称的点的坐标;C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】先确定出点M在第三象限,然后根据第三象限内点的横坐标与纵坐标都是负数列出不等式组,然后求解得到m的取值范围,从而得解.【解答】解:∵点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,∴点M(1﹣2m,m﹣1)在第三象限,∴,解不等式①得,m>,解不等式②得,m<1,所以,m的取值范围是<m<1,在数轴上表示如下:.故选C.【点评】本题主要考查了平面直角坐标系中,各象限内点的坐标的符号的确定方法,以及关于原点对称的两点坐标之间的关系以及一元一次不等式组的解法.4.下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】P3:轴对称图形;R5:中心对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形.故错误;B、不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选C.【点评】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.5.化简÷(1+)的结果是()A.B.C.D.【考点】6C:分式的混合运算.【分析】首先对括号内的式子通分相加,然后把除法转化成乘法,进行约分即可.【解答】解:原式=÷=•=.故选A.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.6.长方体的主视图、俯视图如图所示(单位:m),则其左视图面积是()A.4m2B.12m2C.1m2D.3m2【考点】U3:由三视图判断几何体.【分析】左视图面积=宽×高.【解答】解:由主视图易得高为1,由俯视图易得宽为3.∴左视图面积=1×3=3(m2).故选D.【点评】主视图确定物体的长与高;俯视图确定物体的长与宽.7.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196【考点】AC:由实际问题抽象出一元二次方程.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量,然后根据题意可得出方程.【解答】解:依题意得八、九月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=196.故选C.【点评】本题考查了由实际问题抽象出一元二次方程,增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.8.2017年“端午节”期间,小明与小亮两家准备从东营港、黄河入海口、龙悦湖中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家都抽到东营港的概率是()A.B.C.D.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两家抽到东营港的情况,再利用概率公式求解即可求得答案.【解答】解:用A、B、C表示:东营港、黄河入海口、龙悦湖;画树状图得:∵共有9种等可能的结果,则两家都抽到东营港的有3种情况,∴则两家都抽到东营港的概率是=;故选D.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.9.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.00124【考点】1K:科学记数法—原数.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到.【解答】解:把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到为0.001 24.故选D.【点评】本题考查写出用科学记数法表示的原数.将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n 位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.10.某班七个合作学习小组人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是()A.5 B.5.5 C.6 D.7【考点】W4:中位数;W1:算术平均数.【分析】根据平均数的定义先求出这组数据x,再将这组数据从小到大排列,然后找出最中间的数即可.【解答】解:∵4、5、5、x、6、7、8的平均数是6,∴(4+5+5+x+6+7+8)÷7=6,解得:x=7,将这组数据从小到大排列为4、5、5、6、7、7、8,最中间的数是6;则这组数据的中位数是6;故选:C.【点评】此题考查了中位数,掌握中位数的概念是解题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).11.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A.B.5 C.4 D.【考点】R2:旋转的性质.【分析】先求出∠ACD=30°,再根据旋转角求出∠ACD1=45°,然后判断出△ACO是等腰直角三角形,再根据等腰直角三角形的性质求出AO、CO,AB⊥CO,再求出OD1然后利用勾股定理列式计算即可得解.【解答】解:∵∠ACB=∠DEC=90°,∠D=30°,∴∠DCE=90°﹣30°=60°,∴∠ACD=90°﹣60°=30°,∵旋转角为15°,∴∠ACD1=30°+15°=45°,又∵∠A=45°,∴△ACO是等腰直角三角形,∴AO=CO=AB=×6=3,AB⊥CO,∵DC=7,∴D1C=DC=7,∴D1O=7﹣3=4,在Rt△AOD1中,AD1===5.故选B.【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,勾股定理的应用,根据等腰直角三角形的性质判断出AB⊥CO是解题的关键,也是本题的难点.12.如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k 的值为()A.3 B.6 C.D.【考点】GB:反比例函数综合题.【分析】先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作AD⊥x 轴,BE⊥x轴,CF⊥BE于点F,再设A(3x, x),由于OA=3BC,故可得出B(x, x+4),再根据反比例函数中k=xy为定值求出x【解答】解:∵将直线y=向上平移4个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=x+4,分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x, x),∵OA=3BC,BC∥OA,CF∥x轴,∴△BCF∽△AOD,∴CF=OD,∵点B在直线y=x+4上,∴B(x, x+4),∵点A、B在双曲线y=上,∴3x•x=x•(x+4),解得x=1,∴k=3×1××1=.故选:D.【点评】本题考查的是反比例函数综合题,根据题意作出辅助线,设出A、B两点的坐标,再根据k=xy的特点求出k的值即可.13.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A. cm B. cm C. cm D.4cm【考点】M4:圆心角、弧、弦的关系;KD:全等三角形的判定与性质;KQ:勾股定理.【分析】连接OD,OC,作DE⊥AB于E,OF⊥AC于F,运用圆周角定理,可证得∠DOB=∠OAC,即证△AOF≌△OED,所以OE=AF=3cm,根据勾股定理,得DE=4cm,在直角三角形ADE中,根据勾股定理,可求AD的长.【解答】解:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,∵∠CAD=∠BAD(角平分线的性质),∴=,∴∠DOB=∠OAC=2∠BAD,∴△AOF≌△ODE,∴OE=AF=AC=3(cm),在Rt△DOE中,DE==4(cm),在Rt△ADE中,AD==4(cm).故选:A.【点评】本题考查了翻折变换及圆的有关计算,涉及圆的题目作弦的弦心距是常见的辅助线之一,注意熟练运用垂径定理、圆周角定理和勾股定理.14.如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于()A.OM的长B.2OM的长C.CD的长D.2CD的长【考点】M5:圆周角定理;T1:锐角三角函数的定义.【分析】作直径AE,连接BE.得直角三角形ABE.根据圆周角定理可证∠CBD=∠MAO,运用三角函数定义求解.【解答】解:连接AO并延长交圆于点E,连接BE.则∠C=∠E,由AE为直径,且BD⊥AC,得到∠BDC=∠ABE=90°,所以△ABE和△BCD都是直角三角形,所以∠CBD=∠EAB.又△OAM是直角三角形,∵AO=1,∴sin∠CBD=sin∠EAB==OM,即sin∠CBD的值等于OM的长.故选:A.【点评】考查了圆周角定理和三角函数定义.此题首先要观察题目涉及的线段,然后根据已知条件结合定理进行角的转换.15.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.【考点】H2:二次函数的图象;F4:正比例函数的图象.【分析】由y=mx(m≠0),y随x的增大而减小,推出m<0,可知二次函数y=mx2+m的图象的开口向下,与y则交于负半轴上,由此即可判断.【解答】解:∵y=mx(m≠0),y随x的增大而减小,∴m<0,∴二次函数y=mx2+m的图象的开口向下,与y则交于负半轴上,故选A.【点评】本题参考二次函数的性质、正比例函数的性质等知识,解题的关键是熟练掌握正比例函数以及二次函数的性质,属于中考常考题型.16.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD;其中正确结论的是()A.①②③B.①②④C.①③④D.②③④【考点】L9:菱形的判定;KK:等边三角形的性质;KO:含30度角的直角三角形.【分析】根据已知先判断△ABC≌△EFA,则∠AEF=∠BAC,得出EF⊥AC,由等边三角形的性质得出∠BDF=30°,从而证得△DBF≌△EFA,则AE=DF,再由FE=AB,得出四边形ADFE为平行四边形而不是菱形,根据平行四边形的性质得出AD=4AG,从而得到答案.【解答】解:∵△ACE是等边三角形,∴∠EAC=60°,AE=AC,∵∠BAC=30°,∴∠FAE=∠ACB=90°,AB=2BC,∵F为AB的中点,∴AB=2AF,∴BC=AF,∴△ABC≌△EFA,∴FE=AB,∴∠AEF=∠BAC=30°,∴EF⊥AC,故①正确,∵EF⊥AC,∠ACB=90°,∴HF∥BC,∵F是AB的中点,∴HF=BC,∵BC=AB,AB=BD,∴HF=BD,故④说法正确;∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°,∵∠FAE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF,∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EFA(AAS),∴AE=DF,∵FE=AB,∴四边形ADFE为平行四边形,∵AE≠EF,∴四边形ADFE不是菱形;故②说法不正确;∴AG=AF,∴AG=AB,∵AD=AB,则AD=4AG,故③说法正确,故选:C.【点评】本题考查了菱形的判定和性质,以及全等三角形的判定和性质,解决本题需先根据已知条件先判断出一对全等三角形,然后按排除法来进行选择.17.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=10cm,且tan∠EFC=,那么该矩形的周长为()A.72cm B.36cm C.20cm D.16cm【考点】LB:矩形的性质;PB:翻折变换(折叠问题).【分析】根据矩形的性质可得AB=CD,AD=BC,∠B=∠D=90°,再根据翻折变换的性质可得∠AFE=∠D=90°,AD=AF,然后根据同角的余角相等求出∠BAF=∠EFC,然后根据tan∠EFC=,设BF=3x、AB=4x,利用勾股定理列式求出AF=5x,再求出CF,根据tan∠EFC=表示出CE并求出DE,最后在Rt△ADE中,利用勾股定理列式求出x,即可得解.【解答】解:在矩形ABCD中,AB=CD,AD=BC,∠B=∠D=90°,∵△ADE沿AE对折,点D的对称点F恰好落在BC上,∴∠AFE=∠D=90°,AD=AF,∵∠EFC+∠AFB=180°﹣90°=90°,∠BAF+∠AFB=90°,∴∠BAF=∠EFC,∵tan∠EFC=,∴设BF=3x、AB=4x,在Rt△ABF中,AF===5x,∴AD=BC=5x,∴CF=BC﹣BF=5x﹣3x=2x,∵tan∠EFC=,∴CE=CF•tan∠EFC=2x•=x,∴DE=CD﹣CE=4x﹣x=x,在Rt△ADE中,AD2+DE2=AE2,即(5x)2+(x)2=(10)2,整理得,x2=16,解得x=4,∴AB=4×4=16cm,AD=5×4=20cm,矩形的周长=2(16+20)=72cm.故选A.【点评】本题考查了矩形的对边相等,四个角都是直角的性质,锐角三角函数,勾股定理的应用,根据正切值设出未知数并表示出图形中的各线段是解题的关键,也是本题的难点.18.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF 于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个B.3个C.4个D.5个【考点】LE:正方形的性质;KD:全等三角形的判定与性质;KK:等边三角形的性质.【分析】通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,BE=y,由勾股定理就可以得出x 与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和2S△ABE,再通过比较大小就可以得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF(故①正确).∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故③正确).设EC=x,由勾股定理,得EF=x,CG=x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴AC=,∴AB=,∴BE=﹣x=,∴BE+DF=x﹣x≠x,(故④错误),∵S△CEF=x2,S△ABE=x2,∴2S△ABE=x2=S△CEF,(故⑤正确).综上所述,正确的有4个,故选:C.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.19.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个【考点】H4:二次函数图象与系数的关系.【分析】(1)正确.根据对称轴公式计算即可.(2)错误,利用x=﹣3时,y<0,即可判断.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),列出方程组求出a、b即可判断.(4)错误.利用函数图象即可判断.(5)正确.利用二次函数与二次不等式关系即可解决问题.【解答】解:(1)正确.∵﹣ =2,∴4a+b=0.故正确.(2)错误.∵x=﹣3时,y<0,∴9a﹣3b+c<0,∴9a+c<3b,故(2)错误.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),∴解得,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵a<0,∴8a+7b+2c>0,故(3)正确.(4)错误,∵点A(﹣3,y1)、点B(﹣,y2)、点C(,y3),∵﹣2=,2﹣(﹣)=,∴<∴点C离对称轴的距离近,∴y3>y2,∵a<0,﹣3<﹣<2,∴y1<y2∴y1<y2<y3,故(4)错误.(5)正确.∵a<0,∴(x+1)(x﹣5)=﹣3/a>0,即(x+1)(x﹣5)>0,故x<﹣1或x>5,故(5)正确.∴正确的有三个,故选B.【点评】本题考查二次函数与系数关系,灵活掌握二次函数的性质是解决问题的关键,学会利用图象信息解决问题,属于中考常考题型.20.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】由点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,得到BE=CF=t,则CE=8﹣t,再根据正方形的性质得OB=OC,∠OBC=∠OCD=45°,然后根据“SAS”可判断△OBE≌△OCF,所以S△OBE=S△OCF,这样S四边形OECF=S△OBC=16,于是S=S四边形OECF﹣S△CEF=16﹣(8﹣t)•t,然后配方得到S=(t﹣4)2+8(0≤t≤8),最后利用解析式和二次函数的性质对各选项进行判断.【解答】解:根据题意BE=CF=t,CE=8﹣t,∵四边形ABCD为正方形,∴OB=OC,∠OBC=∠OCD=45°,∵在△OBE和△OCF中,∴△OBE≌△OCF(SAS),∴S△OBE=S△OCF,∴S四边形OECF=S△OBC=×82=16,∴S=S四边形OECF﹣S△CEF=16﹣(8﹣t)•t=t2﹣4t+16=(t﹣4)2+8(0≤t≤8),∴s(cm2)与t(s)的函数图象为抛物线一部分,顶点为(4,8),自变量为0≤t≤8.故选:B.【点评】本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.二、填空题(本小题共4小题,每小题3分,共12分)21.因式分解2x4﹣2= 2(x2+1)(x+1)(x﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】首先提公因式2,然后利用平方差公式即可分解.【解答】解:原式=2(x4﹣1)=2(x2+1)(x2﹣1)=2(x2+1)(x+1)(x﹣1).故答案是:2(x2+1)(x+1)(x﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.22.方程=的解为x=2 .【考点】B3:解分式方程.【分析】方程两边都乘以最简公分母(x﹣1)(2x+1)把分式方程化为整式方程,求解后进行检验.【解答】解:方程两边都乘以(x﹣1)(2x+1)得,2x+1=5(x﹣1),解得x=2,检验:当x=2时,(x﹣1)(2x+1)=(2﹣1)×(2×2+1)=5≠0,所以,原方程的解是x=2.故答案为:x=2.【点评】本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.23.如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当r=时,S为﹣1 .【考点】MO:扇形面积的计算.【分析】首先求出S关于r的函数表达式,分析其增减性;然后根据r的取值,求出S的最大值与最小值,从而得到S的取值.【解答】解:如右图所示,过点D作DG⊥BC于点G,易知G为BC的中点,CG=1,在Rt△CDG中,由勾股定理得:DG==,设∠DCG=θ,则由题意可得:S=2(S扇形CDE﹣S△CDG)=2(﹣×1×)=﹣,∴S=﹣.当r增大时,∠DCG=θ随之增大,故S随r的增大而增大.当r=时,DG=1,∵CG=1,故θ=45°,∴S=﹣=﹣1,故答案为:﹣1.【点评】本题考查扇形面积的计算、等边三角形的性质、勾股定理等重要知识点.解题关键是求出S的函数表达式.24.如图,在平面直角坐标系中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B、BA 为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1、B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C2017的坐标是(﹣×42016,42017).【考点】F8:一次函数图象上点的坐标特征;D2:规律型:点的坐标;L5:平行四边形的性质.【分析】先求出直线l的解析式为y=x,设B点坐标为(x,1),根据直线l经过点B,求出B点坐标为(,1),解Rt△A1AB,得出AA1=3,OA1=4,由平行四边形的性质得出A1C1=AB=,则C1点的坐标为(﹣,4),即(﹣×40,41);根据直线l经过点B1,求出B1点坐标为(4,4),解Rt△A2A1B1,得出A1A2=12,OA2=16,由平行四边形的性质得出A2C2=A1B1=4,则C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);进而得出规律,求得C n的坐标是(﹣×4n﹣1,4n),即可求得C2017的坐标.【解答】解:∵直线l经过原点,且与y轴正半轴所夹的锐角为60°,∴直线l的解析式为y=x,∵AB⊥y轴,点A(0,1),∴可设B点坐标为(x,1),将B(x,1)代入y=x,得1=x,解得x=,∴B点坐标为(,1),AB=.在Rt△A1AB中,∠AA1B=90°﹣60°=30°,∠A1AB=90°,∴AA1=AB=3,OA1=OA+AA1=1+3=4,∵▱ABA1C1中,A1C1=AB=,∴C1点的坐标为(﹣,4),即(﹣×40,41);由x=4,解得x=4,∴B1点坐标为(4,4),A1B1=4.在Rt△A2A1B1中,∠A1A2B1=30°,∠A2A1B1=90°,∴A1A2=A1B1=12,OA2=OA1+A1A2=4+12=16,∵▱A1B1A2C2中,A2C2=A1B1=4,∴C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);以此类推,则C n的坐标是(﹣×4n﹣1,4n),∴C2017的坐标是(﹣×42016,42017).故答案为(﹣×42016,42017).【点评】本题考查了平行四边形的性质,解直角三角形以及一次函数的综合应用,先分别求出C1、C2、C3点的坐标,从而发现规律是解题的关键.三、解答题(本题共5小题,48分)25.甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,根据甲队单独施工45天和乙队单独施工30天的工作量相同建立方程求出其解即可;(2)设甲队再单独施工a天,根据甲队总的工作量不少于乙队的工作量的2倍建立不等式求出其解即可.【解答】解:(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,由题意,得,解得:x=20.经检验,x=20是原方程的解,∴x+10=30(天)答:甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天;(2)设甲队再单独施工a天,由题意,得,解得:a≥3.答:甲队至少再单独施工3天.【点评】本题是一道工程问题的运用,考查了工作时间×工作效率=工作总量的运用,列分式方程解实际问题的运用,分式方程的解法的运用,解答时验根是学生容易忽略的地方.26.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.【考点】G8:反比例函数与一次函数的交点问题;G6:反比例函数图象上点的坐标特征.【分析】(1)设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m),由点A的坐标表示出点C的坐标,根据C、D点在反比例函数图象上结合反比例函数图象上点的坐标特征即可得出关于k、m的二元一次方程,解方程即可得出结论;。

2018届中考数学二模试卷(带答案) (3)

2018届中考数学二模试卷(带答案)  (3)

