平面直角坐标系题型归纳

合集下载

平面直角坐标系重难点题型(四大题型)(原卷版)

平面直角坐标系重难点题型(四大题型)(原卷版)

专题05 平面直角坐标系重难点题型(四大题型)【题型1 两点间距离】【题型2 求平面直角坐标系中动点问题的面积】【题型3 平面直角坐标系中规律题探究】【题型4 等腰三角形个数讨论问题】【题型1 两点间距离】1.在平面直角坐标系中,有A(﹣2,a+1),B(a﹣1,4),C(b﹣2,b)三点.(1)当AB∥x轴时,求A、B两点间的距离;(2)当CD⊥x轴于点D,且CD=1时,求点C的坐标.2.已知平面直角坐标系内的三点:A(a﹣1,﹣2),B(﹣3,a+2),C(b﹣6,2b).(1)当直线AB∥x轴时,求A,B两点间的距离;(2)当直线AC⊥x轴,点C在第二、四象限的角平分线上时,求点A和点C 的坐标.3.先阅读一段文字,再回答下列问题:已知在平面内两点坐标P1(x1,y1),P2(x2,y2),其两点间距离公式为P1P2=,同时,当两点所在的直线在坐标轴上或平行于x轴或垂直于x轴时,两点距离公式可简化成|x1﹣x2|或|y2﹣y1|.(1)已知A(3,5),B(﹣2,﹣1),试求A,B两点的距离;(2)已知A,B在平行于y轴的直线上,点A的纵坐标为6,点B的纵坐标为﹣4,试求A,B两点的距离;(3)已知一个三角形各顶点坐标为A(0,6),B(﹣3,2),C(3,2),找出三角形中相等的边?说明理由.4.先阅读一段文字,再回答下列问题:已知在平面内两点坐标P1(x1,y1),P2(x2,y2),其两点间距离公式为:p1p2=,例如:点(3,2)和(4,0)的距离为.同时,当两点所在的直线在坐标轴上或平行于x轴或平行于y轴距离公式可简化成:p1p2=|x1﹣x2|或p1p2=|y1﹣y2|.(1)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为2,则A,B两点的距离为;(2)线段AB平行于x轴,且AB=3,若点B的坐标为(2,4),则点A的坐标是;(3)已知A(3,5),B(﹣4,4),A,B两点的距离为;(4)已知△ABC三个顶点坐标为A(3,4),B(0,5),C(﹣1,2),请判断此三角形的形状,并说明理由.5.先阅读下列一段文字,再解答问题:已知在平面内有两点P1(x1,y1),P2(x2,y2),其两点间的距离公式为;同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知点A(2,4),B(﹣2,1),则AB=;(2)已知点C,D在平行于y的直线上,点C的纵坐标为3,点D的纵坐标为﹣2,则CD=;(3)已知点M和(1)中的点A有MA∥x轴,且MA=3,则点M的坐标为;(4)已知点P(3,1)和(1)中的点A,B,则线段P A,PB,AB中相等的两条线段是.6.先阅读下列一段文字,再回答后面的问题:已知在平面直角坐标系内两点P1(x1,y1),P2(x2,y2),其两点间的距离P1P2=,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(1,3),B(﹣3,﹣5),试求A,B两点间的距离;(2)已知线段MN∥y轴,MN=4,若点M的坐标为(2,﹣1),试求点N 的坐标.7.先阅读下列一段文字,再回答后面的问题.已知在平面内两点P1(x1,y1),P2(x2,y2),这两点间的距离P1P2=,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4),B(﹣3,﹣8),试求A,B两点间的距离;(2)已知A,B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A,B两点间的距离.8.阅读材料:两点间的距离公式:如果平面直角坐标系内有两点A(x1,y1)、B(x2,y2),那么A、B两点的距离AB=,则AB2=(x1﹣x2)2+(y1﹣y2)2.例如:若点A(4,1),B(3,2),则AB=,若点A(a,1),B(3,2),且AB=,则.根据实数章节所学的开方运算即可求出满足条件的a的值.根据上面材料完成下列各题:(1)若点A(﹣2,3),B(1,2),则A、B两点间的距离是.(2)若点A(﹣2,3),点B在x轴上,且A、B两点间的距离是5,求B 点坐标.9.在平面直角坐标系中,有A(﹣2,a+1),B(a﹣1,4),C(b﹣2,b)三点.(1)当点C在y轴上时,求点C的坐标;(2)当AB∥x轴时,求A,B两点间的距离;(3)当CD⊥x轴于点D,且CD=1时,求点C的坐标.10.先阅读下列一段文字,在回答后面的问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离公式,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离.(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),你能判定此三角形的形状吗?说明理由.【题型2 求平面直角坐标系中动点问题的面积】11.如图所示,在平面直角坐标系中,已知A(0,1),B(2,0),C(4,3).(1)在平面直角坐标系中画出△ABC,则△ABC的面积是;(2)若点D与点C关于原点对称,则点D的坐标为;(3)已知P为x轴上一点,若△ABP的面积为4,求点P的坐标.12.如图,在平面直角坐标系中,已知A(a,0),B(b,0),其中a,b满足.(1)填空:a=,b=;(2)若在第三象限内有一点M(﹣2,m),用含m的式子表示△ABM的面积;(3)在(2)条件下,线段BM与y轴相交于C(0,﹣),当时,点P是y轴上的动点,当满足△PBM的面积是△ABM的面积的2倍时,求点P的坐标.13.如图,在平面直角坐标系内,已知点A的坐标为(3,2),点B的坐标为(3,﹣4),点P为直线AB上任意一点(不与A、B重合),点Q是点P 关于x轴的对称点.(1)在方格纸中标出A、B,并求出△ABO的面积;(2)设点P的纵坐标为a,求点Q的坐标;(3)设△OP A和△OPQ的面积相等,且点P在点Q的上方,求出此时P点坐标.14.如图,在平面直角坐标系中,已知A(a,0),B(b,0),其中a,b满足a2+2a+1+|3a+b|=0.(1)填空:a=,b=;(2)若存在一点M(﹣2,m)(m<0),点M到x轴距离,到y轴距离,求△ABM的面积(用含m的式子表示);(3)在(2)条件下,当m=﹣1.5时,在y轴上有一点P,使得△MOP的面积与△ABM的面积相等,请求出点P的坐标.15.如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(3,c)三点,其中a、b、c满足关系式:|a﹣2|+(b﹣3)2+=0.(1)求a、b、c的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP 的面积;(3)在(2)的条件下,是否存在负整数m,使四边形ABOP的面积不小于△AOP面积的两倍?若存在,求出所有满足条件的点P的坐标,若不存在,请说明理由.16.如图,已知在平面直角坐标系中,点A在y轴上,点B、C在x轴上,S△ABO =8,OA=OB,BC=10,点P的坐标是(﹣6,a),(1)求△ABC三个顶点A、B、C的坐标;(2)连接P A、PB,并用含字母a的式子表示△P AB的面积(a≠2);(3)在(2)问的条件下,是否存在点P,使△P AB的面积等于△ABC的面积?如果存在,请求出点P的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且|a+2|+=0.(1)求a,b的值;(2)①在x轴的正半轴上存在一点M,使△COM的面积=△ABC的面积,求出点M的坐标;②在坐标轴的其它位置是否存在点M,使△COM的面积=△ABC的面积恒成立?若存在,请直接写出符合条件的点M的坐标.18.如图,直线AB与x轴,y轴分别相交于点A(6,0),B(0,8),M是OB上一点,若将△ABM沿AM折叠,则点B恰好落在x轴上的点B'处.求:(1)点B'的坐标;(2)△ABM的面积.19.如图在直角坐标系中,已知A(0,a),B(b,0)C(3,c)三点,若a,b,c满足关系式:|a﹣2|+(b﹣3)2+=0.(1)求a,b,c的值.(2)求四边形AOBC的面积.(3)是否存在点P(x,﹣x),使△AOP的面积为四边形AOBC的面积的两倍?若存在,求出点P的坐标,若不存在,请说明理由.20.已知:在平面直角坐标系中,A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在x轴上,且△ABP与△ABC的面积相等,求点P的坐标.21.如图,在平面直角坐标系中,A(2,2),B(﹣1,0),C(3,0)(1)求△ABC面积;(2)在y轴上存在一点D,使得△AOD的面积是△ABC面积的2倍,求出点D的坐标;(3)在平面内有点P(3,m),是否存在m值,使△AOP的面积等于△ABC 面积的2倍?若存在,直接写出m的值;若不存在,请说明理由.22.在平面直角坐标系中,△ABC的顶点坐标分别为A(2,0),B(0,4),C(﹣3,2).(1)如图1,求△ABC的面积.(2)若点P的坐标为(m,0),①请直接写出线段AP的长为(用含m的式子表示);②当S△P AB =2S△ABC时,求m的值.(3)如图2,若AC交y轴于点D,直接写出点D的坐标为.23.如图,在平面直角坐标系中,点A(﹣3b,0)为x轴负半轴上一点,点B (0,4b)为y轴正半轴上一点,其中b满足方程:3(b+1)=6.(1)求点A、B的坐标;(2)点C为y轴负半轴上一点,且△ABC的面积为12,求点C的坐标;(3)在(2)的条件下,在x轴上是否存在点P,使得△PBC的面积等于△ABC的面积的一半?若存在,求出相应的点P的坐标;若不存在,请说明理由.【题型3 平面直角坐标系中规律题探究】24.如图,动点P按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,2),…,按这样的运动规律,则第2021次运动到点()A.(2021,1)B.(2021,2)C.(2020,1)D.(2021,0)25.有一组数,按照下列规律排列:1,2,3,6,5,4,7,8,9,10,15,14,13,12,11,16,17,18,19,20,21,……数字5在第三行左数第二个,我们用(3,2)点示5的位置,那点这组成数里的数字100的位置可以表示为()A.(14,9)B.(14,10)C.(14,11)D.(14,12)26.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(1,﹣1)B.(﹣1,1)C.(﹣1,﹣2)D.(1,﹣2)27.如图,在平面直角坐标系上有个点P(1,0),点P第一次向上跳动1个单位至P1(1,1),紧接着第二次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P第100次跳动至点P100的坐标是()A.(﹣24,49)B.(﹣25,50)C.(26,50)D.(26,51)28.如图,一个机器人从O点出发,向正东方向走3m到达A1点,再向正北方向走6m到达A2点,再向正西方向走9m到达A3点,再向正南方向走12m到达A4点,再向正东方向走15m到达A5点.按如此规律走下去,当机器人走到A6点时,离O点的距离是()A.10m B.12m C.15m D.20m29.如图,将正整数按有图所示规律排列下去,若用有序数对(n,m)表示n 排从左到右第m个数.如(4,3)表示9,则(10,3)表示.30.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(0,1),(0,2),(1,2),(1,3),(0,3),(﹣1,3)…,根据这个规律探索可得,第90个点的坐标为.31.如图所示点A0(0,0),A1(1,2),A2(2,0),A3(3,﹣2),A4(4,0),…根据这个规律,探究可得点A2017坐标是.32.如图所示,一个机器人从O点出发,向正东方向走3m到达A1点,再向正北方向走6m到达A2点,再向正西方向走9m到达A3点,再向正南方向走12m 到达A4点,再向正东方向走15m到达A5点,按如此规律走下去,相对于点O,机器人走到A6时是位置.33.如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第四次向右跳动5个单位至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是.【题型4 等腰三角形个数讨论问题】34.如图,在平面直角坐标系中,点A的坐标是(6,6),点B在坐标轴上,且△OAB是等腰直角三角形,则点B的坐标不可能是()A.(0,6)B.(6,0)C.(12,0)D.(0,﹣6)35.如图,在平面直角坐标系中,A,B两点的坐标分别为(﹣4,0),(0,3),连接AB,点P在第二象限,以点P,A,B为顶点的等腰直角三角形有个,任意写出其中一个点P坐标为.36.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3.(1)观察每次变换前后的三角形的变化规律,若将△OA3B3变换成△OA4B4,则A4的坐标是,B4的坐标是.(2)若按第(1)题找到的规律将△OAB进行n次变换,得到△OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测A n的坐标是,B n的坐标是.(3)若按第(1)题找到的规律将△OAB进行n次变换,得到△OA n B n,则△OA n B n的面积S为37.如图,方格纸中小正方形的边长均为1个单位长度,A、B均为格点.(1)在图中建立直角坐标系,使点A、B的坐标分别为(3,3)和(﹣1,0);(2)在(1)中x轴上是否存在点C,使△ABC为等腰三角形(其中AB为腰)?若存在,请直接写出所有满足条件的点C的坐标.38.如图,在平面直角坐标系中,已知点A(﹣2,0),B(2,0).(1)画出等腰三角形ABC(画一个即可);(2)写出(1)中画出的三角形ABC的顶点C的坐标.。

专题03 平面直角坐标系(专题详解)(解析版)

专题03 平面直角坐标系(专题详解)(解析版)

专题03 平面直角坐标系专题03 平面直角坐标系 (1)7.1 平面直角坐标系 (2)知识框架 (2)一、基础知识点 (2)知识点1 有序数对 (2)知识点2 平面直角坐标系 (2)知识点3 点的坐标特点 (3)二、典型题型 (6)题型1 有序数对 (6)题型2 平面直角坐标系的概念 (6)题型3 点的坐标的特征 (6)一、点的位置与坐标 (7)二、点的坐标与距离 (8)三、点的坐标与平行于坐标轴的直线(数形结合思想) (8)四、点的坐标与图形的面积 (9)(1)知坐标,求面积 (9)(2)知面积,求坐标(方程思想) (10)(3)分类讨论 (12)三、难点题型 (14)题型1 确定点所在的象限 (14)题型2 点到坐标轴的距离 (14)题型3 探究平面直角坐标系坐标的变化规律 (15)7.2 坐标系的简单运用 (17)知识框架 (17)一、基础知识点 (17)知识点1 用坐标表示地理位置 (17)知识点2 用坐标表示平移 (18)二、典型题型 (20)题型1 用坐标表示地理位置 (20)题型2 用坐标表示平移 (21)一、点的平移 (21)(1)已知点和平移方式,求对应点 (21)(2)已知点和对应点,求平移方式 (21)二、图形的平移 (22)三、难点题型 (23)题型1 动点问题 (23)7.1 平面直角坐标系知识框架{基础知识点{有序数对平面直角坐标系点的坐标的特点典型题型{ 有序数对平面直角坐标系的概念点的坐标的特征{ 点的位置与坐标点的坐标与距离点的坐标与平行于坐标轴的直线(数形结合思想)点的坐标与图形的面积{知坐标,求面积知面积,求坐标(方程思想)分类讨论难点题型{确定点所在的象限点到坐标轴的距离探究平面直角坐标系坐标的变化规律 一、基础知识点知识点1 有序数对1)我们把有顺序的两个数a 与b 组成的数对,用于表示平面中某一确定位置的,叫作有序数对,记作(a ,b )注:①(a ,b )与(b ,a )表达的含义不同,注意有序数对的顺序②在表达有序数对时,一般行在前,列在后。

