《高等数学》实践教学大纲

合集下载

《高等数学》教学大纲(建学类)

《高等数学》教学大纲(建学类)

《高等数学》教学大纲(建学类)(建筑学类56学时)英文名称:HigherMathematic适用专业:建筑学各专业总学时:56学分:3.5一、课程的性质、目的和任务高等数学是工科专业重要的基础课程,它的主要内容为一元微积分。

它的教学目的和要求是:1.使学生掌握高等数学中最基本的知识和必要的基础理论,并能比较熟练地掌握基本的运算技能和技巧,为学生学习后续专业课程提供必要的数学工具。

2.通过学习,使学生具有一定的抽象思维能力、逻辑推理能力、运算演算能力、几何直观与创新思维能力;并具备初步的分析和解决一些实际或与专业相关数学问题的能力。

二、课程教学的基本要求(一)函数1、理解函数概念。

2、掌握函数的有界性、单调性、周期性和奇偶性等基本性质3、了解反函数、复合函数的概念。

4、熟练掌握基本初等函数的定义域、图形及简单性质。

5、能将简单实际问题(包括经济学)中的函数关系表达出来。

(二)极限与连续1、理解极限的定义及其所蕴含的数学思想方法。

2、了解无穷小和无穷大的概念及其关系,掌握常见等价无穷小及其在求极限中的应用。

3、正确应用极限的四则运算法则。

4、熟练掌握两个重要极限,了解两个极限存在准则并会进行简单的应用。

5、掌握函数在一点连续和间断的概念及判定。

6、知道初等函数的连续性。

7、了解闭区间上连续函数的性质(介值定理和最值定理)及应用。

(三)导数与微分1、理解导数的概念及导数的几何意义和物理意义,了解左右导数的概念。

2、熟练掌握导数计算的四则运算法则及基本求导公式,熟练掌握复合函数的求导法则。

3、会求简单的隐函数的导数,会求参数方程所确定的函数的导数。

4、会计算常见简单函数的高阶导数。

5、理解函数微分的概念及其几何意义,了解微分在近似计算中的应用。

6、了解导数和微分在经济学中的应用。

(四)中值定理与导数的应用1、理解并掌握罗尔定理和拉格朗日定理及其应用,知道柯西定理、泰勒公式。

2、会利用罗必塔法则求未定型的极限。

高等数学一教学大纲

高等数学一教学大纲

高等数学一教学大纲一、课程简介高等数学一是理工科专业的一门核心数学课程。

本课程旨在为学生提供基础的数学理论和方法,培养学生的数学思维能力和解决实际问题的能力。

通过学习本课程,学生将掌握微积分、方程与不等式、数列与级数等基础知识,为进一步学习高等数学二打下坚实的基础。

二、课程目标1. 培养学生的抽象思维和逻辑推理能力,使其具备解决数学问题的能力;2. 培养学生的数学模型建立和运用能力,使其能够将数学知识应用于实际问题的解决;3. 培养学生的数学推理和证明能力,使其具备严密的数学思维和分析问题的能力;4. 培养学生的团队合作和沟通能力,使其能够与他人合作解决复杂的数学问题。

三、教学内容和大纲1. 微积分1.1 函数与极限1.2 连续与间断1.3 导数与微分1.4 微分中值定理1.5 不定积分1.6 定积分与积分中值定理2. 方程与不等式2.1 一元二次方程与不等式2.2 二元一次方程组2.3 二次三项式与高次方程3. 数列与级数3.1 数列的概念与性质3.2 通项公式与递推公式3.3 等差数列与等比数列3.4 级数的概念与性质3.5 收敛与发散的判定四、教学方法1. 讲授法:通过系统的理论讲解,向学生介绍各个知识点的概念、性质和定理,并讲解基本的解题思路和方法;2. 例题分析法:通过分析典型的例题,引导学生掌握解题方法和技巧,培养学生独立解题的能力;3. 练习巩固法:通过大量的练习题,让学生在实践中掌握所学知识,提高解题能力和应用能力;4. 讨论互动法:组织学生进行小组讨论和互动,促进学生彼此之间的交流与思考,加深对知识的理解和掌握。

五、考核方式1. 课堂表现:包括课堂积极参与、提问与回答等;2. 作业完成情况:完成课后作业的质量和准时程度;3. 平时测试:包括小测验、月考等;4. 期末考试:综合考核学生对课程学习内容的掌握程度。