2018年中考数学二模试卷一、选择题(共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.函数的自变量x的取值范围是()A.x>0 B.x≥0 C.x>1 D.x≠12.数轴上的点A到原点的距离是6,则点A表示的数为()A.6或﹣6 B.6 C.﹣6 D.3或﹣33.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A. B.C.D.4.下列说法不正确的是()A.某种彩票中奖的概率是,买1000张该种彩票一定会中奖B.了解一批电视机的使用寿命适合用抽样调查C.若甲组数据的标准差S甲=0.31,乙组数据的标准差S乙=0.25,则乙组数据比甲组数据稳定D.在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件5.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.6.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是()A.B.C.D.7.下列命题中,真命题是()A.对角线相等的四边形是等腰梯形B.对角线互相垂直平分的四边形是正方形C.对角线互相垂直的四边形是菱形D.四个角相等的四边形是矩形8.下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣x+1 B.y=x2﹣1 C.y=D.y=﹣x2+19.如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB,下列确定P点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P为∠A的角平分线与AB的垂直平分线的交点C.P为AC、AB两边上的高的交点D.P为AC、AB两边的垂直平分线的交点10.如图,正方形ABCD的顶点A(0,),B(,0),顶点C,D位于第一象限,直线x=t,(0≤t≤),将正方形ABCD分成两部分,设位于直线l左侧部分(阴影部分)的面积为S,则函数S与t的图象大致是()A.B.C.D.二、填空题.(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.)11.如果与(2x﹣4)2互为相反数,那么2x﹣y=.12.一个圆锥的母线长为4,侧面积为8π,则这个圆锥的底面圆的半径是.13.若关于x的方程无解,则m=.14.如图,是一副普通扑克牌中的13张黑桃牌,将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为.15.如图(1)是四边形纸片ABCD,其中∠B=120°,∠D=50度.若将其右下角向内折出△PCR,恰使CP∥AB,RC∥AD,如图(2)所示,则∠C=度.16.如图是二次函数和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是.17.如图,正方形ABCD内接于⊙O,⊙O的半径为2,以圆心O为顶点作∠MON,使∠MON=90°,OM、ON分别与⊙O交于点E、F,与正方形ABCD的边交于点G、H,则由OE、OF、及正方形ABCD的边围成的图形(阴影部分)的面积S=.18.如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…按此作法继续下去,则点A2015的坐标为.三.解答题(本大题共10小题,共66分.请在答题卡指定区域内作答、解答时应写出文字说明、证明过程或演算步骤)19.计算:.20.解不等式组,并将解集在数轴上表示.21.先化简,再求值:﹣÷.其中x=.22.如图,已知双曲线,经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x 轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,求直线CD的解析式.23.为了解某区九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A:40分;B:39﹣35分;C:34﹣30分;D:29﹣20分;E:19﹣0分)统计如下:根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为,b的值为,并将统计图补充完整;(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数.”请问:甲同学的体育成绩应在什么分数段内?(填相应分数段的字母)(3)如果把成绩在30分以上(含30分)定为优秀,那么该区今年2400名九年级学生中体育成绩为优秀的学生人数有多少名?24.在一次数学活动课上,数学老师在同一平面内将一副直角三角板如图位置摆放,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.25.在学习“二元一次方程组的解”时,数学张老师设计了一个数学活动.有A、B 两组卡片,每组各3张,A组卡片上分别写有0,2,3;B组卡片上分别写有﹣5,﹣1,1.每张卡片除正面写有不同数字外,其余均相同.甲从A组中随机抽取一张记为x,乙从B组中随机抽取一张记为y.(1)若甲抽出的数字是2,乙抽出的数是﹣1,它们恰好是ax﹣y=5的解,求a的值;(2)在(1)的条件下,求甲、乙随机抽取一次的数恰好是方程ax﹣y=5的解的概率.(请用树形图或列表法求解)26.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?27.如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线;(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长;(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin∠ACE的值.28.如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y 轴的正半轴交于点C,顶点为D,已知A(﹣1,0).(1)求点B,C的坐标;(2)判断△CDB的形状并说明理由;(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.函数的自变量x的取值范围是()A.x>0 B.x≥0 C.x>1 D.x≠1【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,x﹣1>0,解得x>1.故选C.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.数轴上的点A到原点的距离是6,则点A表示的数为()A.6或﹣6 B.6 C.﹣6 D.3或﹣3【考点】数轴;绝对值.【专题】计算题.【分析】与原点距离为6的点有两个,分别在原点的左边和右边,左边用减法,右边用加法计算即可.【解答】解:当点A在原点左边时,为0﹣6=﹣6;点A在原点右边时为6﹣0=6.故选A.【点评】主要考查了数的绝对值的几何意义.注意:与一个点的距离为a的数有2个,在该点的左边和右边各一个.3.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A. B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、旋转角是,只是每旋转与原图重合,而中心对称的定义是绕一定点旋转180度,新图形与原图形重合.因此不符合中心对称的定义,不是中心对称图形.D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称及轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.下列说法不正确的是()A.某种彩票中奖的概率是,买1000张该种彩票一定会中奖B.了解一批电视机的使用寿命适合用抽样调查C.若甲组数据的标准差S甲=0.31,乙组数据的标准差S乙=0.25,则乙组数据比甲组数据稳定D.在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件【考点】概率公式;全面调查与抽样调查;标准差;随机事件;可能性的大小.【分析】根据抽样调查适用的条件、方差的定义及意义和可能性的大小找到正确答案即可.【解答】解:A、某种彩票中奖的概率是,只是一种可能性,买1000张该种彩票不一定会中奖,故错误;B、调查电视机的使用寿命要毁坏电视机,有破坏性,适合用抽样调查,故正确;C、标准差反映了一组数据的波动情况,标准差越小,数据越稳定,故正确;D、袋中没有黑球,摸出黑球是不可能事件,故正确.故选A.【点评】用到的知识点为:破坏性较强的调查应采用抽样调查的方式;随机事件可能发生,也可能不发生;标准差越小,数据越稳定;一定不会发生的事件是不可能事件.5.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.【解答】解:根据题意,得.故选:C.【点评】理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.6.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】判断出组合体的左视图、主视图及俯视图,即可作出判断.【解答】解:几何体的左视图和主视图是相同的,则不同的视图是俯视图,俯视图是D选项所给的图形.故选D.【点评】本题考查了简单组合体的三视图,属于基础题,注意理解三视图观察的方向.7.下列命题中,真命题是()A.对角线相等的四边形是等腰梯形B.对角线互相垂直平分的四边形是正方形C.对角线互相垂直的四边形是菱形D.四个角相等的四边形是矩形【考点】命题与定理.【分析】根据矩形、菱形、正方形的判定与性质分别判断得出答案即可.【解答】解:A、根据对角线相等的四边形也可能是矩形,故此选项错误;B、根据对角线互相垂直平分的四边形是菱形,故此选项错误;C、根据对角线互相垂直平分的四边形是菱形,故此选项错误;D、根据四个角相等的四边形是矩形,是真命题,故此选项正确.故选:D.【点评】此题主要考查了命题与定理,熟练掌握矩形、菱形、正方形的判定与性质是解题关键.8.下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣x+1 B.y=x2﹣1 C.y=D.y=﹣x2+1【考点】二次函数的性质;一次函数的性质;反比例函数的性质.【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断.【解答】解:A、y=﹣x+1,一次函数,k<0,故y随着x增大而减小,故A错误;B、y=x2﹣1(x>0),故当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧(x<0),y随着x的增大而减小,故B正确.C、y=,k=1>0,在每个象限里,y随x的增大而减小,故C错误;D、y=﹣x2+1(x>0),故当图象在对称轴右侧,y随着x的增大而减小;而在对称轴左侧(x<0),y随着x的增大而增大,故D错误;故选:B.【点评】本题综合考查二次函数、一次函数、反比例函数的增减性(单调性),是一道难度中等的题目.9.如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB,下列确定P点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P为∠A的角平分线与AB的垂直平分线的交点C.P为AC、AB两边上的高的交点D.P为AC、AB两边的垂直平分线的交点【考点】角平分线的性质;线段垂直平分线的性质.【专题】压轴题.【分析】根据角平分线及线段垂直平分线的判定定理作答.【解答】解:∵点P到∠A的两边的距离相等,∴点P在∠A的角平分线上;又∵PA=PB,∴点P在线段AB的垂直平分线上.即P为∠A的角平分线与AB的垂直平分线的交点.故选B.【点评】本题考查了角平分线及线段垂直平分线的判定定理.到一个角的两边距离相等的点在这个角的角平分线上;到一条线段两端距离相等的点在这条线段的垂直平分线上.10.如图,正方形ABCD的顶点A(0,),B(,0),顶点C,D位于第一象限,直线x=t,(0≤t≤),将正方形ABCD分成两部分,设位于直线l左侧部分(阴影部分)的面积为S,则函数S与t的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题.【分析】通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.【解答】解:根据图形知道,当直线x=t在BD的左侧时,如果直线匀速向右运动,左边的图形是三角形;因而面积应是t的二次函数,并且面积增加的速度随t的增大而增大;直线x=t在B点左侧时,S=t2,t在B点右侧时S=﹣(t﹣)2+1,显然D是错误的.故选C.【点评】读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程.二、填空题.(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.)11.如果与(2x﹣4)2互为相反数,那么2x﹣y=1.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据互为相反数的两个数的和等于0列出等式,再根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:∵与(2x﹣4)2互为相反数,∴+(2x﹣4)2=0,∴y﹣3=0,2x﹣4=0,解得x=2,y=3,∴2x﹣y=2×2﹣3=4﹣3=1.故答案为:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.12.一个圆锥的母线长为4,侧面积为8π,则这个圆锥的底面圆的半径是2.【考点】圆锥的计算.【分析】根据扇形的面积公式求出扇形的圆心角,再利用弧长公式求出弧长,再利用圆的面积公式求出底面半径.【解答】解:解得n=180则弧长==4π2πr=4π解得r=2故答案是:2.【点评】解决本题的关键是根据圆锥的侧面积公式得到圆锥的底面半径的求法.13.若关于x的方程无解,则m=﹣8.【考点】分式方程的解.【专题】计算题.【分析】分式方程去分母转化为整式方程,将x=5代入计算即可求出m的值.【解答】解:分式方程去分母得:2(x﹣1)=﹣m,将x=5代入得:m=﹣8.故答案为:﹣8【点评】此题考查了分式方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.如图,是一副普通扑克牌中的13张黑桃牌,将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为.【考点】概率公式.【专题】探究型.【分析】抽出的牌的点数小于9有1,2,3,4,5,6,7,8共8个,总的样本数目为13,由此可以容易知道事件抽出的牌的点数小于9的概率.【解答】解:∵抽出的牌的点数小于9有1,2,3,4,5,6,7,8共8个,总的样本数目为13,∴从中任意抽取一张,抽出的牌点数小于9的概率是:.故答案为:.【点评】此题主要考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.15.如图(1)是四边形纸片ABCD,其中∠B=120°,∠D=50度.若将其右下角向内折出△PCR,恰使CP∥AB,RC∥AD,如图(2)所示,则∠C=95度.【考点】翻折变换(折叠问题).【分析】根据折叠前后图形全等和平行线,先求出∠CPR和∠CRP,再根据三角形内角和定理即可求出∠C.【解答】解:因为折叠前后两个图形全等,故∠CPR=∠B=×120°=60°,∠CRP=∠D=×50°=25°;∴∠C=180°﹣25°﹣60°=95°;∠C=95度;故应填95.【点评】折叠前后图形全等是解决折叠问题的关键.16.如图是二次函数和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是﹣1≤x≤2.【考点】二次函数与不等式(组).【分析】根据图象可以直接回答,使得y1≥y2的自变量x的取值范围就是直线y1=kx+m落在二次函数y2=ax2+bx+c的图象上方的部分对应的自变量x的取值范围.【解答】解:根据图象可得出:当y1≥y2时,x的取值范围是:﹣1≤x≤2.故答案为:﹣1≤x≤2.【点评】本题考查了二次函数的性质.本题采用了“数形结合”的数学思想,使问题变得更形象、直观,降低了题的难度.17.如图,正方形ABCD内接于⊙O,⊙O的半径为2,以圆心O为顶点作∠MON,使∠MON=90°,OM、ON分别与⊙O交于点E、F,与正方形ABCD的边交于点G、H,则由OE、OF、及正方形ABCD的边围成的图形(阴影部分)的面积S=π﹣2.【考点】扇形面积的计算;全等三角形的判定与性质;正方形的性质.【专题】压轴题;数形结合.【分析】可以作OP⊥AB,OQ⊥BC,利用全等的知识即可证明△OPH≌△OQG,从而可得四边形OHBG与正方形OQBP的面积,从而利用面积差法即可得出阴影部分的面积.【解答】解:过点O作OP⊥AB,OQ⊥BC,则OP=OQ,在△OPH和△OQG中,,故可得△OPH≌△OQG,从而可得四边形OHBG与正方形OQBP的面积,∵圆的半径为2,∴OQ=OP=,S 阴影=S 扇形OEF ﹣S OHBG =S 扇形OEF ﹣S OQBP =﹣×=π﹣2. 故答案为:π﹣2.【点评】此题考查了扇形的面积及正方形的性质,有一定难度,解答本题的关键是利用全等的知识得出四边形OHBG 与正方形OQBP 的面积.18.如图,已知直线l :y=x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂 线交y 轴于点A 2;…按此作法继续下去,则点A 2015的坐标为 (0,42015)或(0,24030) .【考点】一次函数图象上点的坐标特征.【专题】规律型.【分析】根据所给直线解析式可得l 与x 轴的夹角,进而根据所给条件依次得到点A 1,A 2的坐标,通过相应规律得到A 2013坐标即可.【解答】解:∵直线l 的解析式为:y=x ,∴l 与x 轴的夹角为30°,∵AB ∥x 轴,∴∠ABO=30°,∵OA=1,∴AB=, ∵A 1B ⊥l ,∴∠ABA 1=60°,∴AA 1=3,∴A 1(0,4),同理可得A2(0,16),…,∴A2015纵坐标为:42015,∴A2013(0,42015).故答案为:(0,42015)或(0,24030).【点评】本题考查的是一次函数综合题,先根据所给一次函数判断出一次函数与x轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到A、A1、A2、A3…的点的坐标是解决本题的关键.三.解答题(本大题共10小题,共66分.请在答题卡指定区域内作答、解答时应写出文字说明、证明过程或演算步骤)19.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】分别进行负整数指数幂、特殊角的三角函数值、绝对值、零指数幂等运算,然后按照实数的运算法则计算即可.【解答】解:原式=+×+5﹣1=6.【点评】本题考查了实数的运算,涉及了负整数指数幂、特殊角的三角函数值、绝对值、零指数幂等知识,属于基础题.20.解不等式组,并将解集在数轴上表示.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】求出每个不等式的解集,找出不等式组的解集即可.【解答】解:∵由①得,x<2,由②得,x≥﹣1,∴不等式组的解集是:﹣1≤x<2,在数轴上表示不等式组的解集为.【点评】本题考查了解一元一次不等式(组),在数轴上表示不等式组的解集的应用,关键是能根据不等式的解集找出不等式组的解集.21.先化简,再求值:﹣÷.其中x=.【考点】分式的化简求值.【专题】计算题.【分析】原式第二项利用除法法则变形,约分后利用同分母分式的减法法则计算得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=﹣•=﹣=,当x=时,原式==﹣1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.如图,已知双曲线,经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x 轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,求直线CD的解析式.【考点】反比例函数与一次函数的交点问题.【分析】(1)把点D的坐标代入函数解析式,计算即可求出k值;(2)根据点D的坐标求出BD的长度,再根据△BCD的面积求出点C到BD的长度,然后求出CA 的长度,再代入反比例函数解析式求出AC的长度,从而得到点C的坐标,再利用待定系数法求一次函数解析式解答即可.【解答】解:(1)∵y=经过点D(6,1),∴=1,∴k=6;(2)∵点D(6,1),∴BD=6,设△BCD边BD上的高为h,∵△BCD的面积为12,∴BD•h=12,即×6h=12,解得h=4,∴CA=3,∴=﹣3,解得x=﹣2,∴点C(﹣2,﹣3),设直线CD的解析式为y=kx+b,则,解得,所以,直线CD的解析式为y=x﹣2.【点评】本题考查了反比例函数与一次函数的交点问题,主要利用了待定系数法求反比例函数解析式,三角形的面积,比较简单,(2)求出点C的坐标是解题的关键.23.为了解某区九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A:40分;B:39﹣35分;C:34﹣30分;D:29﹣20分;E:19﹣0分)统计如下:根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为60,b的值为0.15,并将统计图补充完整;(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数.”请问:甲同学的体育成绩应在什么分数段内?C(填相应分数段的字母)(3)如果把成绩在30分以上(含30分)定为优秀,那么该区今年2400名九年级学生中体育成绩为优秀的学生人数有多少名?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;中位数.【分析】(1)首先根据:频率=,由表格A中的数据可以求出随机抽取部分学生的总人数,然后根据B中频率即可求解a,同时也可以求出b;(2)根据中位数的定义可以确定中位数的分数段,然后确定位置;(3)首先根据频率分布直方图可以求出样本中在30分以上的人数,然后利用样本估计总体的思想即可解决问题.【解答】解:(1)随机抽取部分学生的总人数为:48÷0.2=240,∴a=240×0.25=60,b=84÷240=0.35,如图所示:(2)∵总人数为240人,∴根据频率分布直方图知道中位数在C分数段;(3)∵30分以上(含30分)定为优秀,故优秀的频率为:0.2+0.25+0.35=0.8,∴0.8×2400=1920(名)答:该市九年级考生中体育成绩为优秀的学生人数约有1920名.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.在一次数学活动课上,数学老师在同一平面内将一副直角三角板如图位置摆放,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.【考点】解直角三角形.【分析】过点B作BM⊥FD于点M,解直角三角形求出BC,在△BMC值解直角三角形求出CM,BM,推出BM=DM,即可求出答案.【解答】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=AC tan60°=10,∵AB∥CF,∴∠BCM=∠ABC=30°.∴BM=BC•sin30°=10×=5,CM=BC•cos30°=10×=15,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM﹣MD=15﹣5.【点评】本题考查了解直角三角形的应用,关键是能通过解直角三角形求出线段CM、MD的长.25.在学习“二元一次方程组的解”时,数学张老师设计了一个数学活动.有A、B 两组卡片,每组各3张,A组卡片上分别写有0,2,3;B组卡片上分别写有﹣5,﹣1,1.每张卡片除正面写有不同数字外,其余均相同.甲从A组中随机抽取一张记为x,乙从B组中随机抽取一张记为y.(1)若甲抽出的数字是2,乙抽出的数是﹣1,它们恰好是ax﹣y=5的解,求a的值;(2)在(1)的条件下,求甲、乙随机抽取一次的数恰好是方程ax﹣y=5的解的概率.(请用树形图或列表法求解)【考点】列表法与树状图法;二元一次方程的解.【专题】计算题.【分析】(1)将x=2,y=﹣1代入方程计算即可求出a的值;(2)列表得出所有等可能的情况数,找出甲、乙随机抽取一次的数恰好是方程ax﹣y=5的解的情况数,即可求出所求的概率.【解答】解:(1)将x=2,y=﹣1代入方程得:2a+1=5,即a=2;(2)列表得:所有等可能的情况有9种,其中(x,y)恰好为方程2x﹣y=5的解的情况有(0,﹣5),(2,﹣1),(3,1),共3种情况,则P==.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.26.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?【考点】二次函数的应用.【分析】(1)根据题意易求y与x之间的函数表达式.(2)已知函数解析式,设y=4800可从实际得x的值.(3)利用x=﹣求出x的值,然后可求出y的最大值.【解答】解:(1)根据题意,得y=(2400﹣2000﹣x)(8+4×),即y=﹣x2+24x+3200;(2)由题意,得﹣x2+24x+3200=4800.整理,得x2﹣300x+20000=0.解这个方程,得x1=100,x2=200.要使百姓得到实惠,取x=200元.∴每台冰箱应降价200元;。

