2020届高考数学艺术生短期集训专题知识突破:考点10-函数的图象及其变换
2020年高考数学压轴题专题复习: 函数的图象与性质及其应用【解析版】
专题 函数的图象与性质及其应用纵观近几年的高考命题,函数图象和性质及其应用问题,常常出现在压轴题的位置,考查的类型主要有: 1.分段函数的图象与性质问题,往往通过分类讨论,将函数在不同定义域内的图象进行刻画或讨论,有时借助导数这一工具进行研究;2.函数的零点问题,根据函数的零点情况,讨论参数的范围是高考的重点和难点.函数零点问题常常涉及零点个数问题、零点所在区间问题及零点相关的代数式取值问题,解决的途径常以数形结合的思想,通过化归与转化灵活转化问题;3.抽象函数问题,由于抽象函数表现形式抽象,对学生思维能力考查的起点较高,使得此类问题成为函数内容的难点之一,解决此类问题时,需要准确掌握函数的性质,熟知我们所学的基本初等函数,将抽象函数问题转化为具体函数问题;4. 函数性质的综合应用问题,函数性质包括奇偶性、单调性、对称性、周期性等,对函数性质的熟练掌握与刻画是解决函数综合题目的必然要求;5.函数与不等式的综合问题,主要有解不等式、及根据不等式确定参数(范围)问题.函数的图象与不等式,往往涉及数形结合思想、转化与化归思想;6.函数中的新定义问题.【压轴典例】例1.【2019年高考全国Ⅱ卷理数】设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是( )A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【答案】B【解析】∵(1) 2 ()f x f x +=,()2(1)f x f x ∴=-. ∵(0,1]x ∈时,1()(1)[,0]4f x x x =-∈-;∴(1,2]x ∈时,1(0,1]x -∈,1()2(1)2(1)(2),02f x f x x x ⎡⎤=-=--∈-⎢⎥⎣⎦; ∴(2,3]x ∈时,1(1,2]x -∈,()2(1)4(2)(3)[1,0]f x f x x x =-=--∈-,如图:当(2,3]x ∈时,由84(2)(3)9x x --=-解得173x =,283x =,若对任意(,]x m ∈-∞,都有8()9f x ≥-,则73m ≤.则m 的取值范围是7,3⎛⎤-∞ ⎥⎝⎦.故选B.例2.【2016·全国卷Ⅱ】已知函数f (x )(x ∈R)满足f (-x )=2-f (x ),若函数y =x +1x与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1m(x i +y i )=( )A .0B .mC .2mD .4m【答案】B 【解析】法一:利用函数的对称性由f (-x )=2-f (x ),知f (-x )+f (x )=2,所以点(x ,f (x ))与点(-x ,f (-x ))连线的中点是(0,1),故函数f (x )的图象关于点(0,1)成中心对称.(此处也可以这样考虑:由f (-x )=2-f (x ),知f (-x )+f (x )-2=0,即[f (x )-1]+[f (-x )-1]=0,令F (x )=f (x )-1,则F (x )+F (-x )=0,即F (x )=f (x )-1为奇函数,图象关于点(0,0)对称,而F (x )的图象可看成是f (x )的图象向下平移一个单位得到的,故f (x )的图象关于点(0,1)对称).又y =x +1x =1+1x的图象也关于点(0,1)对称,所以两者图象的交点也关于点(0,1)对称,所以对于每一组对称点x i +x i ′=0,y i +y i ′=2,所以∑i =1m(x i +y i )=∑i =1mx i +∑i =1my i =0+2×m2=m ,故选B.法二:构造特殊函数由f (-x )=2-f (x ),知f (-x )+f (x )-2=0, 即[f (x )-1]+[f (-x )-1]=0. 令F (x )=f (x )-1,则F (x )为奇函数, 即f (x )-1为奇函数,从而可令f (x )-1=x , 即f (x )=x +1,显然该函数满足此条件. 此时y =f (x )与y =x +1x的交点分别为(1,2)和(-1,0), 所以m =2, i =1m(x i +y i )=1+2+(-1)+0=2,结合选项可知选B. 答案:B 【思路点拨】(1)由于题目条件中的f (x )没有具体的解析式,仅给出了它满足的性质f (-x )=2-f (x ),即f (x )(x ∈R)为抽象函数,显然我们不可能求出这些点的坐标,这说明这些交点坐标应满足某种规律,而这种规律必然和这两个函数的性质有关. (2)易知函数y =x +1x关于点(0,1)成中心对称,自然而然的让我们有这样的想法:函数f (x )(x ∈R)的图象是否也关于点(0,1)成中心对称?基于这个想法及选择题的特点,那么解题方向不外乎两个:一是判断f (x )的对称性,利用两个函数的对称性求解;二是构造一个具体的函数f (x )来求解. 例3. 【安徽省肥东县高级中学2019届8月调研】已知定义在上的函数满足条件:①对任意的,都有;②对任意的且,都有;③函数的图象关于轴对称,则下列结论正确的是 ( ) A . B . C . D .【答案】C 【解析】 ∵对任意的,都有;∴函数是4为周期的周期函数, ∵函数的图象关于轴对称 ∴函数函数)的关于对称,∵且,都.∴此时函数在上为增函数, 则函数在上为减函数, 则,,,则, 即,故选C . 【规律总结】1.先研究清楚函数的奇偶性、对称性和周期性等性质,这样函数就不再抽象了,而是变得相对具体,我们就可以画出符合性质的草图来解题.2.解决抽象函数问题常用的结论 (1)函数y =f(x)关于x =2a b对称⇔f(a +x)=f(b -x)⇔f(x)=f(b +a -x). 特例:函数y =f(x)关于x =a 对称⇔f(a +x)=f(a -x)⇔f(x)=f(2a -x); 函数y =f(x)关于x =0对称⇔f(x)=f(-x)(即为偶函数).(2)函数y =f(x)关于点(a ,b)对称⇔f(a +x)+f(a -x)=2b ⇔f(2a +x)+f(-x)=2b. 特例:函数y =f(x)关于点(a,0)对称⇔f(a +x)+f(a -x)=0⇔f(2a +x)+f(-x)=0; 函数y =f(x)关于点(0,0)对称⇔f(x)+f(-x)=0(即为奇函数).(3)y =f(x +a)是偶函数⇔函数y =f(x)关于直线x =a 对称;y =f(x +a)是奇函数⇔函数y =f(x)关于(a,0)对称.(4)对于函数f(x)定义域内任一自变量的值x : ①若f(x +a)=-f(x),则T =2a ; ②若f(x +a)=1()f x ,则T =2a ; ③若f(x +a)=-1()f x ,则T =2a ;(a>0) ④若f(x +a)=f(x +b)(a≠b),则T =|a -b|;⑤若f(2a -x)=f(x)且f(2b -x)=f(x)(a≠b),则T =2|b -a|.(5)奇偶函数在对称区间上的单调性:奇函数在对称区间上的单调性相同;偶函数在对称区间上的单调性相反.例4.【2018年理数天津卷】已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是______________.【答案】【解析】分类讨论:当时,方程即,整理可得:,很明显不是方程的实数解,则,当时,方程即,整理可得:,很明显不是方程的实数解,则,令,其中,,原问题等价于函数与函数有两个不同的交点,求的取值范围.结合对勾函数和函数图象平移的规律绘制函数的图象,同时绘制函数的图象如图所示,考查临界条件,结合观察可得,实数的取值范围是.【方法总结】本题的核心在考查函数的零点问题,函数零点的求解与判断方法包括:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.例5.【2019年高考江苏】设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,2()1(1)f x x =--,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 ▲ .【答案】12,34⎡⎫⎪⎢⎪⎣⎭【解析】作出函数()f x ,()g x 的图象,如图:由图可知,函数2()1(1)f x x =--的图象与1()(12,34,56,78)2g x x x x x =-<≤<≤<≤<≤的图象仅有2个交点,即在区间(0,9]上,关于x 的方程()()f x g x =有2个不同的实数根,要使关于x 的方程()()f x g x =有8个不同的实数根,则2()1(1),(0,2]f x x x =--∈与()(2),(0,1]g x k x x =+∈的图象有2个不同的交点,由(1,0)到直线20kx y k -+=的距离为1,可得2|3|11k k =+,解得2(0)4k k =>, ∵两点(2,0),(1,1)-连线的斜率13k =, ∴1234k ≤<,综上可知,满足()()f x g x =在(0,9]上有8个不同的实数根的k 的取值范围为1234⎡⎫⎪⎢⎪⎣⎭,. 例6.【2016年高考四川理数】在平面直角坐标系中,当P (x ,y )不是原点时,定义P 的“伴随点”为'2222(,)y xP x y x y -++;当P 是原点时,定义P 的“伴随点”为它自身,平面曲线C 上所有点的“伴随点”所构成的曲线'C 定义为曲线C 的“伴随曲线”.现有下列命题:①若点A 的“伴随点”是点'A ,则点'A 的“伴随点”是点A ②单位圆的“伴随曲线”是它自身;③若曲线C 关于x 轴对称,则其“伴随曲线”'C 关于y 轴对称; ④一条直线的“伴随曲线”是一条直线.其中的真命题是_____________(写出所有真命题的序列). 【答案】②③ 【解析】试题分析:对于①,若令(1,1)P ,则其伴随点为11(,)22P '-,而11(,)22P '-的伴随点为(1,1)--,而不是P ,故①错误;对于②,设曲线(,)0f x y =关于x 轴对称,则(,)0f x y -=与方程(,)0f x y =表示同一曲线,其伴随曲线分别为2222(,)0y x f x y x y -=++与2222(,)0y xf x y x y --=++也表示同一曲线,又曲线2222(,)0y x f x y x y -=++与曲线2222(,)0y xf x y x y --=++的图象关于y 轴对称,所以②正确;③设单位圆上任一点的坐标为(cos ,sin )P x x ,其伴随点为(sin ,cos )P x x '-仍在单位圆上,故②正确;对于④,直线y kx b =+上任一点P (,)x y 的伴随点是'P 2222(,)y xx y x y -++,消参后点'P 轨迹是圆,故④错误.所以正确的为序号为②③.【名师点睛】本题考查新定义问题,属于创新题,符合新高考的走向.它考查学生的阅读理解能力,接受新思维的能力,考查学生分析问题与解决问题的能力,新定义的概念实质上只是一个载体,解决新问题时,只要通过这个载体把问题转化为我们已经熟悉的知识即可.本题新概念“伴随”实质是一个变换,一个坐标变换,只要根据这个变换得出新的点的坐标,然后判断,问题就得以解决.例7.【2019年高考浙江】已知a ∈R ,函数3()f x ax x =-,若存在t ∈R ,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是___________. 【答案】43【解析】存在t ∈R ,使得2|(2)()|3f t f t +-≤, 即有332|(2)(2)|3a t t at t +-+-+≤, 化为()22|23642|3a t t ++-≤, 可得()2222364233a t t -≤++-≤, 即()22436433a t t ≤++≤, 由223643(1)11t t t ++=++≥,可得403a <≤. 则实数a 的最大值是43. 【名师点睛】本题考查函数的解析式及二次函数,结合函数的解析式可得33|(2)(2)|a t t at t +-+-+23≤,去绝对值化简,结合二次函数的最值及不等式的性质可求解.【压轴训练】1.【2018·全国卷Ⅰ】设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)【答案】D【解析】法一:分类讨论法①当⎩⎪⎨⎪⎧ x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x ,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧ x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x ,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ),则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0,∴x <0,故选D.2.【2018年全国卷II 理】已知是定义域为的奇函数,满足.若,则( )A .B .C .D .【答案】C 【解析】 因为是定义域为的奇函数,且, 所以,因此,因为,所以,,从而,选C.3.【2018年理新课标I 卷】已知函数.若g (x )存在2个零点,则a 的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞) 【答案】C【解析】分析:首先根据g (x )存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给的函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.4.【甘肃省兰州市第一中学2019届9月月考】已知函数f(x)是定义在实数集R上的不恒为零的偶函数,且对任意实数x都有,则的值是()A. 0 B. C. 1 D.【答案】A【解析】若,则,可得,若,,则有,取,则有:∵是偶函数,则,由此得,于是,,故选A.5.若直角坐标系内A、B两点满足:(1)点A、B都在f(x)的图像上;(2)点A、B关于原点对称,则称点对(A,B)是函数f(x)的一个“姊妹点对”(点对(A,B)与(B,A)可看作一个“姊妹点对”。
高中数学函数图象的4种简单变换知识点总结(平移、对称、翻折、伸缩)
高中数学函数图象的简单变换知识点总结高中阶段,函数图象的简单变换有:平移变换、对称变换、翻折变换、伸缩变换。
一、函数图象的平移变换①左右平移变换:()y f x =与()y f x a =+()()00a a a a y f x y f x a ><=−−−−−−−−−−−→=+时,向左平移个单位时,向右平移个单位如:1y x =+的图象可由y x =的图象向右平移一个单位得到;1y x =-的图象可由y x =的图象向下平移一个单位得到。
②上下平移变换()()00a a a a y f x y f x a ><=−−−−−−−−−−−→=+时,向上平移个单位时,向下平移个单位如:1y x =+的图象可由y x =的图象向上平移一个单位得到。
1y x =-的图象可由y x =的图象向下平移一个单位得到。
【注】变换的口诀为:“上加下减,左加右减”。
二、函数图象的对称变换①()()y y f x y f x =−−−−−−−−−→=-作关于轴对称的图象②()()x y f x y f x =−−−−−−−−−→=-作关于轴对称的图象③()()y f x y f x =−−−−−−−−−→=--作关于原点对称的图象如:(i)()sin sin y x y x ϕ=→=+①0ϕ>时,把sin y x =的图象向左平移ϕ个单位得到;②0ϕ<时,把sin y x =的图象向右平移ϕ个单位得到;(ii)已知()2f x x x =-,则()()2g x f x x x =-=+的图象可由()2f x x x =-的图象做关于y 轴对称的图象得到;函数()h x ()2f x x x =-=-+的图象可由()2f x x x =-的图象作关于x 轴对称后的图象得到;函数()()u x f x =--=2x x --的图象可由()2f x x x =-的图象做关于坐标系原点对称的图象得到。