六、教材推荐1. 《高等数学》(上册),同济大学出版社2. 《高等数学解题方法与技巧》,清华大学出版社七、学习建议1. 注重理论与实践相结合,理解知识点的同时进行大量的练习;2. 主动参与课堂,积极提问和回答问题,提高对知识点的理解深入程度;3. 组织学习小组,相互合作、讨论,互相帮助提高解题能力;4. 善于总结知识,建立起知识体系,做好复习和巩固工作;5. 利用教师提供的教学资源,积极参与相关的学术讲座和研讨会。

(完整版)《高等数学》课程教学大纲

(完整版)《高等数学》课程教学大纲

《高等数学》课程教学大纲授课专业:通信工程专业学时:136学时学分:8学分开课学期:第1、第2学期适用对象:通信工程专业学生一、课程性质与任务本课程是理、工类专业的专业基础课,通过本课程的学习,要使学生掌握微积分学的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。

要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。

二、课程教学的基本要求通过本课程的学习,学生基本了解微积分学的基础理论;充分理解微积分学的背景思想及数学思想。

掌握微积分学的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。

能较熟练地应用微积分学的思想方法解决应用问题。

三、课程教学内容高等数学(上)第一章函数、极限与连续(10学时)第二章导数和微分(12学时)第三章微分中值定理与导数的应用(12学时)第四章函数的积分(16学时)第五章定积分的应用(8学时)第六章无穷级数(10学时)高等数学(下)第七章向量与空间解析几何(6学时)第八章多元函数微分学(14学时)第九章多元函数微分学的应用(10学时)第十章多元函数积分学(I)(16学时)第十一章多元函数积分学(II)(10学时)第十二章常微分方程(12学时)四、教学重点、难点重点:极限的概念与性质;函数连续性的概念与性质;闭区间上连续函数的性质;微分中值定理与应用;用导数研究函数的性质;不定积分、定积分的计算;微积分学基本定理;正项级数敛散性的判定;幂级数的收敛定理;二元函数全微分的概念及性质;计算多元复合函数的偏导数与微分;隐函数定理及应用;重积分、曲线积分与曲面积分的计算;曲线积分与路径的无关性。

难点:极限的概念与理论;微分中值定理的应用;一元函数的泰勒定理;二元函数的极限;计算多元复合函数的偏导数与微分;对坐标的曲面积分的概念及计算;高斯公式;斯托克斯公式。

(完整版)《高等数学》课程教学大纲

(完整版)《高等数学》课程教学大纲

《高等数学》课程教学大纲授课专业:通信工程专业学时:136学时学分:8学分开课学期:第1、第2学期适用对象:通信工程专业学生一、课程性质与任务本课程是理、工类专业的专业基础课,通过本课程的学习,要使学生掌握微积分学的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。

要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。

二、课程教学的基本要求通过本课程的学习,学生基本了解微积分学的基础理论;充分理解微积分学的背景思想及数学思想。

掌握微积分学的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。

能较熟练地应用微积分学的思想方法解决应用问题。

三、课程教学内容高等数学(上)第一章函数、极限与连续(10学时)第二章导数和微分(12学时)第三章微分中值定理与导数的应用(12学时)第四章函数的积分(16学时)第五章定积分的应用(8学时)第六章无穷级数(10学时)高等数学(下)第七章向量与空间解析几何(6学时)第八章多元函数微分学(14学时)第九章多元函数微分学的应用(10学时)第十章多元函数积分学(I)(16学时)第十一章多元函数积分学(II)(10学时)第十二章常微分方程(12学时)四、教学重点、难点重点:极限的概念与性质;函数连续性的概念与性质;闭区间上连续函数的性质;微分中值定理与应用;用导数研究函数的性质;不定积分、定积分的计算;微积分学基本定理;正项级数敛散性的判定;幂级数的收敛定理;二元函数全微分的概念及性质;计算多元复合函数的偏导数与微分;隐函数定理及应用;重积分、曲线积分与曲面积分的计算;曲线积分与路径的无关性。

难点:极限的概念与理论;微分中值定理的应用;一元函数的泰勒定理;二元函数的极限;计算多元复合函数的偏导数与微分;对坐标的曲面积分的概念及计算;高斯公式;斯托克斯公式。