平面直角坐标系章节复习重点题型

平面直角坐标系章节复习重点题型

平面直角坐标系本章知识点框架:重点:一、平面内点的坐标特征(各个象限以及X轴,Y轴)例题.(2021秋•大观区校级期末)如果P(a,b)在第三象限,那么点Q(a+b,ab)在()A.第一象限B.第二象限C.第三象限D.第四象限【典例2】已知平面直角坐标系中有一点M(m﹣1,2m+3).(1)点M在象限的角平分线上,求点M的坐标;(2)点M到x轴的距离为1时,求点M的坐标.练习:1.(2021春•长白县期中)在平面直角坐标系中,分别根据下列条件,求出各点的坐标.(1)点A在y轴上,位于原点上方,距离原点2个单位长度;(2)点B在x轴上,位于原点右侧,距离原点1个单位长度长度;(3)点C在x轴上方,y轴右侧,距离每条坐标轴都是2个单位;(4)点D在x轴下方,y轴左侧,距离每条坐标轴都是3个单位长度;(5)点E在x轴下方,y轴右侧,距离x轴2个单位长度,距离y轴4个单位长度.2、若点P(2m+1,3m−1/2)在第四象限,则m的取值范围是__________./3.(2021秋•青岛期末)与点P(a2+1,﹣a2﹣2)在同一个象限内的点是()A.(3,2)B.(﹣3,2)C.(﹣3,﹣2)D.(3,﹣2)4.(2021秋•毕节市期末)已知点A(﹣3,2m﹣4)在x轴上,点B(n+5,4)在y轴上,则点C(n,m)位于()A.第一象限B.第二象限C.第三象限D.第四象限5.(2021春•栾城区期中)已知点P、Q的坐标分别为(2m﹣5,m﹣1)、(n+2,2n﹣1),若点P在第二、四象限的角平分线上,点Q在第一、三象限的角平分线上,则m n的值为.二、依据已知点的坐标画平面直角坐标系例题、(2021秋•莱阳市期末)如图所示,在正方形网格中有A,B,C三个点,若建立平面直角坐标系后,点A的坐标为(2,1),点B的坐标为(1,﹣2),则点C的坐标为()A.(1,1)B.(﹣2,1)C.(﹣1,﹣2)D.(﹣2,﹣1)三、平面内的点到X轴的距离,到Y轴的距离例题(2021秋•姜堰区期末)若点P(x,y)到x轴的距离为2,且xy=﹣8,则点P的坐标为()A.(2,﹣4)B.(﹣2,4)或(2,﹣4)C.(﹣2,4)D.(﹣4,2)或(4,﹣2)1.已知点P在第二象限,且到x轴的距离是2,到y轴的距离是3,则点P的坐标为_________.(1)若点P在x轴下方,则点P的坐标为__________.(2)若点P在平面直角坐标系内,则点P的坐标为__________.2.(2021秋•岳西县期末)已知点P(3x﹣1,4﹣2x)在第四象限,且到坐标轴的距离和为3,则点P的坐标为.4.(2021秋•会宁县期末)如果点P(x,y)的坐标满足x+y=xy,那么称点P为“和谐点”,若某个“和谐点”到x轴的距离为3,则P点的坐标为.5.(2021春•大武口区校级月考)已知点P(2a﹣2,a+5),回答下列问题:(1)点P在y轴上,求出点P的坐标.(2)点P在第二象限,且它到x轴,y轴的距离相等,求a2020+2020的值.四、平行于坐标轴的直线上的点的坐标特征例题.已知点P(2a﹣2,a+5),解答下列各题:(1)若点Q的坐标为(4,5),直线PQ∥y轴,求点P的坐标;(2)若点P在第二象限,且它到x轴、y轴的距离相等,求a2020+的值.五.平面内的点关于X轴对称,关于Y轴对称,关于原点对称六、点的平移,图形的平移例将平面直角坐标系平移,使原点O移至点A(3,−2),这时在新坐标系中原来点O的坐标是______.巩固练习:1.线段CD是由线段AB平移得到的.点A(−1,4)的对应点为C(4,7),则点B(−4,−1)的对应点D的坐标为_________.2.将点P(﹣3,4)向上平移2个单位,再向左平移4个单位,得到点P1的坐标是()A.(﹣1,2)B.(﹣7,2)C.(﹣1,6)D.(﹣7,6)3.在平面直角坐标系中,将点A(m,n+2)先向左平移3个单位,再向上平移2个单位,得到点A′,若点A'位于第二象限,则m、n的取值范围分别是()A.m<0,n>0B.m<3,n>﹣4C.m<0,n<﹣2D.m<﹣3,n<﹣4 4.已知点P(m﹣4,n),Q(m,n﹣2)在第一象限内,连接PQ,将线段PQ平移,使平移后的点P,Q分别在x,y轴上,则点Q平移后的对应点的坐标是()A.(﹣4.0)B.(4,0)C.(0,2)D.(0,﹣2)七、在平面直角坐标系中求图形的面积例1 如图,在平面直角坐标系中,P(a,b)是三角形ABC的边AC上一点,三角形ABC经平移后点P的对应点为P_1(a+6,b+2).1.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).(3)△ABC的面积为.2.如图,在直角坐标系中,四边形ABCD各个顶点的坐标分别是A(﹣2,﹣3)、B(5,﹣2)、C (2,4)、D (﹣2,2),求这个四边形的面积.3.(2021秋•安徽期中)已知a ,b 都是实数,设点P (a +2,b+32),且满足3a =2+b ,我们称点P 为“梦之点”.(1)判断点A (3,2)是否为“梦之点”,并说明理由.(2)若点M (m ﹣1,3m +2)是“梦之点”,请判断点M 在第几象限,并说明理由.。

第02讲平面直角坐标系(3个知识点5类热点题型讲练习题巩固)(原卷版)

第02讲平面直角坐标系(3个知识点5类热点题型讲练习题巩固)(原卷版)

第02讲平面直角坐标系课程标准学习目标①平面直角坐标系及点的坐标②象限及其点的坐标特点1.掌握平面直角坐标系的定义及其图形,能够根据点的位置确定点的坐标以及根据点的坐标确定点的位置。

2.掌握各个象限内的点的坐标特点,以及一些特殊位置上的点的坐标特点并能够熟练应用。

1.平面直角坐标系的定义:如图:平面内两条相互且原点的数轴组成平面直角坐标系。

①坐标轴:水平的数轴称为;竖直的数轴称为。

②坐标原点:两条坐标轴的是平面直角坐标系的原点。

③坐标平面:坐标轴所在的平面为坐标平面。

2.点的坐标:横坐标:过平面内一点做x轴的垂线,垂足在x轴上对应的数为这个点的;纵坐标:过平面内一点做y轴的垂线,垂足在y轴上对应的数为这个点的;【即学即练1】1.如图,写出坐标系中各点的坐标.【即学即练2】2.在平面直角坐标系中描出下列各点:A(﹣3,2),B(﹣2,3),C(0,2),D(﹣4,0).知识点02 象限及象限内的坐标特点1.象限:如图,坐标轴把坐标平面分成了四个部分,每一个部分称为象限,从右上角为;逆时针一次得到、以及。

特别地,坐标轴不属于任何一个象限。

2.象限内的点的坐标特点:第一象限内的所有点的坐标,横坐标纵坐标均0;可以表示为。

第二象限内的所有点的坐标,横坐标0,纵坐标, 0;可以表示为。

第三象限内的所有点的坐标,横坐标0,纵坐标, 0;可以表示为。

第四象限内的所有点的坐标,横坐标0,纵坐标, 0;可以表示为。

【即学即练1】3.在平面直角坐标系中,点(4,﹣4)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【即学即练2】4.如果点A(a,b)在第二象限,则点B(b,a)在()A.第一象限B.第二象限C.第三象限D.第四象限知识点03 特殊位置上的点的坐标特点1.坐标轴上的点的坐标特点:①x轴上的所有点的纵坐标等于,可表示为。

②y轴上的所有点的横坐标等于,可表示为。

2.象限角平分线上的点的坐标特点:①一、三象限的角平分线上的点的横坐标与纵坐标。

专题3.1平面直角坐标系【十大题型】-2024-2025学年八年级数学上册举一反三[含答案]

专题3.1平面直角坐标系【十大题型】-2024-2025学年八年级数学上册举一反三[含答案]
发到电视塔,他的路径表示错误的是(注:街在前,巷在后)(
)
A. 2, 2 ® 2,5 ® 5, 6
B. 2, 2 ® 2,5 ® 6,5
C. 2, 2 ® 6, 2 ® 6,5
2) ® (2,
3) ® (6,
3) ® (6,
5)

试卷第 6 页,共 11 页
【变式 7-2】(23-24 八年级·浙江宁波·阶段练习)
27.如图, A -1, 0 , C 1, 4 ,点 B 在 x 轴上,且 AB = 3 .
(1)求点 B 的坐标,并画出 V ABC ;
(2)求 V ABC 的面积;
(3)在 y 轴上是否存在点 P ,使以 A 、 B 、 P 三点为顶点的三角形的面积为10?若存在,请直
.点 A 关于 x 轴的对

【变式 6-2】(23-24 八年级·湖北武汉·期中)
- 3) ,
23.已知点 A 和点 B 关于直线 m (直线 m 上各点的纵坐标都是 2)对称,若点 A 的坐标是 (2,
则点 B 的坐标是

【变式 6-3】(23-24 八年级·福建莆田·期中)
24.如图,在平面直角坐标系中,V ABC 关于直线 m (直线 m 上各点的横坐标都为 1)对称,
【例 2】(23-24 八年级·上海长宁·期末)
5.已知 a 为实数,那么在平面直角坐标系中,下列各点中一定位于第四象限的点是(
A. 4, - a
2

B. a + 1, -4
2
C. a + 1, - 4

2
D. a , - 4
【变式 2-1】(23-24 八年级·浙江绍兴·期末)

平面直角坐标系题型总结

平面直角坐标系题型总结

题型一 各个象限点的符号特征1、如果a -b <0,且ab <0,那么点(a ,b)在( )A 、第一象限B 、第二象限C 、第三象限,D 、第四象限.2、如果xy <0,那么点P (x ,y )在( ) (A) 第二象限 (B) 第四象限 (C) 第四象限或第二象限 (D) 第一象限或第三象限3、若点P(m -1, m )在第二象限,则下列关系正确的是 ( )A.10<<mB.0<mC.0>mD.1>m4、点(x ,1-x )不可能在 ( )A.第一象限B.第二象限C.第三象限D.第四象限5、已知点P(102-x ,x -3)在第三象限,则x 的取值范围是 ( )A .53<<x B.3≤x ≤5 C.5>x 或3<x D.x ≥5或x ≤36、点P (x ,y )在第四象限,且|x|=3,|y|=2,则P 点的坐标是 。

7、点 A 在第二象限 ,它到 x 轴 、y 轴的距离分别是 3 、2,则坐标是 ;8、若点P(x ,y )的坐标满足xy ﹥0,则点P在第 象限;若点P(x ,y )的坐标满足xy ﹤0,且在x 轴上方,则点P在第 象限.若点P (a ,b )在第三象限,则点P '(-a ,-b +1)在第 象限;9、已知点A (m ,n )在第四象限,那么点B (n ,m )在第 象限10、若点P(3a-9,1-a)是第三象限的整数点(横、纵坐标都是整数),那么a=11、已知点P (2a -1 , 3+a ),若P 点在x 轴上方,则a 的范围是 ;若P点在x 轴下方,则a 的范围是 ;若P 点在y 轴左侧,则a 的范围是 ;若P 点在y 轴右侧,则a 的范围是 ;12、已知m 为实数,则点P 1 , ︱-m ︱+1)只可能在第 象限。

13、如果点M (a+b,ab )在第二象限,那么点N(a,b)在第 象限。

14、已知点P (3a -9 , 1-a )是第三象限的点,且横坐标、纵坐标均为整数,若P 、Q 关于原点对称,求Q 点坐标。

(完整版)平面直角坐标系常见题型.docx

(完整版)平面直角坐标系常见题型.docx

平面直角坐标系常见题型1.数轴上表示5 的点与表示–1 的点之间的距离是;2.已知数轴上的点A 、B 所对应的实数分别是1.2 和 3,那么 A B =.x43.经过点 ( 2, 0)且垂直于轴的直线可以表示为直线.Q4. 经过点 P (- 1, 5)且垂直于y 轴的直线可以表示为直线.5.点 P ( 2 , 3 ) 在第 ___________ 象限.6.如果点 A ( a , b )在第三象限,那么ab _____0 ( 填“<”,“=”或“>” ) .7.如果点 A ( 2, n )在 x 轴上,那么点 B ( n 2 , n 1 )在第 _________象限.8. 在平面直角坐标系中, 点 P ( 3 a ,2)到两坐标轴的距离相等, 那么 a 的值是 .9 P 在第二象限,且点 P到 x 轴的距离是 3 y 轴的距离是 5 P 的坐标.如果点 ,到 ,那么点 是.10.点 A ( –2, 3)关于 x 轴的对称点 B 的坐标为;11.点 P ( – 1,0 ) 关于 y 轴的对称点 P ′的坐标是 _____________.12.点 A ( –3, 2)关于原点的对称点 A ′的坐标为 ; .已知点 P ( m 1 , )与点 Q ( , 2 )关于 y 轴对称 , 那么 m =____________ .13 2 1 14 .在直角坐标平面内,将点 A (3 , 2) 向下平移4 个单位后,所得的点的坐标是________________ .15 在平面直角坐标系中, 点 M ( 2, 6 )向下平移 3 个单位到达点 N ,点 N 在第 ______象限.16.已知△ ABC 的顶点坐标是 A ( -1,5)、yB (-5, 5)、C ( -6, 2).(1)分别写出与点A 、B 、C 关于原点A 6BO 对称的点 A 、 B 、 C 的坐标;54A ____________ ,3 B ____________ , C21C ____________;-6 -5-4 -3 -2 -1 O 1 2 3 4 5 6x(2)在坐标平面内画出 -1-2 △ A B C ;(写结论)-3-4(3)△ A B C 的面积的-5 值等于 ____________.-617.在直角坐标平面内,描出点A(0,5)和点 B(–2,–4),已知 BC= 4,且 BC//x 轴.(1)写出点C的坐标;(2)联结AB、AC、BC,判断△ABC的形8y 6状,并求出它的面积.42 -5O5x10-2-4-6-818.在直角坐标平面内,已点A( 3, 0)、B(― 5, 3),将点 A 向左平移 6 个单位到达 C 点,将点 B 向下平移 6 个单位到达 D 点.(1)写出 C 点、 D 点的坐标:C____________,D____________ ;(2)把这些点按 A- B―C― D― A 顺次联结起来,这个图形的面积是____________ .19. 如图,在平面直角坐标系中,已知OA= 5 .y 4( 1)点 A 的坐标是;3( 2)点 A 关于原点 O 的对称点A的坐标是,并在平面直角坐标系中画出点 A ;2 1( 3)如果点 B 在 x 轴上,且△ A BO是等腰三角形,请写出两个符合条件的点 B 的坐标:-4-3 -2-1O 1 2 3 4xB1, B2,那么-1A-2SA B1O________ , S A B2O _______ .-3-4第 19 题图20.如图,在直角坐标平面内,已知点A 的坐标(-5,0),(1)图中 B 点的坐标是;(2)点 B 关于原点对称的点C的坐标是;点 A 关于 y 轴对称的点 D的坐标是;(3)△ABC的面积是;(4)在直角坐标平面上找一点,能满足SADE =SABCE的点 E 有个;(5)在 y 轴上找一点F,使 S ADF= S ABC,第 20 题图那么点 F 的所有可能位置是;(用坐标y表示,并在图中画出)21 .如图7 ,在直角坐标平面内,已知点BA2, 3 与点 B ,将点 A 向右平移 7 个单位到达点 C .(1)点B的坐标是;A、B两点之间距离等于;( 2)点C的坐标是;△ ABC的形状是;1O 1x( 3 )画出△ABC关于原点O对称的△A1 B1C1.23.已知点 A 的坐标是( 3, 0),点 B 的坐标是(- 1, 0),△ ABC 是等腰三角形,且一边上的高为 4,写出所有满足条件的点 C 的坐标.(提示:先画图,再求解)24.如图,在△ ABC 中,已知AB = AC = 2 ,点 A 的坐标是(1, 0),点 B、 C 在 y 轴上.试判断在 x 轴上是否存在点P,使△ PAB、△ PAC 和△ PBC 都是等腰三角形.如果存在这样的点 P 有几个?写出点P 的坐标;如果不存在,请说明理由.yB1A-1O1x-1C25.如图 11,在直角坐标平面内有两点 A 0,2 、 B 2,0 ,且 A 、 B 两点之间的距离等于 a ( a 为大于0的已知数),在不计算 a 的数值条件下,完成下列两题:(1)以学过的知识用一句话说出 a >2的理由;(2)在 x 轴上是否存在点P ,使△ PAB 是等腰三角形,如果存在,请写出点Py的坐标,并求△PAB 的面积;如果不存在,请说明理由.解:AB Ox图 11。