2020年高考数学一轮复习专题10函数图像(含解析)
专题10 函数图像一、【知识精讲】1.利用描点法作函数的图象步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线. 2.利用图象变换法作函数的图象(1)平移变换(2)对称变换y =f (x )的图象――→关于x 轴对称y =-f (x )的图象;y =f (x )的图象――→关于y 轴对称y =f (-x )的图象;y =f (x )的图象――→关于原点对称y =-f (-x )的图象;y =a x(a >0,且a ≠1)的图象――——————————→关于直线y =x 对称y =log a x (a >0,且a ≠1)的图象. (3)伸缩变换y =f (x )―——————————————————―→纵坐标不变各点横坐标变为原来的1a(a >0)倍y =f (ax ). y =f (x )―——————————————————―→横坐标不变各点纵坐标变为原来的A (A >0)倍y =Af (x ). (4)翻折变换y =f (x )的图象―————————————————―→x 轴下方部分翻折到上方x 轴及上方部分不变y =|f (x )|的图象;y =f (x )的图象―————————————————―→y 轴右侧部分翻折到左侧原y 轴左侧部分去掉,右侧不变y =f (|x |)的图象. [微点提醒]记住几个重要结论(1)函数y =f (x )与y =f (2a -x )的图象关于直线x =a 对称.(2)函数y=f(x)与y=2b-f(2a-x)的图象关于点(a,b)中心对称.(3)若函数y=f(x)对定义域内任意自变量x满足:f(a+x)=f(a-x),则函数y=f(x)的图象关于直线x =a对称.二、【典例精练】考点一作函数的图象例1. 作出下列函数的图象.(1)y=-2x+3,x≤1,-x2+4x-2,x>1;(2)y=2x+2;(3)y=x2-2|x|-1.【解析】(1)分段分别画出函数的图象,如图①所示.(2)y=2x+2的图象是由y=2x的图象向左平移2个单位长度得到的,其图象如图②所示.(3)y=x2-2x-1,x≥0,x2+2x-1,x<0,其图象如图③所示.【解法小结】作函数图象的一般方法直接法当函数表达式(或变形后的表达式)是熟悉的基本初等函数时,就可根据这些函数的特征直接作出图象变换法变换包括:平移变换、伸缩变换、对称变换、翻折变换图象变换口诀如下:图象变换有谁知?平移反射和位似;平移左加与右减,上下移动值增减;反射就是轴对称,上下左右玩对称;位似缩小与放大,有个定点叫中心.描点法当上面两种方法都失效时,则可采用描点法.为了通过描少量点,就能得到比较准确的图象,常常需要结合函数的单调性、奇偶性等性质作出考点二函数图象的识辨例2. (2018·全国卷Ⅱ)函数f(x)=e x-e-xx2的图象大致为( )【答案】 B【解析】∵y=e x-e-x是奇函数,y=x2是偶函数,∴f(x)=e x-e-xx2是奇函数,图象关于原点对称,排除A选项;当x=1时,f(1)=e-1e>0,排除D选项;又e>2,∴1e<12,∴e-1e>1,排除C选项.故选 B.例3. (1)(2017·全国Ⅲ卷)函数y=1+x+sin xx2的部分图象大致为( )(2)(2016·全国Ⅰ卷)函数y=2x2-e|x|在[-2,2]的图象大致为( )。
艺术生高考数学专题讲义考点10函数的图象及其变换
艺术生高考数学专题讲义考点10函数的图象及其变换1.函数的图象函数的图象是函数y=f(x)的平面图形表示,通常用笛卡尔坐标系上的点(x,f(x))表示。
函数的图象可以帮助我们直观地了解函数的性质。
2.常见函数图象(1) 一次函数y=ax+b (a≠0) 的图象是一条直线,斜率为a,截距为b。
(2) 二次函数y=ax^2+bx+c (a≠0) 的图象是一条抛物线,开口方向由a的正负决定。
(3)幂函数y=x^a(a>0,a≠1)的图象是一条指数曲线,根据a的大小关系可以判断增减性。
(4) 对数函数y=loga(x) (a>0, a≠1) 的图象是一条反比例函数的图象。
3.函数图象的平移(1)向右平移h个单位:将x替换为x-h,则对应的函数图象向右平移h个单位。
(2)向左平移h个单位:将x替换为x+h,则对应的函数图象向左平移h个单位。
(3)向上平移k个单位:将y替换为y-k,则对应的函数图象向上平移k个单位。
(4)向下平移k个单位:将y替换为y+k,则对应的函数图象向下平移k个单位。
4.函数图象的伸缩(1) 横向伸缩:将x替换为kx (k>0),则对应的函数图象在x轴方向上缩短为原来的1/k倍;如果k<0,则函数图象在x轴方向上翻转。
(2) 纵向伸缩:将y替换为ky (k>0),则对应的函数图象在y轴方向上伸长为原来的k倍;如果k<0,则函数图象在y轴方向上翻转。
5.函数图象的对称(1)关于x轴对称:将y替换为-y,则对应的函数图象关于x轴对称。
(2)关于y轴对称:将x替换为-x,则对应的函数图象关于y轴对称。
(3)关于原点对称:先进行左右对称,再进行上下对称。
6.函数图象的综合变换根据需要,可以将平移、伸缩和对称等操作综合运用于函数的图象,从而得到更加复杂的函数图象。
7.相关考点(1)函数的性质与图象:通过观察函数的图象,可以判断函数的奇偶性、增减性等性质。
(2)函数的反函数:反函数的图象是原函数的图象关于直线y=x的镜像。
函数的图象基础知识(艺考生)
函数的图象思维导图知识梳理1.利用描点法作函数的图象 其基本步骤是列表、描点、连线.首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性、对称性等).其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线. 2.利用图象变换法作函数的图象 (1)平移变换(2)对称变换①y =f (x )――→关于x 轴对称y =-f (x ). ②y =f (x )――→关于y 轴对称y =f (-x ). ③y =f (x )――→关于原点对称y =-f (-x ).④y =a x (a >0且a ≠1)――→关于y =x 对称y =log a x (x >0). (3)翻折变换①y =f (x )――→保留x 轴及上方图象将x 轴下方图象翻折上去y =|f (x )|.②y =f (x )――→保留y 轴及右边图象,并作其关于y 轴对称的图象y =f (|x |).(4)伸缩变换 ①y =f (x )a >1,横坐标缩短为原来的1a倍,纵坐标不变0<a <1,横坐标伸长为原来的1a 倍,纵坐标不变→y =f (ax ).②y =f (x )a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变→y =af (x ).题型归纳题型1 作函数的图象【例1-1】(2020秋•海淀区校级期中)已知函数21,1(),1121,1x f x x x x x <-⎧⎪=-⎨⎪->⎩.(Ⅰ)画出函数()y f x =的图象; (Ⅱ)若1()4f x ,求x 的取值范围; (Ⅲ)直接写出()y f x =的值域.【跟踪训练1-1】(2020秋•石河子校级月考)已知函数22||1y x x =--. (1)作出函数的图象;(2)由图象写出函数的单调区间.【名师指导】作函数图象的两种常用方法1.直接法:当函数表达式(或变形后的表达式)是熟悉的基本初等函数时,就可根据这些函数的特征直接作出.2.图象变换法:若函数图象可由某个基本初等函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注意变换顺序. 题型2 函数图象的识辨 【例2-1】(2020•天津)函数241xy x =+的图象大致为( ) A . B .C .D .【例2-2】(2020春•通州区期末)已知函数()f x 的图象如图所示,那么该函数可能为( )A .()||lnx f x x =B .||()ln x f x x= C .1,0()(1),0x x x x f x e x e x -⎧>⎪=⎨⎪+<⎩D .22,0()(),0lnxx x f x ln x x x ⎧->⎪⎪=⎨-⎪<⎪⎩【例2-3】(2020•乐山模拟)已知角θ的始边与x 的非负半轴重合,与圆22:4C x y +=相交于点A ,终边与圆C 相交于点B ,点B 在x 轴上的射影为点C ,ABC ∆的面积为()S θ,则函数()S θ的图象大致是( )A .B .C .D .【跟踪训练2-1】(2019•新课标Ⅲ)函数3222x xx y -=+在[6-,6]的图象大致为( )A .B .C .D .【跟踪训练2-2】(2020春•湖州期末)已知某函数的图象如图所示,则其解析式可以是( )A .sin()x x y e e -=+B .sin()x x y e e -=-C .cos()x x y e e -=-D .cos()x x y e e -=+【跟踪训练2-3】(2020•贵港四模)如图,点P 在以2AB =为直径的半圆弧上,点P 沿着BA 运动,记BAP x ∠=.将点P 到A 、B 两点距离之和表示为x 的函数()f x ,则()y f x =的图象大致为( )A .B .C .D .【名师指导】识别函数图象的方法技巧函数图象的识别可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势. (3)从函数的奇偶性,判断图象的对称性. (4)从函数的周期性,判断图象的循环往复. (5)从函数的特殊点,排除不合要求的图象. 题型3 函数图象的应用【例3-1】(2020春•龙凤区校级期末)函数322x y x lgx -=+的图象( ) A .关于x 轴对称 B .关于y 轴对称C .关于直线y x =对称D .关于原点对称【例3-2】(2020秋•琼海校级月考)已知定义在R 上的偶函数()y f x =部分图象如图所示,那么不等式()0xf x >的解集为 .【例3-3】(2019•江苏模拟)已知函数[],0,()(1),0,x x x f x f x x -⎧=⎨+<⎩其中[]x 表示不超过x 的最大整数,如:[ 1.2]2-=-,[1.2]1=,[1]1=.若直线(0)y kx k k =+>与函数()f x 的图象恰好有三个不同的交点,则实数k 的取值范围是 .【跟踪训练3-1】(2021•嘉定区一模)已知函数()log a f x x =和()(2)g x k x =-的图象如图所示,则不等式()0()f xg x 的解集是 .【名师指导】1.利用函数的图象研究函数的性质对于已知或解析式易画出其在给定区间上图象的函数,其性质常借助图象研究: (1)从图象的最高点、最低点,分析函数的最值、极值; (2)从图象的对称性,分析函数的奇偶性;(3)从图象的走向趋势,分析函数的单调性、周期性.2.利用函数的图象研究方程根的个数:当方程与基本函数有关时,可以通过函数图象来研究方程的根,方程f (x )=0的根就是函数f (x )的图象与x 轴交点的横坐标,方程f (x )=g (x )的根就是函数f (x )与g (x )图象交点的横坐标.3.利用函数的图象研究不等式:当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.配套练习1.(2021·北京101中学高一期末)如图所示的是函数sin y x =(0x π≤≤)的图像,()A x y ,是图像上任意一点,过点A 作x 轴的平行线,交图像于另一点B (A ,B 可重合).设线段AB 的长为()f x ,则函数()f x 的图像是( )A .B .C .D .2.(2021·西藏高三其他模拟(文))函数2,02,0x x x y x -⎧≥=⎨<⎩的图像为( )A .B .C .D .3.(2021·全国高一)函数22()21xf x x =-的图像的是 ( )A .B .C .D .4.(2021·江苏无锡市·高一期末)函数2()ln f x x x =+的图像大致是( )A .B .C.D.5.(2021·天津南开区·南开中学高三月考)函数cos622x xxy-=-的图像大致为()A.B.C.D.6.(2021·天津滨海新区·高三月考)函数ln||cos()sinx xf xx x⋅=+在[),0π]π(0,-⋃的图像大致为()A.B.C.D.7.(2021·浙江高一期末)函数ln||()||x xf xx=的图像可能是()A .B .C .D .8.(2021·浙江高一期末)函数log (01)a y x a a =>≠且与函数2(1)21y a x x =---在同一坐标系中的图像可能是( )A .B .C .D .9.(2021·全国高一)向如下图所示的容器中匀速注水时,容器中水面高度h 随时间t 变化的大致图像是( )A .B .C .D .10.(2021·吉林长春市·长春外国语学校高一期末)我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图像来研究函数的性质,也常用函数的解析式来琢磨函数图像的特征.我们从这个商标中抽象出一个图象如图,其对应的函数可能是( )A .()11f x x =- B .()11f x x =- C .()211f x x =- D .()211f x x =+ 11.(2021·全国高一)如图,正方形ABCD 的边长为2,动点E 从A 开始沿A →B →C 的方向以2个单位长/秒的速度运动到C 点停止,同时动点F 从点C 开始沿CD 边以1个单位长/秒的速度运动到D 点停止,则AEF 的面积y 与运动时间x (秒)之间的函数图像大致形状是( )A .B .C .D .12.(2021·江苏高一)函数2()21f x ax x =++与()a g x x =在同一坐标系中的图像可能为( )A .B .C .D .13.(2021·上海浦东新区·高一期末)定义在R 上的奇函数()f x 在[)0,+∞上的图像如图所示,则不等式()0x f x ⋅的解集是____.函数的图象解析题型归纳题型1 作函数的图象【例1-1】(2020秋•海淀区校级期中)已知函数21,1(),1121,1x f x x x x x <-⎧⎪=-⎨⎪->⎩.(Ⅰ)画出函数()y f x =的图象; (Ⅱ)若1()4f x ,求x 的取值范围; (Ⅲ)直接写出()y f x =的值域.【解析】解:(Ⅰ)函数()y f x =的图象如图; (Ⅱ)当1x <-时,满足1()4f x , 当11x -,由1()4f x 得214x ,得12x 或12x -,此时112x --或112x , 当1x >时,1()4f x 恒成立, 综上得12x或12x -, 即x 的取值范围是得12x或12x -; (Ⅲ)由图象知()0f x ,即()y f x =的值域是[0,)+∞.【跟踪训练1-1】(2020秋•石河子校级月考)已知函数22||1y x x =--. (1)作出函数的图象;(2)由图象写出函数的单调区间.【解析】解:(1)函数22221,2||121,x x x y x x x x x ⎧--=--=⎨+-<⎩. 当0x 时,2(1)2y x =--; 当0x <时,(1)2y x =+-. 故图象如图所示;(2)函数的增区间为:(1-,0],(1,)+∞; 减区间为:(-∞,1]-,(0,1].【名师指导】作函数图象的两种常用方法1.直接法:当函数表达式(或变形后的表达式)是熟悉的基本初等函数时,就可根据这些函数的特征直接作出.2.图象变换法:若函数图象可由某个基本初等函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注意变换顺序. 题型2 函数图象的识辨 【例2-1】(2020•天津)函数241xy x =+的图象大致为( ) A . B .C .D .【解析】解:函数241xy x =+的定义域为实数集R ,关于原点对称,函数24()1x y f x x ==+,则24()()1xf x f x x -=-=-+,则函数()y f x =为奇函数,故排除C ,D , 当0x >是,()0y f x =>,故排除B , 故选:A .