(完整版)高中生物遗传规律知识点全汇总+方法综述
高中生物遗传与变异知识点汇总
高中生物遗传与变异知识点汇总高中生物遗传与变异知识点一、遗传的基本规律一、基本概念1.概念整理:杂交:基因型别同的生物体间相互交配的过程,普通用 x 表示自交:基因型相同的生物体间相互交配;植物体中指雌雄同花的植株自花受粉和雌雄异花的同株受粉,自交是获得纯系的有效办法。
普通用表示。
测交:算是让XXX子一代与隐性个体相交,用来测定F1的基因型。
性状:生物体的形态、结构和生理生化的总称。
相对性状:同种生物同一性状的别同表现类型。
显性性状:具有相对性状的亲本杂交,F1表现出来的这个亲本性状。
隐性性状:具有相对性状的亲本杂交,F1未表现出来的这个亲本性状。
性状分离:XXX的自交后代中,并且显现出显性性状和隐性性状的现象。
显性基因:操纵显性性状的基因,普通用大写英文字母表示,如D。
隐性基因:操纵隐性性状的基因,普通用小写英文字母表示,如d。
等位基因:在一对同源染XXX体的同一位置上,操纵相对性状的基因,普通用英文字母的大写和小写表示,如D、d。
非等位基因:位于同源染群体的别同位置上或非同源染群体上的基因。
表现型:是指生物个体所表现出来的性状。
基因型:是指操纵生物性状的基因组成。
纯合子:是由含有相同基因的配子结合成的合子发育而成的个体。
杂合子:是由含有别同基因的配子结合成的合子发育而成的个体。
2.例题:(1)推断:表现型相同,基因型一定相同。
( x )基因型相同,表现型一定相同。
(x )纯合子自交后代基本上纯合子。
(√)纯合子测交后代基本上纯合子。
( x )杂合子自交后代基本上杂合子。
( x )只要存在等位基因,一定是杂合子。
(√)等位基因必然位于同源染群体上,非等位基因必然位于非同源染群体上。
( x )(2)下列性状中属于相对性状的是( B )A.人的长发和白发 B.花生的厚壳和薄壳C.狗的长毛和卷毛 D.豌豆的红花和黄粒(3)下列属于等位基因的是( C )A. aa B. Bd C. Ff D. YY二、基因的分离定律1、一对相对性状的遗传实验2、基因分离定律的实质生物体在举行减数分裂形成配子的过程中,等位基因会随着同源染群体的分开而分离,分不进入到两种别同的配子中,独立地遗传给后代。
高中生物遗传学知识点归纳总结
高中生物遗传学知识点归纳总结遗传学是生物学的一个重要分支,研究生物个体间遗传信息的传递和变异规律。
在高中生物学习中,遗传学是一个重要的模块,掌握遗传学的基础知识对理解生物的生命现象和科学发展具有重要意义。
下面将对高中生物遗传学的知识点进行归纳总结。
1. 遗传物质的基本结构遗传物质指的是DNA,即脱氧核糖核酸。
DNA是由核苷酸组成的长链状分子,每个核苷酸由糖、磷酸和一种碱基组成。
碱基包括腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶。
DNA的双螺旋结构由两个互补的链组成,链上的碱基通过氢键相互配对(腺嘌呤和胸腺嘧啶之间有两个氢键,鸟嘌呤和胞嘧啶之间有三个氢键),形成DNA的空间结构。
DNA是生物遗传信息的载体,通过遗传物质的复制和转录翻译等过程,完成遗传信息的传递和表达。
2. 遗传规律(1)孟德尔遗传规律孟德尔是遗传学的奠基人,他通过对豌豆杂交的观察,总结出了遗传的基本规律。
这些规律包括:单因素遗传定律(即一个性状受一个基因控制)、分离规律(即经过自交或杂交后,基因在后代中按一定比例分离)、自由组合规律(即不同基因的互不干扰地组合遗传)。
(2)连锁不连锁和重组连锁是指两个或多个基因位点位于同一染色体上,通过连锁的遗传方式传递给后代。
连锁的存在会影响基因之间的自由组合,导致某些特定的基因组合频率高于预期。
然而,通过重组(染色体的交换)可以改变连锁基因之间的组合,增加基因重新组合的可能性。
(3)多基因遗传多基因遗传是指一个性状受多个基因控制的遗传方式。
在多基因遗传中,基因的组合和互作产生丰富的表型变异。
常见的多基因遗传的例子包括人类血型、皮肤颜色等。
3. 遗传的分子基础遗传的分子基础主要是DNA和RNA。
其中,DNA负责储存和传递遗传信息,RNA则负责将DNA上的遗传信息转录为蛋白质。
这个过程称为基因表达。
(1)转录转录是指RNA分子根据DNA模板合成RNA的过程。
在细胞核中,RNA聚合酶能够将DNA模板上的一段特定序列转录为对应的mRNA (信使RNA)。
生物学高考遗传规律梳理
生物学高考遗传规律梳理遗传规律是生物学中的重要内容,对于高中生来说,理解和掌握遗传规律对于应对高考具有重要意义。
本文将对生物学高考中的遗传规律进行梳理,帮助大家更好地理解和记忆。
一、遗传规律的的基本概念1.1 遗传与变异遗传是指生物体的性状传递给后代的现象,也就是亲代与子代之间性状上的相似性。
变异是指生物个体之间在性状上的差异。
遗传和变异是生物进化的基础。
1.2 基因与DNA基因是生物体内控制性状传递的基本单位,是DNA分子上具有遗传信息的特定核苷酸序列。
基因通过编码蛋白质来控制生物体的各种生命活动。
1.3 染色体与基因型染色体是生物体内基因的载体,由DNA和蛋白质组成。
人类的染色体分为常染色体和性染色体,常染色体对性别决定没有直接作用,性染色体则决定了生物体的性别。
基因型是指生物体基因的组合形式。
二、遗传规律的类型2.1 经典遗传规律经典遗传规律包括孟德尔遗传规律和染色体遗传规律。
孟德尔遗传规律包括分离规律和自由组合规律,适用于进行有性生殖的生物。
染色体遗传规律包括连锁与互换规律、倒置规律等,主要研究染色体结构变异和数量变异。
2.2 细胞遗传规律细胞遗传规律研究生物细胞在有丝分裂和减数分裂过程中的遗传现象。