高等数学B1(一) 教学大纲

高等数学B1(一)   教学大纲

高等数学B1(一)一、课程说明课程编号:130705X10课程名称(中/英文):高等数学B1(一)/Advanced Mathematics B1(Ⅰ)课程类别:必修学时/学分:64/4先修课程:无适用专业:商学类各专业教材、教学参考书:基本教材:《高等数学》((上、下册),主编,2014.9,中南大学出版社主要参考书:《大学数学系列课程学习辅导与同步练习册》(高等数学上),2015.9,中南大学出版社二、课程设置的目的意义高等数学B是高等院校商科类各专业学生必修的重要基础理论课,是一门应用广泛的工具学科,是学生提高文化素质和学习有关专业知识的重要基础.通过本课程的学习,要使学生获得:1、函数、极限与连续;2、一元函数微积分学;3、向量代数与空间解析几何;4、多元函数微积分学;5、无穷级数;6、常微分方程等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获取数学知识奠定必要的数学基础.高等数学B的教学分为三部分,分别是高等数学B1(一)(必修)、高等数学B1(二)(必修)和高等数学B2(选修).开设时间是大学第一学年,分两学期授课,总学时为64+48+32,学分为4+3+2.第一学期高等数学B1(一),每周5学时(约13周);第二学期前第一到十周讲授高等数学B1(二),每周5学时(约10周);十到十六周讲授高等数学B2,每周5学时(约6周).学习本课程的目的和任务:第一、使学生系统地获得大纲中所列基础知识、基本理论和基本运算技能,为学习后续课程和进一步深造奠定必要的数学基础.第二、通过各个教学环节逐步培养学生具有抽象概括问题的能力、空间想象能力、逻辑推理能力和自学能力,特别要培养学生具有熟练的运算能力和综合运用所学知识去分析问题和解决问题的能力.三、课程的基本要求本课程基本要求的高低用不同词汇加以区分,对概念、理论,高要求用“理解”一词表述,低要求用“了解”一词表述;对方法、运算,高要求用“掌握”一词表述,低要求用“会”或“了解”表述.学生对高要求部分必须深入理解,牢固掌握,熟练应用.具体要求如下:第1章函数、极限与连续1.掌握基本初等函数的性质及其图形,了解初等函数的概念.2.掌握极限四则运算法则;3.理解函数的概念,掌握函数的表示法, 会求函数值及定义域;4.会建立简单实际问题中的函数关系;5.了解两个极限存在准则(夹逼准则和单调有界准则),会用两个重要极限求极限;6.了解无穷小、无穷大以及无穷小的阶的概念,了解无穷小的运算性质及阶的比较,会用等价无穷小求极限;7.理解函数在一点连续的概念,会判断函数在某一点(包括分段函数在分段点处)的连续性;8.了解函数间断点的概念,并会判断间断点的类别;9.了解反函数概念,会求简单函数的反函数;理解复合函数概念,会分析复合函数的复合过程;10.了解函数的奇偶性、单调性、周期性和有界性;11.了解极限的概念(对极限的ε-N,ε-δ定义在学习过程中逐步加深理解,对于给出ε求N或δ不作过多的要求);12.了解初等函数的连续性及闭区间上连续函数的性质(最大值、最小值定理和介值定理), 并会应用这些性质.第2章一元函数微分学1 掌握导数的概念及其几何意义,掌握可导性与连续性的关系,会求曲线在某点处的切线与法线方程;2.熟练掌握导数的基本公式,四则运算法则和复合函数求导方法;掌握初等函数一、二阶导数的求法;3.会求分段函数的导数,会求隐函数和参数式所确定的函数的一、二阶导数,以及反函数的导数;会用对数求导法求幂指函数及由积、商、幂所组成的函数的导数;4.了解高阶导数的概念, 会求简单函数的n阶导数;5.了解微分的概念和一阶微分形式不变性,掌握微分运算法则和一阶微分形式不变性,以及可导与可微的关系,会求函数的微分;6.理解并会用Rolle定理、Lagrange中值定理和Cauchy中值定理,了解并会用Taylor定理;知道e x、sinx、cosx、ln(1+x)等函数的Maclourin展开式;7.熟练掌握用洛必达法则求未定式"0/0"与"∞/∞"型以及可化为这两种形式的未定式的极限;8.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,会利用函数的单调性证明简单的不等式.掌握函数的最大值和最小值的求法及其应用;9.了解曲线凹凸性与拐点的概念,会用导数判别曲线的凹凸性,会求拐点;会求曲线的渐近线,能描绘函数的图形;10.了解曲率和曲率半径的概念,并会计算曲率和曲率半径.第3章一元函数积分学1.熟练掌握不定积分的基本公式、换元积分法和分部积分法;2.熟练掌握定积分的换元积分法与分部积分法;3.掌握Newton- Leibniz公式并能熟练地用此公式计算定积分;4.理解原函数与不定积分的概念,掌握不定积分的性质;5.掌握简单的有理函数和三角函数有理式及简单无理函数的不定积分计算方法;6.理解定积分的概念、几何意义和基本性质;理解变上限的积分作为其上限的函数及其求导定理;7.掌握用定积分计算平面图形的面积、旋转体的体积和平面曲线的弧长;8.了解不定积分的几何意义;9.会计算无穷区间和无界函数的广义积分;10.知道用微元法将实际问题表达成定积分的方法;会用定积分表达并计算一些物理量(如功、水压力、引力、平均值等)的方法.四、教学内容、重点难点及教学设计注:实践包括实验、上机等五、实践教学内容和基本要求无六、考核方式及成绩评定七、大纲撰写:大纲审核:。