初中平面直角坐标系经典题型

初中平面直角坐标系经典题型

初中平面直角坐标系经典题型摘要:1.初中平面直角坐标系的概念2.经典题型及解题方法2.1 坐标与图形的识别2.2 坐标与距离的计算2.3 坐标与函数的关系2.4 坐标与几何变换正文:【初中平面直角坐标系概念】初中平面直角坐标系是一个由横坐标和纵坐标构成的平面,它们相互垂直,通常表示为(x, y)。

在这个坐标系中,每一个点都有唯一的横纵坐标值,从而可以确定它在平面上的位置。

【经典题型及解题方法】初中平面直角坐标系的经典题型主要包括以下几类:【2.1 坐标与图形的识别】这一类题型要求根据给定的坐标点,识别出对应的图形,或者给出图形的坐标点。

解决这类问题的关键是掌握坐标点的连线与图形的关系,以及图形的性质。

【2.2 坐标与距离的计算】这类题型要求计算平面上两点之间的距离。

根据距离公式,两点(x1, y1) 和(x2, y2) 之间的距离为√((x2-x1)+(y2-y1))。

理解并熟练运用这个公式,是解决这类问题的关键。

【2.3 坐标与函数的关系】在这类题型中,平面直角坐标系与函数关系密切。

例如,一次函数y=kx+b 的图象是一条直线,其斜率k 和截距b 都可以通过坐标点来确定。

理解坐标与函数的相互关系,可以帮助我们更好地解决这类问题。

【2.4 坐标与几何变换】这类题型涉及到坐标系中的几何变换,如平移、旋转等。

对这类问题,我们需要掌握几何变换的规律,以及如何根据变换后的坐标点还原原始图形。

【总结】初中平面直角坐标系是数学中的基本概念,对于这一领域的题型,我们需要熟练掌握坐标系的基本性质,理解坐标点与图形、距离、函数以及几何变换的关系。

平面直角坐标系知识梳理及经典题型(教师版)

平面直角坐标系知识梳理及经典题型(教师版)

平面直角坐标系知识结构图:一、知识要点:(一)有序数对:有顺序的两个数a与b组成的数对。

记作(a ,b)(二)平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;a,)一一对应;其1、坐标平面上的任意一点P的坐标,都和惟一的一对有序实数对(b中,a为横坐标,b为纵坐标坐标;2、x轴上的点,纵坐标等于0;y轴上的点,横坐标等于0;坐标轴上的点不属于任何象限(三)四个象限的点的坐标具有如下特征:1、点P (y x ,)所在的象限 横、纵坐标x 、y 的取值的正负性;2、点P (y x ,)所在的数轴 横、纵坐标x 、y 中必有一数为零; (四)在平面直角坐标系中,已知点P ),(b a ,则 1、点P 到x 轴的距离为b ; 2、点P 到y 轴的距离为a ;3、点P 到原点O 的距离为PO = 22b a +(五)平行直线上的点的坐标特征:1、在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;2、在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;(六)对称点的坐标特征:1、点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数;象限 横坐标x纵坐标y第一象限 正 正 第二象限 负 正 第三象限 负 负 第四象限正负P (b a ,)abxy OXYA BmXYC Dn2、点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数;3、点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;关于x 轴对称 关于y 轴对称 关于原点对称(七)两条坐标轴夹角平分线上的点的坐标的特征:1、若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等;2、若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上(八)利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:1、建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向;2、根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;3、在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

初中平面直角坐标系经典题型

初中平面直角坐标系经典题型

初中平面直角坐标系经典题型【最新版】目录1.初中平面直角坐标系的概念和基本元素2.经典题型一:坐标与图形的转换3.经典题型二:两点间距离的计算4.经典题型三:直线与坐标轴的交点问题5.经典题型四:坐标轴上的动点问题6.总结与拓展正文一、初中平面直角坐标系的概念和基本元素初中平面直角坐标系是由两条互相垂直的数轴(x 轴和 y 轴)组成的平面。

在这个坐标系中,每个点都具有唯一的坐标,即它在 x 轴和 y 轴上的数值。

x 轴上的数值称为点的横坐标,y 轴上的数值称为点的纵坐标。

二、经典题型一:坐标与图形的转换这类题型要求根据给定的坐标,绘制出相应的图形,或者根据给定的图形,求出其中特定点的坐标。

解决这类问题的关键是理解坐标与图形的关系,熟练掌握坐标的表示方法。

三、经典题型二:两点间距离的计算这类题型要求计算平面上两个点之间的距离。

根据勾股定理,两点间的距离等于它们横纵坐标差的平方和的平方根。

在计算过程中,要注意距离的正值性质。

四、经典题型三:直线与坐标轴的交点问题这类题型要求求一条直线与坐标轴的交点坐标。

首先需要找到直线的解析式,然后分别将 x 轴和 y 轴的坐标代入解析式,求出交点坐标。

五、经典题型四:坐标轴上的动点问题这类题型要求在坐标轴上寻找满足特定条件的点。

通常需要利用代数方法,将问题转化为方程或不等式,然后求解得到点的坐标。

六、总结与拓展初中平面直角坐标系是数学中的基本知识,掌握好相关题型对于提高数学能力具有重要意义。

在解决这类问题时,要注重培养数形结合的思维方式,熟练运用坐标与图形的转换关系。

平面直角坐标系找规律题型分类汇总解析

平面直角坐标系找规律题型分类汇总解析

平■面直角坐标系找规律题型解析1、如图,正方形ABCES勺顶点分别为A(1,1) B(1 , -1) C(-1 , -1) D(-1 , 1) , y轴上有一点P(0, 2)。

作点P关丁点A的对称点p1,作p1关丁点B的对称点p2,作点p2关丁点C 的对称点p3,作p3关丁点D的对称点p4,作点p4关丁点A的对称点p5,作p5关丁点B的对称点p6…,按如此操作下去,则点p2011的坐标是多少?周期均由点P1, P2, P3, P4组成。

第1 周期点的坐标为:P1(2,0) , P2(0,-2) , P3(-2,0) , P4(0,2)第2 周期点的坐标为:P1(2,0) , P2(0,-2) , P3(-2,0) , P4(0,2)第3 周期点的坐标为:P1(2,0) , P2(0,-2) , P3(-2,0) , P4(0,2)第n 周期点的坐标为:P1(2,0) , P2(0,-2) , P3(-2,0) , P4(0,2)2011 -4=502…3,所以点P2011的坐标与P3坐标相同,为(一2, 0) 解法2:根据题意,P1 (2, 0) P2 (0, -2) P3 (-2, 0) P4 (0, 2)。

根据p1-pn每四个一循环的规律,可以得出:P4n (0, 2) , P4n+1 (2, 0) , P4n+2 (0, -2) , P4n+3( — 2, 0)。

2011 -4=502…3,所以点P2011的坐标与P3坐标相同,为(一2, 0)总结:此题是循环问题,关键是找出每几个一循环,及循环的起始点。

此题是每四个点一循环,起始点是p点。

2、在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.个yA1 宾A5 -A6 A9 A10 ______ .1 > c q -------- £q J K R】r —I FO A3 A4 A7 ^8 A11 %2 ‘X(1) 填写下列各点的坐标:A4( , ) , A8( , ) , A10( , ) , A12( *(2) 写出点A4n的坐标(n是正整数);(3) 按此移动规律,若点Am在x轴上,请用含n的代数式表示m (n是正整数)(4) 指出蚂蚁从点A2011到点A2012的移动方向.(5) 指出蚂蚁从点A100到点A101的移动方向.(6)指出A106, A201的的坐标及方向。

专题11 平面直角坐标系(归纳与讲解)(解析版)

专题11 平面直角坐标系(归纳与讲解)(解析版)

专题11平面直角坐标系【专题目录】技巧1:点的坐标变化规律探究问题技巧2:巧用坐标求图形的面积技巧3:活用有序数对表示点的位置技巧4:巧用直角坐标系中点的坐标特征解相关问题【题型】一、用有序数对表示位置【题型】二、求点的坐标【题型】三、距离与点坐标的关系【题型】四、象限角的平分线上的点的坐标【题型】五、与坐标轴平行的直线上的点的坐标特征【题型】六、点的坐标的规律探索【题型】七、函数图象的应用【考纲要求】1、会画平面直角坐标系,并能根据点的坐标描出点的位置,掌握坐标平面内点的坐标特征.2、了解函数的有关概念和函数的表示方法,并能结合图象对实际问题中的函数关系进行分析.3、能确定函数自变量的取值范围,并会求函数值.【考点总结】一、平面直角坐标系【考点总结】二、函数有关的概念及图象【注意】1、坐标轴上的点不属于任何象限点的坐标:对于坐标轴内任意一点A,过点A分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应的数a、b分别叫做点A的横坐标和纵坐标,有序数对A(a,b)叫做点A的坐标,记作A(a,b)。