【例2-2】(2020春•通州区期末)已知函数()f x 的图象如图所示,那么该函数可能为( )A .()||lnx f x x =B .||()ln x f x x= C .1,0()(1),0x x x x f x e x e x -⎧>⎪=⎨⎪+<⎩D .22,0()(),0lnxx x f x ln x x x ⎧->⎪⎪=⎨-⎪<⎪⎩【解析】解:由图可知,函数()f x 为奇函数,而选项A 和C 中对应的函数是非奇非偶函数,于是排除选项A 和C ;当(0,1)x ∈时,从图象可知,()0f x <,而对于选项D ,0lnx <,20x >,所以()0f x >,与图象不符,排除选项D . 故选:B .【例2-3】(2020•乐山模拟)已知角θ的始边与x 的非负半轴重合,与圆22:4C x y +=相交于点A ,终边与圆C 相交于点B ,点B 在x 轴上的射影为点C ,ABC ∆的面积为()S θ,则函数()S θ的图象大致是( )A .B .C .D .【解析】解:由题知,点(2,0)A ,点(2cos ,2sin )B θθ,点(2cos ,0)C θ, 则11()||||(22cos )2|sin |022S AC BC θθθ=⨯=-,故排除选项C 和D ,又因为当34πθ=时,1()(222122S θ=⨯+⨯>,排除选项B .故选:A .【跟踪训练2-1】(2019•新课标Ⅲ)函数3222x xx y -=+在[6-,6]的图象大致为( )A .B .C .D .【解析】解:由32()22x x x y f x -==+在[6-,6],知332()2()()2222x x x xx x f x f x ----==-=-++,()f x ∴是[6-,6]上的奇函数,因此排除C又f (4)1182721=>+,因此排除A ,D .故选:B .【跟踪训练2-2】(2020春•湖州期末)已知某函数的图象如图所示,则其解析式可以是( )A .sin()x x y e e -=+B .sin()x x y e e -=-C .cos()x x y e e -=-D .cos()x x y e e -=+【解析】解:令()x x s x e e -=+,该函数的定义域为R ,且()()x x s x e e s x --=+=, ()s x ∴为R 上的偶函数;令()x x t x e e -=-,该函数的定义域为R ,且()()()x x x x t x e e e e t x ---=-=--=-, ()t x ∴为R 上的奇函数,又正弦函数为奇函数,余弦函数为偶函数, 且图中所给出的函数为偶函数,排除A 与C ; 又由图可知,所求函数在[0,1]上为减函数,而B 中内层函数()t x 在[0,1]上为增函数,而外层函数正弦函数在[0,]2π上为增函数,故当x 大于0且在0附近时,B 中函数为增函数,排除B . 故选:D .【跟踪训练2-3】(2020•贵港四模)如图,点P 在以2AB =为直径的半圆弧上,点P 沿着BA 运动,记BAP x ∠=.将点P 到A 、B 两点距离之和表示为x 的函数()f x ,则()y f x =的图象大致为( )A .B .C .D .【解析】解:()2cos 2sin )4y f x PA PB x x x π==+=+=+,选项D 符合题意, 故选:D . 【名师指导】识别函数图象的方法技巧函数图象的识别可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势. (3)从函数的奇偶性,判断图象的对称性. (4)从函数的周期性,判断图象的循环往复. (5)从函数的特殊点,排除不合要求的图象. 题型3 函数图象的应用【例3-1】(2020春•龙凤区校级期末)函数322x y x lgx -=+的图象( ) A .关于x 轴对称 B .关于y 轴对称C .关于直线y x =对称D .关于原点对称【解析】解:202x x ->+,2x ∴>或2x <-,即函数的定义域为(-∞,2)(2-⋃,)+∞(定义域关于原点对称), 32()2x y f x x lgx -==+,333222()()()222x x x f x x lg x lg x lg f x x x x --+-∴-=-=-==-+-+, ∴函数()y f x =是偶函数,关于y 轴对称,故选:B .【例3-2】(2020秋•琼海校级月考)已知定义在R 上的偶函数()y f x =部分图象如图所示,那么不等式()0xf x >的解集为 .【解析】解:根据题意,由()f x 的图象分析可得:在(0,1)和(2,)+∞上,()0f x >,在区间(1,2)上,()0f x <, 又由()f x 为偶函数,则在(1,0)-和(,2)-∞-上,()0f x >,在区间(2,1)--上,()0f x <, 0()0()0x xf x f x >⎧>⇒⎨>⎩或0()0x f x <⎧⎨<⎩, 则有01x <<或2x >或21x -<<-,即不等式的解集为{|01x x <<或2x >或21}x -<<-; 故答案为:{|01x x <<或2x >或21}x -<<-.【例3-3】(2019•江苏模拟)已知函数[],0,()(1),0,x x x f x f x x -⎧=⎨+<⎩其中[]x 表示不超过x 的最大整数,如:[ 1.2]2-=-,[1.2]1=,[1]1=.若直线(0)y kx k k =+>与函数()f x 的图象恰好有三个不同的交点,则实数k 的取值范围是 .【解析】解:函数[],0()(1),0x x x f x f x x -⎧=⎨+<⎩,∴函数的图象如下图所示:(1)y kx k k x =+=+,故函数图象一定过(1,0)-点若()f x kx k =+有三个不同的根,则y kx k =+与()y f x =的图象有三个交点 当y kx k =+过(2,1)点时,13k =,当y kx k =+过(3,1)点时,14k =,故()f x kx k =+有三个不同的根,则实数k 的取值范围是11[,)43故答案为:11[,)43.【跟踪训练3-1】(2021•嘉定区一模)已知函数()log a f x x =和()(2)g x k x =-的图象如图所示,则不等式()0()f xg x 的解集是 .【解析】解:由图象()log a f x x =可得(0,1)x ∈时,()0f x <, (1,)x ∈+∞时,()0f x >,当1x =时()0f x =由图象()(2)g x k x =-可得(,2)x ∈-∞时,()0g x >, (2,)x ∈+∞时,()0g x <,不等式()0()f x g x ,即()0()0f x g x ⎧⎨>⎩或()0()0f x g x ⎧⎨<⎩; [1x ∴∈,2) ∴不等式()0()f xg x 的解集为[1,2) 故答案为:[1,2) 【名师指导】1.利用函数的图象研究函数的性质对于已知或解析式易画出其在给定区间上图象的函数,其性质常借助图象研究: (1)从图象的最高点、最低点,分析函数的最值、极值; (2)从图象的对称性,分析函数的奇偶性;(3)从图象的走向趋势,分析函数的单调性、周期性.2.利用函数的图象研究方程根的个数:当方程与基本函数有关时,可以通过函数图象来研究方程的根,方程f (x )=0的根就是函数f (x )的图象与x 轴交点的横坐标,方程f (x )=g (x )的根就是函数f (x )与g (x )图象交点的横坐标.3.利用函数的图象研究不等式:当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.配套练习1.(2021·北京101中学高一期末)如图所示的是函数sin y x =(0x π≤≤)的图像,()A x y ,是图像上任意一点,过点A 作x 轴的平行线,交图像于另一点B (A ,B 可重合).设线段AB 的长为()f x ,则函数()f x 的图像是( )A .B .C .D .【答案】A 【解析】[0,]2x π∈时,B x x π+=()2,B f x AB x x x π∴==-=-[0,]2x π∈时()f x 表示递减的一次函数所以选A.2.(2021·西藏高三其他模拟(文))函数2,02,0x x x y x -⎧≥=⎨<⎩的图像为( )A .B .C .D .【答案】B【解析】解:根据题意,当0x ≥时,2x y =,为指数函数,单调递增,且在0x =时函数有最小值1; 当0x <时,122xx y -⎛⎫== ⎪⎝⎭为指数函数,单调递减,且函数值1y >. 故选:B.3.(2021·全国高一)函数22()21x f x x =-的图像的是 ( ) A . B .C .D .【答案】B【解析】解:因为22()21x f x x =-,所以2210x -≠,解得2x ≠±,故函数的定义域为|x R x ⎧⎪∈≠⎨⎪⎪⎩⎭,故排除AC ;当0x <<时,20x <,2210x -<,所以22()021x f x x =>-,故排除D ; 故选:B4.(2021·江苏无锡市·高一期末)函数2()ln f x x x =+的图像大致是( ) A . B .C .D .【答案】B【解析】()2ln f x x x =+,()()22ln ln ()f x x x x f x x -=-∴=+-+=,所以()f x 为偶函数,排除D ;当0x →时,()f x →-∞ ,排除AC ;故选:B.5.(2021·天津南开区·南开中学高三月考)函数cos622x x xy -=-的图像大致为( )A .B .C .D .【答案】D【解析】解:()cos622x x xy f x -==-定义域为()(),00,-∞⋃+∞,()()cos622x x xf x f x --==--即函数()f x 是奇函数,图象关于原点对称,故A 错误;当x →+∞是,2x →+∞,20x -→,[]cos61,1x ∈-,故()0f x →,故C 错误;当0x >且,0x →时,cos60x >,220x x -->,故()0f x >,故B 错误,D 正确;故选:D6.(2021·天津滨海新区·高三月考)函数ln ||cos ()sin x xf x x x ⋅=+在[),0π]π(0,-⋃的图像大致为( )A .B .C .D .【答案】D【解析】 因为ln ||cos()ln ||cos ()()sin()sin x x x x f x f x x x x x-⋅-⋅-==-=--+-+,[)π,00,π(]x -⋃∈, 所以()f x 为奇函数,因此函数()f x 的图像关于原点对称,故排除A ,又因为()10f ±=,π()02f ±=,π()03f >,()0f π<,故排除B ,C.故选:D 7.(2021·浙江高一期末)函数ln ||()||x x f x x =的图像可能是( ) A . B .C .D .【答案】B【解析】 函数的定义域是{}0x x ≠,且()()f x f x -=-,所以函数是奇函数,关于原点对称,排除A,C ,当01x <<时,ln 0x <,所以()0f x <,故排除D.故选:B8.(2021·浙江高一期末)函数log (01)a y x a a =>≠且与函数2(1)21y a x x =---在同一坐标系中的图像可能是( )A .B .C .D .【答案】C【解析】当1a >时,log a y x =单调递增,()2121y a x x =---开口向上,不过原点,且对称轴101x a =>-,可排除AB 选项;当1a <时,log a y x =单调递减,()2121y a x x =---开口向下,可排除D ,故选C 9.(2021·全国高一)向如下图所示的容器中匀速注水时,容器中水面高度h 随时间t 变化的大致图像是( )A .B .C .D .【答案】C【解析】结合容器的形状,可知一开始注水时,水高度变化较快当水位接近中部时变慢并持续一段时间,接近上部时,水位高度变快,故选C.10.(2021·吉林长春市·长春外国语学校高一期末)我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图像来研究函数的性质,也常用函数的解析式来琢磨函数图像的特征.我们从这个商标中抽象出一个图象如图,其对应的函数可能是( )A .()11f x x =- B .()11f x x =- C .()211f x x =- D .()211f x x =+【答案】A【解析】由图知()f x 的定义域为{}|1x x ≠±,排除选项B 、D ,又因为当0x =时,()01f =-,不符合图象()01f =,所以排除C ,故选:A11.(2021·全国高一)如图,正方形ABCD 的边长为2,动点E 从A 开始沿A →B →C 的方向以2个单位长/秒的速度运动到C 点停止,同时动点F 从点C 开始沿CD 边以1个单位长/秒的速度运动到D 点停止,则AEF 的面积y 与运动时间x (秒)之间的函数图像大致形状是( )A .B .C .D .【答案】A【解析】由题得12x ≤≤时,2(1)22,42,,2BE x x CE x CF x DF x =-=-=-==-,所以AEF 的面积y 211142(22)(42)2(2)34222x x x x x x =-⋅⋅--⋅⋅--⋅⋅-=-+, 它的图象是抛物线的一部分,且含有对称轴.故选:A12.(2021·江苏高一)函数2()21f x ax x =++与()a g x x =在同一坐标系中的图像可能为( )A .B .C .D .【答案】ACD【解析】当0a <时,()a g x x =为奇函数,定义域为{}|0x x ≠,且在()0,∞+上递减,而2()21f x ax x =++开口向下,对称轴为10x a =->,(0)1f =,故A 符合; 当()2a n n N+=∈时,()a g x x =为偶函数,且在()0,∞+上递增,2()21f x ax x =++开口向上,且对称轴为10x a =-<,440a ∆=-<,其图象和x 轴没有交点,故D 符合; 当()12a n N n+=∈时,函数()a g x x =的定义域为[)0,+∞,且在[)0,+∞上递增,2()21f x ax x =++开口向上,且对称轴为10x a=-<,440∆=->a ,图象和x 轴有两个交点,故C 符合. 故选:ACD .13.(2021·上海浦东新区·高一期末)定义在R 上的奇函数()f x 在[)0,+∞上的图像如图所示,则不等式()0x f x ⋅的解集是____.【答案】[]3,3-【解析】根据函数为奇函数,可作出函数的简图,如图所示:不等式()()000x x f x f x >⎧⋅⇒⎨≥⎩或()00x f x <⎧⎨≤⎩或0x =, 由图可得:03x <≤或-<3≤0x 或0x =, 综上:解集为:[]3,3-故答案为:[]3,3-.。
2020版高考数学一轮复习课后限时集训10函数的图象理