主要包括有丝分裂遗传规律和减数分裂遗传规律。
2.3 分子遗传规律分子遗传规律研究遗传信息的传递和表达过程,主要涉及DNA复制、转录、翻译等过程。
三、高考遗传规律重点内容3.1 孟德尔遗传规律孟德尔遗传规律是高考遗传题的重点内容。
主要包括分离规律和自由组合规律。
分离规律指在杂合子的有性生殖过程中,亲本性状分离,子代按一定比例表现出显性性状和隐性性状。
自由组合规律指在杂合子的有性生殖过程中,不同基因对的组合是随机的,互不干扰。
3.2 连锁与互换规律连锁与互换规律是指在减数分裂过程中,位于同一条染色体上的基因往往一起传递给后代,但也有可能发生互换,导致基因重组。
3.3 基因表达与调控基因表达与调控是高考遗传题的另一个重点内容。
高考生物遗传规律与基础概念全面总结
高考生物遗传规律与基础概念全面总结在高考生物中,遗传规律和基础概念是重要的考点,理解并掌握它们对于取得好成绩至关重要。
接下来,让我们一起深入探讨这部分知识。
一、遗传的基本概念1、遗传物质细胞生物的遗传物质是 DNA,病毒的遗传物质是 DNA 或 RNA。
DNA 是由两条反向平行的脱氧核苷酸链组成的双螺旋结构,其基本组成单位是脱氧核苷酸。
2、基因基因是有遗传效应的 DNA 片段,它能够控制生物的性状。
基因在染色体上呈线性排列。
3、染色体染色体是由 DNA 和蛋白质组成的。
在细胞分裂过程中,染色体的形态和数目会发生变化。
4、等位基因位于同源染色体相同位置上,控制相对性状的基因叫做等位基因。
5、性状性状是生物体表现出来的形态、结构、生理和行为等特征。
分为显性性状和隐性性状。
6、相对性状同种生物同一性状的不同表现类型称为相对性状。
二、孟德尔遗传规律1、分离定律孟德尔通过豌豆杂交实验发现了分离定律。
该定律指出,在生物的体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。
比如,对于具有一对相对性状的亲本 P(高茎×矮茎),F1 代均为高茎,F1 自交产生 F2 代,F2 代中高茎∶矮茎= 3∶1。
2、自由组合定律孟德尔还发现了自由组合定律。
即控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合。
例如,具有两对相对性状的亲本(黄色圆粒×绿色皱粒)杂交,F1 代均为黄色圆粒,F1 自交产生 F2 代,F2 代中表现型的比例为9∶3∶3∶1。
三、遗传规律的细胞学基础减数分裂是进行有性生殖的生物在产生成熟生殖细胞时,进行的染色体数目减半的细胞分裂。
在减数分裂过程中,染色体只复制一次,而细胞连续分裂两次。
减数第一次分裂前期,同源染色体联会形成四分体,同源染色体的非姐妹染色单体之间可能会发生交叉互换。
高中生物遗传规律大全全解
高中生物遗传规律大全全解1. 孟德尔遗传规律(Mendel's Laws)孟德尔是遗传学的奠基人之一,他提出了三个遗传规律,分别是:- 第一规律:同种纯合子的杂交后代表现出优势性状,隐藏性状在F1代中不表现,但在F2代中以3:1的比例表现。
- 第二规律:两对不同性状的分离组合,可以自由地遗传给子代,不受其他性状的影响。
- 第三规律:同一性状的两对等位基因,在杂合子杂交后代中以1:2:1的比例分离。
2. 染色体遗传规律(Chromosome Theory of Inheritance)染色体遗传规律是指遗传物质存在于染色体上,遗传信息通过染色体的分离和重组进行遗传。
主要包括:- 随体遗传:部分基因位于染色体的非同源染色体上,遗传到子代的方式称为随体遗传。
- 性连锁遗传:性染色体上的基因遗传到子代,并且具有性别相关的特征表现。
3. 多基因遗传规律(Polygenic Inheritance)多基因遗传是指一个性状受到多个基因的共同影响,没有明显的显隐性关系。
主要特点包括:- 某个性状在种群中呈连续变化,呈现出正态分布曲线。
- 受影响的性状受到环境因素的影响较大。
4. 基因突变遗传规律(Genetic Mutation)基因突变是指基因序列发生突变或缺失,导致遗传信息发生改变。
主要包括以下几种:- 点突变:基因序列中的单个碱基发生改变,导致基因功能的改变。
- 缺失突变:基因序列中的一段或多段碱基缺失,导致基因信息的丧失。
- 插入突变:外来的DNA序列插入到基因序列中,导致基因功能的改变。
- 重组突变:基因序列的两部分发生重组,导致基因信息的改变。
5. 基因表达调控规律(Gene Expression Regulation)基因表达调控是指基因在转录和翻译过程中受到内外部环境的调控,从而决定基因功能的表达。
主要包括:- 转录水平调控:转录因子的结合和空间调节使得转录起始复合物的形成,进而控制基因的转录活性。
高中生物遗传的知识总结
高中生物遗传的知识总结生物遗传是生物学中的一门重要学科,主要研究物质的遗传变异和遗传规律。
生物遗传在高中生物学课程中占据重要地位,对于理解生物的基本原理和进化机制具有重要作用。
以下是关于高中生物遗传知识的总结。
一、基因的概念和发现:1. 基因是决定个体遗传特征的基本单位,是DNA分子的一部分。
2. 莫尔根通过斑点草蝇的实验发现了基因的存在和分布规律。
二、基因的组成和结构:1. 基因组成:基因由DNA分子组成,DNA是由核苷酸组成的,包括脱氧核糖、磷酸基团和嘌呤碱基和嘧啶碱基。
2. 基因的结构:基因由外显子和内含子组成,外显子决定了蛋白质的编码序列,内含子没有编码功能。
三、染色体的遗传:1. 染色体是细胞核中遗传物质的携带者,由DNA和蛋白质组成。
2. 生物的体细胞染色体通常是成对存在,一对染色体来自于父亲,一对来自于母亲。