高等数学(一)1课程教学大纲

高等数学(一)1课程教学大纲
课程内容:
第一章矢量与坐标
【目的要求】能正确理解矢量的概念,并且能灵活运用这些概念解决一些具体问题;掌握矢量的线性关系及矢量的分解;熟练掌握矢量各种运算的定义、性质、法则以及矢量的各种位置关系及其对应的代数表示式,在此基础上能进行正确的证明、计算;能正确理解矢量的坐标与点的坐标的内在联系和区别,掌握矢量运算的坐标表示及其各种位置关系的坐标表示,并且能熟练地进行运算和论证。
三、泰勒公式
四、函数单调性的判别法
五、函数的极值及其求法
六、函数的最大值和最小值
七、函数的凹凸性与拐点
八、函数图形的描绘
九、曲率
●实践教学内容与安排(4学时)
一、第一章习题
二、描绘函数图形
【作业与思考】第一章部分习题
思考:函数一阶导、二阶导数与函数极值点和拐点有哪些联系?
第六章定积分
【目的要求】掌握积分概念,性质,换元积分法和分部积分法、有理函数、三角函数有理式、简单无理式的积分方法。
【作业与思考】第三章部分习题
思考:微分与积分的联系。
学时分配表
课程内容
学时
理论
第一章中值定理与导数应用
16
第二章不定积分
10
第三章定积分
10
实践
一各章节习题
19
二描绘函数图形
2
三讨论:定积分与不定积分换元法的区别
1
考核
1.第一、二章内容
2
合计
60
教学策略与方法建议:以讲授法为主,辅以练习法、谈话法、讨论法、引导发现法。教学策略上宜以问题的呈现引发学生思考,帮助学生建立数学模型,找出解决问题的一般方法,从而建立概念,掌握有关数学思想方法,巩固定理和法则。
【重点与难点】重点是求导公式及法则。难点是导数与微分概念。

(完整word版)高职高专高等数学教学大纲及几点教学意见

(完整word版)高职高专高等数学教学大纲及几点教学意见

《高等数学》课程教学大纲一、课程性质和目的高等数学是高职高专院校工程类、经济类以及理工类各专业必修的一门重要的基础课。

它已做为应用的工具渗透到各个领域,是培养、提高学生的思维素质、创新能力、科学精神、治学态度、完成教育应用性人才培养目标的重要的基础理论课程。

通过本课程的学习使学生在高中文化的基础上,进一步掌握为学习现代科学技术和管理所必备的数学基础知识和基本技能,培养学生的空间想象力和抽象的逻辑思维能力,训练他们用数学思想、概念、方法并结合自己的专业把所学理论和方法运用于实践,目的是培养学生运用数学来分析、解决实际问题的能力,为后续各课程的学习奠定较好的数学基础,形成一定的数学思想。

二、课程的基本内容和教学要求三、课程教学的基本要求:通过本课程的教学,应使学生理解基本概念,以及它们之间的联系;正确理解并掌握基本定理的条件、结论和证明方法;熟练掌握各种基本计算方法;能够对简单的实际问题建立数学模型,并会求解。

该课程为学生学习物理、电工、电子等理工科专业课程奠定必要的数学基础。

在课堂讲授的同时,辅以课堂练习与讨论,引导学生认真阅读教材,独立完成作业,逐步培养学生的抽象思维、逻辑推理、空间想象、分析解决实际问题的能力,掌握学习方法,培养自学能力。

