最新基坑监测方案模板
基坑监测方案
![基坑监测方案](https://img.taocdn.com/s3/m/3a8175f8ab00b52acfc789eb172ded630b1c98df.png)
基坑监测方案为了确保基坑施工过程的安全与有效进行,我们需要制定一套基坑监测方案。
本方案将综合考虑基坑施工的特点和需求,采用合适的监测技术与手段,以确保工程的安全性和顺利进行。
一、监测目标本次基坑监测的主要目标是:1. 确保基坑开挖过程中的地面稳定性,避免因挖土引起的地面沉降、塌陷等问题;2. 监测周边建筑物、结构物在基坑施工过程中的变形情况,避免对其产生不可逆的影响;3. 提前掌握基坑周边地下水位的变动情况,及时采取防水措施,避免水压过大造成基坑失稳;4. 监测基坑支护体系的变形情况,确保其稳定性;5. 及时发现和预防基坑施工过程中可能出现的安全隐患,保障工人的人身安全。
二、监测方法与手段1. 地面沉降监测:采用精密水准仪和全站仪对监测点进行测量,并结合GNSS(全球导航卫星系统)技术,实现地面沉降的快速、准确测量。
监测点布设应遵循等距离、等密度的原则,包括基坑四周、周边建筑物、支护体系中。
2. 变形监测:通过安装测斜孔或倾斜计等仪器,监测周边建筑物、结构物及支护体系的变形情况。
定期测量并记录数据,及时发现异常情况,并根据情况采取相应的处理和补强措施。
3. 地下水位监测:安装水位计或压力传感器等仪器,对基坑周边地下水位的变动进行自动化实时监测。
监测数据通过数据接收器传输到监测中心并进行分析,一旦超出设定的安全范围,及时采取相应的排水和防水措施。
4. 基坑支护体系监测:利用应变计和位移计等仪器,对基坑支护体系的变形情况进行监测。
监测包括支撑结构的变形、地下连续墙的变形等。
通过定期测量和数据分析,以确保支护系统的稳定性和安全性。
5. 安全隐患监测:通过定期巡视和现场检查,及时发现和处理基坑施工过程中可能存在的安全隐患。
对现场工人的安全进行严格管理,确保施工过程的安全性。
三、监测频率与报告1. 监测频率:对于地面沉降、变形和地下水位的监测,建议在基坑开挖过程中每周进行一次监测,以及在特定施工环节进行重点监测。
建筑工程基坑监测施工方案
![建筑工程基坑监测施工方案](https://img.taocdn.com/s3/m/24c2b09a27fff705cc1755270722192e4436587a.png)
建筑工程基坑监测施工方案一、监测设备1. 地质监测设备在基坑施工现场周围设置地质监测点,采用地下水位监测仪、土体变形监测仪等设备,对地下水位、土体变形情况进行实时监测。
2. 地下水监测设备在基坑周边设置地下水监测点,采用水位计和水质采样仪等设备进行地下水位和水质的监测。
3. 土体变形监测设备在基坑周围设置土体变形监测点,采用变形仪、应变片等设备进行土体变形情况的监测。
4. 施工过程监测设备在基坑施工过程中,设置高精度的位移监测仪、测斜仪等设备,对基坑支护结构、地下管线等进行监测。
二、监测方案1. 地质监测方案对基坑周围的地质情况进行详细勘察和分析,建立地质监测点,实时监测地下水位和土体变形情况,并根据监测数据进行分析和评估,及时调整施工方案。
2. 地下水监测方案对基坑周边地下水位进行监测,及时发现地下水位的变化,并根据监测数据调整抽水和排水方案,以确保基坑施工过程中地下水的稳定。
3. 土体变形监测方案对基坑周边土体的变形情况进行监测,及时发现土体变形的情况,并采取相应的支护措施,以确保基坑施工过程中土体的稳定。
4. 施工过程监测方案对基坑支护结构、地下管线等进行实时监测,确保施工过程中的安全和稳定。
三、应急预案1. 地下水突发情况一旦发现地下水位出现异常变化,立即停止施工,及时排查原因,并采取相应的措施,以确保地下水位的稳定。
2. 土体变形突发情况一旦发现土体出现异常变形情况,立即停止施工,及时排查原因,并采取相应的支护措施,以确保基坑施工的安全。
3. 施工过程突发情况一旦发现基坑支护结构、地下管线等出现异常情况,立即停止施工,及时排查原因,并采取相应的措施,以确保施工的安全和稳定。
四、监测报告1.监测人员应每日定时向施工负责人提交监测报告,报告内容包括地质、地下水位、土体变形、施工过程监测等情况的详细数据和分析结果,并根据报告对施工提出相应的建议和措施。
2.监测报告需由监测人员和施工负责人签字确认,并留存备案。
基坑监测方案完整版最新
![基坑监测方案完整版最新](https://img.taocdn.com/s3/m/65746e1b657d27284b73f242336c1eb91b373361.png)
基坑监测方案完整版最新1.工程概况本工程为长江国际花园1.1期住宅小区(凯迪大酒店)酒店二期项目,位于泰兴市虹桥镇虹桥大道北侧,飞虹路东侧。
建设单位为XXX。
2.监测目的及编制依据2.1 监测目的本监测方案的目的是为了对工程基坑施工过程中的变形和沉降进行实时监测,及时发现和解决问题,确保工程施工的安全和顺利进行。
2.2 编制依据本监测方案的编制依据是《建筑工程监测规范》(GB -2015)、《地基与基础工程监测规范》(GB -2015)、《建筑工程施工质量验收规范》(GB -2018)等相关规范和标准。
3.监测内容3.1 监测时间本监测方案的监测时间为基坑开挖阶段、基础施工阶段、建筑施工阶段、竣工验收阶段等关键阶段。
3.2 监测内容本监测方案的监测内容包括基坑内外的变形和沉降、地下水位变化、周边建筑物的变形和沉降等。
4.监测方案4.1 监测方法本监测方案采用自动化监测和手动监测相结合的方式进行监测。
4.2 监测设备本监测方案所使用的监测设备包括自动化监测仪器、手动监测仪器等。
4.3 监测点设置本监测方案设置了基坑内外共计20个监测点,其中包括基坑内部、基坑周边建筑物、地下水位等。
4.4 监测频次本监测方案的监测频次为每天一次,对于重要节点的监测频次可适当增加。
4.5 监测数据处理和分析本监测方案的监测数据将进行实时处理和分析,及时发现和解决问题。
4.6 监测报告本监测方案的监测报告将每月一次提交建设单位,并在工程竣工时提交监理单位。