3. 遗传物质的分离和重组是由于染色体的交换和分裂。
四、遗传的规律:1. 孟德尔的遗传定律:包括单因素和双因素的自交和亲代的交配。
2. 隐性和显性遗传:隐性遗传指的是在基因重组时该特征不表现出来,需要两个隐性基因才能呈现该特征。
3. 基因的连锁和自由组合:基因连锁是指基因位于同一条染色体上,自由组合是指基因位于不同染色体上。
五、基因突变:1. 基因突变是基因的变异现象,包括点突变、染色体结构的改变和数目的改变等。
2. 点突变包括错义突变、无义突变和无移突变。
六、基因的表达和调控:1. 转录和翻译:转录是指DNA的信息被转录成mRNA,翻译是指mRNA的信息被翻译成蛋白质。
2. 底物和激活剂对基因的调控:底物和激活剂可以通过结合到基因的启动子或诱导子上来调控基因的表达。
七、遗传的分子机制:1. DNA复制:DNA复制是指DNA分子通过酶的作用复制成两条完全相同的DNA分子。
2. 重组和基因转移:重组是指基因的重新组合,基因转移是指基因从一个个体到另一个个体的转移。
总而言之,高中生物遗传知识的学习和理解,不仅有助于对个体遗传特征和物种进化机制的理解,也对疾病的诊断和治疗方案的制定具有重要意义。
生物高三遗传知识点总结
生物高三遗传知识点总结高三生物遗传知识点总结生物遗传学是生物学中的重要分支,研究遗传信息在生物个体、群体和种群中的传递、变异和演化规律。
对于高三生物学生来说,掌握遗传学的基本知识是非常重要的。
本文将为大家总结高三生物遗传学的知识点,帮助大家更好地复习和理解。
一、遗传物质的基本组成遗传物质是生物基因组传递遗传信息的媒介,它包括DNA和RNA两种核酸。
DNA是双链结构,由核苷酸(脱氧核苷酸)组成,包括脱氧核糖、有机碱基和磷酸基团。
RNA是单链结构,由核苷酸(核苷酸)组成,包括核糖、有机碱基和磷酸基团。
二、遗传信息的传递1. DNA复制:DNA分子在细胞有丝分裂或减数分裂前复制,确保每个子细胞获得完整的遗传信息。
2. 转录:DNA的信息通过转录作用转移到RNA分子上,形成mRNA、tRNA和rRNA等不同种类的RNA。
3. 翻译:mRNA通过翻译作用转化为蛋白质,遗传信息由核酸语言转译为氨基酸序列,形成具有生物活性的蛋白质。
三、基因的结构和功能1. 基因的概念:基因是遗传信息的功能单位,是决定生物性状的最小遗传单位。
2. 基因的结构:基因由编码区和非编码区组成,编码区包括外显子(编码蛋白质序列)和内含子(非编码序列)。
3. 基因的功能:基因编码蛋白质,通过蛋白质的合成和调控实现生物的遗传与表型表达。
四、遗传规律1. 孟德尔遗传规律:孟德尔通过对豌豆杂交实验的观察,总结了遗传学的三大基本规律:单性分离定律、自由组合定律和分离组合定律。
2. 遗传交叉:遗传交叉是指两组不同的遗传性状同时表现在后代中的一种现象,遗传交叉发生在同一染色体上的互换。
3. 遗传突变:突变是遗传物质发生可遗传性的改变,包括基因突变和染色体突变。
五、遗传离散性状的分离比例1. 单因遗传离散性状:单基因控制的离散性状遵循7:1、3:1和1:2:1的分离比例。
2. 多基因遗传离散性状:多基因控制的离散性状服从连续变异分布,如人体身高、皮肤颜色等。
遗传高一生物知识点梳理
遗传高一生物知识点梳理遗传是生物学中一个重要的研究领域,也是高中生物课程的重要内容之一。
本文将对高一生物中的遗传知识点进行梳理和总结,以帮助同学们更好地掌握和理解相关知识。
一、基因与遗传物质1.基因的概念和性质基因是生物遗传信息的基本单位,它位于染色体上,并决定了生物的遗传特征。
一个基因对应一个特定的遗传特征。
2.核酸和遗传物质DNA和RNA是生物体内两种重要的核酸,它们携带和传递着生物的遗传信息。
DNA是双链结构,负责遗传信息的存储和复制;RNA是单链结构,负责遗传信息的转录和翻译。
二、遗传规律1.孟德尔的遗传规律孟德尔通过豌豆的实验,总结了遗传的基本规律,即一对基因控制一个性状,基因分离遗传,显性基因和隐性基因等。
2.血型遗传规律人类血型的遗传是受多个基因的共同作用。
其中,ABO血型是由IA、IB和i等基因决定的,遵循着特定的遗传规律。
三、基因突变和变异1.基因突变的概念基因突变是指基因序列发生的变化,包括点突变、插入突变和缺失突变等。
基因突变是遗传变异的重要原因。
2.基因突变的影响基因突变可能导致蛋白质结构和功能的改变,从而影响生物的性状和适应环境的能力。
一些基因突变还可能引起遗传病等疾病。
四、基因与性状的关系1.基因型和表现型基因型是指个体基因的组合,而表现型是指个体表现出来的性状。
基因型决定了表现型,但表现型受到环境因素的影响。
2.显性和隐性基因显性基因会表现在个体的表现型上,而隐性基因只有在纯合状态下才能表现出来。
显性基因和隐性基因通过孟德尔的分离定律进行遗传。
五、遗传变异与进化1.遗传变异的意义遗传变异是物种进化的基础,它通过基因的多样性使得个体在适应环境中具有更大的生存优势。
2.自然选择和适应自然选择是进化的驱动力,适应性强的个体会在竞争中获得更多的资源和生存机会,从而促进种群的进化。
六、遗传工程与应用1.遗传工程的概念遗传工程是指利用现代生物技术手段,对生物的遗传物质进行人为的改变和调控。
高三生物遗传的知识点总结
高三生物遗传的知识点总结高三生物遗传是生物学中的一门重要学科,它研究的是生物遗传规律和遗传变异现象。
在高三生物学课程中,遗传学也是一个难点,需要我们掌握许多关于遗传的知识点。
下面就让我们来总结一下高三生物遗传的一些重要知识点,帮助大家更好地复习和理解这一部分内容。