芜湖市中考数学二模试卷

芜湖市中考数学二模试卷

芜湖市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、填空题 (共6题;共6分)1. (1分)当x=________时,4x+8与3x-10互为相反数.2. (1分)(2018·新北模拟) 函数的定义域是 ________.3. (1分)(2017·广东) 已知4a+3b=1,则整式8a+6b﹣3的值为________.4. (1分) (2018九上·汨罗期中) 如图,若DE∥BC,FD∥AB,AD∶AC=2∶3 ,AB=9,BC=6,则四边形BEDF的周长为________.5. (1分)(2017·长宁模拟) 已知二次函数y=x2﹣2x+1,那么该二次函数的图象的对称轴是________.6. (1分)一个数的平方等于这个数本身,则这个数为________.二、选择题 (共8题;共16分)7. (2分)(2018·福田模拟) 为响应国家的新能源政策,深圳市某公司计划在海边建设风能发电站,电站年均发电量约为 216000000 度,将数据 216000000 用科学记数法表示为()A . 216×10 6B . 21.6×10 7C . 2.16×10 8D . 2.16×10 98. (2分)下列运算正确的是()A . 2x5﹣3x3=﹣x2B . 3x5﹣2x3=x2C . (﹣x)5•(﹣x2)=﹣x10D . (3a6x3﹣9ax5)÷(﹣3ax3)=3x2﹣a59. (2分)如图,所给图形中是中心对称图形但不是轴对称图形的是()A .B .C .D .10. (2分) (2017七下·湖州月考) 如图,在图形M到图形N的变化过程中.下列描述正确的是()A . 先向下平移3个单位,再向左平移3个单位B . 先向下平移3个单位,再向右平移3个单位C . 先向上平移3个单位,再向左平移3个单位D . 先向上平移3个单位,再向右平移3个单位11. (2分)(2017·资中模拟) 如图是由四个大小相同的正方体组成的几何体,那么它的主视图是()A .B .C .D .12. (2分)如图所表示的是下面哪一个不等式组的解集()A .B .C .D .13. (2分)某市5月份连续7天的最高气温如下(单位:℃):32,30,34,36,36,33,37.这组数据的中位数、众数分别为()A . 34℃,36℃B . 34℃,34℃C . 36℃,36℃D . 32℃,37℃14. (2分)(2017·随州) 如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A . 以点F为圆心,OE长为半径画弧B . 以点F为圆心,EF长为半径画弧C . 以点E为圆心,OE长为半径画弧D . 以点E为圆心,EF长为半径画弧三、解答题 (共9题;共82分)15. (5分)(1)先化简,再求值:()÷,其中x=2(2)已知xm=6,xn=3,试求x2m﹣3n的值.16. (5分)(2018·淮安) 已知:如图,□ABCD的对角线AC、BD相交于点O,过点O的直线分别与AD、BC 相交于点E、F,求证:AE=CF.17. (10分)(2017·温州) 为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)18. (5分)(2020·江都模拟) 某口罩生产厂在春节期间接到紧急任务,要求几天内生产出70万只口罩,为了战胜疫情,口罩厂工人愿意奉献自己的休息时间来完成这项任务,厂长决定开足全厂口罩生产线进行生产,结果每天比原来多生产3万只,而且提前了3天完成了任务,问原来要求几天完成这项紧急任务?19. (7分)(2017·温州模拟) 中考前的模拟考试对于学生来说具有重大的指导意义,现抽取m名学生的数学一模成绩进行整理分组,形成如下表格(x代表成绩,规定x>140为优秀),并绘制出扇形统计图和频数分布直方图(横坐标表示成绩,单位:分).A组140<x≤150B组130<x≤140C组120<x≤130D组110<x≤120E组100<x≤110(1) m的值为________;扇形统计图中D组对应的圆心角是________°.(2)若要从成绩优秀的学生甲、乙、丙、丁中,随机选出2人介绍经验,求甲、乙两人中至少有1人被选中的概率(通过画树状图或列表法进行分析).20. (15分) (2017·大石桥模拟) 某工厂生产一种合金薄板(其厚度忽略不计)这些薄板的形状均为正方形,边长(单位:cm)在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,(即出厂价=基础价+浮动价)其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长x成正比例,在营销过程中得到了表格中的数据,已知出厂一张边长为40cm 的薄板,获得利润是26元.(利润=出厂价﹣成本价)薄板的边长(cm)2030出厂价(元/张)5070(1)求一张薄板的出厂价y与边长x之间满足的函数关系式;(2)求一张薄板的利润p与边长x之间的函数关系式;(3)若一张薄板的利润是34元,且成本最低,此时薄板的边长为多少?当薄板的边长为多少时,所获利润最大,求出这个最大值.21. (10分)(2019·福州模拟) 如图,将△ABC沿射线BC平移得到△A'B'C',使得点A'落在∠ABC的平分线BD上,连接AA'、AC'.(1)判断四边形ABB'A'的形状,并证明;(2)在△ABC中,AB=6,BC=4,若AC′⊥A'B',求四边形ABB'A'的面积.22. (10分)(2017·灌南模拟) 如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作⊙O的切线,交AB于点E,交CA的延长线于点F.(1)求证:EF⊥AB;(2)若∠C=30°,EF= ,求EB的长.23. (15分)(2018·湖州模拟) 问题背景如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.类比探究如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.(2)△DEF是否为正三角形?请说明理由.(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.参考答案一、填空题 (共6题;共6分)1-1、2-1、3-1、4-1、5-1、6-1、二、选择题 (共8题;共16分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共9题;共82分)15-1、16-1、17-1、17-2、18-1、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、23-3、。

安徽省芜湖市繁昌县2018届九年级下学期第二次模拟数学试题(图片版)

安徽省芜湖市繁昌县2018届九年级下学期第二次模拟数学试题(图片版)

2018年中考模拟试题数学参考答案一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1~10:ACCDBDCABD10.D 解:连接AA ´,A ´B ,BD ,点A 关于PB 的对称点为A ´, ∴ A ´B= AB=2,BD=52,∵A ´B +DA ´≥BD ,∴DA ´≥-BD A ´B=252-,当A ´在对角线BD 上时,DA ´有最小值为252-.二、填空题(本大题共4小题,每小题5分,满分20分)11. 73± 12. )2)(2(b a b a -+ 13.π32 14.237300或49600 如图1,当DE 为直角边时,设PD =DE =x ,∵DE ∥AB ,∴△CDE ∽△CAB ,∵AC =20,BC =15,∴AB=25,△ABC 的AB 边上的高为12,∴122512x x -=,解得30037x =,即DE=37300,斜边长为237300;如图2,则DE=37300,斜边长也为237300;如图3,当DE 为斜边时,由等腰直角三角形的性质得:P 到DE 的距离为21DE ,设DE =x ,∵DE ∥AB ,∴△CDE ∽△CAB ,12211225x x -=,解得60049x =,即斜边DE 长为49600.三、(本大题共2小题,每小题8分,满分16分)15.023=--x x ………………4分3=-x ………………6分3-=x ………………7分检验:3-=x 是原方程的解………………8分16.解不等式)2(5)2(2+≤+x x 得2-≥x ………………2分 解不等式x x 321≤-得3≤x ………………4分∴原不等式组的解集为32≤≤-x ………………6分 在数轴上表示(如图)………………8分第16题图第14题图1 A B C D E P 第14题图2 A B C D E P 第14题图3 A BC D E P D 第10题图四、(本大题共2小题,每小题8分,满分16分)17.解:(1)如图(答案不唯一);…………4分(2)如图(答案不唯一).………………8分18.过D 作DE ⊥AB 于E , ……………………………1分在直角△BDE 中,∠A=45°,AD=200,∵ADDE A =sin ,∴2100=DE ……………3分 在直角△ADE 中,∠DBE=30°,2100=DE ,∴2200=BD ,……………………5分 在直角△CDB 中,∠C=60°,2200=BD , ∵BC DB C =tan ,∴63200=CB △BCD 的面积为1122CB BD ⨯==2m )……8分五、(本大题共2小题,每小题10分,满分20分)19.(1)=4a 19……………………3分(2)12311++++-++++= n n n n a n 或125212++n n ……………7分 (3)当43125212=++n n 时,则7=n (负值舍去)……………………9分 第7个图形中的小黑点的个数为43个. ……………………10分20.(1)在直角△ABC 中,AB=8,∴AC=BC=24…………1分∵BD 平分∠ABC ,∴D 为AC 弧的中点∴AF=CF=22,………………3分 在直角△BCF 中,BF=102………………5分(2)连接AD 并延长,交BC 的延长线于点G ,………………6易得△ACG ≌△BCE ,…………………………………7分∴BE=AG 易得△ABD ≌△GBD ,∴AD=DG ,………………………8分∵D 为AC 弧的中点∴AD=CD∴AG=2CD ,即BE=2CD. …………………………………10分 A 第20题图 B ’ 第17题图A C B D F E A ’ C ’ A C B E B A 第18题图 C DB C图3 D六、(本题满分12分)21.(1)根据条形图可以得到:m=5,n=50﹣5﹣30﹣5=10(人)…………2分补全统计图(如图)……………………4分(2)500×3550=350(人);……………8分 (3)(35+10×60%)÷50=82%………12分七、(本题满分12分)22.解:(1)将A (3,0),B (0,3)两点代入c bx x y ++-=2得2=b ,3=c ……4分(2)过P 作PC ⊥x 轴于C ,作PD ⊥y 轴于D ,…………………………5分由(1)得二次函数c bx x y ++-=2为322++-=x x y设P 点坐标为(x ,322++-x x ),则矩形CPDO 的面积为x x x x x x 32)32(232++-=++-,△BDP 的面积为2232111[3(23)](2)222x x x x x x x x --++=-=-△APC 的面积为29232521)32)(3(21232++-=++--x x x x x x ,∴+-+++-=23232132x x x x x S 2923252123++-x x x ……8223993363(222228S x x x =-++=--+……………11分 当23=x ,S 最大,为863.…………………………12分八、(本题满分14分)23.(1)证明:如图2,易得△ABE ≌△ADE ’, ………………………1分∴∠E ’=∠AEB=90°,∠AD E ’=∠B ,∠E ’AD=∠BAE ,∵∠BAD=∠BCD=90°,∴∠B+∠ADC=180°,∴∠AD E ’+∠ADC=180°,即C ,D , E ’在同一条直线上,………2分∵∠AEC=∠C=∠E ’= 90°,AE ’=AE ∴AE=EC …………………………………4分(2)解:①将△BDF 绕点D 逆时针旋转90易得△DEF ’≌△DBF ,…………………6分1S +2S ='ADF S △,………………………7分∵DF ’=BD=1,'ADF S △=1'21=⋅DF AD , ∴1S +2S =1………………8分②以点A 为旋转中心,将△ABP 顺时针旋转60度,得到△ANM ,连接BN ,PM ,易得△ABP ≌△ANM ,△APM ,△ABN 均为等边三角形………………10分 ∵∠BAC=60°,AC=1,∴PA=PM ,AN=AB=MN=2,∵∠ABN=60°,∴∠CBN=90°∵∠APB=∠BPC=∠APC ,∴∠APB=∠BPC=∠APC=120°∠APM=∠AMP=60°∴C ,P ,M ,N 在一条直线上,………………12分∵PA=PM ,PB=MN ,CP+PB+PA=CN ,在直角△BCN 中,CN=722=+BN BC第22题图 图4PA+PB+PC的值为7.………………14分。

2018届中考数学二模试卷(带详解) (1)

2018届中考数学二模试卷(带详解)  (1)