4.7 监测责任人本监测方案的监测责任人为XXX。
4.8 监测记录保存本监测方案的监测记录将保存至少5年。
4.9 监测方案的修订本监测方案如有需要,将根据实际情况进行修订。
修订后的监测方案应重新报批。
基准点的布设在进行监测之前,需要先进行基准点的布设。
基准点的布设是监测工作的基础,也是保证监测数据准确性的关键。
在布设基准点时,需要考虑地形地貌、地质条件、周围环境等因素,并严格按照监测要求进行设置。
基坑监测工作方案
![基坑监测工作方案](https://img.taocdn.com/s3/m/4d63f8b4710abb68a98271fe910ef12d2af9a9fb.png)
******广场二期工程C区基坑监测工作方案***二零一三年五月******广场二期工程C区基坑监测工作方案***目录1.概况 (1)1.1工程概况 (1)1.2工作内容及目的 (1)1.3执行技术标准 (1)1.4坐标系统及高程系统 (1)1.5投入仪器设备及人员 (2)2.基坑监测基准点的布设及观测 (2)2.1基坑监测基准点位的选埋 (2)2.2基坑监测基准点的标志 (3)2.3基坑监测基准点的观测的技术要求 (3)2.4基坑监测基准点的检测 (3)3.基坑顶部监测点的布设及观测 (3)3.1基坑顶部监测点的布设 (3)3.2基坑顶部监测点的编号 (4)3.3基坑顶部监测点埋设及标志 (4)3.4基坑顶部监测点的观测 (4)3.5基坑顶部监测点监测周期 (5)4.周边建筑物沉降观测 (6)4.1周边建筑物监测点的布设和数量 (6)4.2沉降监测点的编号 (6)4.3沉降监测点布设及标志 (6)4.4沉降监测点的观测 (6)4.5沉降监测点的观测周期 (7)5.周边路面沉降观测 (7)5.1周边路面沉降点的布设和数量 (7)5.2沉降点的编号 (7)5.3沉降点布设及标志 (7)5.4沉降点的观测 (7)5.6注意事项 (7)6.护坡桩深层水平位移(测斜) (8)6.1测斜点的布设和数量 (8)6.2测斜点的编号 (8)6.3测斜管的安装与监测 (8)6.4测斜频率 (9)6.5测斜监测报警值 (9)7.水位测量 (9)7.1水位测量点的布设和数量 (9)7.2水位测量点的编号 (9)7.3水位测量 (9)7.4水位测量频率 (10)8.锚杆内力监测 (10)8.1锚杆内力监测点的布设和数量 (10)******广场二期工程C区基坑监测工作方案***8.2锚杆内力监测点的编号 (10)8.4锚杆内力监测频率 (10)9.监测要求 (11)10.监测报警值 (11)11.内业资料的处理 (11)12.提交成果 (12)附图1:基坑监测基准点布置示意图 (13)附图2:基坑监测基准点标志示意图 (15)附图3:基坑顶部监测点布设示意图 ........................ 错误!未定义书签。
基坑监测方案
![基坑监测方案](https://img.taocdn.com/s3/m/95f722857e192279168884868762caaedc33ba18.png)
基坑监测方案一、工程概述本工程位于具体地点,基坑占地面积约为面积数值平方米,开挖深度为深度数值米。
周边环境较为复杂,临近周边建筑物或道路等。
为确保基坑施工过程中的安全稳定,保障周边环境不受影响,特制定本基坑监测方案。
二、监测目的1、及时掌握基坑围护结构和周边环境的变形情况,为施工提供及时、可靠的信息,以便调整施工参数,优化施工方案。
2、预测基坑及周边环境的变形趋势,提前采取防范措施,避免事故的发生。
3、对基坑施工过程进行监控,验证设计方案和施工工艺的合理性,为后续类似工程提供经验参考。
三、监测内容1、围护结构水平位移监测在围护结构顶部设置水平位移监测点,采用全站仪或经纬仪进行观测,监测点间距一般为间距数值米。
2、围护结构竖向位移监测在围护结构顶部设置竖向位移监测点,与水平位移监测点共用,采用水准仪进行观测。
3、深层水平位移监测在围护结构内埋设测斜管,深度达到基坑底部以下深度数值米,采用测斜仪定期测量围护结构的深层水平位移。
4、支撑轴力监测在支撑结构上安装轴力计,监测支撑轴力的变化情况。
5、地下水位监测在基坑周边设置地下水位观测井,采用水位计测量地下水位的变化。
6、周边建筑物沉降和倾斜监测在周边建筑物的角点和重要部位设置沉降和倾斜监测点,采用水准仪和全站仪进行观测。
7、周边道路和管线沉降监测在周边道路和管线上设置沉降监测点,采用水准仪进行观测。
四、监测点布置1、水平位移和竖向位移监测点沿基坑周边每隔间距数值米布置一个监测点,在阳角、阴角等变形较大的部位适当加密。
2、深层水平位移监测点在基坑的长边和短边中部各布置一个测斜管,在地质条件较差或变形较大的部位增设测斜管。
3、支撑轴力监测点选择受力较大的支撑构件进行监测,每个监测断面布置数量个轴力计。
4、地下水位监测点在基坑周边每隔间距数值米布置一个地下水位观测井。
5、周边建筑物沉降和倾斜监测点在建筑物的四角、长边中点和每隔间距数值米的位置设置沉降监测点,在建筑物的两个对角方向设置倾斜监测点。
基坑变形监测模板
![基坑变形监测模板](https://img.taocdn.com/s3/m/31ad0d466d85ec3a87c24028915f804d2b1687b9.png)
基坑变形监测模板一、背景介绍。
基坑工程是城市建设中常见的工程类型,其施工过程中会受到地下水位、土体变形等因素的影响,因此需要进行变形监测以确保工程安全。
本文档旨在提供基坑变形监测的模板,以便工程监测人员能够依据此模板进行监测工作。
二、监测设备及方法。
1. 监测设备,监测基坑变形常用的设备包括测斜仪、水准仪、位移传感器等。
这些设备可以实时监测基坑周边土体和支护结构的变形情况。
2. 监测方法,监测人员应根据基坑工程的实际情况确定监测设备的布设位置和监测频率。
同时,监测人员还应制定监测方案,并在监测过程中及时记录监测数据。
三、监测数据处理。
1. 数据采集,监测人员应按照监测方案,定期对监测设备进行数据采集。
采集的数据应包括监测点的位置坐标、变形数据等。
2. 数据处理,监测人员应对采集的数据进行处理,包括数据的整理、分析和报告。