一、遗传物质的结构和特点1. DNA的结构:DNA是遗传物质的主要成分,由糖、磷酸和四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和鳥苷酸)组成。
DNA的基本结构是由两条互补的链通过碱基之间的氢键连接而成的双螺旋结构。
2. DNA的功能:DNA是储存和传递遗传信息的分子,它通过蛋白质的合成来实现遗传信息的表达。
3. RNA的结构和功能:RNA是DNA的合成过程中的中间产物,它有多种类型,包括mRNA、tRNA和rRNA等。
RNA的基本结构和DNA相似,但其单链上的胸腺嘧啶(T)被鳥苷酸(U)所取代。
二、遗传的基本规律1. 孟德尔定律:孟德尔是遗传学的奠基人,他通过豌豆实验发现了一些遗传规律。
孟德尔定律包括基因的分离定律、自由组合定律和同行交换定律。
2. 隐性和显性性状:在基因的表达中,有些基因是显性的,而另一些是隐性的。
显性基因会使其表现的性状在个体中显现出来,而隐性基因则需要两个隐性基因的组合才能显现出来。
3. 等位基因:在同一基因位点上,个体可以有不同的基因形式,这些不同的基因形式被称为等位基因。
三、遗传的分子机制1. DNA复制:在细胞分裂过程中,DNA需要复制以传递给下一代细胞。
DNA复制是指通过酶的作用使DNA的两条链分开,然后依据碱基配对的原则合成新的链。
2. 基因突变:基因突变是指DNA序列的突然改变,可能会引起遗传物质的一种或几种类型的改变。
基因突变是遗传变异的重要原因。
3. 染色体的结构和变异:染色体是细胞内最重要的遗传物质。
染色体的结构包括染色质、着丝粒和着丝粒之间的连桥等。
染色体变异是指染色体结构和数量的改变,包括染色体畸变、染色体数目变异等。
高一生物 遗传规律知识点归纳
高一生物遗传规律知识点归纳一、孟德尔的遗传规律1. 性状的分离定律:孟德尔通过对豌豆杂交实验的研究,发现了性状在后代中的分离现象。
他提出,当纯合的个体进行杂交时,后代在自我繁殖过程中,性状会重新表现出来并以统计性比例出现。
2. 隔离定律:孟德尔还发现,在自交世代中,性状可以隔离并以统计规律重新组合。
这意味着不同的性状在自交世代中是独立遗传的。
二、遗传的分子基础1. DNA的结构与功能:DNA是遗传信息的携带者,由碱基、糖分子和磷酸分子组成。
它在细胞中起着储存、复制和传递遗传信息的重要作用。
2. RNA的种类与功能:RNA是DNA的合成模板,并参与蛋白质的合成。
mRNA传递DNA中的遗传信息到核糖体,tRNA转运氨基酸到核糖体,rRNA与蛋白质结合形成核糖体。
三、染色体与遗传规律1. 染色体的结构和数目:人类体细胞中有46条染色体,其中包括22对非性染色体和一对性染色体。
性染色体决定个体的性别,非性染色体决定其他性状。
2. 随体染色体的遗传:随体染色体是指只存在于一种性别的染色体,其遗传并不符合孟德尔的分离定律。
其中,X染色体在人类中的遗传规律与常染色体有所不同。
四、基因突变和遗传病1. 突变的原因和类型:基因突变是遗传信息发生变异的结果,它可以由突变原因分为自然突变和诱变突变,根据变异类型可以分为点突变、缺失突变、插入突变等。
2. 遗传病的发生和防治:遗传病是由异常基因引起的疾病,它可以通过基因突变、遗传等方式传递给后代。
为了预防和治疗遗传病,科学家们正在研究基因治疗和遗传咨询等方法。
以上是高一生物遗传规律的知识点归纳,希望对你有帮助。
高考生物遗传规律知识点全汇总
高考生物遗传规律知识点全汇总遗传规律是高考生物中的重点和难点,掌握好这部分知识对于提高生物成绩至关重要。
下面我们就来对高考生物中遗传规律的相关知识点进行一个全面的汇总。
一、孟德尔遗传定律1、基因的分离定律孟德尔通过豌豆杂交实验发现了基因的分离定律。
该定律指出,在杂合子细胞中,位于一对同源染色体上的等位基因,具有一定的独立性;在减数分裂形成配子的过程中,等位基因会随同源染色体的分开而分离,分别进入两个配子中,独立地随配子遗传给后代。
例如,对于基因型为 Aa 的个体,在减数分裂时,A 和 a 会分离,形成含 A 和含 a 的两种配子,比例为 1:1。
2、基因的自由组合定律孟德尔在研究两对相对性状的杂交实验时,提出了基因的自由组合定律。
该定律指出,位于非同源染色体上的非等位基因的分离或组合是互不干扰的;在减数分裂过程中,同源染色体上的等位基因彼此分离的同时,非同源染色体上的非等位基因自由组合。
比如,基因型为 AaBb 的个体,在减数分裂产生配子时,A 和 a 分离,B 和 b 分离,同时 A 和 B 或 b、a 和 B 或 b 自由组合,最终形成AB、Ab、aB、ab 四种配子,比例为 1:1:1:1。
二、遗传规律的细胞学基础1、减数分裂减数分裂是遗传规律的细胞学基础。
在减数第一次分裂前期,同源染色体两两配对(联会),形成四分体。
此时,同源染色体的非姐妹染色单体之间可能会发生交叉互换,增加了配子的遗传多样性。
在减数第一次分裂后期,同源染色体分离,分别进入不同的子细胞;在减数第二次分裂后期,姐妹染色单体分离,分别进入不同的配子。
2、受精作用精子和卵细胞相互识别、融合成为受精卵的过程称为受精作用。
受精作用使受精卵中的染色体数目恢复到体细胞的数目,同时也使父方和母方的遗传物质得以融合,保证了物种遗传物质的稳定性和连续性。
三、遗传规律的应用1、农业生产在农业生产中,可以利用遗传规律培育优良品种。
例如,通过杂交育种,将不同品种的优良性状组合在一起,培育出具有多种优良性状的新品种。
高中生物遗传知识点总结书
高中生物遗传知识点总结书一、遗传的基本概念1. 遗传:生物体将其特征传递给后代的过程。
2. 变异:生物体在遗传过程中发生的性状差异。
3. 基因:遗传物质的基本单位,控制生物体的性状。