课后限时集训(十) 函数的图象(建议用时:40分钟) A 组 基础达标一、选择题1.(2019·湖北四市联考)已知函数f (x )=2x-2,则函数y =|f (x )|的图象可能是( )A B C DB [y =|f (x )|=|2x-2|=⎩⎪⎨⎪⎧2x-2,x ≥1,2-2x,x <1,易知函数y =|f (x )|的图象的分段点是x =1,且过点(1,0),(0,1),|f (x )|≥0.又|f (x )|在(-∞,1)上单调递减,故选B.]2.(2019·太原模拟)已知lg a +lg b =0,则函数y =a x与函数y =-log b x 的图象可能是( )A B C DD [∵lg a +lg b =0,∴ab =1,∴b =1a .∴y =-log b x =-log 1ax =log a x .∴函数y =a x与函数y =-log b x 互为反函数,∴二者的单调性一致,且图象关于直线y =x 对称,故选D.] 3.(2018·全国卷Ⅲ)下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( ) A .y =ln(1-x ) B .y =ln(2-x ) C .y =ln(1+x )D .y =ln(2+x )B [法一:设所求函数图象上任一点的坐标为(x ,y ),则其关于直线x =1的对称点的坐标为(2-x ,y ),由对称性知点(2-x ,y )在函数f (x )=ln x 的图象上,所以y =ln(2-x ).故选B.法二:由题意知,对称轴上的点(1,0)既在函数y =ln x 的图象上也在所求函数的图象上,代入选项中的函数表达式逐一检验,排除A ,C ,D ,选B.]4.对∀x ∈⎝ ⎛⎭⎪⎫0,13,23x≤log a x +1恒成立,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,23B.⎝ ⎛⎦⎥⎤0,12C.⎣⎢⎡⎭⎪⎫13,1 D.⎣⎢⎡⎭⎪⎫12,1 C [若23x≤log a x +1在⎝ ⎛⎭⎪⎫0,13上恒成立,则0<a <1,利用数形结合思想画出指数函数与对数函数图象(图略),易得log a 13+1≥23×13,解得13≤a <1,故选C.]5.函数f (x )=ax +bx +c 2的图象如图所示,则下列结论成立的是( )A .a >0,b >0,c <0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c <0C [函数定义域为{x |x ≠-c },结合图象知-c >0, ∴c <0.令x =0,得f (0)=b c2,又由图象知f (0)>0,∴b >0. 令f (x )=0,得x =-b a ,结合图象知-b a>0,∴a <0. 故选C.]6.(2017·全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )A BC DC [令f (x )=sin 2x1-cos x,∵f (1)=sin 21-cos 1>0,f (π)=sin 2π1-cos π=0,∴排除选项A ,D.由1-cos x ≠0得x ≠2k π(k ∈Z), 故函数f (x )的定义域关于原点对称. 又∵f (-x )=-2x 1--x =-sin 2x1-cos x=-f (x ), ∴f (x )为奇函数,其图象关于原点对称,∴排除选项B. 故选C.]7.如图,正方形ABCD 的顶点A ⎝ ⎛⎭⎪⎫0,22,B ⎝ ⎛⎭⎪⎫22,0,顶点C ,D 位于第一象限,直线l :x =t (0≤t ≤2)将正方形ABCD 分成两部分,记位于直线l 左侧阴影部分的面积为f (t ),则函数S =f (t )的图象大致是( )A BC DC [依题意得S =f (t )=⎩⎪⎨⎪⎧t 2,0≤t ≤22,-t -22+1,22<t ≤2,分段画出函数的图象可得图象如选项C 所示.故选C.] 二、填空题8.设函数y =f (x )的图象与y =2x +a的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则a =________.2 [设(x ,y )为y =f (x )图象上任意一点, 则(-y ,-x )在y =2x +a的图象上,所以有-x =2-y +a,从而有-y +a =log 2(-x )(指数式与对数式的互化), 所以y =a -log 2(-x ), 即f (x )=a -log 2(-x ),所以f (-2)+f (-4)=(a -log 22)+(a -log 24)=(a -1)+(a -2)=1,解得a =2.] 9.(2019·广州模拟)设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是________.[-1,+∞) [如图,要使f (x )≥g (x )恒成立,则-a ≤1,∴a ≥-1.]10.(2019·赣江模拟)对于函数f (x )=lg(|x -2|+1),给出如下三个命题:①f (x +2)是偶函数;②f (x )在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数;③f (x )没有最小值.其中正确的有________.(填序号)①② [因为函数f (x )=lg(|x -2|+1),所以函数f (x +2)=lg(|x |+1)是偶函数.由y =lg x ――――――――――――――→图象向左平移1个单位长度y =lg(x +1)――――――――――――――――――――――――――――――→去掉y 轴左侧的图象,以y 轴为对称轴,作y 轴右侧图象的对称图象y =lg(|x |+1)――――――――――――→图象向右平移2个单位长度y =lg(|x -2|+1),如图,可知f (x )在(-∞,2)上是减函数,在(2,+∞)上是增函数.由图象可知函数存在最小值为0.所以①②正确.]B 组 能力提升1.已知定义在R 上的函数f (x )满足:y =f (x -1)的图象关于(1,0)点对称,且当x ≥0时恒有f (x +2)=f (x ),当x ∈[0,2)时,f (x )=e x -1,则f (2 020)+f (-2 019)=( )A .1-eB .e -1C .-1-eD .e +1A [由f (x +2)=f (x )知当x ≥0时,函数的周期为2,所以f (2 020)=f (0)=0.又y =f (x -1)的图象关于(1,0)对称,所以f (x )的图象关于原点对称,即f (x )在R 上为奇函数,所以f (-2 019)=-f (2 019)=-f (1)=1-e ,所以f (2 020)+f (-2 019)=1-e ,故选A.] 2.(2019·山西质检)已知函数f (x )=x -4+9x +1,x ∈(0,4),当x =a 时,f (x )取得最小值b ,则函数g (x )=⎝ ⎛⎭⎪⎫1a |x +b |的图象为()ABC DB [因为0<x <4,所以1<x +1<5, 则f (x )=x -4+9x +1=(x +1)+9x +1-5≥6-5=1(当且仅当x +1=9x +1,即x =2时取等号),即a =2,b =1,即g (x )=⎝ ⎛⎭⎪⎫12|x +1|=⎩⎨⎧⎝ ⎛⎭⎪⎫12x +1,x ≥-1,2x +1,x <-1,则g (x )在(-∞,-1)上单调递增,在[-1,+∞)上单调递减,当x =-1时,取得最大值1.故选B.]3.函数f (x )是定义在[-4,4]上的奇函数,其在(0,4]上的图象如图所示,那么不等式f (x )sin x <0的解集为________.(-π,-1)∪(1,π) [由题意知,在(0,4]上,当0<x <1时,f (x )>0,当1<x <4时,f (x )<0.由f (x )是定义在[-4,4]上的奇函数可知,当-1<x <0时,f (x )<0;当-4<x <-1时,f (x )>0.g (x )=sin x ,在[-4,4]上,当<x <π时,g (x )>0;当π<x <4时,g (x )<0;当-π<x <0时,g (x )<0,当-4<x <-π时,g (x )>0.∴f (x )sin x <0⇔⎩⎪⎨⎪⎧f x >0,sin x <0或⎩⎪⎨⎪⎧f x <0,sin x >0,则f (x )sin x <0在区间[-4,4]上的解集为(-π,-1)∪(1,π).]4.设f (x )是定义在R 上的偶函数,F (x )=(x +2)3f (x +2)-17,G (x )=-17x +33x +2,若F (x )的图象与G (x )的图象的交点分别为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑mi =1 (x i +y i )=________. -19m [∵f (x )是定义在R 上的偶函数,∴g (x )=x 3f (x )是定义在R 上的奇函数,其图象关于原点中心对称,∴函数F (x )=(x +2)3f (x +2)-17=g (x +2)-17的图象关于点(-2,-17)中心对称.又函数G (x )=-17x +33x +2=1x +2-17的图象也关于点(-2,-17)中心对称,∴F (x )和G (x )的图象的交点也关于点(-2,-17)中心对称, ∴x 1+x 2+…+x m =m2×(-2)×2=-2m , y 1+y 2+…+y m =m2×(-17)×2=-17m ,∴∑mi =1 (x i +y i )=(x 1+x 2+…+x m )+(y 1+y 2+…+y m )=-19m .]。
高考数学函数图像变换与技巧全解析
高考数学函数图像变换与技巧全解析在高考数学中,函数图像的变换与相关技巧是一个重要且具有一定难度的知识点。
掌握这部分内容,对于理解函数的性质、解决函数相关的问题以及提高数学综合解题能力都具有至关重要的意义。
一、函数图像的平移变换函数图像的平移是指将函数的图像在平面直角坐标系中沿着坐标轴进行移动。
对于形如 y = f(x) 的函数,向左平移 a 个单位,得到的函数为 y = f(x + a);向右平移 a 个单位,得到的函数为 y = f(x a)。
向上平移 b 个单位,得到的函数为 y = f(x) + b;向下平移 b 个单位,得到的函数为 y = f(x) b。
例如,对于函数 y = x²,将其向左平移 2 个单位,得到 y =(x +2)²的图像;将其向下平移 3 个单位,得到 y = x² 3 的图像。
在进行平移变换时,需要注意“左加右减,上加下减”的规律。
这个规律简单易记,但在实际应用中,同学们要理解其本质,即函数自变量 x 的变化和函数值 y 的变化。
二、函数图像的伸缩变换函数图像的伸缩变换包括沿 x 轴和 y 轴的伸缩。
沿 x 轴方向的伸缩:对于函数 y = f(x),若将其横坐标伸长或缩短到原来的 k 倍(k > 0),则得到的函数为 y = f(1/k x) (当 k > 1 时,图像沿 x 轴缩短;当 0 < k < 1 时,图像沿 x 轴伸长)。
例如,函数 y = sin x 的图像,将其横坐标缩短为原来的 1/2,得到y = sin 2x 的图像。
沿 y 轴方向的伸缩:对于函数 y = f(x),若将其纵坐标伸长或缩短到原来的 k 倍(k > 0),则得到的函数为 y = kf(x) (当 k > 1 时,图像沿 y 轴伸长;当 0 < k < 1 时,图像沿 y 轴缩短)。
比如,函数 y = x 的图像,将其纵坐标伸长为原来的 2 倍,得到 y= 2x 的图像。
高考数学函数的图象及其变换
第二章函数第十节:函数的图象及其变换教学目的:掌握作函数图象的两种基本方法:描点法和图象变换法.能够利用函数的奇偶性与图象的对称性的关系描绘函数的图象,熟悉图象的平移变换、对称变换、伸缩变换及简单应用,以达到识图、作图和用图的目的.教学重点:几类初等函数的图象特征;函数的图象变换(平移变换、伸缩变换、对称变换).教学难点:运用图象解题.教学方法:以例题为中必,讲练结合。
考点分析及学法指导:函数的图象是函数关系的一种表示,这是从“形”的方面刻划函数的变化规律,在高考中,有关函数的图象主要考察:(1)几类初等函数的图象特征;(2)函数的图形变换(平移变换、伸缩变换、对称变换)。
考察的形式主要有:知式选图、知图选式、图象变换,以及自觉运用图象解题。
复习中应特别注意“数形结合”思想的运用。
教学过程:一、知识点讲解:学好本节必须注意以下三个问题:1.牢固掌握一次函数,二次函数,指数函数和对数函数的图象.2.利用基本函数图象的变换作图:平移变换:肥市伸缩变换:对称变换:3.培养作图、识图、用图的能力,重视数形结合的思想方法.二、例题分析:(一)基础知识扫描1.把函数的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数的解析式是( )A. B.C. D.2.将函数的图象( )A .先向左平行移动1个单位,再向上平移2个单位B .先向右平行移动1个单位,再向下平移2个单位C .先向上平行移动1个单位,再向右平移2个单位D .先向下平行移动1个单位,再向左平移2个单位会得到122++=x y 的图象。
3.由函数图象得到函数的图象,要经过变换( )A .向左平移1个单位B .向右平移1个单位C .向左平移2个单位D .向右平移2个单位 4.设函数 ,定义函数,则函数的图象为( )5.曲线F(x ,y)=0(即方程F(x ,y)=0的图形)向 平移 个单位,再向 平移 个单位得到曲线F(x -1,y+2)=0。
高考复习函数图象及其变换课件
需要进一步研究和探讨的问题
对于一些复杂的函数图象及其变换,需要深入 研究其性质和特点,探讨其在实际问题中的应 用。
在函数图象及其变换的教学中,如何更好地结 合几何直观和代数推导,让学生更好地理解和 掌握相关知识点,是一个值得探讨的问题。
详细描述
通过函数图象的平移、对称、伸缩等变换,可以直观地观察到函数性质的变化 ,如函数的周期性可以通过观察图象的重复规律来理解,函数的奇偶性可以通 过观察图象的对称性来理解。
04
高考中函数图象及其变换的考查方式与解题 策略
CHAPTER
考查方式
函数图象的识别与绘制
考生需要能够根据函数表达式识别其图象的基本形状,并能够根 据给定的条件绘制出函数的图象。
谢谢
THANKS
将函数图象沿x轴方向向左或向 右移动,对应于函数解析式中的 x替换为x±h。
将函数图象沿y轴方向向上或向 下移动,对应于函数解析式中的 y替换为y±k。
伸缩变换
伸缩变换
将函数图象在x轴或y轴方向上进 行缩放。
横向伸缩
将函数图象在x轴方向上压缩或拉 伸,对应于函数解析式中的x替换 为λx(λ>1为拉伸,0<λ<1为压缩 )。
掌握基本方法
Байду номын сангаас对于如何绘制函数图象、如何进行图象变换等基本方法,考生需要 熟练掌握,并能灵活运用。
多做练习
通过大量的练习,提高考生对函数图象及其变换的理解和掌握程度, 培养考生的解题思维和技巧。
高考真题解析
真题一
给出函数$f(x) = sin x$的图象,要求考生通过平移得到函数$g(x) = sin(x + frac{pi}{6})$的图象。
高中数学高考重点难点讲解函数图像与图像变换