在数据处理过程中,应注意排除异常数据的影响,确保监测数据的准确性和可靠性。
四、监测报告编制。
1. 监测报告内容,监测报告应包括监测设备的布设情况、监测数据的采集情况、监测数据的处理结果等内容。
2. 报告格式,监测报告应按照规定的格式进行编制,包括封面、目录、正文、附录等部分。
报告的文字应简洁明了,图表应清晰易懂。
五、监测结果评定。
1. 结果评定标准,监测人员应根据监测数据的处理结果,对基坑变形进行评定。
评定标准应包括基坑变形的程度、变形趋势等内容。
2. 结果应用,监测结果应及时向相关部门和工程管理人员通报,以便及时采取相应的措施,确保基坑工程的安全。
六、总结与展望。
基坑变形监测是基坑工程安全施工的重要环节,监测人员应严格按照监测模板进行监测工作,确保监测数据的准确性和可靠性。
同时,监测人员还应不断总结经验,完善监测方法,提高监测水平,为基坑工程的安全施工提供可靠的数据支持。
七、附录。
1. 监测设备布设图。
2. 监测数据处理流程图。
3. 监测报告格式范例。
以上为基坑变形监测模板的内容,希望能为基坑工程的监测工作提供一定的参考价值。
基坑工程污染监测方案模板
![基坑工程污染监测方案模板](https://img.taocdn.com/s3/m/74e62f33178884868762caaedd3383c4ba4cb418.png)
基坑工程污染监测方案模板一、项目概况1. 项目名称:基坑工程污染监测方案2. 项目地点:(具体地址)3. 项目业主:(业主单位名称)4. 监测单位:(监测单位名称)5. 编制时间:(年月日)二、监测目的本基坑工程污染监测方案的目的是为了确保基坑工程建设过程中的各项排污活动和施工活动不对周边环境造成污染,同时也为未来环境保护提供数据支持。
三、监测范围本方案囊括了基坑工程的各项排污活动和施工活动对周边环境的影响监测,包括但不限于:1. 废水排放监测2. 废气排放监测3. 土壤污染监测4. 噪音污染监测四、监测方法1. 废水排放监测:采集基坑工程建设期间排放的废水样品,进行化学分析,监测其中主要的污染物含量,包括悬浮物、化学需氧量、总磷、总氮等。
2. 废气排放监测:采用气体分析仪等设备,监测基坑工程建设期间的废气排放情况,主要监测有机挥发物、氮氧化物、二氧化硫等污染物的浓度。
3. 土壤污染监测:对基坑工程施工期间可能受到影响的地块进行土壤样品采集,进行污染物含量的分析监测,主要包括重金属、有机物、氮磷类污染物。
4. 噪音污染监测:利用专业的噪音监测设备,对基坑工程建设期间的施工活动产生的噪音进行监测,确定噪音的频率、强度及时段。
五、监测频次1. 废水排放监测:每周抽取2次废水样品进行监测,一份样品存档,一份送检化验。
2. 废气排放监测:每日抽取3次废气样品进行监测,监测连续进行一周,求均值。
3. 土壤污染监测:基坑工程施工前对选择的地块采集土壤样品进行分析,施工过程中每个月重新采集一次并进行分析,施工结束后再次采集样品进行监测。
4. 噪音污染监测:每日连续监测,对连续监测结果进行均值计算。
六、监测记录和报告1. 监测记录:监测单位应当及时记录所做的监测活动内容和结果,做好相关的监测记录,并妥善保存,以备查阅。
2. 监测报告:监测单位应根据监测结果编制监测报告,将监测结果进行分析总结,并根据分析总结提出相关的建议和改进措施。
基坑监测设计方案
![基坑监测设计方案](https://img.taocdn.com/s3/m/efcc6e48591b6bd97f192279168884868762b839.png)
基坑监测设计方案基坑监测设计方案基坑监测是指在建筑工程或地下工程的基坑开挖、地下室施工等阶段,对周边环境进行实时监测和分析,以确保施工安全和保护周边建筑物的正常运行。
下面是一个基坑监测的设计方案,以确保基坑开挖过程中的安全稳定。
一、监测设备的选用1. 监测点布设:根据基坑周边环境和施工需求,布设监测点,建立监测网格。
监测点的选定应考虑到土壤条件、建筑物位置、地下管线等因素。
2. 监测仪器:选用高精度的监测仪器,如挠度计、倾斜计、位移计、超声波测深仪等,以实时监测基坑的变形情况。
二、监测参数及频率1. 地表变形:使用挠度计或位移计对地表进行监测,获取地表下沉、侧移等变形情况。
监测频率为每天一次,连续监测至基坑开挖完成。
2. 地下水位:使用超声波测深仪对地下水位进行监测,以及时掌握地下水位的变化情况。
监测频率为每天一次,连续监测至基坑开挖完成。
3. 周边建筑物变形:使用倾斜计对周边建筑物进行监测,获取建筑物的倾斜情况。
监测频率为每天一次,连续监测至基坑开挖完成。
三、监测数据的分析和处理1. 数据采集:监测仪器采集到的数据通过数据采集系统进行自动化收集,并进行存储和备份。
2. 数据分析:监测数据通过专业软件进行处理,如数据拟合、趋势分析、异常预警等,以便及时发现问题并采取相应措施。
3. 数据报告:每周或每月向相关人员提供监测数据报告,包括监测结果、变形趋势、异常预警等。
报告应明确分析,便于相关人员进行施工决策。
四、安全预警措施1. 设立预警值:根据基坑开挖的具体情况,确定各种监测参数的预警值,并设置相应的预警线。
2. 预警机制:当监测数据超过预警值或预警线时,监测系统应发出警报,并将相关信息及时通知给相关人员。
3. 应急措施:若监测数据达到预警值或预警线时,相关人员应立即采取相应的应急措施,如停工、加固等,以确保基坑开挖的安全稳定。
通过以上基坑监测设计方案,可以实现基坑开挖过程的实时监测和分析,及时掌握基坑的变形情况和周边环境的变化,确保施工的安全性和稳定性,减少不必要的工程事故和损失。
基坑监测方案范文
![基坑监测方案范文](https://img.taocdn.com/s3/m/a131fc6cbc64783e0912a21614791711cc797988.png)
基坑监测方案范文一、背景介绍基坑工程是建设项目中常见的一种工程类型,涉及到大量的土方开挖和地下施工工作。
然而,基坑施工中存在一定的风险,如土方塌方、地下水涌入、周边建筑物沉降等问题。