4. 染色体:由DNA和蛋白质组成的线状结构,基因的载体。
5. DNA:脱氧核糖核酸,生物遗传物质的主要成分。
6. RNA:核糖核酸,参与遗传信息的转录和翻译。
二、孟德尔遗传定律1. 分离定律(一对相对性状的分离定律):在有性生殖过程中,一个生物体的两个等位基因在形成配子时分离,每个配子只含有一个等位基因。
2. 组合定律(两对或多对相对性状的组合定律):不同性状的基因在形成配子时,各按分离定律独立分离,一个生物体的多个性状的遗传是相互独立的。
三、基因的遗传模式1. 显性遗传:具有一对相对性状的亲本,后代中至少有一个性状表现出来的遗传方式。
2. 隐性遗传:具有一对相对性状的亲本,后代中只有当两个隐性等位基因同时存在时,隐性性状才会表现出来的遗传方式。
3. 共显性遗传:两个等位基因在同一个体中都能表现出来的遗传方式。
四、性别与性别遗传1. 性别决定:大多数生物的性别由性染色体决定。
2. 性染色体:决定生物性别的染色体,如X和Y染色体。
3. 性别连锁遗传:基因位于性染色体上,其遗传与性别相关联的现象。
五、基因突变1. 基因突变的概念:基因序列发生改变的现象。
2. 突变类型:包括点突变、插入突变、缺失突变等。
3. 突变效应:基因突变可能导致生物体性状的改变。
六、基因重组1. 基因重组的概念:生物体在有性生殖过程中,亲本的基因发生新的组合。
2. 重组类型:包括自由组合、交叉互换等。
3. 重组的意义:增加遗传多样性,有利于生物体适应环境变化。
七、人类遗传病1. 遗传病的概念:由基因突变或染色体异常引起的疾病。
2. 遗传病的类型:包括单基因遗传病、多基因遗传病和染色体病。
3. 遗传病的预防和治疗:通过遗传咨询、基因治疗等手段进行预防和治疗。
高一生物遗传知识点总结
高一生物遗传知识点总结生物学是一门涉及生命起源、进化以及生物种类研究的学科,而遗传学则是生物学的一个重要分支。
遗传学研究了生物遗传信息的传递、变异和表达等现象。
在高一生物学学习中,我们接触到了许多关于遗传学的基础知识。
本文将对高一生物遗传知识进行总结,帮助我们更好地理解和记忆这些概念。
一、遗传的基本概念1. 遗传物质:DNA是生物体内遗传物质的主要组成部分,它携带着生物的遗传信息。
2. 基因:基因是决定个体性状的功能单位,它存在于DNA链上,通过遗传方式传递给后代。
3. 染色体:染色体是由DNA和蛋白质组成的细长物体,存在于细胞核中,对基因的组织和保护起重要作用。
二、遗传的基本规律1. 孟德尔遗传定律:a. 第一定律:同种纯合子的自交后代表现出相同的性状,称为纯合子性状。
b. 第二定律:基因分离定律,描述了同种基因的不同等位基因的随机分离规律。
c. 第三定律:独立遗传定律,指出不同基因对性状的遗传是相互独立的。
2. 遗传变异:a. 突变:指遗传物质发生的突然而不可逆转的变化,是遗传变异的重要原因。
b. 重组:染色体间的交换和重组现象,导致了基因的重新组合。
三、遗传的分子基础1. DNA的结构:DNA由磷酸、糖和碱基组成,形成双螺旋结构,碱基之间通过氢键相互连接。
2. DNA复制:DNA复制是指在细胞分裂过程中,DNA通过半保存性复制,产生两条完全相同的DNA分子。
3. 转录和翻译:基因的表达过程包括转录和翻译两个阶段,其中转录将DNA信息转录成RNA,翻译将RNA信息翻译成蛋白质。
四、遗传的规律与方法1. 适应与进化:适应是物种在环境变化中对环境的适应能力,而进化是物种从一个祖先物种演变成新物种的过程。
2. 遗传工程:遗传工程是通过改变生物遗传物质来研究和改良生物的方法,如转基因技术等。
3. 育种方法:人工选择和杂交育种是改良作物和畜种的常用方法。
五、生物的多样性和个体性状遗传1. 突变体与自然选择:突变体是指基因突变导致的个体性状发生明显变化的个体,自然选择则是环境选择对个体适应度的影响。
高考生物遗传定律知识点整理.doc
高考生物遗传定律知识点整理高考生物遗传定律知识点整理一、基本概念1.交配类:自交、杂交、测交、正交、反交、自花或异花传粉、闭花受粉杂交:指基因型不同的生物个体间的相互交配,一般用表示。
自交:指基因型相同的生物个体间的相互交配,一般用X表示。
自交是获得纯种系的有效方法,也是鉴别纯合子与杂合子的常用方法之一,尤其是植物。
自由交配:群体中的个体随机地进行交配,包含自交和杂交。
测交:让需要确定基因型的个体与隐性个体交配。
用于遗传规律理论假设的验证实验,也用于纯合子与杂合子的鉴定。
特别提醒:自交和测交都可用来鉴别一个个体是否是纯合子,自交较简便,测交较科学。
正交与反交:正交与反交是相对而言的,正交中的父本与母本恰好是反交中的母本和父本。
常用来检验某一性状的遗传是细胞核遗传还是细胞质遗传,是常染色体遗传还是伴X染色体遗传。
自花传粉:两性花的花粉,落到同一朵花的雌蕊柱头上的过程,交配方式为自交。
异花传粉:指不同花朵之间的传粉过程,分同株自花传粉(属自交)和异株异花传粉(属杂交)。
闭花受粉:某些植物在花未开时已经完成了受粉,这样的受粉方式为闭花受粉。
2.性状类:性状、相对性状、完全显性、不完全显性、共显性、显性性状、隐性性状、性状分离性状是生物体所表现的形态特征和生理特性。
如豌豆的一些性状:种子形状、子叶颜色、茎的高度、种皮的颜色(有些种皮颜色为子叶透过种皮的表现)。
相对性状是指同种生物的同一种性状的不同表现类型。
如豌豆的高茎与矮茎,狗的直毛与卷毛。
完全显性:指具有一对相对性状的两个纯合亲本杂交,F1的全部个体,都表现出显性性状,并且在表现程度上和显性亲本完全一样,如豌豆的高茎与矮茎。
不完全显性:指在生物性状的遗传中,F1的性状表现介于显性和隐性的亲本之间,如紫茉莉花色。