2、确定出数自变量力的取值范围的方法 (1)整式:取全体实数 (2)有分母:取值使分母不为零(3)有二次根式:取值使被开方数不小于0 (4)有很多情况:取它们的公共部分 (5)在实际问题中:取值要符合实际意义 【技巧归纳】技巧1:点的坐标变化规律探究问题【类型】一、沿坐标轴运动的点的坐标规律探究1.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…,组成一条平滑的曲线.点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2 019秒时,点P 的坐标是( )(第1题)A .(2 018,0)B .(2 019,-1)C .(2 019,1)D .(2 020,0)2.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2 017次运动后,动点P 的坐标是________,经过第2 018次运动后,动点P 的坐标是________.3.如图,一个粒子在第一象限内及x 轴、y 轴上运动,第一分钟从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),然后它接着按图中箭头所示的方向运动(在第一象限内运动时,运动方向与x 轴或y 轴平行),且每分钟移动1个单位长度.(1)当粒子所在位置是(2,2)时,所经过的时间是________; (2)在第2 017分钟时,这个粒子所在位置的坐标是________.【类型】二、绕原点呈“回”字形运动的点的坐标规律探究4.将正整数按如图所示的规律在平面直角坐标系中进行排列,每个正整数对应一个整点坐标(x ,y),其中x ,y 均为整数,如数5对应的坐标为(-1,1),则数2 018对应的坐标的( )A .(16,22)B .(-15,-22)C .(15,-22)D .(16,-22) 【类型】三、图形变换的点的坐标规律探究5.在平面直角坐标系中有三个点A(1,-1),B(-1,-1),C(0,1),点P(0,2)关于A 的对称点为P 1,P 1关于B 的对称点为P 2,P 2关于C 的对称点为P 3,按此规律继续以A ,B ,C 为对称中心重复前面的操作,依次得到P 4,P 5,P 6,…,则点P 2 018的坐标是( )A .(0,0)B .(0,2)C .(2,-4)D .(-4,2)6.(探究题)如图,在平面直角坐标系中,第一次将三角形OAB 变换成三角形OA 1B 1,第二次将三角形OA 1B 1变换成三角形OA 2B 2,第三次将三角形OA 2B 2变换成三角形OA 3B 3,已知A(1,3),A 1(2,3),A 2(4,3),A 3(8,3),B(2,0),B 1(4,0),B 2(8,0),B 3(16,0).(1)观察每次变换前后的三角形有何变化,找出规律,按此变换规律再将三角形OA 3B 3变换成三角形OA 4B 4,则点A 4的坐标是________,点B 4的坐标是________;(2)若按(1)题中的规律,将三角形OAB 进行n(n 为正整数)次变换,得到三角形OA n B n ,比较每次变换前后三角形顶点坐标有何变化,找出规律,推测点A n 的坐标是__________,点B n 的坐标是__________. 参考答案1.B 点拨:半径为1个单位长度的圆的周长的一半为12×2π×1=π,因为点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,所以点P 1秒走12个半圆.当点P 从原点O 出发,沿这条曲线向右运动,运动时间为1秒时,点P 的坐标为(1,1); 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为2秒时,点P 的坐标为(2,0); 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为3秒时,点P 的坐标为(3,-1); 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为4秒时,点P 的坐标为(4,0);当点P 从原点O 出发,沿这条曲线向右运动,运动时间为5秒时,点P 的坐标为(5,1); 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为6秒时,点P 的坐标为(6,0); ….因为2 019÷4=504……3,所以第2 019秒时,点P 的坐标是(2 019,-1). 2.(2 017,1);(2 018,0) 3.(1)6分钟 (2)(44,7)4.C 点拨:以原点为中心,数阵图形成多层正方形(不完整),观察图形得出下表:正方形在第四象限的顶点 因为442<2 018<452=(2×22+1)2=2 025, 所以数2 025对应的坐标为(22,-22). 所以数2 018对应的坐标为(15,-22).5.D 点拨:设P 1(x ,y),因为点A(1,-1),点P(0,2)关于A 的对称点为P 1,所以x2=1,y +22=-1,解得x =2,y =-4,所以P 1(2,-4).同理可得P 2(-4,2),P 3(4,0),P 4(-2,-2),P 5(0,0),P 6(0,2),P 7(2,-4),…,所以每6个点循环一次.因为2 018÷6=336……2,所以点P 2 018的坐标是(-4,2).故选D . 6.(1)(16,3);(32,0)(2)(2n ,3);(2n +1,0) 技巧2:巧用坐标求图形的面积 【类型】一、直接求图形的面积1.如图,已知A(-2,0),B(4,0),C(-4,4),求三角形ABC 的面积.【类型】二、利用补形法求图形的面积2.已知在四边形ABCD中,A(-3,0),B(3,0),C(3,2),D(1,3),画出图形,求四边形ABCD 的面积.3.如图,已知点A(-3,1),B(1,-3),C(3,4),求三角形ABC的面积.【类型】三、利用分割法求图形的面积4.在如图所示的平面直角坐标系中,四边形OABC各顶点分别是O(0,0),A(-4,10),B(-12,8),C(-14,0),求四边形OABC的面积.【类型】四、已知三角形的面积求点的坐标5.已知点O(0,0),点A(-3,2),点B在y轴的正半轴上,若三角形AOB的面积为12,则点B 的坐标为()A.(0,8) B.(0,4) C.(8,0) D.(0,-8)6.已知点A(-4,0),B(6,0),C(3,m),如果三角形ABC的面积是12,求m的值.7.已知A(-2,0),B(4,0),C(x,y).(1)若点C在第二象限,且|x|=4,|y|=4,求点C的坐标,并求三角形ABC的面积;(2)若点C在第四象限,且三角形ABC的面积为9,|x|=3,求点C的坐标.参考答案1.解:因为C点坐标为(-4,4),所以三角形ABC 的AB 边上的高为4. 又由题易知AB =6, 所以S 三角形ABC =12×6×4=12.2.解:如图所示.过点D 作DE 垂直于BC ,交BC 的延长线于点E ,则四边形DABE 为直角梯形. S 四边形ABCD =S 梯形DABE -S 三角形C DE =12×(2+6)×3-12×1×2=11.3.解:方法一:如图,作长方形CDEF ,则S 三角形ABC =S 长方形CDEF -S 三角形ACD -S 三角形ABE -S 三角形BCF =CD·DE -12·AD·CD -12AE·BE -12BF·CF =6×7-12×3×6-12×4×4-12×2×7=18.方法二:如图,过点B 作EF ∥x 轴,并分别过点A 和点C 作EF 的垂线,垂足分别为点E ,F.易知AE =4,BE =4,BF =2,CF =7,EF =6,所以S 三角形ABC =S 梯形AEFC -S 三角形ABE -S 三角形BFC =12(AE +CF)·EF -12AE·BE -12BF·CF =12×(4+7)×6-12×4×4-12×2×7=18. 方法三:如图,过点A 作DE ∥y 轴,并分别过点C 和点B 作DE 的垂线,垂足分别为点D ,E. 易知AE =4,BE =4,AD =3,CD =6,DE =7,所以S 三角形ABC =S 梯形BEDC -S 三角形ABE -S 三角形ADC=12(BE +CD)·DE -12AE·BE -12AD·CD =12×(4+6)×7-12×4×4-12×3×6=18.4.解:如图,过点A 作AD ⊥x 轴,垂足为点D ,过点B 作BE ⊥AD ,垂足为点E.易知D(-4,0),E(-4,8),且BE =-4-(-12)=8,AE =10-8=2,CD =-4-(-14)=10,所以S 四边形OABC =S 三角形AOD +S 三角形ABE +S 梯形DEBC =12OD·AD +12AE·BE +12(BE +CD)·DE =12×4×10+12×2×8+12×(8+10)×8=20+8+72=100.点拨:本题的解题技巧在于把不规则的四边形OABC 分割为几个规则图形,实际上分割的方法是不唯一的,并且不仅可以用分割法,还可以用补形法. 5.A6.解:AB =6-(-4)=10.根据三角形的面积公式,得12AB·|m|=12,即12×10·|m|=12,解得|m|=2.4. 因为点C(3,m),所以点C 在第一象限或第四象限. 当点C 在第一象限时,m >0, 则m =2.4;当点C 在第四象限时,m <0,则m =-2.4.综上所述,m 的值为-2.4或2.4.7.解:(1)因为点C 在第二象限,且|x|=4,|y|=4,所以点C 的坐标为(-4,4). 又易知AB =6,所以S 三角形ABC =12×6×4=12.(2)由题意可知AB =6.因为点C 在第四象限,|x|=3,所以x =3.因为S 三角形ABC =12×6×|y|=9,所以|y|=3.所以y =-3.所以点C 的坐标为(3,-3). 技巧3:活用有序数对表示点的位置 【类型】一、利用有序数对表示座位号1.如图,王明同学的座位是1组2排,如果用有序数对(1,2)表示,那么张敏同学和石玲同学的座位怎样用有序数对表示?【类型】二、利用有序数对表示棋子位置2.五子棋深受广大棋友的喜爱,其规则是:在正方形棋盘中,由黑方先行,轮流弈子,在任一方向上连成五子者为胜.如图是两个五子棋爱好者甲和乙对弈时的部分示意图(甲执黑子先行,乙执白子后走),观察棋盘思考:若A点的位置记为(8,4),甲必须在哪个位置上落子,才不会让乙在短时间内获胜?为什么?【类型】三、利用有序数对表示地理位置3.如图是某市市区几个旅游景点示意图(图中每个小正方形的边长为1个单位长度),如果以O为原点建立两条互相垂直的数轴,如果用(2,2.5)表示金凤广场的位置,用(11,7)表示动物园的位置,根据此规定:(1)湖心岛、光岳楼、山陕会馆的位置如何表示?(2)(11,7)和(7,11)是同一个位置吗?为什么?【类型】四、利用有序数对表示运动路径4.如图,小军家的位置点A在经5路和纬4路的十字路口,用有序数对(5,4)表示;点B是学校的位置,点C是小芸家的位置,如果用(5,4)→(5,5)→(5,6)→(6,6)→(7,6)→(8,6)表示小军家到学校的一条路径.(1)请你用有序数对表示出学校和小芸家的位置;(2)请你写出小军家到学校的其他几条路径.(写3条)参考答案1.解:张敏同学的座位可以表示为(3,3),石玲同学的座位可以表示为(4,5).2.解:甲必须在(1,7)或(5,3)处落子,因为若甲不先截断以上两处之一,而让乙在(1,7)或(5,3)处落子,则下一步不论截断何处,乙总有一处落子可连成五子,乙必胜无疑.3.解:(1)湖心岛的位置可表示为(2.5,5);光岳楼的位置可表示为(4,4);山陕会馆的位置可表示为(7,3).(2)不是同一个位置,因为前面一个数字代表横向,后一个数字代表纵向,交换数字的位置后,就会表示不同的位置.4.解:(1)学校和小芸家的位置分别可表示为(8,6),(3,3).(2)答案不唯一,如:①(5,4)→(5,5)→(6,5)→(7,5)→(8,5)→(8,6);②(5,4)→(6,4)→(7,4)→(8,4)→(8,5)→(8,6);③(5,4)→(6,4)→(6,5)→(7,5)→(8,5)→(8,6).技巧4:巧用直角坐标系中点的坐标特征解相关问题【类型】一、象限内的点的坐标1.若点M(x,y)满足(x+y)2=x2+y2-2,则点M所在象限是()A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定2.在平面直角坐标系中,若点P(m,m-2)在第一象限内,则m的取值范围是________.【类型】二、坐标轴上的点的坐标3.若点M的坐标为(-a2,|b|+1),则下列说法中正确的是()A.点M在x轴正半轴上B.点M在x轴负半轴上C.点M在y轴正半轴上D.点M在y轴负半轴上4.已知点P(a-1,a2-9)在y轴上,则点P的坐标为________.【类型】三、平面直角坐标系中一些特殊点的坐标5.已知点P(2m-5,m-1),当m为何值时,(1)点P在第二、四象限的角平分线上?(2)点P在第一、三象限的角平分线上?6.已知A(-3,m),B(n,4),若AB∥x轴,求m的值,并确定n的取值范围.【类型】四、点的坐标与点到x轴、y轴的距离之间的关系7.已知点A(3a,2b)在x轴上方,y轴的左侧,则点A到x轴、y轴的距离分别为() A.3a,-2b B.-3a,2b C.2b,-3a D.-2b,3a8.已知点P到x轴和y轴的距离分别是2和5,求点P的坐标.【类型】五、关于坐标轴对称的点9.点P(-3,4)关于x轴对称的点的坐标是()A.(-4,3)B.(3,-4)C.(-3,-4) D.(3,4)10.已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=________.11.在平面直角坐标系中,点A的坐标是(2,-3),作点A关于x轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是(______,______).【类型】六、关于特殊直线对称的点12.点P(3,5)关于第一、三象限的角平分线对称的点为点P1,关于第二、四象限的角平分线对称的点为点P2,则点P1,P2的坐标分别为()A.(3,5),(5,3)B.(5,3),(-5,-3)C.(5,3),(3,5) D.(-5,-3),(5,3) 13.点M(1,4-m)关于过点(5,0)且垂直于x轴的直线对称的点的坐标是____________;若点M关于过点(0,-3)且平行于x轴的直线对称的点的坐标为(1,7),则m=________.参考答案1.B2.m>2点拨:第一象限内的点的横、纵坐标必须同时为正,所以m>2.3.C点拨:由-a2可确定a=0,所以-a2=0. 又|b|+1>0,所以点M(-a2,|b|+1)在y轴正半轴上.4.(0,-8)5.解:(1)根据题意,得2m-5+m-1=0,解得m=2.所以当m=2时,点P在第二、四象限的角平分线上.(2)根据题意,得2m-5=m-1,解得m=4.所以当m=4时,点P在第一、三象限的角平分线上.点拨:第一、三象限的角平分线上的点的横、纵坐标相等,第二、四象限的角平分线上的点的横、纵坐标互为相反数.6.解:因为AB∥x轴,所以m=4.因为A,B不重合,所以n≠-3.点拨:与x轴平行的直线上的点的纵坐标相等.7.C点拨:由点A(3a,2b)在x轴上方,y轴的左侧可知点A在第二象限,故3a是负数,2b是正数,所以点A到x轴、y轴的距离分别为2b,-3a.8.解:设点P的坐标为(x, y),依题意,得|x|=5,|y|=2,所以x=±5,y=±2.所以点P的坐标为(5,2)或(5,-2)或(-5,2)或(-5,-2).点拨:(1)点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.(2)写点P的坐标时,横、纵坐标的前后顺序不能随意改变.(3)找全满足条件的点P的坐标,不要遗漏.9.C10.-611.-2;312.B点拨:任意点A(a,b)关于第一、三象限的角平分线对称的点的坐标为(b,a),关于第二、四象限的角平分线对称的点的坐标为(-b,-a).13.(9,4-m);17点拨:点A(a,b)关于过点(k,0)且垂直于x轴的直线对称的点的坐标为(2k-a,b),关于过点(0,k)且平行于x轴的直线对称的点的坐标为(a,2k-b).【题型讲解】【题型】一、用有序数对表示位置例1、小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是().A.小李现在位置为第1排第2列B.小张现在位置为第3排第2列C.小王现在位置为第2排第2列D.小谢现在位置为第4排第2列【答案】B【分析】由于撤走一排,则四人所在的列数不变、排数减一,据此逐项排除即可.【详解】解:A. 小李现在位置为第1排第4列,故A选项错误;B. 小张现在位置为第3排第2列,故B选项正确;C. 小王现在位置为第2排第3列,故C选项错误;D. 小谢现在位置为第4排第4列,故D选项错误.故选:B.【题型】二、求点的坐标例2、如图,四边形OBCD 是正方形,O ,D 两点的坐标分别是()0,0,()0,6,点C 在第一象限,则点C 的坐标是( )A .()6,3B .()3,6C .()0,6D .()6,6【答案】D【分析】利用O ,D 两点的坐标,求出OD 的长度,利用正方形的性质求出OB ,BC 的长度,进而得出C 点的坐标即可.【详解】解:①O ,D 两点的坐标分别是()0,0,()0,6,①OD =6,①四边形OBCD 是正方形,①OB ①BC ,OB =BC =6 ①C 点的坐标为:()6,6, 故选:D .【题型】三、距离与点坐标的关系例3、在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( ) A .(3,4)- B .(4,3)-C .(4,3)-D .()3,4-【答案】C 【解析】 由题意,得 x=-4,y=3,即M 点的坐标是(-4,3), 故选C .【题型】四、象限角的平分线上的点的坐标例4、若点N 在第一、三象限的角平分线上,且点N 到y 轴的距离为2,则点N 的坐标是( ) A .(2,2) B .(-2,-2) C .(2,2)或(-2,-2) D .(-2,2)或(2,-2)【答案】C 【解析】已知点M 在第一、三象限的角平分线上,点M 到x 轴的距离为2,所以点M 到y 轴的距离也为2.当点M 在第一象限时,点M 的坐标为(2,2);点M 在第三象限时,点M 的坐标为(-2,-2).所以,点M 的坐标为(2,2)或(-2,-2).故选C . 【题型】五、与坐标轴平行的直线上的点的坐标特征例5、已知点A (a ﹣2,2a +7),点B 的坐标为(1,5),直线AB ①y 轴,则a 的值是( ) A .1 B .3C .﹣1D .5【答案】B 【详解】 解:①AB①y 轴,①点A 横坐标与点A 横坐标相同,为1, 可得:a -2=1,a=3 故选:B .【题型】六、点的坐标的规律探索例6、在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A ,第二次移动到点2A ……第n 次移动到点n A ,则点2019A 的坐标是( )A .()1010,0B .()1010,1C .()1009,0D .()1009,1【答案】C【分析】根据图象可得移动4次图象完成一个循环,从而可得出点2019A 的坐标. 【详解】()10,1A ,()21,1A ,()31,0A ,()42,0A ,()52,1A ,()63,1A ,…,201945043÷=⋅⋅⋅,所以2019A 的坐标为()50421,0⨯+,则2019A 的坐标是()1009,0, 故选C .【题型】七、函数图象的应用例7、如图,一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行一周,设蚂蚁的运动时间为t ,蚂蚁到O 点的距离..为s ,则s 关于t 的函数图象大致为( ).【答案】C【分析】利用函数关系和图象分析解决实际问题,要透过问题情境准确地寻找出问题的自变量和函数,探求变量和函数之间的变化趋势,合理地分析变化过程,准确地结合图象解决实际问题. 【详解】本题是典型的数形结合问题,通过对图形的观察,可以看出s 与t 的函数图象应分为三段:(1)当蚂蚁从点O 到点A 时,s 与t 成正比例函数关系;(2)当蚂蚁从点A 到点B 时,s 不变;(3)当蚂蚁从点B 回到点O 时,s 与t 成一次函数关系,且回到点O 时,s 为零.平面直角坐标系(达标训练)一、单选题1.在平面直角坐标系中,点A (a ,2)在第二象限内,则a 的取值可以是( ) A .1 B .-3C .4D .4或-4【答案】B【分析】根据第二象限的坐标特征判断即可; 【详解】解:①点A (a ,2)在第二象限内, ①a <0, A .不符合题意;B .符合题意;C .不符合题意;D .不符合题意; 故选: B .【点睛】本题考查了象限的坐标特征,掌握第二象限内点的横坐标为负数,纵坐标为正数是解题关键. 2.若点(),1A a a -在x 轴上,则点()1,2B a a +-在第( )象限. A .一 B .二 C .三 D .四【答案】D【分析】由点A 在x 轴上求得a 的值,进而求得点B 坐标,进而得到答案. 【详解】解:点(),1A a a -在x 轴上, 10a ∴-=,即1a =,则点B 坐标为()2,1-, ∴点B 在第四象限,故选:D .【点睛】本题主要考查点的坐标,解题的关键是掌握各象限及坐标轴上点的横纵坐标特点. 3.如图,在围棋棋盘上有3枚棋子,如果黑棋①的位置用有序数对(0,−1)表示,黑棋①的位置用有序数对(−3,0)表示,则白棋①的位置可用有序数对表示为( )A .()2,1-B .()1,2-C .()2,1-D .()1,2-【答案】C【分析】根据黑棋①的坐标向上1个单位确定出坐标原点,然后建立平面直角坐标系,再写出白棋①的坐标即可.【详解】解:建立平面直角坐标系如图,白棋①的坐标为(-2,1).故选:C.【点睛】本题考查了坐标确定位置,根据已知点的坐标确定出坐标原点的位置是解题的关键.4.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述货船B相对港口A的位置,那么港口A相对货船B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)【答案】D【分析】根据方位角的概念并结合平行线的性质,可得答案.【详解】解:过点B作BD①AC,①①1=①A=40°①港口A相对货船B的位置可描述为(北偏东40°,35海里),故选:D.【点睛】本题考查了方向角的知识点,解答本题的关键是理解确定一个点的位置需要两个量应该是方向角,一个是距离.5.某天早晨,小明从家骑自行车去上学,途中因自行车发生故障而维修,如图所示的图像反映了他骑车上学的整个过程,则下列结论正确的是()A .修车花了25分钟B .小明家距离学校1000米C .修好车后骑行的速度是200米/分钟D .修好车后花了15分钟到达学校【答案】C【分析】根据横坐标,可得时间;根据函数图像的纵坐标,可得路程.【详解】解:A .由横坐标看出,小明修车时间为25-10=15(分钟),故本选项不符合题意; B .由纵坐标看出,小明家离学校的距离2000米,故本选项不合题意;C .小明修好车后骑行到学校的平均速度是:(2000-1000)÷5=200(米/分钟),故本选项符合题意;D .由横坐标看出,小明修好车后花了30-25=5(分钟)到达学校,故本选项不合题意. 故选:D .【点睛】本题考查了函数图像,观察函数图像得出相应的时间,函数图像的纵坐标得出路程是解题关键.二、填空题6.已知点()29,62A m m --在第三象限.则m 的取值范围是______. 【答案】3<m <4.5【分析】在第三象限内的点的横纵坐标均为负数,列式求值即可. 【详解】解:①点A (2m −9,6−2m )在第三象限, ①2m −9<0且6−2m <0, ①3<m <4.5, 故答案为: 3<m <4.5【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,此特点常与不等式、方程结合起来求一些字母的取值范围.7.如图,两只福娃的发尖所处的位置的坐标分别为M (-2,2)、N (1,-1), 则A 、B 、C 三个点中为坐标系原点的是____.【答案】A【分析】利用平移规律,从M(-2,2)向右平移2个单位长度,向下平移2个单位长度,可得A是坐标原点.【详解】解:①M(-2,2),①A是坐标原点.故答案为A.【点睛】本题考查了平面直角坐标系,利用平移逆向推理是解题关键.三、解答题8.某学校STEAM社团在进行项目化学习时,根据古代的沙漏模型(图1)制作了一套“沙漏计时装置”,该装置由沙漏和精密电子秤组成,电子秤上放置盛沙容器.沙子缓慢匀速地从沙漏孔漏到精密电子称上的容器内,可以通过读取电子秤的读数计算时间(假设沙子足够).该实验小组从函数角度进行了如下实验探究:实验观察:实验小组通过观察,每两小时记录一次电子秤读数,得到表1.表1探索发现:(1)建立平面直角坐标系,如图2,横轴表示漏沙时间x,纵坐标表示精密电子称的读数y,描出以表1中的数据为坐标的各点.(2)观察上述各点的分布规律,判断它们是否在同一条直线上,如果在同一条直线上,请你建立适当的函数模型,并求出函数表达式,如果不在同一条直线上,请说明理由.结论应用:应用上述发现的规律估算:(3)若漏沙时间为9小时,精密电子称的读数为多少?(4)若本次实验开始记录的时间是上午7:30,当精密电子秤的读数为72克时是几点钟? 【答案】(1)作图见解析(2)在同一直线上.函数表达式为:66y x =+ (3)漏沙时间为9小时,精密电子称的读数为60克 (4)下午6:30【分析】(1)根据表中各点对应横、纵坐标,描点即可.(2)通过连线可知这些点大致分布在同一直线上,满足一次函数表达式,所以可假设一次函数表达式,利用待定系数法求解函数表达式.(3)根据(2)中的表达式可求出当9x =时,精密电子秤的读数.(4)根据(2)中的表达式可求出当72y =时,漏沙的时间,然后根据起始时间可求出读数为72克的时间. (1) 解:如图所示(2)解:如图所示,连线可得,这些点在同一线上,并且符合一次函数图像. 设一次函数表达式为:y kx b =+将点(0,6),(2,18)代入解析式中可得6218b k b =⎧⎨+=⎩解得66a b =⎧⎨=⎩∴函数表达式为:66y x =+(3)解:由(2)可知函数表达式为:66y x =+ ∴当9x =时,60y =∴漏沙时间为9小时,精密电子称的读数为60克.(4)解:由(2)可知函数表达式为:66y x =+ ∴当72y =时,11x =起始时间是上午7:30∴经过11小时的漏沙时间为下午6:30.【点睛】本题考查一次函数的实际应用,要求掌握描点法画函数图象,待定系数法求解析式,会求函数自变量或函数值是解决本题的关键.平面直角坐标系(提升测评)一、单选题1.如图,小石同学在正方形网格图中建立平面直角坐标系后,点A 的坐标为(1,1)-,点B 的坐标为(2,0),则点C 的坐标为( )A .(1,2)-B .(2,1)-C .(1,2)--D .(1,1)-【答案】A【分析】利用已知点A 、B 的坐标确定平面直角坐标系,进而可得答案. 【详解】解:根据题意,建立如图所示的直角坐标系, ①点C 的坐标为(1,﹣2). 故选:A .【点睛】此题主要考查了点的坐标的确定,属于基本题型,正确得出原点位置是解题关键. 2.如图所示,从小明家到学校要穿过一个居民小区,小区的道路均是北南或西东方向,小明走下面哪条线路最短( )A .(1,3)→(1,2)→(1,1)→(1,0)→(2,0)→(3,0)→(4,0)B .(1,3)→(0,3)→(2,3)→(0,0)→(1,0)→(2,0)→(4,0)C .(1,3)→(1,4)→(2,4)→(3,4)→(4,4)→(4,3)→(4,2)→(4,0)D .以上都不对 【答案】A【分析】要想线路最短,就应从小明家出发向右及向下走,而不能向左或向上走,所以选A . 【详解】解:要想路线最短,就只应向右及向下走, 故选:A【点睛】本题考查了平面直角坐标系的应用以及数学在实际生活的应用,理解线路最短,应始终向着目标靠近,并明白平面直角坐标系中点的坐标的表示是解题关键.3.道路两旁种植行道树,选择行道树的因素有很多,比如:树形要美、树冠要大、存活率要高、落叶要少…现在只考虑树冠大小、存活率高低两个因素,可以用如下方法将实际问题数学化:设树冠直径为d ,存活率为h .如图,在平面直角坐标系中画出点(d ,h ),其中甲树种、乙树种、丙树种对应的坐标分别为A (d 1,h 1)、B (d 2,h 2)、C (d 3,h 3),根据坐标的信息分析,下列说法正确的是( )A .乙树种优于甲树种,甲树种优于丙树种B .乙树种优于丙树种,丙树种优于甲树种C .甲树种优于乙树种,乙树种优于丙树种D .丙树种优于甲树种,甲树种优于乙树种 【答案】B【分析】根据图象,比较A 、B 、C 三点的存活率和树冠直径即可得出答案. 【详解】根据题意和图象可得,213h h h >>,231d d d >>, ①乙树种是最优的,①甲树种的存活率略高于丙树种,基本相等,但丙树种的树冠直径远远大于甲树种的树冠直径, ①丙树种优于甲树种,①乙树种优于丙树种,丙树种优于甲树种, 故选:B .【点睛】本题考查规律型:点的坐标,准确读出坐标中的信息是解题的关键.4.点A 在第二象限,距离x 轴3个单位长度,距离y 轴5个单位长度,则点A 的坐标为( ) A .()5,3- B .()3,5-C .()5,3-D .()3,5-【答案】A【分析】首先确定点的横纵坐标的正负号,再根据距坐标轴的距离确定点的坐标. 【详解】解:①点A 在第二象限, ①点的横坐标为负数,纵坐标为正数,①点距离x 轴3个单位长度,距离y 轴5个单位长度, ①点的坐标为(-5,3). 故选:A .【点睛】此题主要考查了点的坐标,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.5.如图,雷达探测器发现了A ,B ,C ,D ,E ,F 六个目标.目标C ,F 的位置分别表示为C (6,120°),F (5,210°),按照此方法表示目标A ,B ,D ,E 的位置时,其中表示正确的是( )A .A (4,30°)B .B (1,90°)C .D ( 4,240°) D .E (3,60°)【答案】C【分析】按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,分别写出坐标A (5,30°),B (2,90°),D (4,240°),E (3,300°),即可判断.【详解】解:按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数, 由题意可知A 、B 、D 、E 的坐标可表示为:A (5,30°),故A 不正确;B (2,90°),故B 不正确;D (4,240°),故C 正确;E (3,300°),故D 不正确.故选择:C .【点睛】本题考查新定义坐标问题,仔细分析题中的C 、F 两例,掌握定义的含义,抓住表示一个点,。