难点10 函数图象与图象变换函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,考生要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质. ●难点磁场(★★★★★)已知函数f(x)=ax3+bx2+cx+d 的图象如图,求b 的范围.●案例探究[例1]对函数y=f(x)定义域中任一个x 的值均有f(x+a)=f(a -x),(1)求证y=f(x)的图象关于直线x=a 对称;(2)若函数f(x)对一切实数x 都有f(x+2)=f(2-x),且方程f(x)=0恰好有四个不同实根,求这些实根之和.命题意图:本题考查函数概念、图象对称问题以及求根问题.属★★★★★级题目. 知识依托:把证明图象对称问题转化到点的对称问题.错解分析:找不到问题的突破口,对条件不能进行等价转化.技巧与方法:数形结合、等价转化.(1)证明:设(x0,y0)是函数y=f(x)图象上任一点,则y0=f(x0),又f(a+x)=f(a -x),∴f(2a -x0)=f [a+(a -x0)]=f [a -(a -x0)]=f(x0)=y0,∴(2a -x0,y0)也在函数的图象上,而2)2(00x x a +-=a,∴点(x0,y0)与(2a -x0,y0)关于直线x=a 对称,故y=f(x)的图象关于直线x=a 对称.(2)解:由f(2+x)=f(2-x)得y=f(x)的图象关于直线x=2对称,若x0是f(x)=0的根,则4-x0也是f(x)=0的根,由对称性,f(x)=0的四根之和为8.[例2]如图,点A 、B 、C 都在函数y=x 的图象上,它们的横坐标分别是a 、a+1、a+2.又A 、B 、C 在x 轴上的射影分别是A ′、B ′、C ′,记△AB ′C 的面积为f(a),△A ′BC ′的面积为g(a).(1)求函数f(a)和g(a)的表达式;(2)比较f(a)与g(a)的大小,并证明你的结论.命题意图:本题考查函数的解析式、函数图象、识图能力、图形的组合等.属★★★★★级题目.知识依托:充分借助图象信息,利用面积问题的拆拼以及等价变形找到问题的突破口. 错解分析:图形面积不会拆拼.技巧与方法:数形结合、等价转化.解:(1)连结AA ′、BB ′、CC ′,则f(a)=S △AB ′C=S 梯形AA ′C ′C -S △AA ′B ′-S △CC ′B =21(A ′A+C ′C)=21(2++a a ),g(a)=S △A ′BC ′=21A ′C ′·B ′B=B ′B=1+a .0)11121(21)]1()12[(21)122(21)()()2(<++-+++=-+-+-+=+-++=-a a a a a a a a a a a a g a f∴f(a)<g(a).●锦囊妙计1.熟记基本函数的大致图象,掌握函数作图的基本方法:(1)描点法:列表、描点、连线;(2)图象变换法:平移变换、对称变换、伸缩变换等.2.高考中总是以几类基本初等函数的图象为基础来考查函数图象的.题型多以选择与填空为主,属于必考内容之一,但近年来,在大题中也有出现,须引起重视.●歼灭难点训练一、选择题1.(★★★★)当a ≠0时,y=ax+b 和y=bax 的图象只可能是( )2.(★★★★)某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了,再走余下的路,下图中y 轴表示离学校的距离,x 轴表示出发后的时间,则适合题意的图形是( )二、填空题3.(★★★★★)已知函数f(x)=log2(x+1),将y=f(x)的图象向左平移1个单位,再将图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数y=g(x)的图象,则函数F(x)=f(x)-g(x)的最大值为_________.三、解答题4.(★★★★)如图,在函数y=lgx 的图象上有A 、B 、C 三点,它们的横坐标分别为m,m+2,m+4(m>1).(1)若△ABC 面积为S ,求S=f(m);(2)判断S=f(m)的增减性.5.(★★★★)如图,函数y=23|x|在x ∈[-1,1]的图象上有两点A 、B ,AB ∥Ox 轴,点M(1,m)(m ∈R 且m>23)是△ABC 的BC 边的中点.(1)写出用B 点横坐标t 表示△ABC 面积S 的函数解析式S=f(t);(2)求函数S=f(t)的最大值,并求出相应的C 点坐标.6.(★★★★★)已知函数f(x)是y=1102+x -1(x ∈R)的反函数,函数g(x)的图象与函数y=-21-x 的图象关于y 轴对称,设F(x)=f(x)+g(x).(1)求函数F(x)的解析式及定义域;(2)试问在函数F(x)的图象上是否存在两个不同的点A 、B ,使直线AB 恰好与y 轴垂直?若存在,求出A 、B 的坐标;若不存在,说明理由.7.(★★★★★)已知函数f1(x)=21x -,f2(x)=x+2,(1)设y=f(x)=⎩⎨⎧∈--∈]1,0[ ),(3)0,1[ ),(21x x f x x f ,试画出y=f(x)的图象并求y=f(x)的曲线绕x 轴旋转一周所得几何体的表面积;(2)若方程f1(x+a)=f2(x)有两个不等的实根,求实数a 的范围.(3)若f1(x)>f2(x -b)的解集为[-1,21],求b 的值.8.(★★★★★)设函数f(x)=x+x 1的图象为C1,C1关于点A(2,1)对称的图象为C2,C2对应的函数为g(x).(1)求g(x)的解析表达式;(2)若直线y=b 与C2只有一个交点,求b 的值,并求出交点坐标;(3)解不等式logag(x)<loga 29(0<a<1).参考答案难点磁场解法一:观察f(x)的图象,可知函数f(x)的图象过原点,即f(0)=0,得d=0,又f(x)的图象过(1,0),∴f(x)=a+b+c ①,又有f(-1)<0,即-a+b -c <0②,①+②得b <0,故b 的范围是(-∞,0) 解法二:如图f(0)=0有三根,∴f(x)=ax3+bx2+cx+d=ax(x -1)(x -2)=ax3-3ax2+2ax,∴b= -3a,∵a>0,∴b <0.歼灭难点训练一、1.解析:∵y=bax=(ba)x,∴这是以ba 为底的指数函数.仔细观察题目中的直线方程可知:在选择支B 中a>0,b>1,∴ba>1,C 中a <0,b>1,∴0<ba <1,D 中a <0,0<b <1,∴ba>1.故选择支B 、C 、D 均与指数函数y=(ba)x 的图象不符合.答案:A2.解析:由题意可知,当x=0时,y 最大,所以排除A 、C.又一开始跑步,所以直线随着x 的增大而急剧下降.答案: D二、3.解析:g(x)=2log2(x+2)(x>-2)F(x)=f(x)-g(x)=log2(x+1)-2log2(x+2) =log21441log 441log )2(122222+++=+++=++x x x x x x x x)1(21111log 2->++++=x x x ∵x+1>0,∴F(x)≤41log 211)1(21log 22=++⋅+x x =-2 当且仅当x+1= 11+x ,即x=0时取等号.∴F(x)max=F(0)=-2.答案:-2三、4.解:(1)S △ABC=S 梯形AA ′B ′B+S 梯形BB ′C ′C -S 梯形AA ′C ′C.(2)S=f(m)为减函数.5.解:(1)依题意,设B(t,23 t),A(-t, 23t)(t>0),C(x0,y0).∵M 是BC 的中点.∴20x t +=1,2230y t + =m.∴x0=2-t,y0=2m -23t.在△ABC 中,|AB|=2t,AB 边上的高hAB=y0-23t=2m -3t.∴S=21|AB|·hAB= 21·2t ·(2m -3t),即f(t)=-3t2+2mt,t ∈(0,1).(2)∵S=-3t2+2mt=-3(t -3m )2+32m ,t ∈(0,1],若⎪⎪⎩⎪⎪⎨⎧>≤<23130m m ,即23<m ≤3,当t=3m 时,Smax=32m ,相应的C 点坐标是(2-3m , 23m),若3m>1,即m>3.S=f(t)在区间(0,1]上是增函数,∴Smax=f(1)=2m -3,相应的C 点坐标是(1,2m -3).6.解:(1)y=1102+x -1的反函数为f(x)=lg x x+-11(-1<x <1). 由已知得g(x)=21+x ,∴F(x)=lg x x +-11+21+x ,定义域为(-1,1). (2)用定义可证明函数u=x x +-11=-1+12+x 是(-1,1)上的减函数,且y=lgu 是增函数.∴f(x)是(-1,1)上的减函数,故不存在符合条件的点A 、B.7.解:(1)y=f(x)=⎪⎩⎪⎨⎧∈+--∈-]1,0[,1)0,1[,12x x x x .图略.y=f(x)的曲线绕x 轴旋转一周所得几何体的表面积为(2+2)π.(2)当f1(x+a)=f2(x)有两个不等实根时,a 的取值范围为2-2<a ≤1.(3)若f1(x)>f2(x -b)的解集为[-1,21],则可解得b=235-.8.(1)g(x)=x -2+41-x .(2)b=4时,交点为(5,4);b=0时,交点为(3,0).(3)不等式的解集为{x|4<x <29或x>6}.。
函数图像变换知识点总结
函数图像变换知识点总结一、基本概念1. 函数图像的平移函数图像的平移是指将原函数图像沿横轴或纵轴方向平移一定的距离。
平移的方向和距离可以是正数也可以是负数。
- 沿横轴方向平移:对于函数y=f(x),如果在横轴方向上平移了a个单位,新函数表示为y=f(x-a)。
- 沿纵轴方向平移:对于函数y=f(x),如果在纵轴方向上平移了b个单位,新函数表示为y=f(x)+b。
2. 函数图像的伸缩函数图像的伸缩是指将原函数图像沿横轴或纵轴方向进行拉伸或压缩。
伸缩的方向和比例可以是正数也可以是负数。
- 沿横轴方向伸缩:对于函数y=f(x),如果在横轴方向上进行了伸缩,新函数表示为y=f(kx)。
- 沿纵轴方向伸缩:对于函数y=f(x),如果在纵轴方向上进行了伸缩,新函数表示为y=kf(x)。
3. 函数图像的翻转函数图像的翻转是指对原函数图像进行镜像操作,可以分为关于横轴翻转和关于纵轴翻转两种情况。
- 关于横轴翻转:对于函数y=f(x),进行横轴翻转后,新函数表示为y=-f(x)。
- 关于纵轴翻转:对于函数y=f(x),进行纵轴翻转后,新函数表示为y=f(-x)。
二、函数图像变换的特点1. 平移:平移不改变函数的基本形状,只是改变了函数的位置;2. 伸缩:伸缩可以改变函数的斜率和幅度,但不改变函数的形状;3. 翻转:翻转改变了函数的整体形状,使得原函数变为其镜像;4. 组合变换:可以将多种变换进行组合,得到更复杂的函数图像变换。
三、函数图像变换的应用函数图像变换不仅仅是数学中的一种抽象概念,还可以应用到具体的问题中,如物理、经济等领域。
1. 物理问题:在物理学中,函数图像变换可以用来描述物体的运动、变形等。
例如,对于速度-时间图像,进行平移可表示物体的起始位置不同;进行伸缩则可以描述加速度的变化;进行翻转可以描述反向运动等情况。
2. 经济问题:在经济学中,函数图像变换可以用来描述经济模型的变化。
例如,对于需求-价格图像,进行平移可以表示需求量或价格的变化;进行伸缩可以描述需求的弹性;进行翻转可以描述替代品或补充品的关系等情况。
专题2.10 函数图象变换题型解密(解析版)-2020年新课标高考数学题型(考点)全解密
★课标卷高考(采分点) (10)★:函数图象变换的考查:①『解题策略』:ⅰ.平移变换:()()y f x y f x a =→=+,如果0a >,则向左平移a 个单位,反之向右平移 a 个单位,即左加右减;()()y f x y f x b =→=+,如果0b >,则向上平移b 个单位,反之向下平移b 个 单位,即上加下减。
ⅱ.对称变换:①()()y f x y f x =→=-(关于y 轴对称);②()()y f x y f x =→=-(关于x 轴对称);③()()y f x y f x =→=--(关于原点对称);④()f x 关于直线x a =对称的函数:()(2)g x f a x =-;()f x 自身关于x a =对称,则有性质()(2)f x f a x =-()()()(2)f a x f a x f x f a x ⇔-=+⇔-=+;⑤()f x 关于点(,)a b 对称的函数:()2(2)g x b f a x =--;()f x 自身关于点(,)a b 对称,则有性质:()2(2)f x b f a x =--;ⅲ.翻折变换:()()y f x y f x =→=(把y 轴右面的图象保留,左面的图象去掉,然后把右面的图象对称到左面,变为偶函数,关于y 轴对称。
),()()y f x x y f x ==u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u r 轴上面的图象保持不变下面的图象对称到上面。
②【考题例析】:(高考题)为了得到函数13()3x y =⨯的图象,可以把函数1()3x y =的图象 ( )A.向左平移3个单位长度B.向右平移3个单位长度C.向左平移1个单位长度D.向右平移1个单位长度【解析】函数变形为:1113()()33x x y -=⨯=,选D.③「☆历年新课标全国卷同类试题汇总☆」1.(2013年新课标全国卷I16)若函数))(1()(22b ax x x x f ++-=的图象关于直线2-=x 对称,则)(x f 的最大值是 .【解析】)(x f Θ的图象关于直线2-=x 对称,0)3()1(,0)5()1(=-=-=-=∴f f f f 15,8==⇒b a , )158)(1()(22++-=x x x x f ,设2+=x t ,则,)5(16)(22--=t t f 当52=t 时,16max =y .秒杀技巧:)(x f 向右平移2个单位关于y 轴对称,即为偶函数,()[]()()[]b x a x x x f +-+---=-2221)2(22=()222316+-x x ,同上. 2.(2015年新课标全国卷II 文)设函数()y f x =的图象与2x a y +=的图象关于直线y x =-对称,且(2)(4)1f f -+-=,则a = ( )A.-1B.1C.2D.4【解析】a x x f +--=)(log )(2,代入得2=a ,选C.3.(2017年新课标全国卷I 文9)已知函数()ln ln(2)f x x x =+-,则 ( )A.()f x 在()2,0单调递增B.()f x 在()2,0单调递减C.()f x 的图象关于直线1=x 对称D.()f x 的图象关于点()0,1对称 【解析】)2()(x f x f -=,选C.4.(2017年新课标全国卷III11)已知函数()1122)(+--++-=x x e e a x x x f 有唯一零点,则=a ( ) A.21- B.13C.12D.1 【解析】()()11211)(+--+++-=x x e e a x x f 关于1=x 对称,0)1(=∴f ,得21=a ,选C. 秒杀方法:代入幸运数字1=x .2.(2018年新课标全国卷III 文7)下列函数中,其图像与函数x y ln =的图象关于直线1=x 对称的是( )A.)1ln(x y -=B.)2ln(x y -=C.)1ln(x y +=D.)2ln(x y +=【解析】)2ln()2()(x x f x f -=-=,选B.④〖新课标全国卷与其它省市同类高考试题荟萃〗1.(高考题)已知定义域为R 的函数()f x 在()8,+∞上为减函数,且(8)y f x =+为偶函数,则 ( )A.(6)(7)f f >B.(6)(9)f f >C.(7)(9)f f >D.(7)(10)f f >【解析】)(x f 的图象关于直线8=x 对称,先增后减,观察自变量距对称轴的远近,选D.2.(高考题)为了得到函数3lg 10x y +=的图像,只需把函数lg y x =的图象上所有的点 ( )A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度【解析】函数可化简为:1)3lg(-+=x y ,选C.3.(高考题)函数x y e =-的图象 ( )A.与x y e =的图象关于y 轴对称B.与xy e =的图象关于坐标原点对称C.与x y e -=的图象关于y 轴对称D.与x y e -=的图象关于坐标原点对称【解析】选D. 4.(高考题)定义在R 上的函数()f x 是偶函数,且()(2)f x f x =-,若()f x 在区间[]1,2上是减函数,则()f x( )A.在区间[]2,1--上是增函数,在区间[]3,4上是增函数B.在区间[]2,1--上是增函数,在区间[]3,4上是减函数C.在区间[]2,1--上是减函数,在区间[]3,4上是增函数D.在区间[]2,1--上是减函数,在区间[]3,4上是减函数【解析】)(x f 关于直线1=x 对称,所以2=T ,由图象知选B.5.(高考题)函数lg y x = ( )A.是偶函数,在区间(),0-∞上单调递增B.是偶函数,在区间(),0-∞上单调递减C.是奇函数,在区间()0,+∞上单调递增D.是奇函数,在区间()0,+∞上单调递减【解析】偶函数,选B.6.(高考题)已知函数||)(a x e x f -=(a 为常数),若)(x f 在区间),1[+∞上是增函数,则a 的取值范围是 .【解析】由图象可得1a ≤。
艺术生高考数学专题讲义:考点10 函数的图象及其变换