四、实践性教学环节要求1、始终注重引导学生对问题的思考、归纳、总结,探求规律性的东西;2、教师要深入到学生中去了解学生的学习基础,应特别帮助、指导、鼓励基础较弱的同学的学习方法、过程、信心;要目的地备课;3、备课内容上,尽量贴近生活、贴近专业、贴近应用,使学生学有兴趣、学以致用;4、教学方法上,坚持启发、指导式教学,尽可能增加双边活动,多给学生动脑、动手锻炼的机会,以进一步培养他们的自学能力、分析和解决问题的能力,传授学习方法及技巧.5、课堂讲解时,既深入浅出、通俗易懂,又生动、富有感染力,还应适时增加、增大信息量;6、板书设计上,力争醒目、条例、认真、美观;7、通过数学建模竞赛,进一步培养同学们的实践能力.五、教学建议1、用辩证唯物主义观点进行教学,例如对函数概念要进行事物间相互依赖、制约、变化及发展等观点来讲解。

《高等数学A、B、C》教学大纲

《高等数学A、B、C》教学大纲

《高等数学A 、B 、C 》教学大纲一、课程的任务与目的本课程是高等工科院校理工科各专业必修的一门重要基础理论课。

通过本课程的学习,要使学生系统地获得微积分、空间解析几何与向量代数、无穷级数、常微分方程等方面的基本知识、基础理论和方法,逐步培养学生的抽象思维、逻辑推理、空间想象等方面的能力。

初步培养学生解决实际问题的能力,培养学生的自学与创造能力,为学习后继课程和进一步学习其它数学知识奠定必要的数学基础。

本课程的教学目标如下:1.培养学生具有比较熟练的基本运算能力、空间想象能力;2.培养学生具有一定的自学能力;3.使学生具有综合运用所学知识分析问题和解决问题的能力;4.使学生具有初步的抽象概括问题的能力以及一定的逻辑推理能力。

课程教学目标对专业培养要求的支撑二、理论教学要求(一).函数、极限、连续1.理解函数的定义并掌握其表示法;了解函数的有界性、单调性、奇偶性与周期性;了解反函数,理解复合函数的概念;了解基本初等函数和初等函数;知道双曲函数。

2.了解数列极限的“N ε-”定义,函数极限的“εδ-”和“X ε-”定义,理解函数的左右极限,了解极限的性质;了解无穷小与无穷大的定义,了解无穷小的性质,无穷小与函数极限的关系;掌握极限的四则运算法则、了解极限存在的两个准则, 掌握两个重要极限;了解无穷小的比较及等价无穷小。

3.理解函数连续的定义,了解函数间断点及其分类,会判断其类型;掌握连续函数的四则运算性质;了解连续函数的反函数的连续性及复合函数的连续性;了解初等函数的连续性;了解闭区间上的连续函数的性质。

(二).一元函数微分学1.理解导数的定义和导数的几何意义;了解函数的可导性与连续性的关系;掌握函数的求导法则(包括函数的和、差、积、商的求导法则和复合函数的求导法则,了解反函数的求导法则);掌握基本初等函数的导数公式;了解高阶导数的概念,掌握二阶导数的求法;会求隐函数及由参数方程所确定的函数的一阶和简单的二阶导数;理解函数微分的概念,会求函数的微分,了解微分的应用;会求相关变化率。

《高等数学》(C)教学大纲

《高等数学》(C)教学大纲

《高等数学》(C)教学大纲课程代码: 12205课程名称:《高等数学》(C)英文名称:Advanced Mathematics (C)课程总学时:48学时(其中理论课48 学时,实验0 学时)学分: 3课程类别:必修课课程性质:公共基础课先修课程:面向专业:外语系、社科系各专业开课单位:基础学科部一、课程的性质、地位和任务1.课程性质:《微积分》课程是高等文科类本科各专业学生的一门必修的重要基础课。

是为培养合格的,符合社会主义市场经济要求的应用型人才所必须具备的数学素质教育的主干课程。

2.教学任务:通过本课程的学习,使学生系统地获得微积分及常微分方程等数学基础知识和常用的数学方法,并使学生能够比较熟练的应用所学知识对实际问题进行理论抽象、逻辑推理及数值模拟,从而使学生受到用数学方法分析和建立数学模型,解决实际问题能力的初步训练;通过本课程的学习可以培养学生的基本运算能力,增强学生用定性与定量相结合的方法处理解决经济管理等领域实际问题的能力,为培养学生良好的数学素质和为后继课程的学习奠定基础。