平面直角坐标系题型讲解

平面直角坐标系题型讲解

三.坐标与距离的关系:
P(a,b) y
若点P(a,b)是坐标平面内 的一点,则
O
x 点P到x轴的距离是______
点P到y轴的距离是______
若一条直线与x轴平行,则此直线上所 有点的___坐标相等.
若一条直线与y轴平行,则此直线上所 有点的___坐标相等.
四.对称点的坐标特征:
P(a,b)
yP2(.-a,
一.平面直角坐标系:
y(纵轴)
第二象限 第一象限
O (坐标原点)
x (横轴)
第三象限 第四象限
二.平面直角坐标y系内各位置点的坐标特征
第二象限 第一象限
(-,+)
(+,+)
x O (坐标原点)
第三象限 第四象限
(-,-)
(+,-)
若P(x,y)是坐标平面内一点 点P在第一象限,则x>0,y>0; 点P在第二象限,则x<0,y>0; 点P在第三象限,则x<0,y<0; 点P在第四象限,则x>0,y<0; 点P在横轴上,则y=0; 点P在纵轴上,则x=0.
8.已知点A(-1,1),B(2,1),C(c,0)为一个直 角三角形的三个顶点,则c的值有_____个.
9.如图,在平面直角坐标系内有一个边长 是1的正六边形,写出个顶点O
Dx
B
C
基础知识训练:
1.一次函数y=x-1的图象不经过______象限。 2.一次函数y=(2m+2)x+5中,随的增大而减小, 那么的m取值范围是________.
b)若点P(a,b)是坐标平面内 一点,则:
.O
P1(a,-b)
x 点P关于X轴的对称点
.
的坐标是_______.