考点十 函数的图象及其变换知识梳理1.函数图象的作法 (1)直接法 (2)图象变换法 (3)描点法2.描点法作函数图象(1)基本步骤:列表、描点、连线. (2)注意事项:①列表前应先确定函数的定义域,并化简函数解析式,根据作图需要讨论函数的性质(奇偶性、单调性、周期性) .②列表时注意特殊点、零点、最大值点、最小值点、与坐标轴的交点. ③连线时应根据函数特征,用平滑的曲线(或直线)连接各点. 3.基本初等函数的图象 (1) 一次函数y =ax +b (a ≠0)(2) 二次函数y =ax 2+bx +c (a ≠0)(3) 反比例函数y =kx(k ≠0)(4) 指数函数y =a x (a >0,a ≠1)(5) 对数函数y =log a x (a >0,a ≠1)4.函数图象的变换 (1)平移变换:y =f (x )――――――――――→a >0,右移a 个单位a <0,左移|a |个单位y =f (x -a ); y =f (x )――――――――――→b >0,上移b 个单位b <0,下移|b |个单位y =f (x )+b . 口诀:左加右减,上加下减. (2)伸缩变换:y =f (x )―――――――――――→0<ω<1,伸长为原来的1ω倍ω>1,缩短为原来的1ωy =f (ωx ); y =f (x )――――――――――→A >1,伸为原来的A 倍0<A <1,缩为原来的A y =Af (x ). (3)对称变换:y =f (x )――――――→关于x 轴对称y =-f (x ); y =f (x )――――――→关于y 轴对称 y =f (-x ); y =f (x )―――――――→关于原点对称 y =-f (-x ). (4)翻折变换:y =f (x )―――――――――――――――――→去掉y 轴左边图,保留y 轴右边图将y 轴右边的图象翻折到左边去y =f (|x |); y =f (x )―――――――――→留下x 轴上方图将x 轴下方图翻折上去y =|f (x )| 口诀:绝对值作用在x 上,右翻左;作用在y 上,下翻上.典例剖析题型一 函数的图像识别例1 下列所给图象是函数图象的个数为________.答案 2解析:选 ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象,②中当x =x 0时,y 的值有两个,因此不是函数图象,③④中每一个x 的值对应唯一的y 值,因此是函数图象.变式训练 函数y =x sin x 在[-π,π]上的图像是________.① ② ③ ④答案 ①解析 容易判断函数y =x sin x 为偶函数,可排除④.当0<x <π2时,y =x sin x >0,当x =π时,y =0,可排除②、③,故选①. 解题要点 函数图像的识别要点:(1)对于函数的图像,一个x 只有一个y 值与之对应;(2)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置; (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)从函数的周期性,判断图象的循环往复; (6)从函数的特征点,排除不合要求的图象. 题型二 作函数的图象 例2 画出下列函数的图象. (1) y =2x -1,x ∈Z ,|x |≤2; (2) y =2x 2-4x -3(0≤x <3);答案:(1) (2)变式训练 作出下列函数图象 (1) y =x 2-2x ()||x >1; (2) y =x |2-x |.解析 (1) ∵ ||x >1,∴ x <-1或x >1,图象是两段曲线,如图.(2) ∵ y =x |2-x |=⎩⎪⎨⎪⎧x 2-2x (x ≥2)-x 2+2x (x<2),∴ 图象由两部分组成,如图.题型三 函数图象的变换 例3 作出下列函数图象: (1)y =-x 2+2|x |+1; (2) y =|-x 2+2x +1|解析 (1)由于y =⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0,即y =⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0.画出函数图象如图所示,(2) 函数y =|-x 2+2x +1|的图象如图所示.变式训练 作出下列函数图象 (1)y =2x +2;(2) y =x +2x -1.解析 (1) 将y =2x的图象向左平移2个单位.图象如下左图(2)因y =x +2x -1=1+3x -1,先作出y =3x 的图象,将其图象向右平移1个单位,再向上平移1个单位,即得y =x +2x -1的图象,如上右图.题型四 函数图象的应用例4 方程x 2-|x |+a =1有四个不同的实数解,则a 的取值范围是________. 答案 (1,54)解析 方程解的个数可转化为函数y =x 2-|x |的图象与直线y =1-a 交点的个数,如图:易知-14<1-a <0,∴1<a <54.变式训练:已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是________. 答案 (12,1)解析 先作出函数f (x )=|x -2|+1的图象,如图所示,当直线g (x )=kx 与直线AB 平行时斜率为1,当直线g (x )=kx 过A 点时斜率为12,故f (x )=g (x )有两个不相等的实根时,k 的范围为(12,1).解题要点 借助函数图象求解方程解的个数、参数范围时利用的是数形结合的思想,解题时可对方程或不等式适当变形,选择合适的函数进行作图.当堂练习1.设函数f (x )=2x ,则如图所示的图象对应的函数是________.答案 y =-f (-|x |) 解析 该图象是函数y =-2-|x |即y =-f (-|x |)的图象..2.若函数y =f (x +3)的图象经过点P (1,4),则函数y =f (x )的图象必经过点________. 答案 (4,4)解析 法一 函数y =f (x )的图象是由y =f (x +3)的图象向右平移3个单位长度而得到的. 故y =f (x )的图象经过点(4,4).法二 由题意得f (4)=4成立,故函数y =f (x )的图象必经过点(4,4). 3. 函数y =lg1|x +1|的大致图象为____________.①② ③④答案 ④解析 因为y =lg 1|x |是单调递减的偶函数,关于y 轴对称,则y =lg 1|x +1|的图象是由y =lg 1|x |的图象向左平移一个单位长度得到的.故选④.4.为了得到函数y =lg(x +3)-1的图象,只需把函数y =lg x 的图象上所有的点____________.①向左平移3个单位长度,再向上平移1个单位长度②向右平移3个单位长度,再向上平移1个单位长度③向左平移3个单位长度,再向下平移1个单位长度④向右平移3个单位长度,再向下平移1个单位长度答案③解析由y=lg x图象向左平移3个单位,得y=lg(x+3)的图象,再向下平移一个单位得y =lg(x+3)-1的图象.5.方程|x|=cos x在(-∞,+∞)内____________.①没有根②有且仅有一个根③有且仅有两个根④有无穷多个根答案③解析如图所示,由图象可得两函数图象有两个交点,故方程有且仅有两个根.课后作业一、填空题1.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是____________.①②③④答案③解析出发时距学校最远,先排除①,中途堵塞停留,距离没变,再排除④,堵塞停留后比原来骑得快,因此排除②,故选③.2.函数y=log2|x|的图象大致是____________.①②③④答案③解析 函数y =log 2|x |为偶函数,作出x >0时y =log 2x 的图象,图象关于y 轴对称,应选③. 3.(2013·福建文)函数f (x )=ln(x 2+1)的图象大致是____________.①② ③ ④答案 ①解析 依题意,得f (-x )=ln(x 2+1)=f (x ),所以函数f (x )为偶函数,即函数f (x )的图象关于y 轴对称,故排除③.因为函数f (x )过定点(0,0),排除②,④,故选①.4.为了得到函数y =2x -3-1的图象,只需把函数y =2x 的图象上所有的点____________.①向右平移3个单位长度,再向下平移1个单位长度 ②向左平移3个单位长度,再向下平移1个单位长度 ③向右平移3个单位长度,再向上平移1个单位长度 ④向左平移3个单位长度,再向上平移1个单位长度 答案 ①解析 y =2x 先向右平移3个单位长度,得到y =2x -3,再向下平移1个单位长度,得到y =2x -3-1.故选①.5.函数y =1-1x -1的图象是____________.① ② ③ ④答案 ②解析 将y =-1x 的图象向右平移1个单位,再向上平移一个单位,即可得到函数y =1-1x -1的图象.6.若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值范围是____________. 答案 (0,+∞)解析 由题意a =|x |+x ,令y =|x |+x =⎩⎪⎨⎪⎧2x ,x ≥0,0,x <0,图象如图所示,故要使a =|x |+x 只有一解,则a >0.7. 若log a 2<0(a >0,且a ≠1),则函数f (x )=log a (x +1)的图象大致是____________.① ② ③ ④ 答案 ②解析 ∵log a 2<0,∴0<a <1,由f (x )=log a (x +1)单调性可知①、④错误,再由定义域知②选项正确.8.(2015山东文)要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象向____平移____个单位.. 答案 右,π12解析 ∵y =sin ⎝⎛⎭⎫4x -π3=sin ⎣⎡⎦⎤4⎝⎛⎭⎫x -π12, ∴要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象向右平移π12个单位. 9.(2015新课标II 文)已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a =________. 答案 -2解析 由函数f (x )=ax 3-2x 过点(-1,4), 得4=a (-1)3-2×(-1),解得a =-2.10.函数f (x )=2x +1x -1图象的对称中心的坐标是________.答案 (1,2) 解析 f (x )=2+3x -1. 11.为了得到函数y =2x -3的图象,只需把函数y =2x 的图象上所有的点向________平移________个单位长度. 答案 右 3 二、解答题12.分别画出下列函数的图象:(1)y =|lg x |;(2) y =x 2-2|x |-1解析 (1) y =⎩⎪⎨⎪⎧lg x , x ≥1,-lg x , 0<x <1图象如图(2) y =⎩⎪⎨⎪⎧x 2-2x -1, x ≥0,x 2+2x -1, x <0.图象如图13.若直线y =2a 与函数y =|a x -1|(a >0且a ≠1)的图象有两个公共点,求a 的取值范围. 解析 当0<a <1时,y =|a x -1|的图象如图1所示,由已知得0<2a <1,即0<a <12.当a >1时,y =|a x -1|的图象如图2所示,由已知可得0<2a <1,即0<a <12,但a >1,故a ∈.综上可知,a 的取值范围为⎝⎛⎭⎫0,12.。
高考数学 2020最新艺体生冲刺知识点 第13讲 函数图像和零点学生
第13讲 函数图像和零点[玩前必备]1.图象变换(1)平移变换(2)对称变换①y =f (x )――――――→关于x 轴对称y =-f (x );②y =f (x )――――――→关于y 轴对称y =f (-x );③y =f (x )―――――→关于原点对称y =-f (-x );④y =a x (a >0且a ≠1)――――――→关于y =x 对称y =log a x (a >0且a ≠1).(3)伸缩变换①y =f (x )―――――――――――――――――――――――→a >1,横坐标缩短为原来的1a 倍,纵坐标不变0<a <1,横坐标伸长为原来的1a 倍,纵坐标不变y =f (ax ). ②y =f (x )――――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变y =af (x ). (4)翻折变换①y =f (x )――――――――――→保留x 轴上方图象将x 轴下方图象翻折上去y =|f (x )|. ②y =f (x )―――――――――――→保留y 轴右边图象,并作其关于y 轴对称的图象y =f (|x |). 2.函数的零点(1)函数零点的定义对于函数y =f (x )(x ∈D ),把使f (x )=0的实数x 叫做函数y =f (x )(x ∈D )的零点.(2)三个等价关系方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点.(3)函数零点的判定(零点存在性定理)如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个 c 也就是方程f (x )=0的根.[玩转典例]题型一 函数图像变换例1 分别画出下列函数的图象:(1)y =|lg(x -1)|;(2)y =2x +1-1;(3)y =⎝⎛⎭⎫12|x |;(4)y =2x -1x -1.题型二 函数图像识别例2 (1)(2019全国Ⅰ理5)函数f (x )=在[,]-ππ的图像大致为 A . B .C .D .(2)(2019全国Ⅲ理7)函数3222x x x y -=+在[]6,6-的图像大致为 A . B .C .D .(3)(2019浙江6)在同一直角坐标系中,函数y =1x a ,y =log a (x +12),(a >0且a ≠1)的图像可能是 2sin cos ++x x x xA. B.C. D.[玩转跟踪]1.(1)(2019·青岛模拟)函数y =4cos x -e |x |(e 为自然对数的底数)的图象可能是( )(2)(2019·潍坊模拟)已知定义在R 上的函数f (x )满足f (x +2)=2f (x ),当x ∈[0,2]时,f (x )=⎩⎪⎨⎪⎧x ,x ∈[0,1),-x 2+2x ,x ∈[1,2].则函数y =f (x )在[2,4]上的大致图象是( )题型三 函数零点例3 (1)函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是 . (2)(2018·天津河东区模拟)函数f (x )=|x -2|-ln x 在定义域内的零点的个数为( )A .0B .1C .2D .3(3)函数f (x )=x -cos x 在[0,+∞)内( )A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点例4 设f (x )=ln x +x -2,则函数f (x )的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)[玩转跟踪]1.(2014北京)已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是 A .()0,1 B .()1,2 C .()2,4 D .()4,+∞2.函数f (x )=12x -⎝⎛⎭⎫12x 的零点个数为( )A .0B .1C .2D .33.函数f (x )=2x -2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( ) A .(1,3)B .(1,2)C .(0,3)D .(0,2)[玩转练习] 1.(2018全国卷Ⅱ)函数2()--=x xe ef x x的图像大致为2.(2018全国卷Ⅲ)函数422y x x =-++的图像大致为3.(2018浙江)函数||2sin 2x y x =的图象可能是 A . B .C .D .4.函数f (x )的图象向右平移1个单位,所得图象与曲线y =e x 关于y 轴对称,则f (x )的解析式为( )A .f (x )=e x +1B .f (x )=e x -1 C .f (x )=e -x +1 D .f (x )=e -x -15.(2018·承德模拟)已知函数f (x )的定义域为R ,且f (x )=⎩⎪⎨⎪⎧2-x -1,x ≤0,f (x -1),x >0,若方程f (x )=x +a 有两个不同实根,则实数a 的取值范围为( )A .(-∞,1)B .(-∞,1]C .(0,1)D .(-∞,+∞)6.函数f (x )=ln x -2x的零点所在的大致区间是( ) A .(1,2)B .(2,3) C.⎝⎛⎭⎫1e ,1和(3,4) D .(4,+∞)7.函数f (x )=e x +3x 的零点个数是( )A .0B .1C .2D .38.函数f (x )=ln 2x -3ln x +2的零点是( )A .(e,0)或(e 2,0)B .(1,0)或(e 2,0)C .(e 2,0)D .e 或e 29.若二次函数f (x )=x 2-2x +m 在区间(0,4)上存在零点,则实数m 的取值范围是 .10.已知函数f (x )=x -x (x >0),g (x )=x +e x ,h (x )=x +ln x (x >0)的零点分别为x 1,x 2,x 3,则( )A .x 1<x 2<x 3B .x 2<x 1<x 3C .x 2<x 3<x 1D .x 3<x 1<x 211.设函数y =f (x +1)是定义在(-∞,0)∪(0,+∞)上的偶函数,在区间(-∞,0)上是减函数,且图象过点(1,0),则不等式(x -1)f (x )≤0的解集为 .12.设函数y =f (x )的图象与y =2x-a 的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则实数a = .。