为了确保基坑工程的安全和稳定,进行基坑监测是必要的措施之一、本文将提出一种基坑监测方案,以确保基坑工程施工安全。
二、监测目标和指标1.监测目标:确保基坑工程施工过程中土方开挖、支护和地下施工的稳定性和安全性。
2.监测指标:(1)土方开挖监测指标:土体变形、土压力。
(2)支护结构监测指标:支撑剪力、支护位移。
(3)周边建筑物监测指标:沉降、倾斜。
三、监测方案1.监测方法:通过传感器采集数据,在监测点位上进行监测。
传感器可以选择相应的位移传感器、压力传感器、倾斜传感器等。
2.监测网络布局:根据基坑工程的规模和布置,合理确定监测点位布局。
监测点位应包括土方开挖区域、支护结构、周边建筑物等关键部位。
3.监测频次:根据施工进度和工程变化情况,确定监测频次,一般建议每周监测一次。
对于特殊情况,如重大施工阶段或突发事件,可增加监测频次。
4.数据处理:监测数据应及时传输到监测中心,经过专业人员进行处理和分析。
监测中心应建立数据管理系统,保证数据的有效性和可追溯性,及时提供相关报告和预警信息。
5.预警机制:根据监测数据的分析结果,建立相应的预警机制。
一旦监测数据出现异常情况,预警系统应及时发出预警信号,并通知相关人员进行处理。
四、监测实施方案1.土方开挖监测:在土方开挖区域设置位移传感器和压力传感器。
通过定期监测土体的变形和土压力的变化,及时掌握土体的稳定性。
2.支护结构监测:在支撑结构上设置位移传感器和支护剪力传感器。
通过监测支护结构的变形和支撑剪力的变化,及时判断支护结构的安全性。
3.周边建筑物监测:在周边建筑物上设置测斜仪和沉降观测点。
通过监测建筑物的倾斜和沉降情况,判断基坑工程对周边建筑物的影响是否安全。
4.数据报告和预警:监测中心应及时处理监测数据,生成监测报告并及时提供给相关人员。
基坑监测工程施工方案
![基坑监测工程施工方案](https://img.taocdn.com/s3/m/71c71653a200a6c30c22590102020740be1ecdaf.png)
基坑监测工程施工方案:一、监测目标1、通过对监测数据分析,判断上一步施工工艺和施工参数是否符合或达到预期要求,同时实现对下一步的施工工艺和施工进度控制,从而切实实现信息化施工;2、通过监测,及时掌握和提供基坑、围(支)护系统、地表及周边建(构)筑物的变化信息和工作状态,确保本工程基坑开挖期间周边的建筑物、道路、管线正常运行;3、通过监测及时发现基坑施工过程中的环境变形发展趋势,及时反馈信息,达到有效控制施工对建筑物及管线影响的目的;4、通过监测及时调整支撑系统的受力均衡问题,使得整个基坑开挖过程能始终处于安全、可控的范畴内;5、及时预报险情,以便采取措施,防止事故发生;6、将现场监测结果反馈给建设单位、监理单位、设计单位,使设计能根据现场工况发展,进一步优化方案,达到优质安全、经济合理、施工快捷的目的;7、通过跟踪监测,在换撑和支撑拆除阶段,施工科学有序,保障基坑始终处于安全运行的状态;8、必要时为业主提供法律及公证所需要的证据。
二、监测遵循技术规范(1)《城市轨道交通工程测量规范》GB50308-2008(2)《建筑变形测量规范》JGJ8-2007(3)《建筑基坑工程监测技术规范》GB50497-2009(4)天津地标《岩土工程技术规范》DB29-20-2000(5)《建筑地基基础设计规范》GB50007-2011(6)《工程测量规范》GB50026-2007(7)《城市测量规范》CJJ/T8-2011(8)《建筑基坑支护技术规程》JGJ120-2012(9)《天津市建设工程质量管理条例》(10)《天津市建筑基坑工程技术规程》DB29-202-2010(11)其它有关国家行业和地方技术规程、规范及施工验收规范等三、监测项目本工程的监测项目主要包括:围护结构自身的监测,基坑周边1~3倍坑深范围内的建筑物、地表、地下管线的监测。
1、围护结构监测:(1)水平位移监测(2)垂直位移监测(3)深层水平位移监测(4)支撑梁轴力监测(5)立柱隆沉监测2、相邻环境监测:(1)周边建筑物沉降监测及倾斜观测(2)周边建筑物裂缝监测(3)周边地表沉降监测(4)周边地下管线沉降监测3、地下水监测:(1)地下水水位监测四、监测采用仪器设备及监测方法㈠现场安全巡视1、现场安全巡视对象及范围现场安全巡视的主要对象为本工程围护结构自身、施工工况、周边环境及监测设施,巡视的范围包括所有的现场安全监测对象以及和工程施工有关的被影响对象。
基坑监测方案范文
![基坑监测方案范文](https://img.taocdn.com/s3/m/fb1f6a0c777f5acfa1c7aa00b52acfc789eb9f1d.png)
基坑监测方案范文基坑监测是在建筑工程施工过程中对基坑的变形、沉降、地下水位等进行实时监测和分析的一项重要措施。
通过基坑监测可以及时发现并预防基坑工程中可能发生的安全风险,保障工程的质量和安全。
首先,确定监测内容。
基坑监测的内容应包括基坑开挖过程中的地下水位、土体变形、周边建筑物的沉降等。
地下水位监测是基坑施工中必不可少的内容,可以通过设置水位计进行实时监测。
土体变形监测是为了掌握土体的变形情况,防止土体失稳引起基坑坍塌。
周边建筑物的沉降监测是为了保护周边建筑物的安全,一旦发现沉降超过允许范围,需要及时采取措施。
其次,确定监测方法。
基坑监测方法主要包括传统测量方法和现代测量技术。
传统测量方法包括水位计、沉降观测点、钢尺测量等。
现代测量技术包括全站仪、应变测量、GPS技术等。
在选择监测方法时需要根据工程的具体情况和要求进行选择,以满足监测的准确性和及时性。
第三,选择及布置监测仪器设备。
根据监测内容和方法的要求,选择适当的监测仪器设备进行布置。
例如,对于地下水位监测,可以选择水位计并将其布置在基坑周边井中;对于土体变形监测,可以选择应变测量仪和全站仪,并按照设计线路进行布置;对于周边建筑物的沉降监测,可以选择沉降观测点并进行钢尺测量。
第四,进行数据处理和分析。
监测仪器设备所得到的监测数据需要进行处理和分析,以得到有关基坑变形、沉降、地下水位等的信息。
数据处理包括数据清洗、筛选、校正等,数据分析则可以采用数学统计方法、时间序列分析等。