八年级数学上册《平面直角坐标系常考题型总结》

八年级数学上册《平面直角坐标系常考题型总结》

八年级数学上册《平面直角坐标系常考题型总结》这份文档旨在总结八年级数学上册中与平面直角坐标系相关的常考题型。

以下是各个题型的简要介绍和解题方法:1. 点的坐标给定平面直角坐标系中的一个点,要求确定它的坐标。

通常可以通过观察点在坐标轴上的位置来确定其坐标。

2. 坐标的表示给定一个点的坐标,要求用数学式子表示该点所在的位置。

可以利用坐标系中点的性质和表示方法,以及数学运算的规则来表示坐标。

3. 点的对称给定一个点,要求确定它关于坐标轴或原点的对称点的坐标。

可以利用对称性的性质和对称公式来确定对称点的坐标。

4. 线段长度给定平面直角坐标系中两点的坐标,要求计算它们之间的距离,即线段的长度。

可以利用勾股定理或利用坐标系中两点之间的距离公式来计算。

5. 线段中点给定线段的两个端点的坐标,要求确定线段的中点坐标。

可以利用中点的性质和计算中点坐标的公式来确定。

6. 直线方程给定直线上的一个点或直线的斜率和截距,要求确定直线的方程。

可以利用直线的性质和表示方法,以及直线方程的一般形式来确定。

7. 直线与坐标轴的交点给定直线的方程,要求确定它与坐标轴的交点的坐标。

可以将直线与坐标轴相交点的坐标分别代入直线的方程来求解。

8. 图形坐标给定一个图形的坐标,要求根据图形的性质和坐标系的特点,确定图形的名称和性质。

可以利用图形坐标的特点进行判断。

以上是八年级数学上册《平面直角坐标系常考题型总结》的简要介绍。

通过掌握这些题型的解题方法,可以更好地应对相关的数学题目。

希望这份总结对你有所帮助!。

七年级数学平面直角坐标系重点题型及知识点

七年级数学平面直角坐标系重点题型及知识点

七年级数学平面直角坐标系重点题型及知识点单选题1、如图,将线段 AB 先向右平移 5 个单位,再将所得线段绕原点按顺时针方向旋转 90°,得到线段A′B′,则点 B 的对应点B′的坐标是()A.(-4 , 1)B.(-1, 2)C.(4 ,- 1)D.(1 ,- 2)答案:D解析:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,-2),故选D.小提示:本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键.2、如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( )A.(2,3)B.(0,3)C.(3,2)D.(2,2)答案:D解析:解:若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为(2,2).故选D.3、已知x是整数,当|x−√30|取最小值时,x的值是( )A.5B.6C.7D.8答案:A解析:根据绝对值的意义,找到与√30最接近的整数,可得结论.解:∵√25<√30<√36,∴5<√30<6,且与√30最接近的整数是5,∴当|x−√30|取最小值时,x的值是5,故选A.小提示:本题考查了算术平方根的估算和绝对值的意义,熟练掌握平方数是关键.4、如图为某停车场的平面示意图,若“奥迪”的坐标是(-2,-1),“奔驰”的坐标是(1,-1),则“东风标致”的坐标是()A.(-3,2)B.(3,2)C.(-3,-2)D.(3,-2)答案:D解析:由题意,先建立平面直角坐标系,确定原点的位置,即可得到“东风标致”的坐标.解:∵“奥迪”的坐标是(−2,−1),“奔驰”的坐标是(1,−1),∴建立平面直角坐标系,如图所示:∴“东风标致”的坐标是(3,−2);故选:D.小提示:本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.5、课间操时,小华、小军、小刚的位置如图所示,小军对小刚说,如果我的位置用(–1,0)表示,小华的位置用(–3,–1)表示,那么小刚的位置可以表示成()A.(1,2)B.(1,3)C.(0,2)D.(2,2)答案:A解析:如图,根据题意作出直角坐标系,即可得出小刚的位置.如图,小刚的位置可以表示为(1,2)小提示:此题主要考查直角坐标系的定义,解题的关键是根据题意画出直角坐标系.6、下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.答案:B解析:A、∵AB//CD,∴∠1+∠2=180°.故本选项错误.B、如图,∵AB//CD,∴∠1=∠3.∵∠2=∠3,∴∠1=∠2.故本选项正确.C、∵AB//CD,∴∠BAD=∠CDA,不能得到∠1=∠2.故本选项错误.D、当梯形ABDC是等腰梯形时才有,∠1=∠2.故本选项错误.故选:B.7、如图,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,则小明走下列线路不能到达学校的是()A.(0,4)→(0,0)→(4,0)B.(0,4)→(4,4)→(4,0)C.(0,4)→(3,4)→(4,2)→(4,0)D.(0,4)→(1,4)→(1,1)→(4,1)→(4,0)答案:C解析:根据点的坐标的定义结合图形对各选项分析判断即可得解.A、(0,4)→(0,0)→(4,0)都能到达,故本选项错误;B、(0,4)→(4,4)→(4,0)都能到达,故本选项错误;C、(3,4)→(4,2)不都能到达,故本选项正确;D、(0,4)→(1,4)→(1,1)→(4,1)→(4,0)都能到达,故本选项错误.故选C.小提示:本题考查了坐标确定位置,熟练掌握点的坐标的定义并准确识图是解题的关键.8、如图,将“笑脸”图标向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是()A.(﹣1,2)B.(﹣9,6)C.(﹣1,6)D.(﹣9,2)答案:A解析:根据平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减即可解决问题;由题意P(﹣5,4),向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是(﹣1,2),故选:A.小提示:本题考查坐标与平移,解题的关键是记住平移规律:坐标,右移加,左移减;纵坐标,上移加,属于中考常考题型.填空题9、如图,这是台州市地图的一部分,分别以正东、正北方向为x轴、y轴的正方向建立直角坐标系,规定一个单位长度表示1 km.甲、乙两人对着地图如下描述路桥区A处的位置.则椒江区B处的坐标是___.答案:(10,8√3)解析:根据题意建立如图所示的直角坐标系,则OA=2,AB=16,∠ABC=30°,所以AC=8,BC=8√3,则OC=OA+AC=10,所以B(10,8√3),故答案为(10,8√3).10、观察下列各式:√1+13=2√13,√2+14=3√14,√3+15=4√15,……请你将发现的规律用含自然数n(n≥1)的等式表示出来__________________.答案:√n+1n+2=(n+1)√1n+2(n≥1)解析:观察分析可得√1+13=(1+1)√11+2,√2+14=(2+1)√12+2,√3+15=(3+1)√13+2,则将此规律用含自然数n(n≥1)的等式表示出来是√n+1n+2=(n+1)√1n+2(n≥1)解:根据题意得:√1+13=(1+1)√11+2,√2+14=(2+1)√12+2,√3+15=(3+1)√13+2,……,发现的规律用含自然数n(n≥1)的等式表示出来是√n+1n+2=(n+1)√1n+2(n≥1).所以答案是:√n+1n+2=(n+1)√1n+2(n≥1)小提示:本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n表示的等式即可.11、在平面直角坐标系中,将点(-b,-a)称为点(a,b)的“关联点”(例如点(-2,-1)是点(1,2)的“关联点”).如果一个点和它的“关联点”在同一象限内,那么这一点在第_______象限.答案:二、四.解析:试题解析:根据关联点的特征可知:如果一个点在第一象限,它的关联点在第三象限.如果一个点在第二象限,它的关联点在第二象限.如果一个点在第三象限,它的关联点在第一象限.如果一个点在第四象限,它的关联点在第四象限.故答案为二,四.12、如图是玉渊潭公园部分景点的分布示意图,在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,当表示西桥的点的坐标为(−6,1),表示中堤桥的点的坐标为(1,2)时,表示留春园的点的坐标为___.答案:(9,-1)解析:根据表示西桥的点的坐标为(−6,1),表示中堤桥的点的坐标为(1,2)建立平面直角坐标系,确定坐标原点的位置,进而可确定表示留春园的点的坐标.解:根据题意可建立如下所示平面直角坐标系,则表示留春园的点的坐标为(9,−1),故答案为(9,−1).小提示:此题考查坐标确定位置,解题的关键就是确定坐标原点和x,y轴的位置.13、将点P(2,−3)向右平移4个单位得到点P′,则点P′的坐标为__________.答案:(6,−3)解析:根据平移中点的变化规律(横坐标右移加,左移减;纵坐标上移加,下移减)求解.解:将点P(2,﹣3)向右平移4个单位长度得点P′,则点P′的坐标为(6,﹣3).所以答案是:(6,﹣3).小提示:本题考查了坐标与图形变化-平移,熟练掌握平移中点的变化规律(横坐标右移加,左移减;纵坐标上移加,下移减)是解题的关键.解答题14、如图,用(−1,−1)表示A点的位置,用(3,0)表示B点的位置.(1)画出直角坐标系.(2)点E的坐标为______.(3)△CDE的面积为______.答案:(1)见解析;(2)(3,2);(3)3.5.解析:(1)根据坐标与象限的关系,建立直角坐标系,将(−1,−1)、(3,0)表示在直角坐标系中即可;(2)根据坐标与象限的关系,点E在第一象限,横坐标、纵坐标均为正数,据此解题(3)由割补法解题,△CDE的面积等于梯形面积减去两个直角三角形面积即可解题.(1)如图所示,即为所求(2)点E在第一象限,横坐标、纵坐标均为正数,∴E(3,2)所以答案是:(3,2);(3)S△CDE=(1+3)2×3−12×1×3−12×1×2=3.5所以答案是:3.5.小提示:本题考查坐标与图形,是重要考点,难度较易,掌握相关知识是解题关键.15、在如图所示的平面直角坐标系中表示下面各点A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,5),F(5,6),G(5,0)根据描点回答问题:(1)A点到原点的距离是________.(2)将点C向x轴的负方向平移6个单位,它与点______重合.(3)连接CE,则直线CE与坐标轴是什么关系?(4)在以上七个点中,任意两点所形成的直线中,直接写出互相垂直的直线.答案:(1)3;(2)D;(3)与y轴平行,与x轴垂直;(4)直线CD与CE垂直,直线CD与FG垂直.解析:(1)根据A点坐标可得出A点在y轴上,即可得出A点到原点的距离;(2)根据点的平移的性质得出平移后的位置;(3)利用图形性质得出直线CE与坐标轴的位置关系;(4)利用图形性质得出互相垂直的直线.解:由题意得,如图所示:(1)A点到原点的距离是3.(2)将点C向x轴的负方向平移6个单位,它与点D重合.(3)直线CE与y轴平行,与x轴垂直;(4)直线CD与CE垂直,直线CD与FG垂直.故答案为(1)3;(2)D;(3)垂直;(4)直线CD与CE垂直,直线CD与FG垂直.小提示:此题主要考查了点的坐标性质以及平移的性质,根据坐标系得出各点的位置是解题关键.。

平面直角坐标系下常见题型总结

平面直角坐标系下常见题型总结

平⾯直⾓坐标系下常见题型总结平⾯直⾓坐标系下的常见题型总结-----枣营中学初三备课组知识⽹络图⽰:基础知识详解:⽐较全⾯地了解确定位置的⽅法,掌握平⾯直⾓坐标系的知识,感受坐标与图形的变化是本章的重要内容,平⾯直⾓坐标系的知识是最基础和重要的内容,具体可分为以下⼏个部分:1.确定平⾯上的点的位置通常需要两个量,且⽅式很多。

建⽴直⾓坐标系是常⽤的⽅法之⼀。

2.平⾯直⾓坐标系的基础知识。

3.图形变换与坐标变化的关系,可以由图形上的点的位置变化与其坐标变化的关系⽽得到。

具体可从下⾯两⽅⾯把握:(1)对称与平移(2)距离4.注意:(1)同⼀个点,在不同的直⾓坐标系中,其坐标⼀般也不相同。

所以,我们说⼀个点的坐标,都是就某⼀个确定的坐标系来说的。

(2)对⼀个图形建⽴不同的坐标系,其顶点的坐标也不相同。

要根据图形的特点建⽴恰当的坐标系以使所求的点的坐标尽可能简捷。

专题总结及应⽤例1.如图所⽰,是王亮家周边地区的平⾯⽰意图,借助刻度尺,量⾓器,解决如下问题:(1)相对王亮家的位置,说出书店所在的位置。

(2)某楼位于王亮家的南偏东66度的⽅向,到王亮家的实际距离约为280⽶,说出这⼀地点的名称。

分析:本题主要考查点的位置的确定和⽐例尺的换算,解题关键要清楚点的位置的确定,需要两个数据及⽐例尺的实际运⽤。

解: (1) 北偏东 45 度,图上距离约为 2.3cm ,实际距离约为 2.3×10000×1%=230( ⽶ ) 。

(2) 电影院,因为图上距离为280×1/10000×100 = 2.8cm 且位于南偏东 66 度⽅向上的只有电影院 D 。

例2.已知P(a,b),求其关于x轴,y轴,原点的对称点的坐标。

分析:解此类问题时,我们应采⽤数形结合的⽅法,可令 a=3,b=2, 在坐标系中描出此点,然后根据对称的性质,便可得出 P 点关于 x 轴, y 轴,原点的对称点的坐标分别为 (a, - b),( - a,b ), ( - a, - b) 。

2024年七年级数学下册专题7.1 平面直角坐标系【八大题型】(举一反三)(人教版)(解析版)

2024年七年级数学下册专题7.1 平面直角坐标系【八大题型】(举一反三)(人教版)(解析版)