2018年中考数学二模试卷一、选择题(共12小题,每小题3分,满分36分)1.我国雾霾天气多发,PM2.5颗粒被称为大气污染的元凶.PM2.5是指直径小于或等于2.5微米的颗粒物,已知1毫米=1000微米,用科学记数法表示2.5微米是多少毫米.()A.2.5×10﹣3B.0.25×103C.2.5×103D.25×1062.﹣的相反数是()A.3 B.﹣3 C.D.﹣3.下列运算正确的是()A.x2•x3=x6B.3﹣2=﹣6 C.(x3)2=x5D.40=14.下列说法正确的是()A.相切两圆的连心线经过切点 B.长度相等的两条弧是等弧C.平分弦的直径垂直于弦 D.相等的圆心角所对的弦相等5.如图,等边△DEF的顶点分别在等边△ABC的各边上,且DE⊥BC于E,若AB=1,则DB的长为()A.B.C.D.6.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°7.一组数据﹣2,1,0,﹣1,2的极差和方差分别是()A.4和2 B.4和1 C.3和2 D.2和18.若一次函数y=kx+b的图象经过第二、三、四象限,则反比例函数y=的图象在()A.一、三象限B.二、四象限C.一、二象限D.三、四象限9.现有一圆心角为90°,半径为12cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为()A.cm B.2cm C.3cm D.6cm10.下列图中阴影部分面积与算式|﹣|+()2+2﹣1的结果相同的是()A.B.C.D.11.如图,⊙O是以原点为圆心,为半径的圆,点P是直线y=﹣x+6上的一点,过点P 作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A.3 B.4 C.6﹣D.3﹣112.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1 B.2 C.3 D.4二、填空题(本大题共有6小题,每小题3分,共18分)13.使有意义的x的取值范围是.14.因式分解:x3﹣xy2=.15.如果|a﹣1|+(b+2)2=0,则(a+b)2015的值是.16.一个直角三角形两条直角边的长分别为6cm,8cm,则这个直角三角形的内心与外心之间的距离是cm.17.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,联结DE,F为线段DE上一点,且∠AFE=∠B.若AB=5,AD=8,AE=4,则AF的长为.18.阅读材料:设一元二次方程ax2+bx+c=0的两根为x1,x2,则两根与方程系数之间有如下关系式x1+x2=﹣,x1•x2=根据该材料填空,已知x1,x2是方程x2+3x+1=0的两实数根,则的值为.三、解答题(本大题共有8小题,共66分)19.(1)计算:(﹣1.414)0﹣|﹣2|+﹣3tan30°(2)化简求值:(﹣)÷,其中x=1+,y=1﹣.20.如图,将小旗ACDB放于平面直角坐标系中,得到各顶点的坐标为A(﹣6,12),B(﹣6,0),C(0,6),D(﹣6,6).以点B为旋转中心,在平面直角坐标系内将小旗顺时针旋转90°.(1)画出旋转后的小旗A′C′D′B′;(2)写出点A′,C′,D′的坐标;(3)求出线段BA旋转到B′A′时所扫过的扇形的面积.21.如图,一次函数y=kx+b的图象l与坐标轴分别交于点E、F,与双曲线y=﹣(x<0)交于点P(﹣1,n),且F是PE的中点.(1)求直线l的解析式;(2)若直线x=a与l交于点A,与双曲线交于点B(不同于A),问a为何值时,PA=PB?22.我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共件,其中b班征集到作品件,请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.23.京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.24.如图,已知,⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.(1)求证:AG与⊙O相切.(2)若AC=6,AB=8,BE=3,求线段OE的长.25.如图1,抛物线y=nx2﹣11nx+24n (n<0)与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.(1)填空:点B的坐标为(),点C的坐标为();(2)连接OA,若△OAC为等腰三角形.①求此时抛物线的解析式;②如图2,将△OAC沿x轴翻折后得△ODC,点M为①中所求的抛物线上点A与点C两点之间一动点,且点M的横坐标为m,过动点M作垂直于x轴的直线l与CD交于点N,试探究:当m为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.26.如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF 于M,作PN∥CD交DE于N.(1)①∠MPN=;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.我国雾霾天气多发,PM2.5颗粒被称为大气污染的元凶.PM2.5是指直径小于或等于2.5微米的颗粒物,已知1毫米=1000微米,用科学记数法表示2.5微米是多少毫米.()A.2.5×10﹣3B.0.25×103C.2.5×103D.25×106【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:2.5微米=0.0025毫米=2.5×10﹣3毫米,故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.﹣的相反数是()A.3 B.﹣3 C.D.﹣【考点】相反数.【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣的相反数是,故选C【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.下列运算正确的是()A.x2•x3=x6B.3﹣2=﹣6 C.(x3)2=x5D.40=1【考点】负整数指数幂;同底数幂的乘法;幂的乘方与积的乘方;零指数幂.【分析】利用同底数幂、负指数、零指数以及幂的乘方的性质求解即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、x2•x3=x5,故本选项错误;B、3﹣2==,故本选项错误;C、(x3)2=x6,故本选项错误;D、40=1,故本选项正确.故选D.【点评】此题考查了同底数幂、负指数、零指数以及幂的乘方的性质.注意掌握指数的变化是解此题的关键.4.下列说法正确的是()A.相切两圆的连心线经过切点 B.长度相等的两条弧是等弧C.平分弦的直径垂直于弦 D.相等的圆心角所对的弦相等【考点】切线的性质;圆的认识;垂径定理;圆心角、弧、弦的关系.【分析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.(1)等弧指的是在同圆或等圆中,能够完全重合的弧.长度相等的两条弧,不一定能够完全重合;(2)此弦不能是直径;(3)相等的圆心角所对的弦相等指的是在同圆或等圆中.【解答】解:A、根据圆的轴对称性可知此命题正确.B、等弧指的是在同圆或等圆中,能够完全重合的弧.而此命题没有强调在同圆或等圆中,所以长度相等的两条弧,不一定能够完全重合,此命题错误;B、此弦不能是直径,命题错误;C、相等的圆心角指的是在同圆或等圆中,此命题错误;故选A.【点评】本题考查知识较多,解题的关键是运用相关基础知识逐一分析才能找出正确选项.5.如图,等边△DEF的顶点分别在等边△ABC的各边上,且DE⊥BC于E,若AB=1,则DB的长为()A.B.C.D.【考点】等边三角形的性质;全等三角形的判定与性质;含30度角的直角三角形;勾股定理.【分析】根据等边三角形性质,直角三角形性质求△BDE≌△AFD,得BE=AD,再求得BD的长.【解答】解:∵∠DEB=90°∴∠BDE=90°﹣60°=30°∴∠ADF=180﹣30°﹣90°=90°同理∠EFC=90°又∵∠A=∠B=∠C,DE=DF=EF∴△BED≌△ADF≌△CFE∴AD=BE设BE=x,则BD=2x,∴由勾股定理得BE=,∴BD=.故选C.【点评】本题利用了:1、等边三角形的性质,2、勾股定理,3、全等三角形的判定和性质.6.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°【考点】平行线的判定.【分析】根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行分别进行分析即可.【解答】解:A、根据内错角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;B、∠2=∠3,不能判断直线l1∥l2,故此选项符合题意;C、根据同位角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;D、根据同旁内角互补,两直线平行可判断直线l1∥l2,故此选项不合题意;故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.7.一组数据﹣2,1,0,﹣1,2的极差和方差分别是()A.4和2 B.4和1 C.3和2 D.2和1【考点】方差;极差.【分析】根据极差、平均数、方差的公式计算.【解答】解:极差就是这组数中最大值与最小值的差,为2﹣(﹣2)=4;平均数=(﹣2﹣1+0+1+2)÷5=0,方差S2=[(﹣2)2+(1)2+(0)2+(﹣1)2+(2)2]=2.故选A.【点评】本题考查了极差和方差的定义.8.若一次函数y=kx+b的图象经过第二、三、四象限,则反比例函数y=的图象在()A.一、三象限B.二、四象限C.一、二象限D.三、四象限【考点】反比例函数的性质;一次函数的性质.【分析】先由一次函数的性质判断出k,b的正负,再根据反比例函数的性质即可得出结果.【解答】解:∵一次函数y=kx+b的图象经过第二、三、四象限,∴k<0,b<0,kb>0,反比例函数y=中,kb>0,∴图象在一、三象限.故选A.【点评】本题考查了反比例函数的性质,应注意y=中k的取值.9.现有一圆心角为90°,半径为12cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为()A.cm B.2cm C.3cm D.6cm【考点】弧长的计算;勾股定理.【专题】压轴题.【分析】利用底面周长=展开图的弧长可得.【解答】解:=2πR,解得R=3cm,再利用勾股定理可知,高=3cm.故选C.【点评】解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后再利用勾股定理可求得值.10.下列图中阴影部分面积与算式|﹣|+()2+2﹣1的结果相同的是()A.B.C.D.【考点】二次函数的性质;一次函数的性质;反比例函数的性质.【专题】压轴题.【分析】先把算式的值求出,然后根据函数的性质分别求出四个图中的阴影部分面积,看是否与算式的值相同,如相同,则是要选的选项.【解答】解:原式=++==.A、作TE⊥X轴,TG⊥Y轴,易得,△GTF≌△ETD,故阴影部分面积为1×1=1;B、当x=1时,y=3,阴影部分面积1×3×=;C、当y=0时,x=±1,当x=0时,y=﹣1.阴影部分面积为[1﹣(﹣1)]×1×=1;D、阴影部分面积为xy=×2=1.故选B.【点评】解答A时运用了全等三角形的性质,B、C、D都运用了函数图象和坐标的关系,转化为三角形的面积公式来解答.11.如图,⊙O是以原点为圆心,为半径的圆,点P是直线y=﹣x+6上的一点,过点P 作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A.3 B.4 C.6﹣D.3﹣1【考点】一次函数综合题.【专题】计算题;压轴题.【分析】由P在直线y=﹣x+6上,设P(m,6﹣m),连接OQ,OP,由PQ为圆O的切线,得到PQ⊥OQ,在直角三角形OPQ中,利勾股定理列出关系式,配方后利用二次函数的性质即可求出PQ的最小值.【解答】解:∵P在直线y=﹣x+6上,∴设P坐标为(m,6﹣m),连接OQ,OP,由PQ为圆O的切线,得到PQ⊥OQ,在Rt△OPQ中,根据勾股定理得:OP2=PQ2+OQ2,∴PQ2=m2+(6﹣m)2﹣2=2m2﹣12m+34=2(m﹣3)2+16,则当m=3时,切线长PQ的最小值为4.【点评】此题考查了一次函数综合题,涉及的知识有:切线的性质,勾股定理,配方法的应用,以及二次函数的性质,熟练掌握二次函数的性质是解本题的关键.12.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.【解答】解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;故①错误;当x=1时,y=1+b+c=1,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故选B.【点评】主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.二、填空题(本大题共有6小题,每小题3分,共18分)13.使有意义的x的取值范围是x≤1.【考点】二次根式有意义的条件.【专题】计算题.【分析】根据二次根式的被开方数为非负数,即可得出x的范围.【解答】解:∵有意义,∴1﹣x≥0,解得:x≤1.故答案为:x≤1.【点评】此题考查了二次根式有意义的条件,属于基础题,解答本题的关键是熟练掌握二次根式的被开方数为非负数.14.因式分解:x3﹣xy2=x(x﹣y)(x+y).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y).故答案为:x(x﹣y)(x+y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.如果|a﹣1|+(b+2)2=0,则(a+b)2015的值是﹣1.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a﹣1=0,b+2=0,解得a=1,b=﹣2,所以,(a+b)2015=(1﹣2)2015=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.一个直角三角形两条直角边的长分别为6cm,8cm,则这个直角三角形的内心与外心之间的距离是cm.【考点】三角形的内切圆与内心;三角形的外接圆与外心.【分析】利用在Rt△ABC,可求得AB=10cm,根据内切圆的性质可判定四边形OECE是正方形,所以用r分别表示:CE=CD=r,AE=AN=6﹣r,BD=BN=8﹣r;再利用AB作为相等关系求出r=2cm,则可得AN=4cm,N为圆与AB的切点,M为AB的中点,根据直角三角形中外接圆的圆心是斜边的中点,即M为外接圆的圆心;在Rt△OMN中,先求得MN=AM﹣AN=1cm,由勾股定理可求得OM=cm.【解答】解:如图,在Rt△ABC,∠C=90°,AC=8cm,BC=6cm,∴AB=10cm,设Rt△ABC的内切圆的半径为r,则OD=OE=r,∵∠C=90°,∴CE=CD=r,AE=AN=6﹣r,BD=BN=8﹣r,∴8﹣r+6﹣r=10,解得r=2cm,∴AN=4cm,在Rt△OMN中,MN=AM﹣AN=1cm,∴OM=cm.【点评】此题考查了直角三角形的外心与内心概念,及内切圆的性质.17.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,联结DE,F为线段DE上一点,且∠AFE=∠B.若AB=5,AD=8,AE=4,则AF的长为2.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】如图,证明AE⊥AD,求出DE的长度;证明△ADF∽△DEC,得到;运用AD=8,DE=4,CD=AB=5,求出AF的长度,即可解决问题.【解答】解:如图,∵四边形ABCD为平行四边形,∴AD∥BC,∠B=∠ADC;而AE⊥BC,∴AE⊥AD,∠ADF=∠DEC;∴DE2=AE2+AD2=16+64=80,∴DE=4而∠AFE=∠B,∴∠AFE=∠ADC,即∠ADF+∠DAF=∠ADF+∠EDC,∴∠DAF=∠EDC;∴△ADF∽△DEC,∴;而AD=8,DE=4,CD=AB=5,∴AF=2.故答案为2.【点评】该题以平行四边形为载体,以相似三角形的判定及其性质的应用为考查的核心构造而成;应牢固掌握相似三角形的判定及其性质.18.阅读材料:设一元二次方程ax2+bx+c=0的两根为x1,x2,则两根与方程系数之间有如下关系式x1+x2=﹣,x1•x2=根据该材料填空,已知x1,x2是方程x2+3x+1=0的两实数根,则的值为7.【考点】根与系数的关系.【专题】压轴题;阅读型.【分析】根据一元二次方程根与系数的关系,可以求得两根之积或两根之和,根据=,代入数值计算即可.【解答】解:∵x1,x2是方程x2+3x+1=0的两个实数根,∴x1+x2=﹣3,x1x2=1.∴===7.故答案为:7.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.三、解答题(本大题共有8小题,共66分)19.(1)计算:(﹣1.414)0﹣|﹣2|+﹣3tan30°(2)化简求值:(﹣)÷,其中x=1+,y=1﹣.【考点】分式的化简求值;实数的运算;零指数幂;特殊角的三角函数值.【分析】(1)先利用零指数幂法则,绝对值及特殊角的三角函数化简,再利用实数的运算顺序求解即可,(2)先化简,再代入求值即可.【解答】解:(1)(﹣1.414)0﹣|﹣2|+﹣3tan30°=1﹣2++3﹣,=2,(2)(﹣)÷,=•,=,当x=1+,y=1﹣,原式===.【点评】本题主要考查了分式的化简求值,实数的运算,零指数幂及特殊角的三角函数,解题的关键是正确的化简及实数的运算顺序,零指数幂法则及特殊角的三角函数.20.如图,将小旗ACDB放于平面直角坐标系中,得到各顶点的坐标为A(﹣6,12),B(﹣6,0),C(0,6),D(﹣6,6).以点B为旋转中心,在平面直角坐标系内将小旗顺时针旋转90°.(1)画出旋转后的小旗A′C′D′B′;(2)写出点A′,C′,D′的坐标;(3)求出线段BA旋转到B′A′时所扫过的扇形的面积.【考点】作图-旋转变换;扇形面积的计算.【专题】作图题.【分析】(1)根据平面直角坐标系找出A′、C′、D′、B′的位置,然后顺次连接即可;(2)根据旋转的性质分别写出点A′,C′,D′的坐标即可;(3)先求出AB的长,再利用扇形面积公式列式计算即可得解.【解答】解:(1)小旗A′C′D′B′如图所示;(2)点A′(6,0),C′(0,﹣6),D′(0,0);(3)∵A(﹣6,12),B(﹣6,0),∴AB=12,∴线段BA旋转到B′A′时所扫过的扇形的面积==36π.【点评】本题考查了利用旋转变换作图,扇形的面积计算,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.21.如图,一次函数y=kx+b的图象l与坐标轴分别交于点E、F,与双曲线y=﹣(x<0)交于点P(﹣1,n),且F是PE的中点.(1)求直线l的解析式;(2)若直线x=a与l交于点A,与双曲线交于点B(不同于A),问a为何值时,PA=PB?【考点】反比例函数与一次函数的交点问题.【专题】数形结合.【分析】(1)先由y=﹣,求出点P的坐标,再根据F为PE中点,求出F的坐标,把P,F的坐标代入求出直线l的解析式;(2)过P作PD⊥AB,垂足为点D,由A点的纵坐标为﹣2a+2,B点的纵坐标为﹣,D 点的纵坐标为4,列出方程求解即可.【解答】解:由P(﹣1,n)在y=﹣上,得n=4,∴P(﹣1,4),∵F为PE中点,∴OF=n=2,∴F(0,2),又∵P,F在y=kx+b上,∴,解得.∴直线l的解析式为:y=﹣2x+2.(2)如图,过P作PD⊥AB,垂足为点D,∵PA=PB,∴点D为AB的中点,又由题意知A点的纵坐标为﹣2a+2,B点的纵坐标为﹣,D点的纵坐标为4,∴得方程﹣2a+2﹣=4×2,解得a1=﹣2,a2=﹣1(舍去).∴当a=﹣2时,PA=PB.【点评】本题主要考查了反比例函数与一次函数的交点,解题的重点是求出直线l的解析式.22.我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是抽样调查(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共12件,其中b班征集到作品3件,请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由全面调查和抽样调查的定义可知王老师采取的调查方式是抽样调查;由题意得:所调查的4个班征集到的作品数为:5÷=12(件),B作品的件数为:12﹣2﹣5﹣2=3(件);继而可补全条形统计图;(2)四个班平均每个班征集作品件数=总数÷4,全校作品总数=平均每个班征集作品件数×班级数;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽中一男一女的情况,再利用概率公式即可求得答案.【解答】解:(1)王老师采取的调查方式是抽样调查;所调查的4个班征集到的作品数为:5÷=12(件),B作品的件数为:12﹣2﹣5﹣2=3(件);补全图2,如图所示:(2)12÷4=3,3×20=60;(3)画树状图得:∵共有20种等可能的结果,恰好抽中一男一女的有12种情况,∴恰好抽中一男一女的概率为:=.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.23.京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.【考点】分式方程的应用.【专题】压轴题.【分析】(1)设甲单独完成这项工程所需天数,表示出乙单独完成这项工程所需天数及各自的工作效率.根据工作量=工作效率×工作时间列方程求解;(2)根据题意,甲乙合作工期最短,所以须求合作的时间,然后计算费用,作出判断.【解答】解:(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要x 天.根据题意,得.解得x=90.经检验,x=90是原方程的根.∴x=×90=60.答:甲、乙两队单独完成这项工程分别需60天和90天.(2)设甲、乙两队合作完成这项工程需要y天,则有.解得y=36.需要施工费用:36×(8.4+5.6)=504(万元).∵504>500.∴工程预算的施工费用不够用,需追加预算4万元.【点评】此题考查分式方程的应用,涉及方案决策问题,所以综合性较强.24.如图,已知,⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.(1)求证:AG与⊙O相切.(2)若AC=6,AB=8,BE=3,求线段OE的长.【考点】切线的判定;勾股定理;圆周角定理;相似三角形的判定与性质.【专题】证明题;几何综合题.【分析】(1)连接OA,由OA=OB,GA=GE得出∠ABO=∠BAO,∠GEA=∠GAE;再由EF⊥BC,得出∠BFE=90°,进一步由∠ABO+∠BEF=90°,∠BEF=∠GEA,最后得出∠GAO=90°求得答案;(2)BC为直径得出∠BAC=90°,利用勾股定理得出BC=10,由△BEF∽△BCA,求得EF、BF的长,进一步在△OEF中利用勾股定理得出OE的长即可.【解答】(1)证明:如图,连接OA,∵OA=OB,GA=GE∴∠ABO=∠BAO,∠GEA=∠GAE∵EF⊥BC,∴∠BFE=90°,∴∠ABO+∠BEF=90°,又∵∠BEF=∠GEA,∴∠GAE=∠BEF,∴∠BAO+∠GAE=90°,即AG与⊙O相切.(2)解:∵BC为直径,∴∠BAC=90°,AC=6,AB=8,∴BC=10,∵∠EBF=∠CBA,∠BFE=∠BAC,∴△BEF∽△BCA,∴==∴EF=1.8,BF=2.4,∴0F=0B﹣BF=5﹣2.4=2.6,∴OE==.【点评】本题考查了切线的判定:过半径的外端点与半径垂直的直线是圆的切线.也考查了勾股定理、相似三角形的判定与性质以及圆周角定理的推论.25.如图1,抛物线y=nx2﹣11nx+24n (n<0)与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.(1)填空:点B的坐标为((3,0)),点C的坐标为((8,0));(2)连接OA,若△OAC为等腰三角形.①求此时抛物线的解析式;②如图2,将△OAC沿x轴翻折后得△ODC,点M为①中所求的抛物线上点A与点C两点之间一动点,且点M的横坐标为m,过动点M作垂直于x轴的直线l与CD交于点N,试探究:当m为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.【考点】二次函数综合题.【分析】(1)根据二次函数与x轴交点坐标求法,解一元二次方程即可得出;(2)①利用菱形性质得出AD⊥OC,进而得出△ACE∽△BAE,即可得出A点坐标,进而求出二次函数解析式;=S△AMN+S△CMN ②首先求出过C、D两点的坐标的直线CD的解析式,进而利用S四边形AMCN求出即可.【解答】解:(1)∵抛物线y=nx2﹣11nx+24n (n<0)与x轴交于B、C两点(点B在点C的左侧),∴抛物线与x轴的交点坐标为:0=nx2﹣11nx+24n,解得:x1=3,x2=8,∴OB=3,OC=8,故B点坐标为(3,0),C点坐标为:(8,0);(2)①如图1,作AE⊥OC,垂足为点E∵△OAC是等腰三角形,∴OE=EC=×8=4,∴BE=4﹣3=1,又∵∠BAC=90°,∴△ACE∽△BAE,∴=,∴AE2=BE•CE=1×4,∴AE=2,∴点A的坐标为(4,2),把点A的坐标(4,2)代入抛物线y=nx2﹣11nx+24n,得n=﹣,∴抛物线的解析式为y=﹣x2+x﹣12,②∵点M的横坐标为m,且点M在①中的抛物线上,∴点M的坐标为(m,﹣m2+m﹣12),由①知,点D的坐标为(4,﹣2),则C、D两点的坐标求直线CD的解析式为y=x﹣4,∴点N的坐标为(m,m﹣4),∴MN=(﹣m2+m﹣12)﹣(m﹣4)=﹣m2+5m﹣8,∴S=S△AMN+S△CMN=MN•CE=(﹣m2+5m﹣8)×4,四边形AMCN=﹣(m﹣5)2+9,∴当m=5时,S=9.四边形AMCN【点评】此题主要考查了二次函数与坐标轴交点坐标求法以及菱形性质和四边形面积求法等知识,根据已知得出△ACE∽△BAE是解决问题的关键.26.如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF 于M,作PN∥CD交DE于N.(1)①∠MPN=60°;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.【考点】四边形综合题.【专题】几何综合题;压轴题.【分析】(1)①运用∠MPN=180°﹣∠BPM﹣∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN 求解,(2)连接OE,由△OMA≌△ONE证明,(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.,【解答】解:(1)①∵六边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°又∴PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°,∴∠MPN=180°﹣∠BPM﹣∠NPC=180°﹣60°﹣60°=60°,故答案为;60°.②如图1,作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,MP+PN=MG+GH+HP+PL+LK+KN∵正六边形ABCDEF中,PM∥AB,作PN∥CD,。