专题10 函数的图象-2020年高考数学一轮复习(文理通用)(解析版)
专题10函数的图象最新考纲1.在实际情境中,会根据不同的需要选择图象法、列表法、解析法表示函数.2.会运用函数图象理解和研究函数的性质,解决方程解的个数与不等式解的问题.基础知识融会贯通1.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象.2.图象变换(1)平移变换(2)对称变换①y =f (x )―――――――→关于x 轴对称y =-f (x );②y =f (x )――――――→关于y 轴对称y =f (-x );③y =f (x )―――――→关于原点对称y =-f (-x );④y =a x (a >0且a ≠1)―――――→关于y =x 对称y =log a x (a >0且a ≠1).(3)伸缩变换①y =f (x ) ―――――――――――――――――――――――→a >1,横坐标缩短为原来的1a 倍,纵坐标不变0<a <1,横坐标伸长为原来的1a 倍,纵坐标不变y =f (ax ). ②y =f (x )――――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变y =af (x ).(4)翻折变换①y =f (x )――――――――――――→保留x 轴上方图象将x 轴下方图象翻折上去y =|f (x )|. ②y =f (x )――――――――――――――→保留y 轴右边图象,并作其关于y 轴对称的图象y =f (|x |). 【知识拓展】1.关于对称的三个重要结论(1)函数y =f (x )与y =f (2a -x )的图象关于直线x =a 对称.(2)函数y =f (x )与y =2b -f (2a -x )的图象关于点(a ,b )中心对称.(3)若函数y =f (x )的定义域内任意自变量x 满足:f (a +x )=f (a -x ),则函数y =f (x )的图象关于直线x =a 对称.2.函数图象平移变换八字方针(1)“左加右减”,要注意加减指的是自变量.(2)“上加下减”,要注意加减指的是函数值.重点难点突破【题型一】作函数的图象【典型例题】已知函数f (x )=a x (a >0且a ≠1)在(0,2)内的值域是(1,a 2),则函数y =f (x )的图象大致是( ) A . B .C .D . 【解答】解:函数f (x )=a x (a >0且a ≠1)在(0,2)内的值域是(1,a 2),则由于指数函数是单调函数,则有a >1,由底数大于1指数函数的图象上升,且在x 轴上面,可知B 正确.故选:B .【再练一题】函数f(x)sin(2x+φ)(|φ|)的图象向左平移个单位后关于原点对称,则φ等于()A.B.C.D.【解答】解:函数f(x)sin(2x+φ)(|φ|)的图象向左平移个单位后,得到g(x)sin(2xφ)(|φ|)的图象,由于平移后的图象关于原点对称,故g(0)sin(φ)=0,由|φ|得:φ,故选:D.思维升华图象变换法作函数的图象(1)熟练掌握几种基本函数的图象,如二次函数、反比例函数、指数函数、对数函数、幂函数、形如y=x+1x的函数.(2)若函数图象可由某个基本函数的图象经过平移、翻折、对称和伸缩得到,可利用图象变换作出,但要注意变换顺序.【题型二】函数图象的辨识【典型例题】函数f(x)=x sin x+ln|x|在区间[﹣2π,0)∪(0,2π]上的大致图象为()A.B.C.D.【解答】解:根据题意,f(x)=x sin x+ln|x|,其定义域为{x|x≠0},有f(﹣x)=(﹣x)sin(﹣x)+ln|(﹣x)|=x sin x+ln|x|=f(x),即函数f(x)为偶函数,在区间[﹣2π,0)∪(0,2π]上关于y轴对称,排除A、D;又由x→0时,x sin x+lnx<0,排除C;故选:B.【再练一题】函数的大致图象是()A.B.C.D.【解答】解:f(﹣x)=﹣f(x),即函数是奇函数,图象关于原点对称,排除B,当x>0时,f(x)>0,排除D,当x→+∞,f(x)→+0,排除C,故选:A.思维升华函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.【题型三】函数图象的应用命题点1研究函数的性质【典型例题】已知定义在R上的函数f(x),g(x)满足g(x)=f(|x﹣1|),则函数y=g(x)的图象关于()A.直线x=﹣1对称B.直线x=1对称C.原点对称D.y轴对称【解答】解:由y=f(|x|)关于y轴对称,由y=f(x)向右平移一个单位可得y=f(x﹣1),即函数y=g (x)的图象关于x=1对称,故选:B.已知函数f(x)=sin,则()A.f(x)在(1,3)上单调递增B.f(x)在(1,3)上单调递减C.y=f(x)的图象关于点(1,0)对称D.y=f(x)的图象关于直线x=1对称【解答】解:∵y=sinπx关于点(1,0)对称,y关于点(1,0)对称,∴f(x)=sinπx关于点(1,0)对称.故选:C.命题点2解不等式【典型例题】已知函数f(x)与其导函数f'(x)的图象如图,则满足f'(x)<f(x)的x的取值范围为()A.(0,4)B.(﹣∞,0),(1,4)C.D.(0,1),(4,+∞)【解答】解:由题意可知导函数是二次函数,原函数是3次函数,可知:则满足f'(x)<f(x)的x的取值范围为:(0,1),(4,+∞).故选:D.设f(x)=﹣x2+2x﹣2(e x﹣1+e1﹣x),则使得f(x+1)<f(2x﹣2)的x的取值范围是()A.(﹣∞,1)∪(3,+∞)B.(1,3)C.(﹣∞,)∪(1,+∞)D.(,1)【解答】解:根据题意,f(x)=﹣x2+2x﹣2(e x﹣1+e1﹣x)=﹣(x﹣1)2﹣2(e x﹣1)+1,分析可得:y=﹣(x﹣1)2+1与函数y=2(e x﹣1+e1﹣x)都关于直线x=1对称,则函数f(x)=﹣x2+2x﹣2(e x﹣1+e1﹣x)的图象关于直线x=1对称,f(x)=﹣x2+2x﹣2(e x﹣1+e1﹣x),当x≥1时,f′(x)=﹣2x+2﹣(e x﹣1)=﹣2(x+1+e x﹣1),又由x≥1,则有e x﹣1,即e x﹣10,则有f′(x)<0,即函数f(x)在[1,+∞)上为减函数,f(x+1)<f(2x﹣2)⇒f(|x+1﹣1|)<f(|2x﹣2﹣1|)⇒f(|x|)<f(|2x﹣3|)⇒|x|>|2x﹣3|,变形可得:x2﹣4x+3<0,解可得1<x<3,即不等式的解集为(1,3);故选:B.命题点3求参数的取值范围【典型例题】已知函数g(x)=a﹣x3(,e为自然对数的底数)与h(x)=3lnx的图象上存在关于x轴对称的点,则实数a的取值范围是()A.B.[1,e3﹣3]C.D.[e3﹣3,+∞)【解答】解:由已知,得到方程a﹣x3=﹣3lnx⇔﹣a=3lnx﹣x3在[,e]上有解.设f(x)=3lnx﹣x3,求导得:f′(x)3x2,∵x≤e,∴f′(x)=0在x=1有唯一的极值点,∵f()=﹣3,f(e)=3﹣e3,f(x)极大值=f(1)=﹣1,且知f(e)<f(),故方程﹣a=2lnx﹣x2在上有解等价于3﹣e3≤﹣a≤﹣1.从而a的取值范围为[1,e3﹣3].故选:B.【再练一题】已知函数y=a+2lnx(x∈[,e])的图象上存在点P,函数y=﹣x2﹣2的图象上存在点Q,且P,Q关于原点对称,则a的取值范围是()A.[3,e2] B.[e2,+∞)C.[4,e2] D.[3,4]【解答】解:函数y=﹣x2﹣2的图象与函数y=x2+2的图象关于原点对称,若函数y=a+2lnx(x∈[,e])的图象上存在点P,函数y=﹣x2﹣2的图象上存在点Q,且P,Q关于原点对称,则函数y=a+2lnx(x∈[,e])的图象与函数y=x2+2的图象有交点,即方程a+2lnx=x2+2(x∈[,e])有解,即a=x2+2﹣2lnx(x∈[,e])有解,令f(x)=x2+2﹣2lnx,则f′(x),当x∈[,1)时,f′(x)<0,当x∈(1,e]时,f′(x)>0,故当x=1时,f(x)取最小值3,由f()4,f(e)=e2,故当x=e时,f(x)取最大值e2,故a∈[3,e2],故选:A.思维升华(1)注意函数图象特征与性质的对应关系.(2)方程、不等式的求解可转化为函数图象的交点和上下关系问题.基础知识训练1.函数的大致图像是()A.B.C.D.【答案】A【解析】令可得,,即函数仅有一个零点,所以排除B,D选项;又,所以由,可得,由,即函数上单调递增,在上单调递减,故排除C.2.函数的图像大致为A.B.C.D.【答案】C【解析】由,可排除B,D,由,可得,由此可排除A,故选C.3.函数的图像大致为()A.B.C.D.【答案】B【解析】由于函数,可得为奇函数,故排除C、D,当x=1时,f(1),排除A,故选:B.4.函数的图像向右平移1个单位长度,所得图像与曲线关于轴对称,则 ( )A.B.C.D.【答案】A【解析】函数y=e x的图象关于y轴对称的图象的函数解析式为y=e-x,然后将所得函数图象向左平移1个单位长度即得到函数f(x)的图像,即f(x)=e-(x+1)=e-x-1故选:A.5.若函数的图像与函数的图像关于直线对称,则()A.10B.-1C.2D.-2【答案】C【解析】关于对称的反函数本题正确选项:6.函数的大致图像为()A.B.C.D.【答案】D【解析】∵f(-x)=f(x),∴函数为偶函数,其图象关于y轴对称,故排除B,C,当0<x<1时,log2x8<0,x2-4<0,∴f(x)>1,故排除A,故选:D.7.函数的图像大致为( )A.B.C.D.【答案】B【解析】函数的定义域为,且即函数为奇函数,图像关于原点对称,排除选项A,D,又f(2)=,排除选项C,故选:B8.设函数定义在上,给出下述三个命题:①满足条件的函数图像关于点对称;②满足条件的函数图像关于直线对称;③函数在同一坐标系中,其图像关于直线对称.其中,真命题的个数是().A.0B.1C.2D.3【答案】D【解析】【详解】用代替中的,得.如果点的图像上,则,即点关于点的对称点,也在的图像上.反之亦然,故命题①是真命题.用代替中的,得.如果点的图像上,则,即点关于点的对称点,也在的图像上,故命题②是真命题.由命题②是真命题,不难推知命题③也是真命题.故三个命题都是真命题.9.函数的图像为,而关于直线对称的图像为,将向左平移1个单位后得到的图像为,则所对应的函数为()A.B.C.D.【答案】B【解析】【详解】,选B.10.已知函数,将的图像上的所有点的横坐标缩短到原来的,纵坐标保持不变;再把所得图像向上平移1个单位长度,得到函数的图像,若,则的值可能为A.B.C.D.【答案】B【解析】由题意得,所以,所以的最小正周期为,由,可知都是函数的最大值3(或都是最小值-3),所以的值为周期的整数倍,所以其最小值为,故选B.11.将函数的图像向左平移个单位长度后得到函数的图像,则具有的性质是( ) A.图像关于直线对称且最大值为1B.图像关于点对称且周期为C.在区间上单调递增且为偶函数D.在区间上单调递增且为奇函数【答案】A【解析】由题意,将函数的图象向左平移个单位长度后,得到函数,则当时,,所以函数关于直线对称,且最大值为1,所以A是正确的;当时,,所以不关于点对称,所以B不正确;当时,则,所以函数上单调递减,在上单调递增,所以C不正确;又由是偶函数,所以D 不正确,故选D.12.将函数的图像向右平移个单位,再把所有点的横坐标伸长到原来的2倍,得到函数的图像,则下列关于函数的说法正确的是A.最小正周期为B.图像关于直线对称C.图像关于点对称D.在上是增函数【答案】B【解析】的图像向右平移个单位,再把所有点的横坐标伸长到原来的2倍,得,其周期为,选项A错误;由可得对称轴方程为,当时,对称轴为,选项B正确,对称中心为,选项C错误;增区间为, 故选项D错误.故选B.13.若函数图像的对称轴是,则非零实数的值为__________.【答案】【解析】因为,其对称轴为,由.14.将函数的图像向左平移个单位长度后得到函数的图像,若的图像关于轴对称,则的最小值为__________.【答案】【解析】函数可化为,将它的图像向左平移个单位长度后得到函数= ,因为的图像关于轴对称,所以,解得:所以,又,所以的最小值为。
数学高考数学难点归纳10函数图象与图象变换
难点10 函数图象与图象变换函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,考生要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质.●难点磁场(★★★★★)已知函数f (x )=ax 3+bx 2+cx +d 的图象如图,求b 的范围.●案例探究[例1]对函数y =f (x )定义域中任一个x 的值均有f (x +a )=f (a -x ),(1)求证y =f (x )的图象关于直线x =a 对称;(2)若函数f (x )对一切实数x 都有f (x +2)=f (2-x ),且方程f (x )=0恰好有四个不同实根,求这些实根之和.命题意图:本题考查函数概念、图象对称问题以及求根问题.属★★★★★级题目.知识依托:把证明图象对称问题转化到点的对称问题.错解分析:找不到问题的突破口,对条件不能进行等价转化.技巧与方法:数形结合、等价转化.(1)证明:设(x 0,y 0)是函数y =f (x )图象上任一点,则y 0=f (x 0),又f (a +x )=f (a -x ),∴f (2a -x 0)=f [a +(a -x 0)]=f [a -(a -x 0)]=f (x 0)=y 0,∴(2a -x 0,y 0)也在函数的图象上,而2)2(00x x a +-=a ,∴点(x 0,y 0)与(2a -x 0,y 0)关于直线x =a 对称,故y =f (x )的图象关于直线x =a 对称.(2)解:由f (2+x )=f (2-x )得y =f (x )的图象关于直线x =2对称,若x 0是f (x )=0的根,则4-x 0也是f (x )=0的根,由对称性,f (x )=0的四根之和为8.[例2]如图,点A 、B 、C 都在函数y =x 的图象上,它们的横坐标分别是a 、a +1、a +2.又A 、B 、C 在x 轴上的射影分别是A ′、B ′、C ′,记△AB ′C 的面积为f (a ),△A ′BC ′的面积为g (a ).(1)求函数f (a )和g (a )的表达式;(2)比较f (a )与g (a )的大小,并证明你的结论.命题意图:本题考查函数的解析式、函数图象、识图能力、图形的组合等.属★★★★★级题目.知识依托:充分借助图象信息,利用面积问题的拆拼以及等价变形找到问题的突破口.错解分析:图形面积不会拆拼.技巧与方法:数形结合、等价转化.解:(1)连结AA ′、BB ′、CC ′,则f (a )=S △AB ′C =S 梯形AA ′C ′C -S △AA ′B ′-S △CC ′B=21(A ′A +C ′C )=21(2++a a ),g (a )=S △A ′BC ′=21A ′C ′·B ′B =B ′B =1+a .0)11121(21)]1()12[(21)122(21)()()2(<++-+++=-+-+-+=+-++=-aa a a a a a a a a a a g a f ∴f (a )<g (a ).●锦囊妙计1.熟记基本函数的大致图象,掌握函数作图的基本方法:(1)描点法:列表、描点、连线;(2)图象变换法:平移变换、对称变换、伸缩变换等.2.