共显性:指在生物性状的遗传中,两个亲本的性状,同时在F1的个体上显现出来,而不是只单一的表现出中间性状,如马的毛色中混毛马、ABO血型中的AB型。
高二生物遗传法知识点总结
高二生物遗传法知识点总结遗传法是生物学中的重要部分,它研究了物种遗传特征的传递规律。
在高二生物学学习中,我们需要了解遗传法的基本原理和相关的知识点。
本文将对高二生物遗传法知识点进行总结。
一、孟德尔的遗传定律孟德尔是遗传学的奠基人,他通过豌豆杂交实验提出了三个遗传定律:1. 第一定律:纯合子个体自交后,其子代表现出一定的遗传特征。
2. 第二定律:杂合子个体自交后,子代中表现出一定比例的纯合子和杂合子。
3. 第三定律:性状的遗传是独立的,不同性状之间的遗传是相互独立的。
二、显性与隐性显性和隐性是遗传学中描述基因表达的两个概念。
1. 显性:指在基因型中表现出来的性状。
2. 隐性:指在基因型中不表现出来的性状。
三、基因型和表现型基因型和表现型描述了基因对性状的影响。
1. 基因型:由基因组成的个体的基因组合。
2. 表现型:基因在环境影响下表现出来的性状。
四、基因与等位基因基因是物种遗传特征的基本单位,而等位基因是同一基因位点上的不同形式。
1. 基因:对某一特定性状产生遗传影响的基本单位。
2. 等位基因:位于同一染色体上、控制相同性状的两个或多个基因。
五、基因型的分离和互补基因型的分离和互补是指通过杂交实验,研究不同基因型之间的表现型差异。
1. 基因型的分离:纯合子个体与杂合子个体的杂交后,子代中表现出不同基因型的分离现象。
2. 基因型的互补:两种不同的纯合子个体杂交后,子代中表现出与父代相同的表现型。
六、基因频率与遗传平衡基因频率和遗传平衡描述了基因在群体中的分布状况。
1. 基因频率:指基因在群体中的频率分布。
2. 遗传平衡:指基因频率在一代到下一代保持相对稳定的状态。
七、变异和突变变异和突变是遗传学中描述基因改变的现象。
1. 变异:指相同物种内,个体间存在的基因型和表现型的差异。
2. 突变:指基因发生的突发性改变,通常是由于DNA序列变化引起的。
八、遗传病与遗传咨询遗传病是由基因突变引起的疾病,遗传咨询是指对遗传病患者或携带基因疾病风险的人进行遗传咨询,了解遗传风险和预防措施。
2024年高考生物遗传和变异知识点总结
2024年高考生物遗传和变异知识点总结一、遗传和变异的基本概念1. 遗传:指生物个体所具有的一些性状和特征在后代中得以保留并传递的现象。
2. 变异:指生物个体在遗传过程中产生的性状和特征的差异。
3. 遗传物质:DNA,是生物遗传信息的携带者。
二、遗传的基本规律1. 孟德尔遗传规律:包括单因素遗传规律、自由组合规律和二基因遗传规律。
2. 补体遗传规律:交配时两个亲本的基因在一起配对形成一个染色体对,分离后形成四种不同的组合。
三、基因的结构和功能1. 基因:指导生物体形成和发育的遗传物质单位。
2. DNA的结构:由核苷酸组成,包括磷酸、五碳糖和氮碱基。
3. RNA的结构:类似DNA,但糖是核糖,碱基中没有胸腺嘧啶,而是尿嘧啶。
四、基因的表达1. DNA复制:DNA通过一系列酶的作用,进行复制,形成两条完全一致的新DNA分子。
2. 转录:DNA的一部分信息转移到RNA上。
3. 翻译:在细胞质中,mRNA通过核糖体的作用,在氨基酸的参与下,合成蛋白质。
五、基因突变1. 突变:指遗传物质中的基因发生改变。
2. 突变的类型:包括点突变、插入突变、缺失突变、倒位突变和重组等。
六、染色体的结构和变异1. 染色体的结构:包括着丝粒、着丝粒间隔、染色单体、腺带、间相等带和A-T富集区等。
2. 染色体的变异:包括染色体的缺失、重复、倒位、易位和多倍体等。
七、DNA的复制和修复1. DNA的复制:复制起始点是一个起始复制复合体,由DNA聚合酶和其他辅助酶组成。
在复制过程中,存在主链合成和链延伸等步骤。
2. DNA的修复:包括自我修复机制、错配修复机制、核酸切除修复机制和重组修复机制等。
八、生物的遗传变异1. 快速繁殖和遗传变异:快速繁殖的有利因素会加速遗传变异的积累。
2. 多样性与适应性:生物种群的遗传变异为适应新的生存环境提供了可能性。
九、遗传病的诊断和防治1. 遗传病的分类:包括单基因遗传病、多基因遗传病和染色体异常引起的遗传病等。
高中生物遗传的知识点总结
高中生物遗传的知识点总结遗传学是高中生物课程中的一个重要组成部分,它涉及生物体性状的传递和变异规律。
以下是高中生物遗传的知识点总结:1. 遗传的物质基础- DNA是主要的遗传物质,它的结构为双螺旋。
- 基因是DNA分子上的一段特定序列,负责编码生物体的特定性状。
- 染色体是DNA和相关蛋白质的复合体,存在于细胞的核中。
2. 孟德尔遗传定律- 孟德尔通过豌豆植物的杂交实验,提出了遗传的两个基本定律:分离定律和自由组合定律。
- 分离定律:在有性生殖过程中,一个性状的两个等位基因在形成配子时分离,每个配子只含有一个等位基因。
- 自由组合定律:不同性状的基因在形成配子时,它们的分离和组合是相互独立的。
3. 遗传的模式- 显性和隐性:显性基因在杂合子中能够表现出来,而隐性基因则不能。
- 等位基因:控制同一性状的不同形式的基因。
- 纯合子和杂合子:纯合子指两个等位基因相同的个体,杂合子则是指两个等位基因不同的个体。
4. 性别遗传- 性染色体:决定性别的染色体,人类中女性为XX,男性为XY。
- 性别连锁遗传:某些基因位于性染色体上,因此其遗传与性别相关联。
5. 遗传变异- 基因突变:基因序列发生改变,可能导致新的性状出现。
- 基因重组:在有性生殖过程中,父母的基因重新组合,产生新的基因型。