最后,编制监测报告。
监测报告是基坑监测的总结和归纳,对基坑工程的监测结果和情况进行描述和分析,对监测过程中的问题和风险进行总结和反思,并提出相应的处理措施和建议。
监测报告应具备科学性、客观性、可操作性等特点,为后续施工提供必要的参考。
总之,基坑监测方案的制定需要考虑多个方面的因素,包括监测内容、监测方法、监测仪器设备的选择和布置、数据处理分析以及监测报告等。
只有制定出合理、科学的基坑监测方案,才能有效保障工程的质量和安全。
基坑监测方案范文
![基坑监测方案范文](https://img.taocdn.com/s3/m/702f757d42323968011ca300a6c30c225801f077.png)
基坑监测方案范文一、背景与目的基坑工程是城市建设中不可或缺的一环,然而基坑工程中存在着一定的风险,如土层不稳、地下水位变化等,这些因素都可能导致基坑工程的安全隐患。
因此,为了确保基坑工程的施工安全,需要制定一套完善的基坑监测方案,及时发现并处理潜在的风险。
二、监测内容和方法1.土层稳定性监测:采用地面测斜仪对基坑周边土层的变形进行监测,以及使用倾斜计对基坑周边建筑物的倾斜情况进行监测。
如果发现土层发生变形或建筑物倾斜超出了允许范围,需要及时采取措施加固土层或修复建筑物。
2.地下水位监测:通过在基坑内安装水位计观测地下水位的变化,监测地下水位是否超过了设计要求的安全范围。
如若超出,需要采取相应的排水措施,控制地下水的涌入。
3.基坑周边环境监测:包括监测附近地表的沉降情况、环境噪声、震动等因素对基坑工程的影响。
通过这些监测指标的评估,能够及时发现异常情况并提出合理的解决方案。
4.施工过程监测:对基坑的开挖、土方填筑、支护结构施工等各个环节进行实时监测,以便及时调整施工方案、减少风险发生的可能性。
三、监测设备和技术1.地面测斜仪:地面测斜仪是一种通过测量地面上各个点的变形量来判断土层稳定性的仪器。
它能够实时监测土层的变形情况,并通过数据分析给出预警。
2.倾斜计:倾斜计能够测量基坑周边建筑物的倾斜情况,以及墙体的变形情况。
通过倾斜计的监测,能够及时发现墙体的变形情况,并采取相应的修复措施。
3.水位计:水位计是监测地下水位变化的主要设备,通过实时测量地下水位的高低来判断基坑周边的地下水变化情况。
4.环境监测仪器:包括沉降监测仪、噪声监测仪、震动监测仪等,用于监测基坑周边环境的变化情况。
四、监测频率与执行机构1.土层稳定性监测:根据施工进度和土层情况的变化,每周进行一次监测,并由相关专业机构或工程监理单位负责数据的采集、分析和处理。
2.地下水位监测:根据地下水位变化的情况,每日或每周进行一次监测,并由相关专业机构或工程监理单位负责数据的采集、分析和处理。
基坑监测方案模板
![基坑监测方案模板](https://img.taocdn.com/s3/m/adeb164269eae009581bece8.png)
重庆XXXXXXXXXXX基坑工程施工期间 基坑监测项目监测方案XXXXXXX二0XX年十月九日目录一、工程概况 (1)二、编制依据及原则 (1)2.1监测方案编制依据 (1)2.2监测方案编制原则 (2)三、监测目的及监测项目 (2)3.1监测目的 (2)3.2监测项目 (3)3.3主要监测设备 (3)四、监测方案 (4)4.1坡顶水平及垂直位移监测 (4)4.2基坑土体深层水平位移监测 (5)4.3桩(柱)深层水平位移监测 (8)4.4锚索(杆)拉力变化监测 (9)4.5桩柱内力变化监测 (11)五、组织机构 (11)5.1工作流程 (11)5.2成员分工 (12)六、监控量测资料及提交 (13)七、监测过程控制要求 (14)八、安全与文明施工 (14)九、附图 (15)重庆XXXXXXXXXXXXXXXXX土石方工程施工期间基坑监测方案一、工程概况平基土石方工程项目位于XX地块内,拟建地块呈矩形,长轴方向为北东-南西向。
地块面积7596平方米,四周为市政道路,已建成通车的有南面XX路及东面XX支路,已建成但还未通车的有西面的XX及北面XX。
该工程设计方案中,±0.00=232.75m;塔楼拟采用框架-核心筒结构,地上共40层,高度200.00m,地下6层基础顶面-29.2m,基础底面单位面积荷载取990kN/m2;裙楼±0.00 以上共5 层,高度28.20m,整个场地均有6层地下室,地下室底标高-27.2=205.55m;裙楼和地下室设计载荷:每层为20 kN/m2,基础底板为30kN/m2。
该工程地基基础设计等级为甲级,设计使用年限为50年。
二、编制依据及原则2.1监测方案编制依据根据平基土石方工程的特点及其对监测技术要求,结合施工现场实际情况,监测工作应按照以下要求进行:1)将基坑自身位移、沉降及基坑围护结构内力监测作为本工程的监测对象;2)设置的监测内容和监测项目必须符合有关规范设计要求,并能够结合现场实际全面反映工程施工过程中基坑本身和工程环境的变化情况;3)采用的监测方法、仪器、材料和监测频率应符合设计和规范要求;4)监测数据的测试、采集应做到全面、及时、准确;监测数据的整理和提交应满足信息化施工的要求。
基坑监测方案范文
![基坑监测方案范文](https://img.taocdn.com/s3/m/a41273b2f80f76c66137ee06eff9aef8951e4859.png)
基坑监测方案范文一、方案背景基坑是指建筑施工过程中,为了暂时承载施工物料或施工时所使土壤受到改变或移开土壤而造成的挖掘、回填或挡土墙等工程。
基坑施工是建筑工程中一个重要的环节,但在施工过程中,由于地下水位改变、土层变形、支撑结构失稳等原因,容易引发地质灾害事故,对工人和周边建筑物的安全造成威胁。
因此,基坑监测是施工过程中必不可少的工作。
二、监测目标基坑监测的目标是及时了解基坑施工过程中的地质变化和工程结构安全性,从而采取相应的措施,确保施工的安全进行。
1.地质变化监测:监测基坑周边土层的变形,包括土壤沉降、土体侧向变形、土体固结等,以及地下水位的变化,避免因地质变化引起的陷坑、塌方等地质灾害。
2.地下水监测:监测基坑周边地下水位的变化情况,避免因地下水位变高引起的水涝灾害和基坑坍塌。