二、课程的教学目标(一)理论、知识方面理解下列基本概念以及它们之间的内在联系:函数、极限、连续、导数、微分、不定积分。

正确理解并牢固掌握下列基本定理和公式:拉格朗日中值定理、牛顿—莱布尼兹公式、基本初等函数的导数公式、基本积分公式。

熟练运用下列法则和方法:函数的和、差、积、商的求导法则、复合函数的求导法则、第一换元积分法、分部积分法。

会运用微积分的知识和方法,解决一些简单的实际问题和经济问题。

(二)能力、技能方面本课程是经济管理类学生必修的基础理论课。

通过学习,使学生获得一元函数微积分学的基本概念、基本理论、基本运算技能以及多元函数微分学的初步知识。

为学习后继课程奠定必要的数学基础,同时培养学生的自学能力,逐步学会用科学的方法解决问题。

三、课程教学内容与要求(一)函数( 4学时)1. 教学内容及基本要求掌握函数的基本概念、性质及初等函数。

《高等数学C(Ⅰ)》课程教学大纲

《高等数学C(Ⅰ)》课程教学大纲

《高等数学C(Ⅰ)》课程教学大纲课程编号:90902005学时:56学分:4适用专业:经济学、国际贸易、人力资源管理、旅游管理、物流管理、财务管理、财务管理(注册会计会师方向)、市场营销开课部门:商学院、管理学院一、课程的性质与任务高等数学C(Ⅰ)课程是应用型本科院校经管类专业的一门专业基础课。

本课程讲授函数与极限、一元函数微分学、一元函数积分学的基本内容,通过该课程的学习,使学生掌握高等数学C(Ⅰ)的基本概念、基本理论和基本方法,培养学生的抽象思维能力、逻辑推理能力、空间想象能力,为学生解决专业领域的实际问题奠定基础。

三、实践教学的基本要求无四、课程的基本教学内容及要求第一章函数教学内容:(1)区间与邻域;(2)函数的概念;(3)反函数与复合函数;(4)初等函数;(5)经济学中的常用函数。

重点与难点重点:函数、复合函数的概念,基本初等函数的图形和性质,经济学中的常用函数。

难点:复合函数的概念。

课程教学要求:了解区间、邻域,函数的有界性、单调性、周期性和奇偶性,反函数的概念;理解函数的概念,复合函数的概念,经济学中常用的需求函数、供给函数、成本函数、收益与利润函数等的概念;会建立简单的函数模型;掌握基本初等函数的定义域、图形及简单性质。

教师要注重函数模型的建立方法和函数在经济学中的应用。

第二章极限与连续教学内容:(1)数列的极限;(2)函数的极限;(3)无穷小与无穷大的概念,无穷小的性质;(4)极限的运算法则;(5)极限存在准则,两个重要极限与无穷小的比较;(6)函数的连续性。

重点与难点重点:数列的极限和函数的极限的概念,极限的运算法则。

难点:极限的概念,极限的计算。

课程教学要求:了解无穷大、无穷小的概念,函数连续性的概念(含左连续与右连续),连续函数的性质,闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)及其简单应用,函数间断点的类型;理解数列极限和函数极限概念(包括左极限与右极限)、无穷小的基本性质,初等函数的连续性;掌握无穷小的比较方法,极限的性质与极限存在的两个准则,极限的四则运算法则,两个重要极限。

obe高等数学教学大纲

obe高等数学教学大纲

高等数学教学大纲一、引言高等数学作为大学学科中的一门重要课程,是培养学生数学思维能力和分析问题能力的重要环节。

本教学大纲旨在规范高等数学教学的内容和要求,确保教学质量和学生能力的培养。

二、课程目标1.培养学生扎实的数学基础和数学思维能力。

2.培养学生的逻辑推理和问题解决能力。

3.培养学生的创新精神和科学思维方式。

三、教学内容1.极限与连续–极限的概念和性质–极限的计算方法–连续性与间断点2.导数与微分–导数的概念和计算方法–几何意义和物理应用–高阶导数–微分的应用3.积分与不定积分–不定积分的概念和性质–不定积分的计算方法–定积分的概念和性质–定积分的计算和应用4.微分方程–常微分方程的概念和分类–一阶线性微分方程求解–高阶线性微分方程求解–特殊类型的微分方程求解5.空间解析几何–点、直线、平面的方程–空间曲线和曲面的方程–球面的方程和性质–圆柱曲面和圆锥曲面的方程四、教学要求1.着重培养学生的数学思维和逻辑推理能力,引导学生运用所学知识解决实际问题。