专题7.1 平面直角坐标系【八大题型】【人教版】【题型1 判断点所在的象限】 (1)【题型2 坐标轴上点的坐标特征】 (3)【题型3 点到坐标轴的距离】 (4)【题型4 平行与坐标轴点的坐标特征】 (6)【题型5 坐标确定位置】 (8)【题型6 点在坐标系中的平移】 (11)【题型7 图形在坐标系中的平移】 (13)【题型8 图形在格点中的平移变换】 (15)【题型1 判断点所在的象限】【例1】(2022春•洪山区期末)已知点P(x,y)在第四象限,则点Q(﹣x﹣3,﹣y)在( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据第四象限的横纵坐标范围,可求得x,y的取值范围,再确定Q点横纵坐标的取值范围即可解答.【解答】解:点P(x,y)在第四象限,∴x>0,y<0,∴﹣x﹣3<0,﹣y>0,∴点Q(﹣x﹣3,﹣y)在第二象限.故选:B.【变式1-1】(2022春•长沙期末)已知点P(﹣a,b),ab>0,a+b<0,则点P在( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据有理数的乘法、有理数的加法,可得a、b的符号,根据第一象限内点的横坐标大于零,纵坐标大于零,可得答案.【解答】解:因为ab>0,a+b<0,所以a<0,b<0,所以﹣a>0,所以点P(﹣a,b)在第四象限,故选:D.【变式1-2】(2022春•青山区期末)已知,点A的坐标为(m﹣1,2m﹣3),则点A一定不会在( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据每个象限点的坐标的符号特征列出不等式组,解不等式组,不等式组无解的选项符合题意.【解答】解:A选项,{m―1>02m―3>0,解得:m>32,故该选项不符合题意;B选项,{m―1<02m―3>0,不等式组无解,故该选项符合题意;C选项,{m―1<02m―3<0,解得:m<1,故该选项不符合题意;D选项,{m―1>02m―3<0,解得:1<m<32,故该选项不符合题意;故选:B.【变式1-3】(2022春•晋州市期中)对任意实数x,点P(x,x2+3x)一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】利用各象限内点的坐标性质分析得出答案.【解答】解:当x>0,则x2+3x>0,故点P(x,x2+3x)可能在第一象限;当x<0,则x2+3x>0或x2+3x<0,故点P(x,x2+3x)可能在第二、三象限;当x=0时,点P(x,x2+3x)在原点.故点P(x,x2+3x)一定不在第四象限.故选:D.均为0.【题型2 坐标轴上点的坐标特征】【例2】(2022春•陇县期中)在平面直角坐标系中,点M(m﹣3,m+1)在x轴上,则点P (m﹣1,1﹣m)在( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据x轴上的点纵坐标为0,可得m+1=0,从而求出m的值,进而求出点P的坐标,最后根据平面直角坐标系中每一象限点的坐标特征,即可解答.【解答】解:由题意得:m+1=0,∴m=﹣1,当m=﹣1时,m﹣1=﹣2,1﹣m=2,∴点P(﹣2,2)在第二象限,故选:B.【变式2-1】(2022春•海淀区校级期中)在平面直角坐标系中,点P的坐标为(2m﹣4,m+1),若点P在y轴上,则m的值为( )A.﹣1B.1C.2D.3【分析】根据y轴上的点横坐标为0,可得2m﹣4=0,然后进行计算即可解答.【解答】解:由题意得:2m﹣4=0,解得:m=2,故选:C.【变式2-2】(2022春•仓山区校级期中)已知点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,则点C(m,n)在( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用x轴以及y轴上点的坐标得出m,n的值,进而得出答案.【解答】解:∵点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,∴2m+3=0,n﹣4=0,解得:m=―32,n=4,则点C(m,n)在第二象限.故选:B.【变式2-3】(2022春•东莞市期中)已知点P(2a﹣4,a+1),若点P在坐标轴上,则点P 的坐标为 .【分析】分两种情况:当点P在x轴上,当点P在y轴上,分别进行计算即可解答.【解答】解:分两种情况:当点P在x轴上,a+1=0,∴a=﹣1,当a=﹣1时,2a﹣4=﹣6,∴点P的坐标为:(﹣6,0),当点P在y轴上,2a﹣4=0,∴a=2,当a=2时,a+1=3,∴点P的坐标为:(0,3),综上所述,点P的坐标为:(﹣6,0)或(0,3),故答案为:(﹣6,0)或(0,3).【题型3 点到坐标轴的距离】【例3】(2022春•巴南区期末)已知点P在x轴的下方,若点P到x轴的距离是3,到y 轴的距离是4,则点P的横坐标与纵坐标的和为 .【分析】根据题意可得点P在第三象限或第四象限,再根据点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【解答】解:∵点P在x轴下方,点P到x轴的距离是3,到y轴的距离是4,∴点P的横坐标为±4,纵坐标为﹣3,∴点P的坐标为(4,﹣3)或(﹣4,﹣3),点P的横坐标与纵坐标的和为4﹣3=1或﹣4﹣3=﹣7.故答案为:1或﹣7.【变式3-1】(2021秋•城固县期末)已知点M(a,b)在第一象限,点M到x轴的距离等于它到y轴距离的2倍,且点M到两坐标轴的距离之和为6,则点M的坐标为 .【分析】根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,可得答案.【解答】解:因为点M(a,b)在第一象限,所以a>0,b>0,又因为点M(a,b)在第一象限,点M到x轴的距离等于它到y轴距离的2倍,且点M 到两坐标轴的距离之和为6,所以{b=2aa+b=6,解得{a=2b=4,所以点M的坐标为(2,4).故答案为:(2,4).【变式3-2】(2022春•云阳县期中)坐标平面内有一点A(x,y),且点A到x轴的距离为3,到y轴的距离恰为到x轴距离的2倍.若xy<0,则点A的坐标为( )A.(6,﹣3)B.(﹣6,3)C.(3,﹣6)或(﹣3,6)D.(6,﹣3)或(﹣6,3)【分析】根据题意可得x,y异号,然后再利用点到x的距离等于纵坐标的绝对值,点到y 的距离等于横坐标的绝对值,即可解答.【解答】解:∵xy<0,∴x,y异号,∵点A到x轴的距离为3,到y轴的距离恰为到x轴距离的2倍,∴点A(6,﹣3)或(﹣6,3),故选:D.【变式3-3】(2021秋•阳山县期末)在平面直角坐标系中,点A的坐标是(3a﹣5,a+1).若点A到x轴的距离与到y轴的距离相等,且点A在y轴的右侧,则a的值为( )A.1B.2C.3D.1 或3【分析】根据点A到x轴的距离与到y轴的距离相等可得3a﹣5=a+1或3a﹣5=﹣(a+1),解出a的值,再由点A在y轴的右侧可得3a﹣5>0,进而可确定a的值.【解答】解:∵点A到x轴的距离与到y轴的距离相等,∴3a﹣5=a+1或3a﹣5=﹣(a+1),解得:a=3或1,∵点A在y轴的右侧,∴点A的横坐标为正数,∴3a﹣5>0,∴a>5 3,∴a=3.故选:C.【题型4 平行与坐标轴点的坐标特征】【例4】(2022春•东莞市期末)在平面直角坐标系中,点A的坐标为(3,2),AB平行于x轴,若AB=4,则点B的坐标为( )A.(7,2)B.(1,5)C.(1,5)或(1,﹣1)D.(7,2)或(﹣1,2)【分析】线段AB∥x轴,A、B两点纵坐标相等,又AB=4,B点可能在A点左边或者右边,根据距离确定B点坐标.【解答】解:∵AB∥x轴,∴A、B两点纵坐标都为2,又∵AB=4,∴当B点在A点左边时,B(﹣1,2),当B点在A点右边时,B(7,2);故选:D.【变式4-1】(2022春•延津县期中)在平面直角坐标系中,点A(﹣2,1),B(2,3),C (a,b),若BC∥x轴,AC∥y轴,则点C的坐标为( )A.(﹣2,1)B.(2,﹣3)C.(2,1)D.(﹣2,3)【分析】根据已知条件即可得到结论.【解答】解:∵点A(﹣2,1),B(2,3),C(a,b),BC∥x轴,AC∥y轴,∴b=3,a=﹣2,∴点C的坐标为(﹣2,3),故选:D.【变式4-2】(2022春•涪陵区期末)在平面直角坐标系中,若点P和点Q的坐标分别为P (﹣2,m),Q(﹣2,1),点P在点Q的上方,线段PQ=5,则m的值为( )A.6B.5C.4D.7【分析】借助图形,采用数形结合的思想求解.【解答】解:∵P(﹣2,m),Q(﹣2,1),点P在点Q的上方,线段PQ=5,∴m=1+5=6.故选:A.【变式4-3】(2022春•硚口区期中)如图,已知点A(4,0),B(0,2),C(﹣5,0),CD∥AB交y轴于点D.点P(m,n)为线段CD上(端点除外)一点,则m与n满足的等量关系式是( )A.m+2n=﹣5B.2m+n=﹣10C.m﹣n=﹣5D.2m﹣n=﹣6【分析】利用平移的性质可得点B与C对应时,点A的对应点为(﹣1,﹣2),由此可确定点P满足的等量关系式.【解答】解:∵AB∥CD,A(4,0),B(0,2),C(﹣5,0),当B与C对应时,点A平移后对应的点是(﹣1,﹣2),∵点P(m,n)为线段CD上(端点除外)一点,将点C(﹣5,0)和(﹣1,﹣2)分别代入m+2n=﹣5,2m+n=﹣10,m﹣n=﹣5,2m﹣n=﹣6中,只有m+2n=﹣5满足条件.故选:A.【题型5 坐标确定位置】【例5】(2022春•中山市期中)中国象棋具有悠久的历史,战国时期,就有了关于象棋的正式记载,如图是中国象棋棋局的一部分,如果用(2,﹣1)表示“炮”的位置,(﹣2,0)表示“士”的位置,那么“将”的位置应表示为( )A.(﹣2,3)B.(0,﹣5)C.(﹣3,1)D.(﹣4,2)【分析】直接利用已知点坐标建立平面直角坐标系,进而得出答案.【解答】解:如图所示:“将”的位置应表示为(﹣3,1).故选:C.【变式5-1】(2021秋•渠县校级期中)在大型爱国主义电影《长津湖》中,我军缴获了敌人防御工程的坐标地图碎片(如图),若一号暗堡坐标为(1,2),四号暗堡坐标为(﹣3,2),指挥部坐标为(0,0),则敌人指挥部可能在( )A.A处B.B处C.C处D.D处【分析】根据一号暗堡和四号暗堡的横纵坐标分别确定x轴和y轴的大致位置,然后画出直角坐标系即可得到答案.【解答】解:∵一号暗堡的坐标为(1,2),四号暗堡的坐标为(﹣3,2),∴它们的连线平行于x轴,∵一号暗堡和四号暗堡的纵坐标为正数,四号暗堡离y轴要远,如图,∴B点可能为坐标原点,∴敌军指挥部的位置大约是B处.故选:B.【变式5-2】(2022春•朝阳区期末)为更好的开展古树名木的系统保护工作,某公园对园内的6棵百年古树都利用坐标确定了位置,并且定期巡视.(1)在如图所示的正方形网格中建立平面直角坐标系xOy,使得古树A、B的位置分别表示为A(1,2),B(0,﹣1);(2)在(1)建立的平面直角坐标系xOy中,①表示古树C的位置的坐标为 ;②标出另外三棵古树D(﹣1,﹣2),E(1,0),F(1,1)的位置;③如果“(﹣2,﹣2)→(﹣2,﹣1)→(﹣2,0)→(﹣2,1)→(﹣1,2)→(0,2)→(1,2)→(1,1)→(1,0)→(1,﹣1)→(0,﹣1)→(0,﹣2)→(﹣1,﹣2)”表示园林工人巡视古树的一种路线,请你用这种形式画出园林工人从原点O出发巡视6棵古树的路线(画出一条即可).【分析】(1)根据A(1,2),B(0,﹣1)建立坐标系即可;(2)①根据坐标系中C的位置即可求得;②直接根据点的坐标描出各点;③根据6棵古树的位置得出运动路线即可.【解答】解:(1)如图:(2)①古树C的位置的坐标为(﹣1,2);故答案为:(﹣1,2);②标出D(﹣1,﹣2),E(1,0),F(1,1)的位置如上图;③园林工人从原点O出发巡视6棵古树的路线:(0,0)→(1,0)→(1,1)→(1,3)→(﹣1,2)→(﹣1,2)→(0,1).【变式5-3】(2022春•海淀区校级期中)如图1,将射线OX按逆时针方向旋转β角(0°≤β<360°),得到射线OY,如果点P为射线OY上的一点,且OP=m,那么我们规定用(m,β)表示点P在平面内的位置,并记为P(m,β).例如,图2中,如果OM=5,∠XOM=110,那么点M在平面内的位置,记为M(5,110°),根据图形,解答下列问题:(1)如图3,点N在平面内的位置记为N(6,30°),那么ON= ,∠XON= .(2)如果点A、B在平面内的位置分别记为A(4,30°),B(3,210°),则A、B 两点间的距离为 .【分析】(1)由题意得第一个坐标表示此点距离原点的距离,第二个坐标表示此点与原点的连线与x 轴所夹的角的度数;(2)根据相应的度数判断出AB 是一条线段,从而得出AB 的长为4+3=7.【解答】解:(1)根据点N 在平面内的位置记为N (6,30°)可知,ON =6,∠XON =30°.故答案为:6,30°;(2)如图所示:∵A (4,30°),B (3,210°),∴∠AOX =30°,∠BOX =210°,∴∠AOB =180°,∵OA =4,OB =3,∴AB =4+3=7.故答案为:7.) 【例6】(2022春•洪湖市期中)在平面直角坐标系中,将点(1,﹣4)平移到点(﹣3,﹣2),经过的平移变换为( )A .先向左平移4个单位长度,再向下平移6个单位长度B .先向右平移4个单位长度,再向上平移6个单位长度C .先向左平移4个单位长度,再向上平移2个单位长度)向左平移a 个单位再向上平移b 个单向下平移b 个单位D.先向右平移4个单位长度,再向下平移2个单位长度【分析】根据点向左平移,纵坐标不变的特点即可求解.【解答】解:∵点(1,﹣4)平移到点(﹣3,﹣2),∴﹣3﹣1=﹣4,∴﹣2﹣(﹣4)=2,∴先向左平移4个单位长度,再向上平移2个单位长度故选:C.【变式6-1】(2022春•武侯区期末)在平面直角坐标系中,将点M(3m﹣1,m﹣3)向上平移2个单位长度得到点M',若点M'在x轴上,则点M的坐标是( )A.(2,﹣2)B.(14,2)C.(﹣2,―103)D.(8,0)【分析】让点M的纵坐标加2后等于0,求得m的值,进而得到点M的坐标.【解答】解:∵将点M(3m﹣1,m﹣3)向上平移2个单位长度得到点M',若点M'在x 轴上,∴m﹣3+2=0,解得:m=1,∴3m﹣1=2,m﹣3=﹣2,∴M(2,﹣2).故选:A.【变式6-2】(2022春•碑林区校级期中)在平面直角坐标系中,将点P(a,b)向右平移3个单位,再向下平移2个单位,得到点Q.若点Q位于第四象限,则a,b的取值范围是( )A.a>0,b<0B.a>1,b<2C.a>1,b<0D.a>﹣3,b<2【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【解答】解:P(a,b)向右平移3个单位,再向下平移2个单位得到(a+3,b﹣2),∵Q位于第四象限,∴a+3>0,b﹣2<0,∴a>﹣3,b<2.故选D.【变式6-3】(2021秋•苏州期末)在平面直角坐标系中,把点P(a﹣1,5)向左平移3个单位得到点Q(2﹣2b,5),则2a+4b+3的值为 .【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.【解答】解:将点P(a﹣1,5)向左平移3个单位,得到点Q,点Q的坐标为(2﹣2b,5),∴a﹣1﹣3=2﹣2b,∴a+2b=6,∴2a+4b+3=2(a+2b)+3=2×6+3=15,故答案为:15.【例7】(2022春•胶州市期末)如图,△ABC的顶点坐标A(2,3),B(1,1),C(4,2),将△ABC先向左平移3个单位,再向下平移1个单位,得到△A'B'C',则BC边上一点D(m,n)的对应点D'的坐标是( )A.(m+3,n+1)B.(m﹣3,n﹣1)C.(﹣1,2)D.(3﹣m,1﹣n)【分析】根据坐标平移规律解答即可.【解答】解:∵将△ABC先向左平移3个单位,再向下平移1个单位,得到△A'B'C',∴BC边上一点D(m,n)的对应点D'的坐标是(m﹣3,n﹣1).故选:B.【变式7-1】(2022•青岛二模)如图,线段AB经过平移得到线段A'B',其中点A,B的对应点分别为点A',B',这四个点都在格点上.若线段A'B'有一个点P'(a,b),则点P'在AB上的对应点P的坐标为( )A.(a﹣2,b+3)B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)【分析】先利用点A它的对应点A′的坐标特征得到线段AB先向右平移2个单位,再向下平移3个单位得到线段A′B′,然后利用点平移的坐标规律写出点P(a,b)平移后的对应点P′的坐标.【解答】解:由图知,线段A'B'向右平移2个单位,再向下平移3个单位即可得到线段AB,所以点P'(a,b)在AB上的对应点P的坐标为(a+2,b﹣3),故选:D.【变式7-2】(2022春•滨城区期中)如图,第一象限内有两点P(m﹣4,n),Q(m,n﹣3),将线段PQ平移,使点P、Q分别落在两条坐标轴上,则点P平移后的对应点的坐标是( )A.(﹣2,0)B.(0,3)C.(0,3)或(﹣4,0)D.(0,3)或(﹣2,0)【分析】设平移后点P、Q的对应点分别是P′、Q′.分两种情况进行讨论:①P′在y 轴上,Q′在x轴上;②P′在x轴上,Q′在y轴上.【解答】解:设平移后点P、Q的对应点分别是P′、Q′.分两种情况:①P′在y轴上,Q′在x轴上,则P′横坐标为0,Q′纵坐标为0,∵0﹣(n﹣3)=﹣n+3,∴n﹣n+3=3,∴点P平移后的对应点的坐标是(0,3);②P′在x轴上,Q′在y轴上,则P′纵坐标为0,Q′横坐标为0,∵0﹣m=﹣m,∴m﹣4﹣m=﹣4,∴点P平移后的对应点的坐标是(﹣4,0);综上可知,点P平移后的对应点的坐标是(0,3)或(﹣4,0).故选:C.【变式7-3】(2022春•如东县期中)三角形ABC在经过某次平移后,顶点A(﹣1,m+2)的对应点为A(2,m﹣3),若此三角形内任意一点P(a,b)经过此次平移后对应点P1(c,d).则a+b﹣c﹣d的值为( )A.8+m B.﹣8+m C.2D.﹣2【分析】由A(﹣1,2+m)在经过此次平移后对应点A1(3,m﹣3),可得△ABC的平移规律为:向右平移3个单位,向下平移5个单位,由此得到结论.【解答】解:∵A(﹣1,2+m)在经过此次平移后对应点A1(2,m﹣3),∴△ABC的平移规律为:向右平移3个单位,向下平移5个单位,∵点P(a,b)经过平移后对应点P1(c,d),∴a+3=c,b﹣5=d,∴a﹣c=﹣3,b﹣d=5,∴a+b﹣c﹣d=﹣3+5=2,故选:C.【题型8 图形在格点中的平移变换】【例8】(2021春•抚远市期末)在平面直角坐标系xOy中,点A的坐标为(0,4),线段MN的位置如图所示,其中点M的坐标为(﹣3,﹣1),点N的坐标为(3,﹣2).(1)将线段MN平移得到线段AB,其中点M的对应点为A,点N的对应点为B.①点M平移到点A的过程可以是:先向 平移 个单位长度,再向 平移 个单位长度;②点B的坐标为 ;(2)在(1)的条件下,若点C的坐标为(4,0),连接AC,BC,求△ABC的面积.【分析】(1)由点M及其对应点的A的坐标可得平移的方向和距离,据此可得点N的对应点B的坐标;(2)割补法求解可得.【解答】解:(1)如图,①点M平移到点A的过程可以是:先向右平移3个单位长度,再向上平移5个单位长度;②点B的坐标为(6,3),故答案为:右、3、上、5、(6,3);(2)如图,S△ABC=6×4―12×4×4―12×2×3―12×6×1=10.【变式8-1】(2022春•长沙期末)如图,△ABC的顶点A(﹣1,4),B(﹣4,﹣1),C (1,1).若△ABC向右平移4个单位长度,再向下平移3个单位长度得到△A'B'C',且点C的对应点坐标是C'.(1)画出△A'B'C',并直接写出点C'的坐标;(2)若△ABC内有一点P(a,b)经过以上平移后的对应点为P',直接写出点P'的坐标;(3)求△ABC的面积.【分析】(1)首先确定A、B、C三点平移后的对应点位置,然后再连接即可;(2)由平移的性质可求解;(3)利用面积的和差关系可求解.【解答】解:(1)如图所示:∴点C(5,﹣2);(2)∵△ABC向右平移4个单位长度,再向下平移3个单位长度得到△A'B'C',∴点P'(a+4,b﹣3);(3)S△ABC=5×5―12×3×5―12×2×3―12×5×2=25﹣7.5﹣3﹣5=9.5.【变式8-2】(2022春•江岸区校级月考)如图,三角形A′B′C′是由三角形ABC经过某种平移得到的,点A与点A′,点B与点B′,点C与点C′分别对应,且这六个点都在格点上,观察各点以及各点坐标之间的关系,解答下列问题:(1)分别写出点B和点B′的坐标,并说明三角形A′B′C′是由三角形ABC经过怎样的平移得到的;(2)连接BC′,直接写出∠CBC′与∠B′C′O之间的数量关系 ;(3)若点M(a﹣1,2b﹣5)是三角形ABC内一点,它随三角形ABC按(1)中方式平移后得到的对应点为点N(2a﹣7,4﹣b),求a和b的值.【分析】(1)由图形可得出点的坐标和平移方向及距离;(2)根据平移的性质和平角的定义和平行线的性质即可求解;(3)根据以上所得平移方式,利用“横坐标,右移加,左移减;纵坐标,上移加,下移减”的规律列出关于a、b的方程,解之求得a、b的值.【解答】解:(1)由图知,B(2,1),B′(﹣1,﹣2),三角形A′B′C′是由三角形ABC向左平移3个单位,向下平移3个单位得到的;(2)∠CBC′与∠B′C′O之间的数量关系∠CBC′﹣∠B′C′O=90°.故答案为:∠CBC′﹣∠B′C′O=90°;(3)由(1)中的平移变换得a﹣1﹣3=2a﹣7,2b﹣5﹣3=4﹣b,解得a=3,b=4.故a的值是3,b的值是4.【变式8-3】(2021春•安阳县期中)在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A'的坐标:A ,A' .(2)请说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2m﹣8,n﹣4),求m和n的值.【分析】(1)根据已知图形可得答案;(2)由A(1,0)的对应点A′(﹣4,4)得平移规律,即可得到答案;(3)由(2)平移规律得出m、n的方程.【解答】解:(1)由图知A(1,0),A'(﹣4,4),故答案为:(1,0),(﹣4,4);(2)A(1,0)对应点的对应点A′(﹣4,4)得A向左平移5个单位,向上平移4个单位得到A′,三角形A'B'C'是由三角形ABC向左平移5个单位,向上平移4个单位得到.(3)△ABC内M(m,4﹣n)平移后对应点M'的坐标为(m﹣5,4﹣n+4),∵M'的坐标为(2m﹣8,n﹣4),∴m﹣5=2m﹣8,4﹣n+4=n﹣4,∴m=3,n=6.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系题型一:考点的坐标与象限的关系知识解析:各个象限的点的坐标符号特征如下:(特别值得注意的是,坐标轴上的点不属于任何象限.)1、在平面直角坐标中,点M (-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 2、在平面直角坐标系中,点P (-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 3、若点P (a ,a -2)在第四象限,则a 的取值范围是( ).A .-2<a <0B .0<a <2C .a >2D .a <0 4、点P (m ,1)在第二象限内,则点Q (-m ,0)在( )A .x 轴正半轴上B .x 轴负半轴上C .y 轴正半轴上D .y 轴负半轴上 5、若点P (a ,b )在第四象限,则点M (b -a ,a -b )在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 6、在平面直角坐标系中,点(12)A x x --,在第四象限,则实数x 的取值范围是 . 7、对任意实数x ,点2(2)P x x x -,一定不在..( ) A .第一象限B .第二象限C .第三象限D .第四象限8、如果a -b <0,且ab <0,那么点(a ,b)在( )A 、第一象限B 、第二象限C 、第三象限,D 、第四象限.题型二:点在坐标轴上的特点x 轴上的点纵坐标为0, y 轴上的点横坐标为0.坐标原点(0,0)1、点P (m+3,m+1)在x 轴上,则P 点坐标为( )A .(0,-2)B .(2,0)C .(4,0)D .(0,-4) 2、已知点P (m ,2m -1)在y 轴上,则P 点的坐标是 。