3.结构变化监测:监测基坑支撑结构的变化,包括支撑结构的变形、开裂状况,以及基坑周边建筑物的沉降情况,避免结构失稳导致的事故。
三、监测方法基坑监测可以采用多种方法,包括传统的地下水位测量、地表沉降观测、支撑结构变形监测,以及现代化的遥感技术和数值模拟等方法。
具体方法可以根据基坑施工的具体情况进行选择。
1.地下水位测量:通过在基坑周边插入水位测量仪器,监测地下水位的变化情况。
可以选择传统的水银柱地下水位计或者现代化的自动监测系统,实时获取地下水位数据。
2.地表沉降观测:通过测量基坑周边地表沉降的情况,可以了解基坑施工对周边土壤的影响。
可以选择传统的测斜仪、全站仪等设备进行测量,也可以选择现代化的遥感技术进行监测。
3.支撑结构变形监测:通过在基坑支撑结构上安装应变传感器、位移传感器等监测设备,实时监测支撑结构的变形情况。
可以采用拉线法、微变形法等传统技术,也可以选择现代化的非接触式监测技术。
4.遥感技术和数值模拟:利用遥感技术获取基坑周边的图像数据,通过图像处理和数值模拟等方法,分析基坑施工对地质环境的影响。
可以选择遥感影像、地理信息系统等技术进行分析。
基坑变形监测方案
![基坑变形监测方案](https://img.taocdn.com/s3/m/e20ff4ac7d1cfad6195f312b3169a4517623e513.png)
4.设计单位:负责对监测数据进行审查,根据监测结果调整设计及施工方案。
九、其他
1.本方案未尽事宜,依据相关规范、设计文件及施工合同执行。
2.本方案经各方签字盖章后生效,修改、补充须书面同意。
3.各方应严格按照本方案要求,切实履行职责,确保基坑工程安全。
五、监测点布置
1.地表沉降监测点:沿基坑周边及影响范围内布置。
2.围护结构顶部水平位移监测点:布置在围护结构的关键部位。
3.围护结构深层水平位移监测点:布置在围护结构的关键深度位置。
4.支撑轴力监测点:根据支撑的分布情况合理布置。
5.地下水位监测点:布置在基坑周边及关键区域。
6.相邻建筑物及地下管线变形监测点:根据其位置及影响范围进行布置。
(4)支撑轴力监测;
(5)地下水位监测;
(6)相邻建筑物及地下管线变形监测。
四、监测方法及设备
1.地表沉降监测:采用水准仪、全站仪等设备,按照二等水准测量要求进行。
2.围护结构顶部水平位移监测:采用全站仪,按照三等导线测量要求进行。
3.围护结构深层水平位移监测:采用测斜仪进行。
4.支撑轴力监测:采用应变计或轴力计进行。
第2篇
基坑变形监测方案
一、前言
基坑工程作为建筑工程中的重要组成部分,其稳定性直接关系到整个工程的安全。为保障施工过程中基坑的稳定性,预防安全事故的发生,特制定本基坑变形监测方案。本方案依据《建筑基坑工程监测技术规范》等相关国家标准和规范,结合项目具体情况进行编制。
二、监测目标
1.实时掌握基坑在施工过程中的变形动态,确保施工安全。
1.监测成果包括:监测数据、分析报告、预警记录等。
基坑监测项目方案
![基坑监测项目方案](https://img.taocdn.com/s3/m/188c046a4a73f242336c1eb91a37f111f0850d62.png)
基坑监测项目方案项目背景在建筑工程施工过程中,经常会遇到深基坑的挖掘工作。
基坑的监测对于保障工程质量和安全非常重要。
通过科学合理的监测方案,能够及时发现基坑工程的变形情况,并采取相应的措施进行调整和处理,从而保证工程的稳定性和安全性。
监测目标本项目旨在对基坑施工过程中的变形情况进行监测和分析,以及预警可能出现的安全风险。
具体的监测目标包括:1.基坑的沉降变形情况;2.周边建筑物的倾斜和沉降情况;3.地下水位的变化情况;4.周边地下管线的变形情况。
监测方案为了达到监测目标,本项目将采用以下监测方案:1. 变形监测在基坑周边设置变形监测点,利用精密位移传感器和倾角传感器等测量仪器,对基坑的沉降变形和周边建筑物的倾斜情况进行实时监测。
监测的频率为每日一次,并将数据记录在监测数据库中进行分析和比对。
2. 地下水位监测在基坑周边设置水位监测井,通过水位传感器对地下水位进行实时监测。
监测频率为每小时一次,并将数据记录在监测数据库中进行分析和比对。
同时,还可以采集雨量数据,以了解降雨情况对地下水位的影响。
3. 管线变形监测对周边地下管线进行变形监测,通过超声波测量仪等设备,对管线的变形情况进行实时监测。
监测频率为每日一次,并将数据记录在监测数据库中进行分析和比对,以及与管线的原始设计数据进行对比。
数据分析与处理监测数据的分析与处理是基坑监测项目的核心内容,通过对监测数据的分析和比对,可以判断基坑工程的稳定性和安全性。
具体的数据分析与处理包括:1.对变形监测数据进行趋势分析,确定基坑的沉降和周边建筑物的倾斜变化趋势;2.对地下水位监测数据进行波动分析,判断地下水位的变化规律;3.对管线变形监测数据进行对比分析,判断管线的变形情况是否达到设计要求。
预警与处理措施基于监测数据分析的结果,可以进行预警和相应的处理措施。
预警和处理措施包括:1.当基坑的沉降和周边建筑物的倾斜超过预警值时,及时报警,停止施工,并进行相应的排水和加固措施;2.当地下水位波动较大或超过预警值时,及时采取措施进行排水和抽水处理;3.当管线的变形超过设计要求时,及时修复或更换管线。
新建基坑工程监测施工方案模板
![新建基坑工程监测施工方案模板](https://img.taocdn.com/s3/m/8c3204462af90242a895e5ad.png)
基坑监测方案编制:校对:审核:目录1、工程概况2、建设场地岩土工程条件及基坑周边环境状况3、监测目的和依据4、监测内容及项目5、基准点、监测点的布设与保护6、监测方法及精度7、监测期和监测频率8、监测报警及异常情况下的监测措施9、监测数据处理与信息反馈10、监测人员的配备11、监测仪器设备及检定要求12、作业安全及其他管理制度****基坑监测方案1、工程概况根本项目建设地点:总用地面积:75753 平方米本单位建筑占地面积:777.4平方米总建筑面积:5378.8平方米建筑层数(地上):7层地下:2层建筑高度:20.90工程使用年限:50年建筑物的抗震设防烈度:7度主要结构类型:框架剪力墙结构据工程实际情况,按《建筑基坑工程监测技术规范》 GB50497-2009第4.2.1表1基坑工程类别中规定该基坑为二级基坑。