2.鼓励学生的自主学习和探索,在课堂上注重培养学生的合作精神和团队意识。

3.培养学生良好的数学建模能力,将数学应用于实际问题的解决中。

4.强调数学知识与其他学科的联系,促进跨学科能力的培养。

五、教学方法1.讲授法:通过教师的讲解和演示,引导学生理解数学概念和定理,掌握基本的计算方法。

2.实践法:设计一些数学实例,让学生运用所学知识解决实际问题,培养学生的创新思维和实际应用能力。

3.探究法:引导学生通过自主探索和研究,发现数学问题的规律和方法。

4.讨论法:组织学生进行小组或全班讨论,促进学生之间的思想交流和合作学习。

5.实验法:引导学生参与数学实验和模拟实验,提高他们的实际操作能力和观察分析能力。

六、教学评估1.平时成绩:包括课堂表现、作业完成情况和小组合作情况等。

2.期中考试:对学生对上半学期内容的掌握情况进行评估。

3.期末考试:对学生整个学期所学知识的掌握情况进行综合性评估。

《高等数学》课程教学大纲

《高等数学》课程教学大纲

《高等数学》课程教学大纲高等数学课程教学大纲1. 引言高等数学是大学理工类专业中一门重要的基础课程,它为学生提供了深入理解数学概念和方法的机会。

本教学大纲旨在明确高等数学课程的目标、内容和教学方式,以帮助教师和学生在学习过程中更好地掌握知识和技能。

2. 课程目标2.1 知识目标通过本课程的学习,学生应能够:- 掌握高等数学的基本概念、原理和公式;- 理解和运用微积分的基本思想和方法;- 熟悉常微分方程的求解技巧;- 理解多元函数的极限、连续性和偏导数等概念;- 掌握重要的高等数学定理和定理的证明方法。

2.2 技能目标通过本课程的学习,学生应能够:- 运用高等数学知识解决实际问题;- 熟练使用数学工具(如计算器和数学软件)进行计算和绘图;- 能够进行简单的数学推理和证明;- 培养数学建模和问题求解的能力。

3. 课程内容3.1 函数与极限- 函数的概念与性质- 极限的定义与运算法则- 连续与间断3.2 微积分- 导数与微分- 函数的极值与最值- 曲线的图形与函数的分析- 不定积分与定积分- 微分方程的基本概念与求解方法3.3 多元函数与偏导数- 多元函数的极限与连续性- 偏导数与全微分- 多元函数的极值与最值- 多元函数的泰勒展开4. 教学方式4.1 授课教师通过讲授基本概念、原理和公式,引导学生理解和掌握数学知识。

4.2 讨论与互动教师组织学生进行小组讨论、问题解答和数学实例演练,促进学生之间和教师之间的互动。

4.3 实践与实验教师引导学生进行数学建模和实际问题的求解,通过实践和实验帮助学生巩固和应用所学知识。

4.4 作业与课堂测试教师布置作业和组织课堂测试,帮助学生及时巩固所学知识,并提供反馈和指导。

5. 教材及参考资料- 主教材:《高等数学教程》(或其他适合的教材)- 辅助教材:《高等数学习题集》(或其他适合的教材)- 参考资料:相关数学期刊、学术论文和互联网资源6. 考核方式6.1 平时成绩包括作业、实验报告、课堂表现等6.2 期中考试考察学生对前期知识的掌握和理解能力6.3 期末考试考察学生对所有学习内容的整体掌握和应用能力7. 教学评价通过课程问卷调查、评估反馈和学生学业成绩等多种方式对教学效果进行评价,不断改进教学方法和内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高等数学》实践教学大纲
课程名称:数学实验课程性质:选修
总学时数:26 学分:2
开课单位:公共教学部适用专业:全院各专业
修(制)订人:数学教研室全体教师修(制)订日期:2019.6.21
审核人:审核日期:2019.6.23
审定人:审定日期:2019.6.25
一、课程的性质、类型、目的和任务
数学实验是高等院校非数学理工科本科学生学习和体验数学应用的一门选修课程,是学生接受系统的数学实验方法和技能训练的开端。

数学实验课覆盖面广,具有丰富的思想、方法和手段,同时能提供综合性很强的建模、计算技能训练,是培养学生数学应用能力、提高科学素质的重要基础。

它在培养学生认真严谨的科学态度、活跃的创新意识,积极主动的探索精神、理论联系实际和事实求实的科学作风、适应科技发展的综合应用能力、团结协作优良品德等方面具有重要作用。