6. 人类遗传病- 单基因遗传病:由单个基因突变引起的遗传病,如遗传性肌营养不良。
- 多基因遗传病:由多个基因及环境因素共同作用引起的遗传病,如高血压、糖尿病。
- 染色体异常遗传病:由染色体数目或结构异常引起的遗传病,如唐氏综合症。
7. 遗传学的应用- 基因治疗:通过改变或替换异常基因来治疗遗传病。
- 遗传工程:通过人工手段改变生物体的遗传特性,如转基因技术。
8. 遗传咨询- 遗传咨询旨在帮助个体和家庭了解遗传病的风险,并提供相关的预防和治疗建议。
9. 遗传学实验技术- PCR技术:用于快速复制特定DNA片段的技术。
- DNA测序:确定DNA分子中精确的核苷酸序列。
高考生物遗传规律与基础概念全面总结
高考生物遗传规律与基础概念全面总结高考生物中,遗传规律和基础概念是重要的考点,理解并掌握这些内容对于取得优异成绩至关重要。
下面让我们来对高考生物中的遗传规律和基础概念进行一次全面的总结。
首先,我们来了解一下遗传物质的基础。
DNA 是主要的遗传物质,它具有双螺旋结构,由脱氧核苷酸组成。
脱氧核苷酸又包含脱氧核糖、磷酸和含氮碱基(A、T、G、C)。
基因是有遗传效应的 DNA 片段,它通过控制蛋白质的合成来控制生物的性状。
遗传信息的传递过程包括 DNA 的复制、转录和翻译。
DNA 复制是在细胞分裂间期进行的,保证了亲子代细胞遗传物质的一致性。
在这个过程中,DNA 分子独特的双螺旋结构为复制提供了精确的模板,碱基互补配对原则保证了复制能够准确无误地进行。
转录是指以 DNA 的一条链为模板,合成 RNA 的过程。
RNA 有三种类型:信使 RNA(mRNA)、转运 RNA(tRNA)和核糖体 RNA (rRNA)。
其中,mRNA 携带遗传信息,从细胞核进入细胞质,与核糖体结合,指导蛋白质的合成。
翻译则是在核糖体上进行的,以 mRNA 为模板,tRNA 搬运氨基酸,按照碱基互补配对原则,将氨基酸连接成多肽链,最终形成具有一定空间结构和功能的蛋白质。
接下来,我们重点探讨遗传规律。
孟德尔的分离定律和自由组合定律是遗传学的基石。
分离定律指的是在杂合子细胞中,位于一对同源染色体上的等位基因,具有一定的独立性;在减数分裂形成配子的过程中,等位基因会随同源染色体的分开而分离,分别进入两个配子中,独立地随配子遗传给后代。
例如,对于豌豆的高茎和矮茎这一对相对性状,假设高茎由基因 D控制,矮茎由基因 d 控制。
当基因型为 Dd 的个体进行减数分裂时,会产生 D 和 d 两种配子,比例为 1:1。
自由组合定律则是指当具有两对(或更多对)相对性状的亲本进行杂交,在子一代产生配子时,在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合。
遗传的规律与遗传的变异知识点总结
遗传的规律与遗传的变异知识点总结遗传是生物学中的一个重要概念,它涉及到个体内基因的传递和表现。
遗传规律研究了基因在传代中的变化和规律,而遗传的变异则涉及了个体之间基因差异的产生。
本文将探讨遗传的规律和变异的知识点,并总结相关内容。
一、遗传的规律1. 孟德尔的遗传规律孟德尔是遗传学的奠基人之一,通过对豌豆杂交实验的观察,总结出了三大遗传规律:- 第一法则:分离规律(孟德尔定律)该法则认为,个体的两个形态特征只能表现一种,不会相互影响。
即父代的各个特征独立地以基因的方式传递给子代。
- 第二法则:自由组合规律(孟德尔定律)该法则认为,个体的染色体以及染色体上所携带的基因,在生殖细胞的形成过程中是自由组合的,相互独立的。
- 第三法则:优势规律(孟德尔定律)该法则认为,具有自交性状的个体在杂交中,以自交性状为表现的基因通常在显性位点上。
2. 非孟德尔的遗传规律除了孟德尔的遗传规律外,还存在一些非孟德尔的遗传规律,如:- 全性连锁不平衡规律:指同一染色体上的基因互相连锁,导致正常的基因组合几乎不可能产生。
- 隐性致死规律:指某些基因在显性位点上表现为致死效应,导致表现为显性特征的个体在自然界中极为罕见。
- 不完全显性规律:指在杂交中,显性与隐性基因的相对表现无法完全支配的现象。
二、遗传的变异1. 突变突变是遗传变异的一种常见形式,它是指基因或染色体上的遗传物质发生不带有目的的变化。
突变可以分为点突变和染色体突变两类。
- 点突变指的是单个碱基发生改变,如单核苷酸多态性(SNP)。
- 染色体突变是指整个染色体或染色体片段的结构发生异常,如染色体缺失、重复、倒位和易位等。
2. 重组重组是指在染色体互换发生的过程中,基因座之间的连锁关系发生改变,从而产生新的基因组合。
重组导致了基因的重新组合,为物种的进化提供了遗传变异的来源。
3. 跨染跨染是指不同物种或不同个体之间的基因交流和引入,导致基因组之间发生差异。
跨染可以通过杂交、转基因技术等方式实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中生物遗传规律知识点全汇总+方法综述
1
基因的分离定律
相对性状:同种生物同一性状的不同表现类型,叫做相对性状。
显性性状:在遗传学上,把杂种F1中显现出来的那个亲本性状叫做显性性状。
隐性性状:在遗传学上,把杂种F1中未显现出来的那个亲本性状叫做隐性性状。
性状分离:在杂种后代中同时显现显性性状和隐性性状(如高茎和矮茎)的现象,叫做性状分离。
显性基因:控制显性性状的基因,叫做显性基因。
一般用大写字母表示,豌豆高茎基因用D表示。
隐性基因:控制隐性性状的基因,叫做隐性基因。
一般用小写字母表示,豌豆矮茎基因用d表示。
等位基因:在一对同源染色体的同一位置上的,控制着相对性状的基因,叫做等位基因。