2、建设场地岩土工程条件及基坑周边环境状况场地岩土工程条件:土质第1层为表土,工程性质差,第2层为粉土,工程性质一般,第3层为粉砂,工程性质良好,第4层为粉质粘土,工程性质良好,第5层为粘土,工程性质良好,第6层为粉质粘土,工程性质一般,第6-1层为粉土,工程性质一般,第7层为粉质粘土,工程性质良好,第8层为粉土夹粉质粘土,工程性质一般,第9层为粉土夹粉砂,工程性质一般,第10层为粉细砂,工程性质良好,第11层为粉质粘土,工程性质良好。
该基坑支护东侧采用双排钻孔灌注桩的支护形式;北侧采用放坡;其余两面采用钻孔灌注桩+预应力锚索支护形式;基坑周边采用三轴搅拌桩全封闭止水帷幕。
周边环境现场查勘状况:基坑的东侧为青年南路,南侧为济川路。
3、监测目的和依据3.1、监测目的3.1.1根据监测结果,发现可能发生危险的先兆,判断工程的安全性,防止工程破坏事故的发生,采取必要的工程措施;3.1.2以基坑监测的结果指导现场施工,进行信息化反馈优化设计,使设计达到优质、安全、经济合理、施工快捷;3.1.3为设计人员提供准确的现场监测结果使之与理论预测值相比较,用反分析法求得更准确的设计参数,修正理论公式,不断地修改和完善原有的设计方案,以指导下阶段的施工,确保地下施工的安全顺利进行,同时也能为其它工程的设计施工提供参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基坑监测方案模板新建铁路成都至绵阳、乐山双流机场隧道DIK178+570~DIK178+870隧道基坑监测技术方案姓名:夏侯瑞学号: 20110000班级: 11级土木99班西南交通大学2014年5月11日第一章工程概况1.1 工程概况新建铁路成都至绵阳、乐山-双流机场隧道地处成都平原,地形平坦开阔,隧道埋深4 m,地表房屋密集,厂房众多,道路纵横交错,交通方便。
隧道进口里程DIK173+260,出口里程DIK179+730,全长6470 m,其中DIK178+570~DIK178+870段下穿规划中的机场滑行跑道。
该段隧道总长300 m,拱顶以上埋深12 m左右(考虑机场滑行道回填高度8 m)。
1.2工程地质及水文地质概况该隧道基坑的上述特点决定了隧道基坑的支护工作难度特别大,必须保证隧道基坑的安全。
所以该隧道基坑监测工作必不可少,而且要求高。
1.3 隧道基坑支护形式本段隧道按明挖顺作法施工,采用钻孔灌注桩加桩间土钉墙作围护结构,坡面采用锚网喷防护,喷C20混凝土厚10cm,桩间土钉采用Φ42钢化管,每根长3~5m,桩顶以下前三排土钉长度5 m,其余土钉长度3 m,间距1.5 m。
基坑安全等级为一级。
围护桩桩径1.2m,桩间距2.4 m,基坑内支撑采用Φ600mm(壁厚12mm) 钢支撑加І56a双拼工字钢围檩。
第二章监测方案编写依据2.1监测设计原则(1)根据基坑开挖深度要求,按一级基坑监测执行。
(2)监测内容及监测点的分布满足工程支护设计及有关规程和规范的要求,满足全面监测施工中的基坑变形,环境变化情况。
使施工单位能及时了解变形态势态,以便及时采取有关措施,调控施工步序与节奏,做到信息化施工,最大限度地规避风险,确保开挖顺利和施工安全。
(3)施工中加强监测,保护重点对象(监测基准点、基坑四角及有特殊要求的监测点)。
除了采取有针对性的保护措施外,监控其保护措施的有效性是监测的主要任务。
(4)监测采用的方法,监测仪器及监测频率应结合设计和规范要求,满足工程需要,保障工程施工阶段的正常监测,及时准确提供数据,满足信息化施工的要求。
(5)监测数据及时整理分析能满足现场施工进度、工况及特殊要求。
及时与各方联系,提交阶段性数据。
(6)将监测数据与预测值相比较,以判断前一步施工工艺和施工参数是否符合预期要求,以确定后一步部的施工参数,做到信息化施工。
(7)将现场测量结果用于信息化反馈优化设计,使设计达到优质安全、经济合理、施工快捷的目的。
(8)基坑监测周期贯穿于基坑开挖和地下工程施工的全过程,直到基坑回填完毕。
(9)基坑支护设计方案或施工有重大变更,建设方及相关方应及时通知监测方,及时调整监测方案。
(10)工程监测期间建设方及施工方应协助监测单位保护好监测基准点及变形监测点。
2.2 设计要求由于该隧道基坑具有以下特点:(1)隧道基坑护施工工期紧,难度大。
(2)隧道基坑一侧正在进行填土施工,填土高度8米,对隧道基坑的安全提出严重挑战。
2.3监测方案编写依据本监测方案主要依据以下几种规范和文件编写:(1)《建筑基坑工程监测技术规范》(GB50497-2009);(2)《工程测量规范》(GB50026-2009);(3)《岩土工程勘察规范》(GB50021-2009);(4)《建筑地基基础设计规范》(GBJ7-2009);(5)《建筑变形测量规范》(JGJ/T 8-97);(6)《建筑基坑支护技术规程》(JGJ120-99);第三章监测内容3.1监测目的(1)确保支护结构的稳定和安全,确保基坑周围的建筑物、构筑物、道路及地下管线的安全和正常使用。
根据监测结果,判断基坑工程的安全性和对周围环境的影响,防止工程事故和周围环境事故的发生。
(2)指导基坑工程的施工。
通过现场监测结果的信息反馈,采用反分析方法求得更合理的设计参数,并对基坑的后续施工工况的工作性状进行预测,指导后续施工的展开,达到优化设计方案和施工方案的目的,并为工程应急措施的实施提供依据。
(3)验证基坑设计方案,完善基坑设计理论。
基坑工程现场实测资料的积累为完善现行的设计方法和设计理论提供依据。
监测结果与理论预测值的对比分析,有助于验证设计和施工方案的正确性,总结支护结构和土体的受力和变形规律,推动基坑工程的深入研究和发展。
3.2监测对象基坑工程现场监测的对象分为两大部分:围护结构检测和周围环境监测。
围护结构检测包括围护砖墙、支撑、围檩和圈梁、立柱、地下水位等的监测。
周围环境的监测包括道路、地下管线、邻近建筑物、地下水位等项目。