学生通过该课程的学习,使学生了解数学基本原理、熟悉主要数值算法、会用数学软件、培养数学建模能力。

二、本课程与其它课程的联系与分工
本课程从第2013-2019第一学期开始,通过本课程的学习,要求学生能正确理解数学软件、数值计算、数据处理、优化方法和数学建模的理论知识,掌握最常用的解决实际问题的方法及其数学软件实现,初步具有数学优化,数学建模的能力,为以后学习其他后续课程打下基础。

实践一:MATLAB软件初步与数学建模初步
实践内容:MATLAB的基本绘图命令,四种循环和选择控制结构
实践要求:(1)了解MATLAB环境;
(2)熟练掌握矩阵、数组操作及其运算和函数,逻辑运算功能;
(3)熟练掌握MATLAB的基本绘图命令,四种循环和选择控制结构;
(4)掌握基本的符号运算命令;
(5)知道数学模型和数学建模的概念,掌握数学建模的基本步骤,知道常见
问题分类和常见的数学模型分类,如代数方程,微分方程,统计模型,优化
模型,图论模型。

实践二:方程与方程组的求解及应用实例
实践内容:(1)利用MATLAB软件编写迭代算法程序;
(2)利用MATLAB软件的函数来求解方程和方程组。

实践要求:(1)了解逼近和迭代的思想,理解求解方程基本原理方法,掌握解方程的迭代算法;
(2)会利用MATLAB软件编写迭代算法程序,了解迭代过程的图形表示,分形与混沌学科等;
(3)熟练掌握用MATLAB软件的函数来求解方程和方程组;
(4)掌握求解实际问题的初步建模过程和MATLAB程序设计
实践三:微分方程求解及应用实例
实践内容:(1)根据实际问题建立微分方程模型,
(2)使用MATLAB软件的函数求微分方程的解析解、数值解和图形解实践要求:(1)了解连续问题离散化的思想,知道求解微分方程的解析法、数值解法以及图形表示解的方法,理解求微分方程数值解的欧拉方法,了解龙格--
-库塔方法的思想;
(2)熟练掌握使用MATLAB软件的函数求微分方程的解析解、数值解和图形
解;
(3)会建立微分方程模型和掌握分析问题的思想。

实践四:最优化问题简介、线性规划及非线性规划
实践内容:对实际问题进行分析,依据最优化原则,非线性规划模型的标准形式建立数学模型;
用MATLAB软件中的函数求解线性规划模型。

实践要求:(1)理解最优化问题的三个要素:决策变量、约束条件和目标函数的概念,了解最优化问题的分类,会建立线性规划模型;
(2)了解线性规划的可行解、可行域和最优解及其几何意义,了解线性规
划模型中的灵敏度分析的思想方法;
(3)了解非线性规划模型的标准形式,掌握其建模方法,知道非线性规划
的几种求解方法;
(4)熟练掌握用MATLAB软件中的函数求解线性规划模型的方法,掌握用MATLAB软件中的函数求解二次规划和一般非线性规划模型的方法,
知道初始点的选择对最优解的影响。

实践五:插值与拟合
实践内容:(1)通过范例学习如何用插值和拟合方法解决实际问题
(2)用MATLAB软件中的函数作多项式拟合和一般的曲线拟合
实践要求:(1)了解插值的基本原理,了解拉格朗日插值、线性插值、样条插值基本思想;
(2)熟练掌握用MATLAB计算一维、二维线性插值、样条插值方法、二维三次插值和散点插值方法;
(3)理解曲线拟合的基本原理,理解拟合准则、最小二乘拟合准则和误差的概念,掌握最小二乘拟合函数的选取方法,掌握参数辨识的基本方
法。

(4)熟练掌握用MATLAB软件中的函数作多项式拟合和一般的曲线拟合;
(5)通过范例学习如何用插值和拟合方法解决实际问题。

三、课程考核方法及要求
1.考核方式:考查
2. 成绩评定:
总成绩100分=平时40分+期末60分
平时成绩:40分,出勤25%,课堂表现50%,作业完成25%
实践成绩:60分,实践过程占60%,实践报告占40%。

四、选用教材及参考书(资料)
教材:《数学实验教程》万福永.科学出版社.2006.11
参考书目:
1.《数学建模》韩中庚.高等教育出版社.2012.3。

相关文档
最新文档