(一对同源染色体同一位置上,控制着相对性状的基因,如高茎和矮茎。
显性作用:等位基因D和d,由于D和d有显性作用,所以F1(Dd)的豌豆是高茎。
等位基因分离:D与d一对等位基因随着同源染色体的分离而分离,最终产生两种雄配子。
D∶d=1∶1;两种雌配子D∶d=1∶1。
)
非等位基因:存在于非同源染色体上或同源染色体不同位置上的控制不同性状的不同基因。
表现型:是指生物个体所表现出来的性状。
基因型:是指与表现型有关系的基因组成。
纯合体:由含有相同基因的配子结合成的合子发育而成的个体。
可稳定遗传。
杂合体:由含有不同基因的配子结合成的合子发育而成的个体。
不能稳定遗传,后代会发生性状分离。
2
基因的自由组合定律
基因的自由组合规律:在F1产生配子时,在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合,这一规律就叫基因的自由组合规律。
对自由组合现象解释的验证:F1(YyRr)X隐性(yyrr)→(1YR、1Yr、1yR、1yr)Xyr→F2:1YyRr:1Yyrr:1yyRr:1yyrr。
基因自由组合定律在实践中的应用:基因重组使后代出现了新的基因型而产生变异,是生物变异的一个重要来源;通过基因间的重新组合,产生人们需要的具有两个或多个亲本优良性状的新品种。
孟德尔获得成功的原因:
①正确地选择了实验材料。
②在分析生物性状时,采用了先从一对相对性状入手再循序渐进的方法(由单一因素到多因素的研究方法)。
③在实验中注意对不同世代的不同性状进行记载和分析,并运用了统计学的方法处理实验结果。
④科学设计了试验程序。
基因的分离规律和基因的自由组合规律的比较:
①相对性状数:基因的分离规律是1对,基因的自由组合规律是2对或多对;
②等位基因数:基因的分离规律是1对,基因的自由组合规律是2对或多对;
③等位基因与染色体的关系:基因的分离规律位于一对同源染色体上,基因的自由组合规律位于不同对的同源染色体上;
④细胞学基础:基因的分离规律是在减I分裂后期同源染色体分离,基因的自由组合规律是在减I分裂后期同源染色体分离的同时,非同源染色体自由组合;
⑤实质:基因的分离规律是等位基因随同源染色体的分开而分离,基因的自由组合规律是在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合。
1
仔细审题
明确题中已知的和隐含的条件,不同的条件、现象适用不同规律。
(1)基因的分离规律
①只涉及一对相对性状;
②杂合体自交后代的性状分离比为3∶1;
③测交后代性状分离比为1∶1。
(2)基因的自由组合规律
①有两对(及以上)相对性状(两对等位基因在两对同源染色体上);
②两对相对性状的杂合体自交后代的性状分离比为9∶3∶3∶1 ;
③两对相对性状的测交后代性状分离比为1∶1∶1∶1。
(3)伴性遗传
①已知基因在性染色体上;
②♀♂性状表现有别、传递有别;
③记住一些常见的伴性遗传实例:红绿色盲、血友病、果蝇眼色、钟摆型眼球震颤(X-显)、佝偻病(X-显)等。
2
掌握基本方法
(1)最基础的遗传图解必须掌握一对等位基因的两个个体杂交的遗传图解(包括亲代、产生配子、子代基因型、表现型、比例各项)
例:番茄的红果—R,黄果—r,其可能的杂交方式共有以下六种,写遗传图解:P ①RR ×RR ②RR ×Rr ③RR ×rr ④Rr ×Rr ⑤Rr ×rr ⑥rr ×rr
注意:生物体细胞中染色体和基因都成对存在,配子中染色体和基因成单存在;一个事实必须记住:控制生物每一性状的成对基因都来自亲本,即一个来自父方,一个来自母方。
(2)关于配子种类及计算
①一对纯合(或多对全部基因均纯合)的基因的个体只产生一种类型的配子
②一对杂合基因的个体产生两种配子(Dd D、d)且产生二者的几率相等。
③n对杂合基因产生2n种配子,配合分枝法即可写出这2n种配子的基因。
例:AaBBCc产生2*2=4种配子:ABC、ABc、aBC、aBc
(3)计算子代基因型种类、数目后代基因类型数目等于亲代各对基因分别独立形成子代基因类型数目的乘积。
3
基因的分离规律(具体题目解法类型)
(1)正推类型:已知亲代求子代
只要能正确写出遗传图解即可解决,熟练后可口答。
(2)逆推类型:已知子代求亲代
①判断出显隐关系;
②隐性表现型的个体其基因型必为隐性纯合型(如aa),而显性表现型的基因型中有一个基因是显性基因,另一个不确定(待定,写成填空式如A ?);
③根据后代表现型的分离比推出亲本中的待定基因;
④把结果代入原题中进行正推验证。
4
基因的自由组合规律
总原则是基因的自由组合规律是建立在基因的分离规律上的,所以应采取“化繁为简、集简为繁”的方法,即:分别计算每对性状(基因),再把结果相乘。
(1)正推类型
要注意写清♀♂配子类型(等位基因要分离、非等位基因自由组合),配子“组合”成子代时不能♀♀相连或♂♂相连。
(2)逆推类型
①先找亲本中表现的隐性性状的个体,即可写出其纯合的隐性基因型
②把亲本基因写成填空式,如A?B?×aaB?
③从隐性纯合体入手,先做此对基因,再根据分离比分析另一对基因
④验证:把结果代入原题中进行正推验证。
若无以上两个已知条件,就据子代每对相对性状及其分离比分别推知亲代基因型
5
伴性遗传
(1)常染色体遗传:
男女得病(或表现某性状)的几率相等。
(2)伴性遗传:
男女得病(或表现某性状)的几率不等(男女平等);女性不患病——可能是伴Y遗传(男子王国);非上述——可能是伴X遗传;
(3)X染色体显性遗传:
女患者较多(重女轻男);代代连续发病;父病则传给女儿。
(4)X染色体隐性遗传:
男患者较多(重男轻女);隔代遗传;母病则子必病。