第四章监测点的布设根据环境监测和基坑围护体系两方面的内容布置监测点,监测点的布置原则以掌握基坑开挖过程中基坑的整体工作性状和周围环境的变化,同时考虑相对重要部位进行重点监测。
4.1 围护桩桩身倾斜监测用于了解在基坑开挖的过程中,主动土压力作用下,围护桩的变形发展趋势。
测斜管绑扎在一根主筋上,布置在靠近土体一侧,测点位置从上到下选8个,两两间隔1.5米。
4.2 围护桩主筋应力监测用于了解在基坑开挖的过程中,主动土压力作用下,围护桩的主筋应力的变化。
主筋应力(及弯矩)监测采用钢筋计,钢筋计布置在钢筋笼中一对对称分布的主筋上,分前后左右,每根桩布置32个钢筋计。
4.3 围护桩弯矩监测用于了解在基坑开挖的过程中,主动土压力作用下,围护桩的主筋应力的变化。
主筋应力(及弯矩)监测采用钢筋计,钢筋计布置在钢筋笼中一对对称分布的主筋上,分前后左右,每根桩布置32个钢筋计。
4.3 内支撑结构轴力监测用于了解在基坑开挖的过程中,支撑轴力的大小(1)对于钢筋混凝土支撑,可采用钢筋应力计和混凝土应变计分别量测钢筋应力和混凝土应变,然后换算得到支撑轴力。
(2)对于钢支撑,可在支撑上直接粘结电阻应变片量测钢支撑的应变,即可得到支撑轴力。
当然,也可利用轴力计量测。
钢筋计与主筋成上下左右对称布置,一般布置四个。
4.5 围护桩顶水平位移监测用于了解在基坑开挖的过程中,围护桩身及桩侧土体水平位移的发展动态。
采用视准线法,在基坑边埋设两个永久工作的基准点,然后用一台全站仪照准测点,定期量测偏移量,用交会法可以算出偏移量。
4.6 围护桩顶沉降监测用于了解基坑开挖对周围建筑物地表沉降的影响。
桩顶沉降可在稳固的地方设置一台精密水准仪,采用在桩顶挂垂球的方法测出沉降量。
4.7 基坑外地下水位监测用于了解在基坑开挖的过程中,基坑外地下水位的变化。
在PVC管上打数排小孔做成花管,钻机钻孔后,将主管和花管埋设于孔内,做好防排水措施,做好观测记录。
4.8 地表裂缝观测用于了解在基坑开挖的过程中,处于滑动区范围的土体变形发展趋势,用于评价支护结构的支护效果,为加强支护提供依据。
裂缝观测应测定建筑上的裂缝分布位置和裂缝的走向、长度、宽度及其变化情况。
根据裂缝形式的不同分别采用比例尺、小钢尺或游标卡尺等工具定期量出标志间距离求得裂缝变化值,或用方格网板定期读取“坐标差”计算裂缝变化值;4.9 监测基准点基准点是为了测量相对变形而选定的固定测点。
应选择相对稳定,不易破坏,便于观测点作为基准点。
第五章监测方法、精度及选用仪器5.1 围护桩桩身水平位移监测土体和围护结构的深层水平位移通常采用钻孔测斜仪测定,当被测土体产生水平位移时,测斜管轴线产生挠度,用测斜仪测量测斜管轴线与铅垂线之间的夹角的变化量,从而获得土体内部各点的水平位移。
测斜仪分为便携式测斜仪和固定式测斜仪,目前应用最广的是便携式测斜仪。
便携式数字测斜仪使用时首先需要预埋测斜管道,常用于监测滑坡区和深洞开挖土体的侧向位移,也用来监测诸如堤坝结构的变形,或者是水平预埋测斜管检测大型建筑地面沉降。
其核心设备是二力平衡的伺服加速度计。
具有耐久性,高精度, 快速反应等优点。
系统精度:±6mm/50 个读数,通过软件的修正程序可以得到更高的精度5.2 主筋应力(及弯矩)监测主筋应力(及弯矩)监测采用钢筋计。
钢筋计是用于长期埋设在水工结构物或其它混凝土结构物内,测量结构物内部的钢筋应力,并可同步测量埋设点的温度的振弦式传感器。
钢筋计的应力测量范围通常在200~300MPa,其中拉伸可达300MPa,压缩可达200MPa,其监测精度为0.01MPa/F。
5.3 支撑轴力监测支撑内力监测一般可以采用下列途径进行:(1)对于钢筋混凝土支撑,可采用钢筋应力计和混凝土应变计分别量测钢筋应力和混凝土应变,然后换算得到支撑轴力。
(2)对于钢支撑,可在支撑上直接粘结电阻应变片量测钢支撑的应变,即可得到支撑轴力。
当然,也可利用轴力计量测。
第六章监测频率和观测次数支护桩桩顶水平位移和沉降、支护桩深层侧向位移从基坑开挖到浇筑完主体结构底板,每天监测一次;浇筑完结构底板到浇筑主体结构施工,每周监测2~3次;各道支撑拆除后的三天到一周,每天监测一次。
支撑轴力和锚杆拉力的监测期限从支撑和锚杆的施工结束到全部支撑拆除实现换撑的过程,每天监测一次。
土体分层沉降、孔隙水压力、土压力、支护墙体内力监测期限为:基坑每开挖其深度的1/5~1/4或在每道内支撑施工期间测读2~3次,必要时可加密到每周监测1~2次;基坑开挖到设计深度到浇筑完整体结构底板期间,每周监测3~4次;浇筑完主体结构底板到全部支撑拆除实现换撑,每周监测1~2次。
地下水位监测期限是整个降水期间,或从基坑开挖到浇筑完主体结构底板,每天监测一次。
支护结构有渗漏水现象时,要加强监测。
当基坑周围有地下管线、道路和建筑物需要监测时,周围环境的沉降和水平位移需要每天监测一次,建筑物倾斜和裂缝宽度的监测频率为每周监测1~2次。
基坑周围的土层中的孔隙水压力、土体深层沉降和侧向位移监测项目,在支护桩施工时的监测频率为每天一次,基坑开挖时的监测频率与支护桩内力监测频率一致。
第七章控制标准与险情预报预警制度一般分级进行,分为安全、注意、危险三种指标。
当监测值达到警戒值的80%时,口头报告施工现场管理人员,并在监测日报表上提出报警信号。
当监测值达到警戒值的100%时,书面报告建设单位、监理和施工现场管理人员,并在监测日报表上提出报警信号及建议。
当监测值达到警戒值的110%时,除书面报告建设单位、监理和施工现场管理人员,应通知项目主管立即召开现场会议,进行现场调查,确定应急措施。
1、基坑围护结构倾斜与发展速率这项指标主要通过分析测斜仪结果得出。
对于一般性的基坑工程且周围环境无严格的位移要求时,最大位移值一般控制为80mm,每天发展不超过10mm。
对于周围存在要求严格保护的建(构)筑物的基坑,应根据保护对象的具体要求来确定围护结构位移的控制标准。
2、地下管线(包括煤气管线、自来水管线、电缆和电话线等)的位移和发展速率在地下管线当中,以煤气管线最为重要,煤气管线的位移:沉降或水平位移均不得超过10mm ,每天发展不得超过2mm。