安徽省芜湖市2018年中考数学二模试卷

安徽省芜湖市2018年中考数学二模试卷

安徽省芜湖市2018年中考数学二模试卷一、选择题(每题4分)1.在﹣4,0,﹣1,3这四个数中,最小的数是()A.﹣4B.2C.﹣1D.32.计算﹣a2•a3的结果是()A.a5B.﹣a5C.﹣a6D.a63.如图所示,该几何体的主视图是()A.B.C.D.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.5.与2×的值最接近的正数是()A.3B.4C.5D.66.如图,这是某地2014年和2015年粮食作物产量的条形统计图,请你根据此图判断下列说法合理的是()A.2015年三类农作物的产量比2014年都有增加B.玉米产量和杂粮产量增长率相当C.2014年杂粮产量是玉米产量的约七分之一D.2014年和2015年的小麦产量基本持平7.某楼盘商品房成交价今年3月份为a元/m3,4月份比3月份减少了8%,若4月份到6月份平均增长率为12%,则6月份商品房成交价是()A.a(1﹣8%)(1+12%)元B.a(1﹣8%)(1+12%)2元C.(a﹣8%)(a+12%)元D.a(1﹣8%+12%)元8.如图,MN与BC在同一条直线上,且MN=BC=2,点B和点N重合,以MN为底作高为2的等腰△PMN,以BC为边作正方形ABCD,若设△PMN沿射线BC方向平移的距离为x,两图形重合部分的面积为y,则y关于x的函数大致图象是()A.B.C.D.9.如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△BDE等于()A.2:5B.14:25C.16:25D.4:2110.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间函数关系式为y=﹣n2+14n﹣24,则该企业一年中应停产的月份是()A.1月、2月、3月B.2月、3月、4月C.1月、2月、12月D.1月、11月、12月二、填空题(每题5分)11.2016年安徽71所高职院校计划招生9.7万人,其中9.7万人用科学记数法表示为______.12.分解因式:ab2﹣a=______.13.如图,点P在⊙O外,PA、PB是⊙O的切线,A、B是切点,BC是直径,若∠APB=70°,则∠ACB的度数为______.14.如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为MN(点M、N分别在边AC、BC上),给出以下判断:①当MN∥AB时,CM=AM;②当四边形CMDN为矩形时,AC=BC;③当点D为AB的中点时,△CMN与△ABC相似;④当△CMN与△ABC相似时,点D为AB的中点.其中正确的是______(把所有正确的结论的序号都填在横线上).三、解答题(共9小题,满分90分)15.(8分)化简:.16.(8分)如图在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC、直线l和格点O.(1)画出△ABC关于直线l成轴对称的△A0B0C0;(2)画出将△A0B0C0向上平移1个单位得到的△A1B1C1;(3)以格点O为位似中心,将△A1B1C1作位似变换,将其放大到原来的两倍,得到△A2B2C2.17.(8分)(2016芜湖二模)某校组织了以“我为环保作贡献”为主题的电子小报制作比赛,评分结果只有60,70,80,90,100(单位:分)五种.现从中随机抽取了部分电子小报,对其成绩进行整理,制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全两幅统计图;(2)求所抽取小报成绩的中位数和众数;(3)已知该校收到参赛的电子小报共900份,请估计该校学生比赛成绩达到90分以上(含90分)的电子小报有多少份?18.(8分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C 的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)19.(10分)如图所示,直线y1=与x轴交于点A,与y轴交于点C,与反比例函数y2=(x>0)的图象交于点P,作PB⊥x轴于点B,且AC=BC.(1)求点P的坐标和反比例函数y2的解析式;(2)请直接写出y1>y2时,x的取值范围;(3)反比例函数y2图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D 的坐标;如果不存在,说明理由.20.(10分)如图所示,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE∥BD,交BC于点F,交AB于点E.(1)求证:∠E=∠C;(2)若⊙O的半径为3,AD=2,试求OE的长.21.(12分)(1)如图1所示,在正方形ABCD中,对角线AC与BD相交于点O,请填空:=(直接写出答案);(2)如图2所示,将(1)中的△BOC绕点B逆时针旋转得到△BO1C1,连接AO1,DC1,请你猜想线段AO1与DC1之间的数量关系,并证明之;(3)如图3所示,矩形ABCD和Rt△BEF有公共顶点B,且∠BEF=90°,∠EBF=∠ABD=30°,则的值是否为定值?若是定值,请求出该值;若不是定值,请简述理由.22.(12分)(2014潍坊)经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v 是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.23.(14分)如图所示,在平面直角坐标系中,抛物线y=﹣与x轴交于A、B 两点,与y轴交于C点,其中B(3,0),C(0,4),点A在x轴的负半轴上.(1)求抛物线的解析式和点A的坐标;(2)连接AC、BC,设点P是x轴正半轴上一个动点,过点P作PM∥BC交射线AC于点M,连接CP,请探究是否存在使S△CPM=2的P点?若存在,请求出P点的坐标;若不存在,请简述理由.一、选择题(每题4分)1.在﹣4,0,﹣1,3这四个数中,最小的数是()A.﹣4B.2C.﹣1D.3【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣4<﹣1<0<3,在﹣4,0,﹣1,3这四个数中,最小的数是﹣4.故选:A.2.计算﹣a2•a3的结果是()A.a5B.﹣a5C.﹣a6D.a6【考点】同底数幂的乘法.【分析】根据同底数幂的乘法法则求解即可求得答案.【解答】解:﹣a2•a3=﹣a5故选:B.3.如图所示,该几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从几何体的左面看所得到的图形即可.【解答】解:从几何体的正面看所得到的视图是,故选:C.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先求出每个不等式的解集,再求出不等式组的解集,在数轴上表示不等式组的解集,即可得出选项.【解答】解:,∵解不等式①得:x≥1,解不等式②得:x<2,∴不等式组的解集为:1≤x<2,在数轴上表示不等式组的解集为:,故选D.5.与2×的值最接近的正数是()A.3B.4C.5D.6【考点】二次根式的乘除法;估算无理数的大小.【分析】先利用二次根式的乘法法则得到2×=2,然后进行无理数的估算即可.【解答】解:2×=2=,∵16<24<25,∴4<<5,∴与2×的值最接近的正数为5.故选C.6.如图,这是某地2014年和2015年粮食作物产量的条形统计图,请你根据此图判断下列说法合理的是()A.2015年三类农作物的产量比2014年都有增加B.玉米产量和杂粮产量增长率相当C.2014年杂粮产量是玉米产量的约七分之一D.2014年和2015年的小麦产量基本持平【考点】条形统计图.【分析】根据条形的高低,来判断小麦、玉米、杂粮在不同年份的增长情况,分别对每一项进行分析,即可得出答案.【解答】解:A、根据统计图发现小麦有所下降,错误;B、玉米产量和杂粮产量增加的数量基本一样,但玉米的基数明显>杂粮的基数,所以两者增加的幅度不一样;C、2014年杂粮产量是玉米产量的约十分之一,错误;D、根据统计图的高低得出2014年和2015年的小麦产量基本持平,正确.故选:D.7.某楼盘商品房成交价今年3月份为a元/m3,4月份比3月份减少了8%,若4月份到6月份平均增长率为12%,则6月份商品房成交价是()A.a(1﹣8%)(1+12%)元B.a(1﹣8%)(1+12%)2元C.(a﹣8%)(a+12%)元D.a(1﹣8%+12%)元【考点】列代数式.【分析】根据某楼盘商品房成交价今年3月份为a元/m3,4月份比3月份减少了8%,可以求得4月份的成交价,再根据4月份到6月份平均增长率为12%,可以求得6月份商品房成交价,本题得以解决.【解答】解:由题意可得,6月份商品房成交价是:a×(1﹣8%)(1+12%)2元,故选B.8.如图,MN与BC在同一条直线上,且MN=BC=2,点B和点N重合,以MN为底作高为2的等腰△PMN,以BC为边作正方形ABCD,若设△PMN沿射线BC方向平移的距离为x,两图形重合部分的面积为y,则y关于x的函数大致图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】分三种情况:①当0≤x<1时,由三角形的面积得出两图形y=x2;②当1≤x ≤3时,y=﹣x2+x;③当3<x≤4时,y=(4﹣x)2;即可得出函数的图象.【解答】解:分三种情况:①当0≤x<1时,两图形重合部分的面积y=×x×x=x2;②当1≤x≤3时,两图形重合部分的面积y=×2×﹣×(2﹣x)2=﹣x2+ x;③当3<x≤4时,两图形重合部分的面积y=×(4﹣x)2=(4﹣x)2;故选:B.9.如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△BDE等于()A.2:5B.14:25C.16:25D.4:21【考点】翻折变换(折叠问题).【分析】在Rt△BEC中利用勾股定理计算出AB=10,根据折叠的性质得到AD=BD=5,EA=EB,设AE=x,则BE=x,EC=8﹣x,在Rt△BEC中根据勾股定理计算出x=,则EC=8﹣=,利用三角形面积公式计算出S△BCE=BC•CE=×6×=,在Rt△BED中利用勾股定理计算出ED==,利用三角形面积公式计算出S△BDE=BD•DE=×5×=,然后求出两面积的比.【解答】解:在Rt△BAC中,BC=6,AC=8,∴AB==10,∵把△ABC沿DE使A与B重合,∴AD=BD,EA=EB,∴BD=AB=5,设AE=x,则BE=x,EC=8﹣x,在Rt△BEC中,∵BE2=EC2+BC2,即x2=(8﹣x)2+62,∴x=,∴EC=8﹣x=8﹣=,∴S△BCE=BC•CE=×6×=,在Rt△BED中,∵BE2=ED2+BD2,∴ED==,∴S△BDE=BD•DE=×5×=,∴S△BCE:S△BDE=:=14:25.故选B.10.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间函数关系式为y=﹣n2+14n﹣24,则该企业一年中应停产的月份是()A.1月、2月、3月B.2月、3月、4月C.1月、2月、12月D.1月、11月、12月【考点】二次函数的应用.【分析】根据解析式,求出函数值y等于0时对应的月份,依据开口方向以及增减性,再求出y小于0时的月份即可解答.【解答】解:∵y=﹣n2+14n﹣24=﹣(n﹣2)(n﹣12),当y=0时,n=2或者n=12.又∵图象开口向下,∴1月,y<0;2月、12月,y=0.∴该企业一年中应停产的月份是1月、2月、12月.故选C.二、填空题(每题5分)11.2016年安徽71所高职院校计划招生9.7万人,其中9.7万人用科学记数法表示为9.7×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9.7万=97000=9.7×104,故答案为:9.7×104.12.分解因式:ab2﹣a=a(b+1)(b﹣1).【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(b2﹣1)=a(b+1)(b﹣1),故答案为:a(b+1)(b﹣1)13.如图,点P在⊙O外,PA、PB是⊙O的切线,A、B是切点,BC是直径,若∠APB=70°,则∠ACB的度数为55°.【考点】切线的性质;三角形的外角性质;等腰三角形的性质.【分析】连接OA,根据切线的性质得出∠PAO=∠PBO=90°,求出∠AOB=110°,根据三角形外角性质和等腰三角形性质求出即可.【解答】解:连接OA,∵PA、PB是⊙O的切线,A、B是切点,∴∠PAO=∠PBO=90°,∵∠APB=70°,∴∠AOB=360°﹣90°﹣90°﹣70°=110°,∴∠ACB+∠OAC=∠AOB=110°,∵OC=OA,∴∠ACB=∠OAC,∴∠ACB=55°故答案为:55°.14.如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为MN(点M、N分别在边AC、BC上),给出以下判断:①当MN∥AB时,CM=AM;②当四边形CMDN为矩形时,AC=BC;③当点D为AB的中点时,△CMN与△ABC相似;④当△CMN与△ABC相似时,点D为AB的中点.其中正确的是①③(把所有正确的结论的序号都填在横线上).【考点】相似形综合题.【分析】①根据平行线的性质得到∠CMN=∠CAB,∠NMD=∠MDA,根据翻折变换的性质得到∠CMN=∠DMN,CM=DM,根据等腰扇形的判定和等量代换证明即可;②根据矩形的性质得到CE=DE,折叠四边形CEDF是正方形,根据任意一个直角三角形都有一个内接正方形即可得到结论;③如图2,连接CD,与EF交于点Q,根据直角三角形的性质得到CD=DB=AB,于是得到∠DCB=∠B,由轴对称的性质得到∠CQF=∠DQF=90°,推出∠DCB+∠CFE=90°,由于∠B+∠A=90°,于是得到∠CFE=∠A,即可得到结论;④由相似三角形的性质得到∠EFD=∠CAB,∠EDF=∠ECF=90°,推出C,E,D,F四点共圆,根据圆周角定理得到∠ACD=∠EFD,等量代换得到∠ACD=∠A,根据等腰三角形的性质得到AD=CD,同理CD=BD,即可得到结论.【解答】解:①∵MN∥AB,∴∠CMN=∠CAB,∠NMD=∠MDA,由翻折变换的性质可知,∠CMN=∠DMN,CM=DM,∴∠CAB=∠MDA,∴AM=DM,∴CM=AM,故①正确;②根据折叠的性质得到CE=DE,矩形CEDF是正方形,又任意一个直角三角形都有一个内接正方形满足题意,故②错误;③当点D是AB的中点时,△CEF与△ABC相似,理由如下:如图2,连接CD,与EF交于点Q,∵CD是Rt△ABC的中线,∴CD=DB=AB,∴∠DCB=∠B,由轴对称的性质可知,∠CQF=∠DQF=90°,∴∠DCB+∠CFE=90°,∵∠B+∠A=90°,∴∠CFE=∠A,又∵∠C=∠C,∴△CEF∽△CBA;故③正确;④∵△CEF与△ABC相似,∴∠EFD=∠CAB,∠EDF=∠ECF=90°,∴C,E,D,F四点共圆,∴∠ACD=∠EFD,∴∠ACD=∠A,∴AD=CD,同理CD=BD,∴点D为AB的中点,当△ABC∽△EFC时,点D不是AB的中点,故④错误,故答案为:①③.三、解答题(共9小题,满分90分)15.(8分)(2016芜湖二模)化简:.【分析】先算除法,再算减法即可.【解答】解:原式=﹣=﹣==.【点评】本题考查的是分式的混合运算,分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.16.(8分)(2016芜湖二模)如图在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC、直线l和格点O.(1)画出△ABC关于直线l成轴对称的△A0B0C0;(2)画出将△A0B0C0向上平移1个单位得到的△A1B1C1;(3)以格点O为位似中心,将△A1B1C1作位似变换,将其放大到原来的两倍,得到△A2B2C2.【分析】(1)利用轴对称图形的性质分别得出对应点位置进而得出答案;(2)直接利用平移的性质进而得出对应点位置进而得出答案;(3)直接利用位似图形的性质得出对应点位置进而得出答案.【解答】解:(1)如图所示:△A0B0C0,即为所求;(2)如图所示:△A1B1C1,即为所求;(3)如图所示:△A2B2C2,即为所求.【点评】此题主要考查了位似变换以及轴对称变换以及平移变换,根据题意得出对应点位置是解题关键.17.(8分)(2016芜湖二模)某校组织了以“我为环保作贡献”为主题的电子小报制作比赛,评分结果只有60,70,80,90,100(单位:分)五种.现从中随机抽取了部分电子小报,对其成绩进行整理,制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全两幅统计图;(2)求所抽取小报成绩的中位数和众数;(3)已知该校收到参赛的电子小报共900份,请估计该校学生比赛成绩达到90分以上(含90分)的电子小报有多少份?【分析】(1)用得60分的小报的数量除以它占的百分比得到样本容量,再计算出80分的电子小报的份数和它所占的百分比,然后补全统计图;(2)根据中位数和众数的定义求解;(3)利用样本估计总体,用样本中90分以上(含90分)的电子小报所占的百分比乘以900即可.【解答】解:(1)样本容量为6÷5%=120,所以80分的电子小报的份数为120﹣6﹣24﹣36﹣12=42(份),80分的电子小报所占的百分比为×100%=35%;如图,(2)由题意可知:抽取小报共120份,其中得60分有6份,得70分有24份,得80分有42份,得90有36份,得100分有12份,所以所抽取小报成绩的中位数为80分,众数为80分;(3)该校学生比赛成绩达到90分以上(含90分)的电子小报占比为30%+10%=40%,所以该校学生比赛成绩达90分以上的电子小报约有:900×40%=360(份).【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了样本估计总体.18.(8分)(2014汕头)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A 处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)【分析】首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.【解答】解:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BCsin∠CBD=10×=5≈5×1.732=8.7(米).答:这棵树CD的高度为8.7米.【点评】本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.19.(10分)(2016芜湖二模)如图所示,直线y1=与x轴交于点A,与y轴交于点C,与反比例函数y2=(x>0)的图象交于点P,作PB⊥x轴于点B,且AC=BC.(1)求点P的坐标和反比例函数y2的解析式;(2)请直接写出y1>y2时,x的取值范围;(3)反比例函数y2图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.【分析】(1)首先求得直线与x轴和y轴的交点,根据AC=BC可得OA=OB,则B的坐标即可求得,BP=2OC,则P的坐标可求出,然后利用待定系数法即可求得函数的解析式;(2)求y1>y2时x的取值范围,就是求直线位于反比例函数图象上边时对应的x的范围;(3)连接DC与PB交于点E,若四边形BCPD是菱形时,CE=DE,则CD的长即可求得,从而求得D的坐标,判断D是否在反比例函数的图象上即可.【解答】解:(1)∵一次函数y1=x+1的图象与x轴交于点A,与y轴交于点C,∴A(﹣4,0),C(0,1),又∵AC=BC,CO⊥AB,∴O是AB的中点,即OA=OB=4,且BP=2OC=2,∴P的坐标是(4,2),将P(4,2)代入y2=得m=8,即反比例函数的解析式为y2=;(2)当x>4时,y1>y2;(3)假设存在这样的点D,使四边形BCPD为菱形,如图所示,连接DC与PB交于点E.∵四边形BCPD是菱形,∴CE=DE=4,∴CD=8,将x=8代入反比例函数解析式y=得y=1,∴D的坐标是(8,1),即反比例函数的图象上存在点D使四边形BCPD是菱形,此时D 的坐标是(8,1).【点评】本题考查了一次函数、反比函数以及菱形的判定与性质的综合应用,理解菱形的性质求得D的坐标是关键.20.(10分)(2016芜湖二模)如图所示,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE∥BD,交BC于点F,交AB于点E.(1)求证:∠E=∠C;(2)若⊙O的半径为3,AD=2,试求OE的长.【分析】(1)连接OB.先证明∠ABO、∠CBD均为直角,然后依据同角的余角相等证明∠ABD=∠CBO,接下来,结合等腰三角形的性质和平行线的性质进行证明即可;(2)连接OB,先求得AB的长,然后由平行线分线段成比例定理求得BE的长,最后再△BOE 中依据勾股定理可求得OE的长.【解答】解:(1)证明:如图1:连接OB.∵CD为圆O的直径,∴∠CBD=∠CBO+∠OBD=90°.∵AE是圆O的切线,∴∠ABO=∠ABD+∠OBD=90°.∴∠ABD=∠CBO.∵OB=OC,∴∠C=∠CBO.∴∠C=∠ABD.∵OE∥BD,∴∠E=∠ABD.∴∠E=∠C.(2)如图2所示:连接OB.∵圆O的半径为3,AD=2,∴OA=5,OB=3.∴AB==4.∵BD∥OE,∴,即.解得:BE=6.∵∠OBE=90°,∴OE==3.【点评】本题主要考查的是切线的性质、圆周角定理的应用、等腰三角形的性质、平行线的性质、平行线分线段成比例定理、勾股定理的应用,求得BE的长是解答本题的关键.21.(12分)(2016芜湖二模)(1)如图1所示,在正方形ABCD中,对角线AC与BD 相交于点O,请填空:=(直接写出答案);(2)如图2所示,将(1)中的△BOC绕点B逆时针旋转得到△BO1C1,连接AO1,DC1,请你猜想线段AO1与DC1之间的数量关系,并证明之;(3)如图3所示,矩形ABCD和Rt△BEF有公共顶点B,且∠BEF=90°,∠EBF=∠ABD=30°,则的值是否为定值?若是定值,请求出该值;若不是定值,请简述理由.【分析】(1)根据正方形的性质和等腰直角三角形的性质计算即可;(2)根据旋转变换的性质得到∠ABO=∠O1B,C1,根据正方形的性质得到=,证明△ABO1∽△DBC1,根据相似三角形的性质解答;(3)根据正弦的定义和矩形的性质证明△AEB∽△DFB,根据相似三角形的性质计算即可.【解答】解:(1)∵四边形ABCD是正方形,∴AD=DC,△AOD是等腰直角三角形,∴=,∴=,故答案为:;(2)∵△BOC绕点B逆时针旋转得到△BO1C1,∴∠ABO=∠O1B,C1,∴∠ABO1=∠DBC1,∵四边形ABCD是正方形,∴=,又==,∴=,又∠ABO1=∠DBC1,∴△ABO1∽△DBC1,∴==;(3)在Rt△EBF中,∠EBF=30°,∴=,在Rt△ABD中,∠ABD=30°,∴=,∴=,∵∠EBF=∠ABD,∴∠EBA=∠FBD,∴△AEB∽△DFB,∴==.【点评】本题考查的是正方形的性质、矩形的性质、旋转变换的性质,掌握正方形的四条边相等、四个角都是直角、相似三角形的判定定理和性质定理、旋转变换的性质是解题的关键.22.(12分)(2014潍坊)经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.【分析】(1)当20≤x≤220时,设车流速度v与车流密度x的函数关系式为v=kx+b,根据题意的数量关系建立方程组求出其解即可;(2)由(1)的解析式建立不等式组求出其解即可;(3)设车流量y与x之间的关系式为y=vx,当x<20和20≤x≤220时分别表示出函数关系由函数的性质就可以求出结论.【解答】解:(1)设车流速度v与车流密度x的函数关系式为v=kx+b,由题意,得,解得:,∴当20≤x≤220时,v=﹣x+88,当x=100时,v=﹣×100+88=48(千米/小时);(2)由题意,得,解得:70<x<120.∴应控制大桥上的车流密度在70<x<120范围内;(3)设车流量y与x之间的关系式为y=vx,当0≤x≤20时y=80x,∴k=80>0,∴y随x的增大而增大,∴x=20时,y最大=1600;当20≤x≤220时y=(﹣x+88)x=﹣(x﹣110)2+4840,∴当x=110时,y最大=4840.∵4840>1600,∴当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆.【点评】本题考查了车流量=车流速度×车流密度的运用,一次函数的解析式的运用,一元一次不等式组的运用,二次函数的性质的运用,解答时求出函数的解析式是关键.23.(14分)(2016芜湖二模)如图所示,在平面直角坐标系中,抛物线y=﹣与x轴交于A、B两点,与y轴交于C点,其中B(3,0),C(0,4),点A在x轴的负半轴上.(1)求抛物线的解析式和点A的坐标;(2)连接AC、BC,设点P是x轴正半轴上一个动点,过点P作PM∥BC交射线AC于点M,连接CP,请探究是否存在使S△CPM=2的P点?若存在,请求出P点的坐标;若不存在,请简述理由.【分析】(1)用待定系数法确定抛物线解析式;(2)先利用勾股定理求出AC,再判断出△AOC∽△AHP,表示出PH,再分点P在点B 左侧和右侧两种情况讨论.【解答】解:(1)∵抛物线y=﹣经过B(3,0).C(0,4),∴,∴,∴y=﹣x2+x+4,设y=0,∴﹣x2+x+4=0,∴x1=3,x2=﹣1,∵点A在x轴上,∴A(﹣1,0);(2)存在;如图∵在Rt△AOC中,OA=1,OC=4,∴AC=,过点P作PH⊥AC,∵P在x轴正半轴上,∴设P(t,0),∵A(﹣1,0),∴PA=t+1,∵∠AOC=∠PHA=90°,∠A=∠A,∴△AOC∽△AHP,∴=,∴,∴PH=,∵PM∥BC,,∵B(3,0),P(t,0),当点P在点B左侧时,BP=3﹣t,∴,∴CM=,∵S△PCM=2,∴,∴t=1,∴P(1,0),当点P在点B左侧时,BP=t﹣3,∴,∴CM=,∴,∴t=1±2,∵点P是x轴正半轴上的一个动点,∴P(1+2,0),∴P点坐标为(1,0),(1+2,0).【点评】此题是二次函数综合题,主要考查了用待定系数法求解析式,相似三角形的判定和性质,用点P(t,0)中的t表示出CM,PH是解本题的关键,分点P在点B左和右两种情况是本题的难点.。