题型三 对称点的坐标知识解析:1、关于x 轴对称: A (a ,b )关于x 轴对称的点的坐标为(a ,-b )。

2、关于y 轴对称: A (a ,b )关于y 轴对称的点的坐标为(-a , b )。

3、关于原点对称: A (a ,b )关于原点对称的点的坐标为(-a ,-b )。

1、点M (2-,1)关于x 轴对称的点的坐标是( ).A . (2-,1-)B . (2,1)C .(2,1-)D . (1,2-)2、平面直角坐标系中,与点(2,-3)关于原点中心对称的点是( ).A . (-3,2)B . (3,-2)C . (-2,3)D . (2,3)3、如图,矩形OABC 的顶点O 为坐标原点,点A 在x 轴上,点B 的坐标为(2,1).如果将矩形OABC 绕点O 旋转180°,旋转后的图形为矩形OA 1B 1C 1,那么点B 1 的坐标为( ).A. (2,1)B.(-2,l)C.(-2,-l)D.(2,-1) 4、若点A (2,a )关于x 轴的对称点是B (b ,-3)则ab 的值是 .5、 在平面直角坐标系中,点A (1,2)关于y 轴对称的点为点B (a ,2),则a = .6、点A (1-a ,5),B (3,b )关于y 轴对称,则a+b=______.7、如果点(45)P -,和点()Q a b ,关于y 轴对称,则a 的值为 .题型四:考平移后点的坐标知识解析:1、将点(x ,y )向右(或左)平移a 个单位长度,可以得到对应点(x +a ,y )(或(x -a ,y ));2、将点(x ,y )向上(或下)平移b 个单位长度,可以得到对应点(x ,y +b )(或(x ,y -b )).1、 在平面直角坐标系中,将点(-2,-3)向上平移3个单位,则平移后的点的坐标为_______.2、在平面直角坐标系中,点P (-1,2)向右平移3个单位长度后的坐标是( )A.(2,2)B.(-4,2)C.(-1,5)D.(-1,-1)3、将点P (-2,1)先向左平移1个单位长度,再向上平移2个单位长度得到点P /,则点P /的坐标为 。

4.将点A (-3,-2)先沿y 轴向上平移5个单位,再沿x 轴向左平移4个单位得到点A ,则点A ' 的坐标是 .5、已知正方形ABCD 的三个顶点坐标为A (2,1),B (5,1),D(2,4),现将该正方形向下平移3个单位长度,再向左平移4个单位长度,得到正方形A'B'C'D',则C ’点的坐标为( )A. (5,4)B. (5,1)C. (1,1)D. (-1,-1)6、在平面直角坐标系中,已知线段AB 的两个端点分别是A ( 4 ,-1). B (1, 1) 将线段AB 平移后得到线段A 'B ',若点A '的坐标为 (-2 , 2 ) ,则点 B '的坐标为( )A . ( -5 , 4 )B . ( 4 , 3 ) C. ( -1 , -2 ) D .(-2,-1) 7、如图,A ,B 的坐标为(2,0),(0,1)若将线段AB 平移至11A B ,则a b +的值为( )A .2B .3C .4D .58、在平面直角坐标系中,已知点A (-4,0)、B (0,2),现将线段AB 向右平移,使A 与坐标原点O 重合,则B 平移后的坐标是 .9、以平行四边形ABCD 的顶点A 为原点,直线AD 为x 轴建立直角坐标系,已知B 、D 点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C 点平移后相应的点的坐标是( ) A (3,3) B (5,3) C (3,5) D (5,5)10、在平面直角坐标系中,□ABCD 的顶点A 、B 、C 的坐标分别是(0,0)、(3,0)、(4,2)则顶点D 的坐标为( )A .(7,2) B. (5,4) C.(1,2) D. (2,1) 11、如图所示,在平面直角坐标系中,ABCD 的顶点A ,B ,D 的坐标分别是(0,0),(5,0),(2,3),则顶点C 的坐标是( )A .(3,7)B .(5,3)C .(7,3)D .(8,2)题型五:点到直线的距离点P (x,y )到x 轴,y 轴的距离分别为|y|和|x|,到原点的距离22x y +1、点M (-6,5)到x 轴的距离是_____,到y 轴的距离是______.2、已知点P (x ,y )在第四象限,且│x │=3,│y │=5,则点P 的坐标是( ) A .(-3,5) B .(5,-3) C .(3,-5) D .(-5,3)3、已知点P (m ,n )到x 轴的距离为3,到y 轴的距离等于5,则点P 的坐标是 。

4、已知点P 的坐标(2-a ,3a +6),且点P 到两坐标轴的距离相等,则点P 的坐标是 . yO (01)B ,(20)A ,1(3)A b ,1(2)B a ,x题型六:平行于X 轴、Y 轴的直线的特点平行于x 轴的直线上点的纵坐标相同;平行于y 轴的直线上点的横坐标相同1、已知点A(1,2),AC ∥X 轴, AC=5,则点C 的坐标是 _____________.2、已知点A(1,2),AC ∥y 轴, AC=5,则点C 的坐标是 _____________.3、如果点A (),3a -,点B ()2,b 且AB//x 轴,则_______4、如果点A ()2,m ,点B (),6n -且AB//y 轴,则_______5、已知:A(1,2),B(x,y),AB ∥x 轴,且B 到y 轴距离为2,则点B 的坐标是 .6、已知长方形ABCD 中,AB=5,BC=8,并且AB ∥x 轴,若点A 的坐标为(-2,4),则点C 的坐标为__________________________.题型七:角平分线的理解第一、三象限角平分线的点横纵坐标相同(y=x ); 第二、四象限角平分线的点横纵坐标互为相反数(x+y=0)1、若点M 在第一、三象限的角平分线上,且点M 到x 轴的距离为2,则点M 的坐标是( ) A .(2,2) B .(-2,-2) C .(2,2)或(-2,-2) D .(2,-2)或(-2,2)2、在平面直角坐标系内,已知点(1-2a ,a-2)在第三象限的角平分线上,则a = ,点的坐标为 。

3、当b=______时,点B(-3,|b-1|)在第二、四象限角平分线上.题型八:考特定条件下点的坐标1、若点P (x ,y )的坐标满足x +y =xy ,则称点P 为“和谐点”。

请写出一个“和谐点”的坐标,答: .2、如图,若将直角坐标系中“鱼”的每个“顶点”的横坐标不变,纵坐标分别变为原来的12,则点A 的对应点的坐标是( ). A.(﹣4,3) B.(4,3) C.(﹣2,6) D.(﹣2,3)3、如图,如果 所在的位置坐标为(-1,-2),所在的位置坐标为(2,-2),则所在位置坐标为 .4、如图,若在象棋盘上建立直角坐标系,使“帥”位于点(-1,-2),“馬”位于点(2,-2),则“兵”位于点( ).A.(-1,1)B.(-2,-1)C.(-3,1)D.(1,-2)5、如图是一台雷达探测相关目标得到的结果,若记图中目标A 的位置为(•2,90°),则其余各目标的位置分别是多少?题型九 面积的求法1、已知:A(3,1),B(5,0),E(3,4),则△ABE 的面积为________.2、如图,在四边形ABCD 中,A 、B 、C 、D 的四个点的坐标分别为(0,2)(1,0)(6,2)(2,4),求四边形ABCD 的面积。

士相 炮 炮士帅 相1234567-1o 123456-1-2xy CD A B3、如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD . (1)求点C ,D 的坐标及四边形ABDC 的面积ABDC S 四边形(2)在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S =ABDC S 四边形, 若存在这样一点,求出点P 的坐标,若不存在,试说明理由.4、如图为风筝的图案.(1)若原点用字母O 表示,写出图中点A ,B ,C 的坐标. (2)试求(1)中风筝所覆盖的平面的面积.x1、2、在()2-,38,0,9,0.010010001……, ,-0.333…,5, 3.1415,2.010101…(相课后作业练习邻两个1之间有1个0)中,无理数有( )A.1个B.2个 C .3个 D.4个 2、下列说法不正确的是 ( )A 、51251±的平方根是 B 、的一个平方根是819-; C 、0.2的算术平方根是0.02 D 、3273-=- 3、已知023=-+-y x x ,那么x+y 的值为 。

相关文档
最新文档