2018届中考数学二模试卷(带答案) (2)

2018届中考数学二模试卷(带答案)  (2)

2018年中考数学二模试卷一、选择题(本大题共12小题,共36分.每小题只有一个选项符合题意.请考生用2B铅笔在答题卷上将选定的答案标号涂黑)1.在平面直角坐标系中,下面的点在第一象限的是()A.(1,2) B.(﹣2,3)C.(0,0) D.(﹣3,﹣2)2.计算:﹣1﹣2=()A.1 B.﹣1 C.﹣2 D.﹣33.下列长度的三条线段能组成三角形的是()A.1,2,3 B.3,4,5 C.3,1,1 D.3,4,74.在Rt△ABC中,∠C=90°,AB=5,BC=3,则∠A的余弦值为()A.B.C.D.5.一个几何体的三视图完全相同,该几何体可以是()A.圆锥 B.圆柱 C.长方体D.球6.下列计算正确的是()A.(a+b)2=a2+b2B.(﹣2a)3=﹣6a3C.(a2b)3=a5b2 D.(﹣a)6÷(﹣a)2=a47.下列事件中,属于确定事件的个数是()(1)打开电视,正在播广告;(2)投掷一枚普通的骰子,掷得的点数小于10;(3)射击运动员射击一次,命中10环;(4)在一个只装有红球的袋中摸出白球.A.0 B.1 C.2 D.38.不等式组的解集在数轴上可表示为()A.B.C.D.9.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形10.计算﹣的结果是()A.﹣B.C.D.11.方程:+=1的解是()A.x=﹣1 B.x=3 C.x=﹣1或x=3 D.x=1或x=﹣31212.如图,在平面直角坐标系中有一正方形AOBC,反比例函数y=经过正方形AOBC对角线的交点,半径为(4﹣2)的圆内切于△ABC,则k的值为()A.4 B.4 C.2D.2二、填空题(本大题共6小题,每小题3分,共18分,请把答案填写在答题卷指定的位置上)13.若二次根式有意义,则x的取值范围是.14.“神舟七号”舱门除了有气压外,还有光压,开门最省力也需要用大约568000斤的臂力.用科学记数法表示568000为.15.分解因式:1﹣x2=.16.甲、乙、丙、丁四位同学在本学期的四次数学测试中,他们成绩的平均数相同,方差分别为S甲2=5.5,S乙2=7.3,S丙2=8.6,S丁2=4.5,则成绩最稳定的是.17.如图,以O为位似中心,把五边形ABCDE的面积扩大为原来的4倍,得五边形A1B1C1D1E1,则OD:OD1=.18.点E是平行四边形ABCD边BC的中点,平行四边形ABCD的面积是m,则四边形ABEF的面积是.三、解答题(本大题共8小题,共66分,解答应写出文字说明、证明过程或验算步骤)19.计算:4cos45°+(﹣1)2015﹣+()﹣2.20.如图,方格纸中的每个小正方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,O、M都在格点上.(1)画出△ABC关于直线OM对称的△A1B1C1;(2)画出将△ABC绕点O按顺时针方向旋转90°后得到的△A2B2C2(3)△A1B1C1与△A2B2C2组成的图形是轴对称图形码?如果是轴对称图形,请画出对称轴.21.已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.22.小明对所在班级的“小书库”进行了分类统计,并制作了如下的统计图表:根据上述信息,完成下列问题:(1)图书总册数是册,a=册;(2)请将条形统计图补充完整;(3)数据22,20,18,a,12,14中的众数是,极差是;(4)小明从这些书中任意拿一册来阅读,求他恰好拿到数学或英语书的概率.23.某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个.(1)求第一次每个书包的进价是多少元?(2)若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,问最低可打几折?24.已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y1>y2成立的自变量x的取值范围;(3)如果点C与点A关于x轴对称,求△ABC的面积.25.如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于F.(1)求证:∠DCP=∠DAP;(2)若AB=2,DP:PB=1:2,且PA⊥BF,求对角线BD的长.26.如图,半径为1的⊙M经过直角坐标系的原点O,且分别与x轴正半轴、y轴正半轴交于点A、B,∠OMA=60°,过点B的切线交x轴负半轴于点C,抛物线过点A、B、C.(1)求点A、B的坐标;(2)求抛物线的函数关系式;(3)若点D为抛物线对称轴上的一个动点,问是否存在这样的点D,使得△BCD是等腰三角形?若存在,求出符合条件的点D的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共12小题,共36分.每小题只有一个选项符合题意.请考生用2B铅笔在答题卷上将选定的答案标号涂黑)2.在平面直角坐标系中,下面的点在第一象限的是()A.(1,2) B.(﹣2,3)C.(0,0) D.(﹣3,﹣2)【考点】点的坐标.【专题】计算题.【分析】满足点在第一象限的条件是:横坐标是正数,纵坐标也是正数,结合选项进行判断即可.【解答】解:因为第一象限的条件是:横坐标是正数,纵坐标也是正数,而各选项中符合纵坐标为正,横坐标也正的只有A(1,2).故选:A.【点评】本题主要考查了平面直角坐标系中第四象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).1.计算:﹣1﹣2=()A.1 B.﹣1 C.﹣2 D.﹣3【考点】有理数的减法.【分析】根据有理数的减法运算进行计算即可得解.【解答】解:﹣1﹣2=﹣3,故选D.【点评】本题考查了有理数的减法,将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).3.下列长度的三条线段能组成三角形的是()A.1,2,3 B.3,4,5 C.3,1,1 D.3,4,7【考点】三角形三边关系.【专题】应用题.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.【解答】解:根据三角形的三边关系,知A、1+2=3,不能组成三角形,故A错误;B、3+4>5,能够组成三角形;故B正确;C、1+1<3,不能组成三角形;故C错误;D、3+4=7,不能组成三角形,故D错误.故选:B.【点评】本题考查了三角形的三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数,难度适中.4.在Rt△ABC中,∠C=90°,AB=5,BC=3,则∠A的余弦值为()A.B.C.D.【考点】锐角三角函数的定义;勾股定理.【专题】计算题.【分析】先根据勾股定理,求出AC的值,然后再由余弦=邻边÷斜边计算即可.【解答】解:在Rt△ABC中,∵∠C=90°,AB=5,BC=3,∴AC=4,∴cosA==.故选C.【点评】本题考查了锐角三角函数的定义和勾股定理,牢记定义和定理是解题的关键.5.一个几何体的三视图完全相同,该几何体可以是()A.圆锥 B.圆柱 C.长方体D.球【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:A、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;B、圆柱的主视图、左视图都是长方形,俯视图是圆形;故本选项错误;C、长方体的主视图为长方形、左视图为长方形或正方形、俯视图为长方形或正方形;故本选项错误;D、球体的主视图、左视图、俯视图都是圆形;故本选项正确.故选D.【点评】本题考查了简单几何体的三视图,锻炼了学生的空间想象能力.6.下列计算正确的是()A.(a+b)2=a2+b2B.(﹣2a)3=﹣6a3C.(a2b)3=a5b2 D.(﹣a)6÷(﹣a)2=a4【考点】同底数幂的除法;幂的乘方与积的乘方;完全平方公式.【分析】根据完全平方公式、幂的乘方和同底数幂的除法计算判断即可.【解答】解:A、(a+b)2=a2+2ab+b2,错误;B、(﹣2a)3=﹣8a3,错误;C、(a2b)3=a6b3,错误;D、(﹣a)6÷(﹣a)2=a4,正确;故选D.【点评】此题考查完全平方公式、幂的乘方和同底数幂的除法,关键是根据法则进行计算.7.下列事件中,属于确定事件的个数是()(1)打开电视,正在播广告;(2)投掷一枚普通的骰子,掷得的点数小于10;(3)射击运动员射击一次,命中10环;(4)在一个只装有红球的袋中摸出白球.A.0 B.1 C.2 D.3【考点】随机事件.【分析】确定事件就是一定发生的事件或一定不会发生的事件,根据定义即可确定.【解答】解:(1)(3)属于随机事件;(4)是不可能事件,属于确定事件;(2)是必然事件,属于确定事件;故属于确定事件的个数是2,故选:C.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.不等式组的解集在数轴上可表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】计算题.【分析】首先解出不等式组x的取值范围,然后根据x的取值范围,找出正确答案;【解答】解:不等式组,解①得:x≥﹣1,解②得:x<2,则不等式组的解集是:﹣1≤x<2.故选B.【点评】本题考查了不等式组的解法及在数轴上表示不等式的解集,把不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形【考点】多边形内角与外角.【专题】应用题.【分析】任何多边形的外角和是360度,内角和等于外角和的一半则内角和是180度,可知此多边形为三角形.【解答】解:根据题意,得(n﹣2)•180°=180°,解得:n=3.故选D.【点评】本题主要考查了已知多边形的内角和求边数,可以转化为方程的问题来解决,难度适中.10.计算﹣的结果是()A.﹣B.C.D.【考点】分式的加减法.【分析】首先通分,然后根据同分母的分式加减运算法则求解即可求得答案.【解答】解:﹣===﹣.故选A.【点评】此题考查了分式的加减运算法则.题目比较简单,注意解题需细心.11.方程:+=1的解是()A.x=﹣1 B.x=3 C.x=﹣1或x=3 D.x=1或x=﹣312【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+3=x2,即(x﹣3)(x+1)=0,解得:x=3或x=﹣1,经检验x=3与x=﹣1都为分式方程的解.故选C.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.12.如图,在平面直角坐标系中有一正方形AOBC,反比例函数y=经过正方形AOBC对角线的交点,半径为(4﹣2)的圆内切于△ABC,则k的值为()A.4B.4 C.2D.2【考点】反比例函数综合题.【分析】根据正方形的性质得出AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,进而根据半径为(4﹣2)的圆内切于△ABC,得出CD的长,从而得出DO的长,再利用勾股定理得出DN的长进而得出k的值.【解答】解:设正方形对角线交点为D,过点D作DM⊥AO于点M,DN⊥BO于点N;设圆心为Q,切点为H、E,连接QH、QE.∵在正方形AOBC中,反比例函数y=经过正方形AOBC对角线的交点,∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,QH⊥AC,QE⊥BC,∠ACB=90°,∴四边形HQEC是正方形,∵半径为(4﹣2)的圆内切于△ABC,∴DO=CD,∵HQ2+HC2=QC2,∴2HQ2=QC2=2×(4﹣2)2,∴QC2=48﹣32=(4﹣4)2,∴QC=4﹣4,∴CD=4﹣4+(4﹣2)=2,∴DO=2,∵NO2+DN2=DO2=(2)2=8,∴2NO2=8,∴NO2=4,∴DN×NO=4,即:xy=k=4.故选B.【点评】本题考查了反比例函数综合题,涉及正方形的性质以及三角形内切圆的性质以及待定系数法求反比例函数解析式,根据已知求出CD的长度,进而得出DN×NO=4是解决问题的关键.二、填空题(本大题共6小题,每小题3分,共18分,请把答案填写在答题卷指定的位置上)13.若二次根式有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【点评】此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.14.“神舟七号”舱门除了有气压外,还有光压,开门最省力也需要用大约568000斤的臂力.用科学记数法表示568000为 5.68×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于568000有6位,所以可以确定n=6﹣1=5.【解答】解:568 000=5.68×105.故答案为:5.68×105.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.15.分解因式:1﹣x2=(1+x)(1﹣x).【考点】因式分解-运用公式法.【专题】因式分解.【分析】分解因式1﹣x2中,可知是2项式,没有公因式,用平方差公式分解即可.【解答】解:1﹣x2=(1+x)(1﹣x).故答案为:(1+x)(1﹣x).【点评】本题考查了因式分解﹣运用公式法,熟练掌握平方差公式的结构特点是解题的关键.16.甲、乙、丙、丁四位同学在本学期的四次数学测试中,他们成绩的平均数相同,方差分别为S甲2=5.5,S乙2=7.3,S丙2=8.6,S丁2=4.5,则成绩最稳定的是丁.【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=5.5,S乙2=7.3,S丙2=8.6,S丁2=4.5,丁的方差最小,∴成绩最稳定的是丁同学,故答案为:丁.【点评】此题主要考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.如图,以O为位似中心,把五边形ABCDE的面积扩大为原来的4倍,得五边形A1B1C1D1E1,则OD:OD1=1:2.【考点】位似变换.【分析】根据五边形ABCDE的面积扩大为原来的4倍,利用相似图形面积的比等于相似比的平方,即可得出答案.【解答】解:∵以O为位似中心,把五边形ABCDE的面积扩大为原来的4倍,得五边形A1B1C1D1E1,则OD:OD1=1:2,故答案为:1:2.【点评】此题主要考查位似图形的性质,根据面积的比等于相似比的平方是解决问题的关键.18.点E是平行四边形ABCD边BC的中点,平行四边形ABCD的面积是m,则四边形ABEF的面积是m.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】设出△EFC的面积为a,根据△AFD∽△CFE和AD=2EC,求出△AFD的面积,根据DF=2FE,求出△DFC的面积,计算得到a=m,得到答案.【解答】解:设△EFC的面积为a,∵E是BC的中点,∴BC=2EC,则AD=2EC,∵AD∥BC,∴△AFD∽△CFE,∴△AFD的面积为4a,∵DF=2FE,∴△DFC的面积为2a,∴△ADC的面积为6a,则四边形ABEF的面积为5a,又∵平行四边形ABCD的面积是m,即12a=m,a=m,∴四边形ABEF的面积m.故答案为:m.【点评】本题考查的是面积的计算,掌握相似三角形的面积比等于相似比的平方是解题的关键,解答时,注意等高的两个三角形的面积比等于底的比.三、解答题(本大题共8小题,共66分,解答应写出文字说明、证明过程或验算步骤)19.计算:4cos45°+(﹣1)2015﹣+()﹣2.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用特殊角的三角函数值计算,第二项利用乘方的意义计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=4×﹣1﹣+36=2﹣+35.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,方格纸中的每个小正方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,O、M都在格点上.(1)画出△ABC关于直线OM对称的△A1B1C1;(2)画出将△ABC绕点O按顺时针方向旋转90°后得到的△A2B2C2(3)△A1B1C1与△A2B2C2组成的图形是轴对称图形码?如果是轴对称图形,请画出对称轴.【考点】作图-旋转变换;作图-轴对称变换.【专题】作图题.【分析】(1)根据网格结构找出点A、B、C关于直线OM的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C绕点O顺时针旋转90°后的对应点A2、B2、C2的位置,然后顺次连接即可;(3)根据轴对称的概念作出判断并画出对称轴.【解答】解:(1)△A1B1C1如图;(2)△A2B2C2如图;(3)是轴对称,如图直线l为对称轴.【点评】本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.21.已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.【考点】作图—复杂作图;全等三角形的判定.【专题】压轴题.【分析】(1)①以B为圆心,任意长为半径画弧,交AB、BC于F、N,再以F、N为圆心,大于FN长为半径画弧,两弧交于点M,过B、M画射线,交AC于D,线段BD就是∠B的平分线;②分别以A、B为圆心,大于AB长为半径画弧,两弧交于X、Y,过X、Y画直线与AB交于点E,点E就是AB的中点;(2)首先根据角平分线的性质可得∠ABD的度数,进而得到∠ABD=∠A,根据等角对等边可得AD=BD,再加上条件AE=BE,ED=ED,即可利用SSS证明△ADE≌△BDE.【解答】解:(1)作出∠B的平分线BD;作出AB的中点E.(2)证明:∵∠ABD=×60°=30°,∠A=30°,∴∠ABD=∠A,∴AD=BD,在△ADE和△BDE中∴△ADE≌△BDE(SSS).【点评】此题主要考查了复杂作图,以及全等三角形的判定,关键是掌握基本作图的方法和证明三角形全等的判定方法.22.小明对所在班级的“小书库”进行了分类统计,并制作了如下的统计图表:根据上述信息,完成下列问题:(1)图书总册数是100册,a=14册;(2)请将条形统计图补充完整;(3)数据22,20,18,a,12,14中的众数是14,极差是10;(4)小明从这些书中任意拿一册来阅读,求他恰好拿到数学或英语书的概率.【考点】条形统计图;众数;极差;概率公式.【专题】数形结合.【分析】(1)用其他类的册数除以频率即可求出总本数,再减去已知的本书即可求出a的值.(2)根据上题求出的结果将统计图补充完整即可.(3)根据众数与极差的概念直接解答即可.(4)根据概率的求法,用数学与英语书的总本数除以总本数即可解答.【解答】解:(1)总本数=14÷0.14=100本,a=100﹣22﹣20﹣18=12﹣14=14本.(2)如图:(3)数据22,20,18,a,12,14中a=14,所以众数是14,极差是22﹣12=10;(4)(20+18)÷100=0.38,即恰好拿到数学或英语书的概率为0.38.故答案为100,14,14,10.【点评】本题考查的是条形统计图和统计表的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个.(1)求第一次每个书包的进价是多少元?(2)若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,问最低可打几折?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设第一次每个书包的进价是x元,根据某商店第一次用300元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个可列方程求解.(2)设最低可以打x折,根据若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,可列出不等式求解.【解答】解:(1)设第一次每个书包的进价是x元,﹣20=x=50.经检验得出x=50是原方程的解,且符合题意,答:第一次书包的进价是50元.(2)设最低可以打y折.2400÷(50×1.2)=4080×20+80×0.1y•20﹣2400≥480y≥8故最低打8折.【点评】本题考查理解题意能力,第一问以数量做为等量关系列方程求解,第二问以利润做为不等量关系列不等式求解.24.已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y1>y2成立的自变量x的取值范围;(3)如果点C与点A关于x轴对称,求△ABC的面积.【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】(1)先根据点A的坐标求出反比例函数的解析式为y1=,再求出B的坐标是(﹣2,﹣2),利用待定系数法求一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围x<﹣2 或0<x<1.(3)根据坐标与线段的转换可得出:AC、BD的长,然后根据三角形的面积公式即可求出答案.【解答】解:(1)∵函数y1=的图象过点A(1,4),即4=,∴k=4,即y1=,又∵点B(m,﹣2)在y1=上,∴m=﹣2,∴B(﹣2,﹣2),又∵一次函数y2=ax+b过A、B两点,即,解之得.∴y2=2x+2.综上可得y1=,y2=2x+2.(2)要使y1>y2,即函数y1的图象总在函数y2的图象上方,如图所示:当x<﹣2 或0<x<1时y1>y2.(3)由图形及题意可得:AC=8,BD=3,∴△ABC的面积S△ABC=AC×BD=×8×3=12.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式.以及三角形面积的求法,这里体现了数形结合的思想.25.如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于F.(1)求证:∠DCP=∠DAP;(2)若AB=2,DP:PB=1:2,且PA⊥BF,求对角线BD的长.【考点】相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;菱形的性质.【专题】几何综合题;压轴题.【分析】(1)根据菱形的性质得CD=AD,∠CDP=∠ADP,证明△CDP≌△ADP即可;(2)由菱形的性质得CD∥BA,可证△CPD∽△FPB,利用相似比,结合已知DP:PB=1:2,CD=BA,可证A为BF的中点,又PA⊥BF,从而得出PB=PF,已证PA=CP,把问题转化到Rt△PAB中,由勾股定理,列方程求解.【解答】(1)证明:∵四边形ABCD为菱形,∴CD=AD,∠CDP=∠ADP,∴△CDP≌△ADP,∴∠DCP=∠DAP;(2)解:∵四边形ABCD为菱形,∴CD∥BA,CD=BA,∴∠CDP=∠FBP,∠BFP=∠DCP,∴△CPD∽△FPB,∴===,∴CD=BF,CP=PF,∴A为BF的中点,又∵PA⊥BF,∴PB=PF,由(1)可知,PA=CP,∴PA=PB,在Rt△PAB中,PB2=22+(PB)2,解得PB=,则PD=,∴BD=PB+PD=2.【点评】本题考查了全等三角形、相似三角形的判定与性质,菱形的性质及勾股定理的运用.关键是根据菱形的四边相等,对边平行及菱形的轴对称性解题.26.如图,半径为1的⊙M经过直角坐标系的原点O,且分别与x轴正半轴、y轴正半轴交于点A、B,∠OMA=60°,过点B的切线交x轴负半轴于点C,抛物线过点A、B、C.(1)求点A、B的坐标;(2)求抛物线的函数关系式;(3)若点D为抛物线对称轴上的一个动点,问是否存在这样的点D,使得△BCD是等腰三角形?若存在,求出符合条件的点D的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)由题意可直接得出点A、B的坐标为A(1,0),B(0,);(2)再根据BC是切线,可求出BC的长,即得出点C的坐标,由待定系数法求出抛物线的解析式;(3)先假设存在,看能否求出符合条件的点D即可.【解答】解:(1)∵MO=MA=1,∠OMA=60°,∴∠ABO=30°,∴OB=,∴A(1,0),B(0,);(2)∵BC是切线,∴∠ABC=90°,∴∠ACB=30°,∴AC=4,∴C(﹣3,0),设抛物线的解析式为y=ax2+bx+c,将点A、B、C代入得,,解得∴抛物线的解析式为y=﹣x2﹣x+;(3)设在对称轴上存在点D,使△BCD是等腰三角形,对称轴为直线x=﹣1,设点D(﹣1,m),分3种情况讨论:①BC=BD;=2,解得m=±+;②BC=CD;=2,解得m=±2;③BD=CD;=,解得:m=0,∴符合条件的点D的坐标为,(﹣1,+),(﹣1,﹣+),(﹣1,2),(﹣1,﹣2),(﹣1,0).【点评】本题是二次函数的综合题,其中涉及到的知识点有抛物线的公式的求法和等腰三角形判定等知识点,是各地中考的热点和难点,解题时注意数形结合等数学思想的运用,同学们要加强训练,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽省芜湖市2018年中考数学二模试卷一、选择题(每题4分)1.在﹣4,0,﹣1,3这四个数中,最小的数是()A.﹣4 B.2 C.﹣1 D.32.计算﹣a2•a3的结果是()A.a5B.﹣a5C.﹣a6D.a63.如图所示,该几何体的主视图是()A.B.C.D.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.5.与2×的值最接近的正数是()A.3 B.4 C.5 D.66.如图,这是某地2014年和2015年粮食作物产量的条形统计图,请你根据此图判断下列说法合理的是()A.2015年三类农作物的产量比2014年都有增加B.玉米产量和杂粮产量增长率相当C.2014年杂粮产量是玉米产量的约七分之一D.2014年和2015年的小麦产量基本持平7.某楼盘商品房成交价今年3月份为a元/m3,4月份比3月份减少了8%,若4月份到6月份平均增长率为12%,则6月份商品房成交价是()A.a(1﹣8%)(1+12%)元B.a(1﹣8%)(1+12%)2元C.(a﹣8%)(a+12%)元D.a(1﹣8%+12%)元8.如图,MN与BC在同一条直线上,且MN=BC=2,点B和点N重合,以MN为底作高为2的等腰△PMN,以BC为边作正方形ABCD,若设△PMN沿射线BC方向平移的距离为x,两图形重合部分的面积为y,则y关于x的函数大致图象是()A.B. C. D.9.如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△BDE等于()A.2:5 B.14:25 C.16:25 D.4:2110.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间函数关系式为y=﹣n2+14n﹣24,则该企业一年中应停产的月份是()A.1月、2月、3月B.2月、3月、4月C.1月、2月、12月D.1月、11月、12月二、填空题(每题5分)11.2016年安徽71所高职院校计划招生9.7万人,其中9.7万人用科学记数法表示为______.12.分解因式:ab2﹣a=______.13.如图,点P在⊙O外,PA、PB是⊙O的切线,A、B是切点,BC是直径,若∠APB=70°,则∠ACB的度数为______.14.如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为MN(点M、N分别在边AC、BC上),给出以下判断:①当MN∥AB时,CM=AM;②当四边形CMDN为矩形时,AC=BC;③当点D为AB的中点时,△CMN与△ABC相似;④当△CMN与△ABC相似时,点D为AB的中点.其中正确的是______(把所有正确的结论的序号都填在横线上).三、解答题(共9小题,满分90分)15.(8分)化简:.16.(8分)如图在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC、直线l和格点O.(1)画出△ABC关于直线l成轴对称的△A0B0C0;(2)画出将△A0B0C0向上平移1个单位得到的△A1B1C1;(3)以格点O为位似中心,将△A1B1C1作位似变换,将其放大到原来的两倍,得到△A2B2C2.17.(8分)(2016芜湖二模)某校组织了以“我为环保作贡献”为主题的电子小报制作比赛,评分结果只有60,70,80,90,100(单位:分)五种.现从中随机抽取了部分电子小报,对其成绩进行整理,制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全两幅统计图;(2)求所抽取小报成绩的中位数和众数;(3)已知该校收到参赛的电子小报共900份,请估计该校学生比赛成绩达到90分以上(含90分)的电子小报有多少份?18.(8分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C 的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)19.(10分)如图所示,直线y1=与x轴交于点A,与y轴交于点C,与反比例函数y2=(x>0)的图象交于点P,作PB⊥x轴于点B,且AC=BC.(1)求点P的坐标和反比例函数y2的解析式;(2)请直接写出y1>y2时,x的取值范围;(3)反比例函数y2图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D 的坐标;如果不存在,说明理由.20.(10分)如图所示,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE∥BD,交BC于点F,交AB于点E.(1)求证:∠E=∠C;(2)若⊙O的半径为3,AD=2,试求OE的长.21.(12分)(1)如图1所示,在正方形ABCD中,对角线AC与BD相交于点O,请填空:=(直接写出答案);(2)如图2所示,将(1)中的△BOC绕点B逆时针旋转得到△BO1C1,连接AO1,DC1,请你猜想线段AO1与DC1之间的数量关系,并证明之;(3)如图3所示,矩形ABCD和Rt△BEF有公共顶点B,且∠BEF=90°,∠EBF=∠ABD=30°,则的值是否为定值?若是定值,请求出该值;若不是定值,请简述理由.22.(12分)(2014潍坊)经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v 是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.23.(14分)如图所示,在平面直角坐标系中,抛物线y=﹣与x轴交于A、B 两点,与y轴交于C点,其中B(3,0),C(0,4),点A在x轴的负半轴上.(1)求抛物线的解析式和点A的坐标;(2)连接AC、BC,设点P是x轴正半轴上一个动点,过点P作PM∥BC交射线AC于点M,连接CP,请探究是否存在使S△CPM=2的P点?若存在,请求出P点的坐标;若不存在,请简述理由.一、选择题(每题4分)1.在﹣4,0,﹣1,3这四个数中,最小的数是()A.﹣4 B.2 C.﹣1 D.3【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣4<﹣1<0<3,在﹣4,0,﹣1,3这四个数中,最小的数是﹣4.故选:A.2.计算﹣a2•a3的结果是()A.a5B.﹣a5C.﹣a6D.a6【考点】同底数幂的乘法.【分析】根据同底数幂的乘法法则求解即可求得答案.【解答】解:﹣a2•a3=﹣a5故选:B.3.如图所示,该几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从几何体的左面看所得到的图形即可.【解答】解:从几何体的正面看所得到的视图是,故选:C.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先求出每个不等式的解集,再求出不等式组的解集,在数轴上表示不等式组的解集,即可得出选项.【解答】解:,∵解不等式①得:x≥1,解不等式②得:x<2,∴不等式组的解集为:1≤x<2,在数轴上表示不等式组的解集为:,故选D.5.与2×的值最接近的正数是()A.3 B.4 C.5 D.6【考点】二次根式的乘除法;估算无理数的大小.【分析】先利用二次根式的乘法法则得到2×=2,然后进行无理数的估算即可.【解答】解:2×=2=,∵16<24<25,∴4<<5,∴与2×的值最接近的正数为5.故选C.6.如图,这是某地2014年和2015年粮食作物产量的条形统计图,请你根据此图判断下列说法合理的是()A.2015年三类农作物的产量比2014年都有增加B.玉米产量和杂粮产量增长率相当C.2014年杂粮产量是玉米产量的约七分之一D.2014年和2015年的小麦产量基本持平【考点】条形统计图.【分析】根据条形的高低,来判断小麦、玉米、杂粮在不同年份的增长情况,分别对每一项进行分析,即可得出答案.【解答】解:A、根据统计图发现小麦有所下降,错误;B、玉米产量和杂粮产量增加的数量基本一样,但玉米的基数明显>杂粮的基数,所以两者增加的幅度不一样;C、2014年杂粮产量是玉米产量的约十分之一,错误;D、根据统计图的高低得出2014年和2015年的小麦产量基本持平,正确.故选:D.7.某楼盘商品房成交价今年3月份为a元/m3,4月份比3月份减少了8%,若4月份到6月份平均增长率为12%,则6月份商品房成交价是()A.a(1﹣8%)(1+12%)元B.a(1﹣8%)(1+12%)2元C.(a﹣8%)(a+12%)元D.a(1﹣8%+12%)元【考点】列代数式.【分析】根据某楼盘商品房成交价今年3月份为a元/m3,4月份比3月份减少了8%,可以求得4月份的成交价,再根据4月份到6月份平均增长率为12%,可以求得6月份商品房成交价,本题得以解决.【解答】解:由题意可得,6月份商品房成交价是:a×(1﹣8%)(1+12%)2元,故选B.8.如图,MN与BC在同一条直线上,且MN=BC=2,点B和点N重合,以MN为底作高为2的等腰△PMN,以BC为边作正方形ABCD,若设△PMN沿射线BC方向平移的距离为x,两图形重合部分的面积为y,则y关于x的函数大致图象是()A.B. C. D.【考点】动点问题的函数图象.【分析】分三种情况:①当0≤x<1时,由三角形的面积得出两图形y=x2;②当1≤x ≤3时,y=﹣x2+x;③当3<x≤4时,y=(4﹣x)2;即可得出函数的图象.【解答】解:分三种情况:①当0≤x<1时,两图形重合部分的面积y=×x×x=x2;②当1≤x≤3时,两图形重合部分的面积y=×2×﹣×(2﹣x)2=﹣x2+ x;③当3<x≤4时,两图形重合部分的面积y=×(4﹣x)2=(4﹣x)2;故选:B.9.如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△BDE等于()A.2:5 B.14:25 C.16:25 D.4:21【考点】翻折变换(折叠问题).【分析】在Rt△BEC中利用勾股定理计算出AB=10,根据折叠的性质得到AD=BD=5,EA=EB,设AE=x,则BE=x,EC=8﹣x,在Rt△BEC中根据勾股定理计算出x=,则EC=8﹣=,利用三角形面积公式计算出S△BCE=BC•CE=×6×=,在Rt△BED中利用勾股定理计算出ED==,利用三角形面积公式计算出S△BDE=BD•DE=×5×=,然后求出两面积的比.【解答】解:在Rt△BAC中,BC=6,AC=8,∴AB==10,∵把△ABC沿DE使A与B重合,∴AD=BD,EA=EB,∴BD=AB=5,设AE=x,则BE=x,EC=8﹣x,在Rt△BEC中,∵BE2=EC2+BC2,即x2=(8﹣x)2+62,∴x=,∴EC=8﹣x=8﹣=,∴S△BCE=BC•CE=×6×=,在Rt△BED中,∵BE2=ED2+BD2,∴ED==,∴S△BDE=BD•DE=×5×=,∴S△BCE:S△BDE=:=14:25.故选B.10.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间函数关系式为y=﹣n2+14n﹣24,则该企业一年中应停产的月份是()A.1月、2月、3月B.2月、3月、4月C.1月、2月、12月D.1月、11月、12月【考点】二次函数的应用.【分析】根据解析式,求出函数值y等于0时对应的月份,依据开口方向以及增减性,再求出y小于0时的月份即可解答.【解答】解:∵y=﹣n2+14n﹣24=﹣(n﹣2)(n﹣12),当y=0时,n=2或者n=12.又∵图象开口向下,∴1月,y<0;2月、12月,y=0.∴该企业一年中应停产的月份是1月、2月、12月.故选C.二、填空题(每题5分)11.2016年安徽71所高职院校计划招生9.7万人,其中9.7万人用科学记数法表示为9.7×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9.7万=97000=9.7×104,故答案为:9.7×104.12.分解因式:ab2﹣a=a(b+1)(b﹣1).【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(b2﹣1)=a(b+1)(b﹣1),故答案为:a(b+1)(b﹣1)13.如图,点P在⊙O外,PA、PB是⊙O的切线,A、B是切点,BC是直径,若∠APB=70°,则∠ACB的度数为55°.【考点】切线的性质;三角形的外角性质;等腰三角形的性质.【分析】连接OA,根据切线的性质得出∠PAO=∠PBO=90°,求出∠AOB=110°,根据三角形外角性质和等腰三角形性质求出即可.【解答】解:连接OA,∵PA、PB是⊙O的切线,A、B是切点,∴∠PAO=∠PBO=90°,∵∠APB=70°,∴∠AOB=360°﹣90°﹣90°﹣70°=110°,∴∠ACB+∠OAC=∠AOB=110°,∵OC=OA,∴∠ACB=∠OAC,∴∠ACB=55°故答案为:55°.14.如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为MN(点M、N分别在边AC、BC上),给出以下判断:①当MN∥AB时,CM=AM;②当四边形CMDN为矩形时,AC=BC;③当点D为AB的中点时,△CMN与△ABC相似;④当△CMN与△ABC相似时,点D为AB的中点.其中正确的是①③(把所有正确的结论的序号都填在横线上).【考点】相似形综合题.【分析】①根据平行线的性质得到∠CMN=∠CAB,∠NMD=∠MDA,根据翻折变换的性质得到∠CMN=∠DMN,CM=DM,根据等腰扇形的判定和等量代换证明即可;②根据矩形的性质得到CE=DE,折叠四边形CEDF是正方形,根据任意一个直角三角形都有一个内接正方形即可得到结论;③如图2,连接CD,与EF交于点Q,根据直角三角形的性质得到CD=DB=AB,于是得到∠DCB=∠B,由轴对称的性质得到∠CQF=∠DQF=90°,推出∠DCB+∠CFE=90°,由于∠B+∠A=90°,于是得到∠CFE=∠A,即可得到结论;④由相似三角形的性质得到∠EFD=∠CAB,∠EDF=∠ECF=90°,推出C,E,D,F四点共圆,根据圆周角定理得到∠ACD=∠EFD,等量代换得到∠ACD=∠A,根据等腰三角形的性质得到AD=CD,同理CD=BD,即可得到结论.【解答】解:①∵MN∥AB,∴∠CMN=∠CAB,∠NMD=∠MDA,由翻折变换的性质可知,∠CMN=∠DMN,CM=DM,∴∠CAB=∠MDA,∴AM=DM,∴CM=AM,故①正确;②根据折叠的性质得到CE=DE,矩形CEDF是正方形,又任意一个直角三角形都有一个内接正方形满足题意,故②错误;③当点D是AB的中点时,△CEF与△ABC相似,理由如下:如图2,连接CD,与EF交于点Q,∵CD是Rt△ABC的中线,∴CD=DB=AB,∴∠DCB=∠B,由轴对称的性质可知,∠CQF=∠DQF=90°,∴∠DCB+∠CFE=90°,∵∠B+∠A=90°,∴∠CFE=∠A,又∵∠C=∠C,∴△CEF∽△CBA;故③正确;④∵△CEF与△ABC相似,∴∠EFD=∠CAB,∠EDF=∠ECF=90°,∴C,E,D,F四点共圆,∴∠ACD=∠EFD,∴∠ACD=∠A,∴AD=CD,同理CD=BD,∴点D为AB的中点,当△ABC∽△EFC时,点D不是AB的中点,故④错误,故答案为:①③.三、解答题(共9小题,满分90分)15.(8分)(2016芜湖二模)化简:.【分析】先算除法,再算减法即可.【解答】解:原式=﹣=﹣==.【点评】本题考查的是分式的混合运算,分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.16.(8分)(2016芜湖二模)如图在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC、直线l和格点O.(1)画出△ABC关于直线l成轴对称的△A0B0C0;(2)画出将△A0B0C0向上平移1个单位得到的△A1B1C1;(3)以格点O为位似中心,将△A1B1C1作位似变换,将其放大到原来的两倍,得到△A2B2C2.【分析】(1)利用轴对称图形的性质分别得出对应点位置进而得出答案;(2)直接利用平移的性质进而得出对应点位置进而得出答案;(3)直接利用位似图形的性质得出对应点位置进而得出答案.【解答】解:(1)如图所示:△A0B0C0,即为所求;(2)如图所示:△A1B1C1,即为所求;(3)如图所示:△A2B2C2,即为所求.【点评】此题主要考查了位似变换以及轴对称变换以及平移变换,根据题意得出对应点位置是解题关键.17.(8分)(2016芜湖二模)某校组织了以“我为环保作贡献”为主题的电子小报制作比赛,评分结果只有60,70,80,90,100(单位:分)五种.现从中随机抽取了部分电子小报,对其成绩进行整理,制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全两幅统计图;(2)求所抽取小报成绩的中位数和众数;(3)已知该校收到参赛的电子小报共900份,请估计该校学生比赛成绩达到90分以上(含90分)的电子小报有多少份?【分析】(1)用得60分的小报的数量除以它占的百分比得到样本容量,再计算出80分的电子小报的份数和它所占的百分比,然后补全统计图;(2)根据中位数和众数的定义求解;(3)利用样本估计总体,用样本中90分以上(含90分)的电子小报所占的百分比乘以900即可.【解答】解:(1)样本容量为6÷5%=120,所以80分的电子小报的份数为120﹣6﹣24﹣36﹣12=42(份),80分的电子小报所占的百分比为×100%=35%;如图,(2)由题意可知:抽取小报共120份,其中得60分有6份,得70分有24份,得80分有42份,得90有36份,得100分有12份,所以所抽取小报成绩的中位数为80分,众数为80分;(3)该校学生比赛成绩达到90分以上(含90分)的电子小报占比为30%+10%=40%,所以该校学生比赛成绩达90分以上的电子小报约有:900×40%=360(份).【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了样本估计总体.18.(8分)(2014汕头)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A 处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)【分析】首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.【解答】解:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BCsin∠CBD=10×=5≈5×1.732=8.7(米).答:这棵树CD的高度为8.7米.【点评】本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.19.(10分)(2016芜湖二模)如图所示,直线y1=与x轴交于点A,与y轴交于点C,与反比例函数y2=(x>0)的图象交于点P,作PB⊥x轴于点B,且AC=BC.(1)求点P的坐标和反比例函数y2的解析式;(2)请直接写出y1>y2时,x的取值范围;(3)反比例函数y2图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.【分析】(1)首先求得直线与x轴和y轴的交点,根据AC=BC可得OA=OB,则B的坐标即可求得,BP=2OC,则P的坐标可求出,然后利用待定系数法即可求得函数的解析式;(2)求y1>y2时x的取值范围,就是求直线位于反比例函数图象上边时对应的x的范围;(3)连接DC与PB交于点E,若四边形BCPD是菱形时,CE=DE,则CD的长即可求得,从而求得D的坐标,判断D是否在反比例函数的图象上即可.【解答】解:(1)∵一次函数y1=x+1的图象与x轴交于点A,与y轴交于点C,∴A(﹣4,0),C(0,1),又∵AC=BC,CO⊥AB,∴O是AB的中点,即OA=OB=4,且BP=2OC=2,∴P的坐标是(4,2),将P(4,2)代入y2=得m=8,即反比例函数的解析式为y2=;(2)当x>4时,y1>y2;(3)假设存在这样的点D,使四边形BCPD为菱形,如图所示,连接DC与PB交于点E.∵四边形BCPD是菱形,∴CE=DE=4,∴CD=8,将x=8代入反比例函数解析式y=得y=1,∴D的坐标是(8,1),即反比例函数的图象上存在点D使四边形BCPD是菱形,此时D 的坐标是(8,1).【点评】本题考查了一次函数、反比函数以及菱形的判定与性质的综合应用,理解菱形的性质求得D的坐标是关键.20.(10分)(2016芜湖二模)如图所示,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE∥BD,交BC于点F,交AB于点E.(1)求证:∠E=∠C;(2)若⊙O的半径为3,AD=2,试求OE的长.【分析】(1)连接OB.先证明∠ABO、∠CBD均为直角,然后依据同角的余角相等证明∠ABD=∠CBO,接下来,结合等腰三角形的性质和平行线的性质进行证明即可;(2)连接OB,先求得AB的长,然后由平行线分线段成比例定理求得BE的长,最后再△BOE 中依据勾股定理可求得OE的长.【解答】解:(1)证明:如图1:连接OB.∵CD为圆O的直径,∴∠CBD=∠CBO+∠OBD=90°.∵AE是圆O的切线,∴∠ABO=∠ABD+∠OBD=90°.∴∠ABD=∠CBO.∵OB=OC,∴∠C=∠CBO.∴∠C=∠ABD.∵OE∥BD,∴∠E=∠ABD.∴∠E=∠C.(2)如图2所示:连接OB.∵圆O的半径为3,AD=2,∴OA=5,OB=3.∴AB==4.∵BD∥OE,∴,即.解得:BE=6.∵∠OBE=90°,∴OE==3.【点评】本题主要考查的是切线的性质、圆周角定理的应用、等腰三角形的性质、平行线的性质、平行线分线段成比例定理、勾股定理的应用,求得BE的长是解答本题的关键.21.(12分)(2016芜湖二模)(1)如图1所示,在正方形ABCD中,对角线AC与BD 相交于点O,请填空:=(直接写出答案);(2)如图2所示,将(1)中的△BOC绕点B逆时针旋转得到△BO1C1,连接AO1,DC1,请你猜想线段AO1与DC1之间的数量关系,并证明之;(3)如图3所示,矩形ABCD和Rt△BEF有公共顶点B,且∠BEF=90°,∠EBF=∠ABD=30°,则的值是否为定值?若是定值,请求出该值;若不是定值,请简述理由.【分析】(1)根据正方形的性质和等腰直角三角形的性质计算即可;(2)根据旋转变换的性质得到∠ABO=∠O1B,C1,根据正方形的性质得到=,证明△ABO1∽△DBC1,根据相似三角形的性质解答;(3)根据正弦的定义和矩形的性质证明△AEB∽△DFB,根据相似三角形的性质计算即可.【解答】解:(1)∵四边形ABCD是正方形,∴AD=DC,△AOD是等腰直角三角形,∴=,∴=,故答案为:;(2)∵△BOC绕点B逆时针旋转得到△BO1C1,∴∠ABO=∠O1B,C1,∴∠ABO1=∠DBC1,∵四边形ABCD是正方形,∴=,又==,∴=,又∠ABO1=∠DBC1,∴△ABO1∽△DBC1,∴==;(3)在Rt△EBF中,∠EBF=30°,∴=,在Rt△ABD中,∠ABD=30°,∴=,∴=,∵∠EBF=∠ABD,∴∠EBA=∠FBD,∴△AEB∽△DFB,∴==.【点评】本题考查的是正方形的性质、矩形的性质、旋转变换的性质,掌握正方形的四条边相等、四个角都是直角、相似三角形的判定定理和性质定理、旋转变换的性质是解题的关键.22.(12分)(2014潍坊)经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.【分析】(1)当20≤x≤220时,设车流速度v与车流密度x的函数关系式为v=kx+b,根据题意的数量关系建立方程组求出其解即可;(2)由(1)的解析式建立不等式组求出其解即可;(3)设车流量y与x之间的关系式为y=vx,当x<20和20≤x≤220时分别表示出函数关系由函数的性质就可以求出结论.【解答】解:(1)设车流速度v与车流密度x的函数关系式为v=kx+b,由题意,得,解得:,∴当20≤x≤220时,v=﹣x+88,当x=100时,v=﹣×100+88=48(千米/小时);(2)由题意,得,解得:70<x<120.∴应控制大桥上的车流密度在70<x<120范围内;(3)设车流量y与x之间的关系式为y=vx,当0≤x≤20时y=80x,∴k=80>0,∴y随x的增大而增大,∴x=20时,y最大=1600;当20≤x≤220时y=(﹣x+88)x=﹣(x﹣110)2+4840,∴当x=110时,y最大=4840.∵4840>1600,∴当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆.【点评】本题考查了车流量=车流速度×车流密度的运用,一次函数的解析式的运用,一元一次不等式组的运用,二次函数的性质的运用,解答时求出函数的解析式是关键.23.(14分)(2016芜湖二模)如图所示,在平面直角坐标系中,抛物线y=﹣与x轴交于A、B两点,与y轴交于C点,其中B(3,0),C(0,4),点A在x轴的负半轴上.(1)求抛物线的解析式和点A的坐标;(2)连接AC、BC,设点P是x轴正半轴上一个动点,过点P作PM∥BC交射线AC于点M,连接CP,请探究是否存在使S△CPM=2的P点?若存在,请求出P点的坐标;若不存在,请简述理由.【分析】(1)用待定系数法确定抛物线解析式;(2)先利用勾股定理求出AC,再判断出△AOC∽△AHP,表示出PH,再分点P在点B 左侧和右侧两种情况讨论.【解答】解:(1)∵抛物线y=﹣经过B(3,0).C(0,4),∴,∴,∴y=﹣x2+x+4,设y=0,∴﹣x2+x+4=0,∴x1=3,x2=﹣1,∵点A在x轴上,∴A(﹣1,0);(2)存在;如图∵在Rt△AOC中,OA=1,OC=4,∴AC=,过点P作PH⊥AC,∵P在x轴正半轴上,∴设P(t,0),∵A(﹣1,0),∴PA=t+1,∵∠AOC=∠PHA=90°,∠A=∠A,∴△AOC∽△AHP,∴=,∴,∴PH=,∵PM∥BC,,∵B(3,0),P(t,0),当点P在点B左侧时,BP=3﹣t,∴,∴CM=,∵S△PCM=2,∴,∴t=1,∴P(1,0),当点P在点B左侧时,BP=t﹣3,∴,∴CM=,∴,∴t=1±2,∵点P是x轴正半轴上的一个动点,∴P(1+2,0),∴P点坐标为(1,0),(1+2,0).【点评】此题是二次函数综合题,主要考查了用待定系数法求解析式,相似三角形的判定和性质,用点P(t,0)中的t表示出CM,PH是解本题的关键,分点P在点B左和右两种情况是本题的难点.。

相关文档
最新文档