高考中总是以几类基本初等函数的图象为基础来考查函数图象的.题型多以选择与填空为主,属于必考内容之一,但近年来,在大题中也有出现,须引起重视.●歼灭难点训练一、选择题1.(★★★★)当a ≠0时,y =ax +b 和y =b ax 的图象只可能是( )2.(★★★★)某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了,再走余下的路,下图中y 轴表示离学校的距离,x 轴表示出发后的时间,则适合题意的图形是( )二、填空题3.(★★★★★)已知函数f (x )=log 2(x +1),将y =f (x )的图象向左平移1个单位,再将图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数y =g (x )的图象,则函数F (x )=f (x )-g (x )的最大值为_________.三、解答题4.(★★★★)如图,在函数y =lg x 的图象上有A 、B 、C 三点,它们的横坐标分别为m ,m +2,m +4(m >1).(1)若△ABC 面积为S ,求S =f (m );(2)判断S =f (m )的增减性.5.(★★★★)如图,函数y =23|x |在x ∈[-1,1]的图象上有两点A 、B ,AB ∥Ox 轴,点M (1,m )(m ∈R 且m >23)是△ABC 的BC 边的中点.(1)写出用B 点横坐标t 表示△ABC 面积S 的函数解析式S =f (t );(2)求函数S =f (t )的最大值,并求出相应的C 点坐标.6.(★★★★★)已知函数f (x )是y =1102+x -1(x ∈R )的反函数,函数g (x )的图象与函数y =-21-x 的图象关于y 轴对称,设F (x )=f (x )+g (x ).(1)求函数F (x )的解析式及定义域;(2)试问在函数F (x )的图象上是否存在两个不同的点A 、B ,使直线AB 恰好与y 轴垂直?若存在,求出A 、B 的坐标;若不存在,说明理由. 7.(★★★★★)已知函数f 1(x )=21x -,f 2(x )=x +2,(1)设y =f (x )=⎩⎨⎧∈--∈]1,0[ ),(3)0,1[ ),(21x x f x x f ,试画出y =f (x )的图象并求y =f (x )的曲线绕x 轴旋转一周所得几何体的表面积;(2)若方程f 1(x +a )=f 2(x )有两个不等的实根,求实数a 的范围.(3)若f 1(x )>f 2(x -b )的解集为[-1,21],求b 的值. 8.(★★★★★)设函数f (x )=x +x1的图象为C 1,C 1关于点A (2,1)对称的图象为C 2,C 2对应的函数为g (x ).(1)求g (x )的解析表达式;(2)若直线y =b 与C 2只有一个交点,求b 的值,并求出交点坐标;(3)解不等式log a g (x )<log a 29 (0<a <1). 参考答案难点磁场解法一:观察f (x )的图象,可知函数f (x )的图象过原点,即f (0)=0,得d =0,又f (x )的图象过(1,0),∴f (x )=a +b +c ①,又有f (-1)<0,即-a +b -c <0②,①+②得b <0,故b 的范围是(-∞,0)解法二:如图f (0)=0有三根,∴f (x )=ax 3+bx 2+cx +d =ax (x -1)(x -2)=ax 3-3ax 2+2ax ,∴b = -3a ,∵a >0,∴b <0.歼灭难点训练一、1.解析:∵y =b ax =(b a )x ,∴这是以b a 为底的指数函数.仔细观察题目中的直线方程可知:在选择支B 中a >0,b >1,∴b a >1,C 中a <0,b >1,∴0<b a <1,D 中a <0,0<b <1,∴b a >1.故选择支B 、C 、D 均与指数函数y =(b a )x 的图象不符合.答案:A2.解析:由题意可知,当x =0时,y 最大,所以排除A 、C.又一开始跑步,所以直线随着x 的增大而急剧下降.答案:D二、3.解析:g (x )=2log 2(x +2)(x >-2)F (x )=f (x )-g (x )=log 2(x +1)-2log 2(x +2)=log 21441log 441log )2(122222+++=+++=++x x x x x x x x )1(21111log 2->++++=x x x ∵x +1>0,∴F (x )≤41log 211)1(21log 22=++⋅+x x =-2 当且仅当x +1=11+x ,即x =0时取等号. ∴F (x )max =F (0)=-2.答案:-2三、4.解:(1)S △ABC =S 梯形AA ′B ′B +S 梯形BB ′C ′C -S 梯形AA ′C ′C .(2)S =f (m )为减函数.5.解:(1)依题意,设B (t ,23 t ),A (-t , 23t )(t >0),C (x 0,y 0). ∵M 是BC 的中点.∴20x t +=1,2230y t + =m . ∴x 0=2-t ,y 0=2m -23t .在△ABC 中,|AB |=2t ,AB 边上的高h AB =y 0-23t =2m -3t . ∴S =21|AB |·h AB = 21·2t ·(2m -3t ),即f (t )=-3t 2+2mt ,t ∈(0,1). (2)∵S =-3t 2+2mt =-3(t -3m )2+32m ,t ∈(0,1],若⎪⎪⎩⎪⎪⎨⎧>≤<23130m m ,即23<m ≤3,当t =3m 时,S max =32m ,相应的C 点坐标是(2-3m , 23m ),若3m >1,即m >3.S =f (t )(0,1]上是增函数,∴S max =f (1)=2m -3,相应的C 点坐标是(1,2m -3).6.解:(1)y =1102+x -1的反函数为f (x )=lg x x +-11(-1<x <1).由已知得g (x )=21+x ,∴F (x )=lg x x +-11+21+x ,定义域为(-1,1). (2)用定义可证明函数u =x x +-11=-1+12+x 是(-1,1)上的减函数,且y =lg u 是增函数.∴f (x )是(-1,1)上的减函数,故不存在符合条件的点A 、B . 7.解:(1)y =f (x )=⎪⎩⎪⎨⎧∈+--∈-]1,0[,1)0,1[,12x x x x .图略. y =f (x )的曲线绕x 轴旋转一周所得几何体的表面积为(2+2)π.(2)当f 1(x +a )=f 2(x )有两个不等实根时,a 的取值范围为2-2<a ≤1.(3)若f 1(x )>f 2(x -b )的解集为[-1,21],则可解得b =235-. 8.(1)g (x )=x -2+41-x .(2)b =4时,交点为(5,4);b =0时,交点为(3,0). (3)不等式的解集为{x |4<x <29或x >6}.。
2020高考知识点11 函数的图像—人教A版高考数学自编知识点复习讲义
知识点11、函数的图像
1、描点法作图
2、函数图像间的变换
(2)反比例型函数:00y x x k d cx b ax y +-=++=
的图像是双曲线,其对称中心为),(00y x ,其图像可由x
k y =变换得到 (3)含绝对值函数:
1、c x x b x x a y +-+-=21,必要时会变分段(三段)函数研究,显然每段均为一次函数或常数,所以其图像特点是中间为线段,两边为射线。
作图时先描出两个关键点()(,11x f x )()(,22x f x )
2、b a x k y +-=的图像分两段进行研究
(4)最值函数:{})(),(),(m ax )(321x f x f x f x f =或{})(),(),(m in )(321x f x f x f x f =的图像,可以先分别作出其中所含函数{})(),(),(321x f x f x f 的图像,再利用它们的交点分段确定)(x f 的图像
(5)取整函数:[][]x x x g x x f -==)(,)(的图像变分段函数作出,如
[)[)[)[),...2,1,1,0,0,1,1,2∈∈-∈--∈x x x x
类型一:作图
【例1】作出下列函数的图象:
(1)、y =|lgx|;
【解析】方法一:翻折变换
先作出x y lg =的图像,再把x 轴下方的翻折得到x 轴上方,原x 轴下方的图像擦掉。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点十 函数的图象及其变换知识梳理1.函数图象的作法(1)直接法(2)图象变换法(3)描点法2.描点法作函数图象(1)基本步骤:列表、描点、连线.(2)注意事项:①列表前应先确定函数的定义域,并化简函数解析式,根据作图需要讨论函数的性质(奇偶性、单调性、周期性) .②列表时注意特殊点、零点、最大值点、最小值点、与坐标轴的交点.③连线时应根据函数特征,用平滑的曲线(或直线)连接各点.3.基本初等函数的图象(1) 一次函数y =ax +b (a ≠0)(2) 二次函数y =ax 2+bx +c (a ≠0)(3) 反比例函数y =k x(k ≠0) (4) 指数函数y =a x (a >0,a ≠1)(5) 对数函数y =log a x (a >0,a ≠1)4.函数图象的变换(1)平移变换:y =f (x )――――――――――→a >0,右移a 个单位a <0,左移|a |个单位y =f (x -a ); y =f (x )――――――――――→b >0,上移b 个单位b <0,下移|b |个单位y =f (x )+b . 口诀:左加右减,上加下减.(2)伸缩变换:y =f (x )―――――――――――→0<ω<1,伸长为原来的1ω倍ω>1,缩短为原来的1ω y =f (ωx ); y =f (x )――――――――――→A >1,伸为原来的A 倍0<A <1,缩为原来的Ay =Af (x ). (3)对称变换:y =f (x )――――――→关于x 轴对称 y =-f (x );y =f (x )――――――→关于y 轴对称y =f (-x ); y =f (x )―――――――→关于原点对称y =-f (-x ). (4)翻折变换:y =f (x )―――――――――――――――――→去掉y 轴左边图,保留y 轴右边图将y 轴右边的图象翻折到左边去y =f (|x |); y =f (x )―――――――――→留下x 轴上方图将x 轴下方图翻折上去y =|f (x )| 口诀:绝对值作用在x 上,右翻左;作用在y 上,下翻上. 典例剖析题型一 函数的图像识别例1 下列所给图象是函数图象的个数为________.答案 2解析:选 ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象,②中当x =x 0时,y 的值有两个,因此不是函数图象,③④中每一个x 的值对应唯一的y 值,因此是函数图象.变式训练 函数y =x sin x 在[-π,π]上的图像是________.① ② ③ ④答案 ①解析 容易判断函数y =x sin x 为偶函数,可排除④.当0<x <π2时,y =x sin x >0,当x =π时,y =0,可排除②、③,故选①.解题要点 函数图像的识别要点:(1)对于函数的图像,一个x 只有一个y 值与之对应;(2)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(3)从函数的单调性,判断图象的变化趋势;(4)从函数的奇偶性,判断图象的对称性;(5)从函数的周期性,判断图象的循环往复;(6)从函数的特征点,排除不合要求的图象.题型二 作函数的图象例2 画出下列函数的图象.(1) y =2x -1,x ∈Z ,|x |≤2;(2) y =2x 2-4x -3(0≤x <3);答案:(1) (2)变式训练 作出下列函数图象(1) y =x 2-2x ()||x >1;(2) y =x |2-x |.解析 (1) ∵ ||x >1,∴ x <-1或x >1,图象是两段曲线,如图.(2) ∵ y =x |2-x |=⎩⎪⎨⎪⎧x 2-2x (x ≥2)-x 2+2x (x<2),∴ 图象由两部分组成,如图. 题型三 函数图象的变换例3 作出下列函数图象:(1)y =-x 2+2|x |+1;(2) y =|-x 2+2x +1|解析 (1)由于y =⎩⎪⎨⎪⎧ -x 2+2x +1,x ≥0,-x 2-2x +1,x <0, 即y =⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0. 画出函数图象如图所示,(2) 函数y =|-x 2+2x +1|的图象如图所示.变式训练 作出下列函数图象(1)y =2x +2;(2) y =x +2x -1. 解析 (1) 将y =2x 的图象向左平移2个单位.图象如下左图(2)因y =x +2x -1=1+3x -1,先作出y =3x 的图象,将其图象向右平移1个单位,再向上平移1个单位,即得y =x +2x -1的图象,如上右图. 题型四 函数图象的应用例4 方程x 2-|x |+a =1有四个不同的实数解,则a 的取值范围是________.答案 (1,54)解析 方程解的个数可转化为函数y =x 2-|x |的图象与直线y =1-a 交点的个数,如图:易知-14<1-a <0,∴1<a <54. 变式训练:已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是________.答案 (12,1) 解析 先作出函数f (x )=|x -2|+1的图象,如图所示,当直线g (x )=kx 与直线AB 平行时斜率为1,当直线g (x )=kx 过A 点时斜率为12,故f (x )=g (x )有两个不相等的实根时,k 的范围为(12,1). 解题要点 借助函数图象求解方程解的个数、参数范围时利用的是数形结合的思想,解题时可对方程或不等式适当变形,选择合适的函数进行作图.当堂练习1.设函数f (x )=2x ,则如图所示的图象对应的函数是________.答案 y =-f (-|x |)解析 该图象是函数y =-2-|x |即y =-f (-|x |)的图象..2.若函数y =f (x +3)的图象经过点P (1,4),则函数y =f (x )的图象必经过点________. 答案 (4,4)解析 法一 函数y =f (x )的图象是由y =f (x +3)的图象向右平移3个单位长度而得到的. 故y =f (x )的图象经过点(4,4).法二 由题意得f (4)=4成立,故函数y =f (x )的图象必经过点(4,4).3. 函数y =lg 1|x +1|的大致图象为____________. ①② ③④答案 ④解析 因为y =lg 1|x |是单调递减的偶函数,关于y 轴对称,则y =lg 1|x +1|的图象是由y =lg 1|x |的图象向左平移一个单位长度得到的.故选④.4.为了得到函数y =lg(x +3)-1的图象,只需把函数y =lg x 的图象上所有的点____________. ①向左平移3个单位长度,再向上平移1个单位长度②向右平移3个单位长度,再向上平移1个单位长度③向左平移3个单位长度,再向下平移1个单位长度④向右平移3个单位长度,再向下平移1个单位长度答案③解析由y=lg x图象向左平移3个单位,得y=lg(x+3)的图象,再向下平移一个单位得y =lg(x+3)-1的图象.5.方程|x|=cos x在(-∞,+∞)内____________.①没有根②有且仅有一个根③有且仅有两个根④有无穷多个根答案③解析如图所示,由图象可得两函数图象有两个交点,故方程有且仅有两个根.课后作业一、填空题1.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是____________.①②③④答案③解析出发时距学校最远,先排除①,中途堵塞停留,距离没变,再排除④,堵塞停留后比原来骑得快,因此排除②,故选③.2.函数y=log2|x|的图象大致是____________.①②③④答案③解析函数y=log2|x|为偶函数,作出x>0时y=log2x的图象,图象关于y轴对称,应选③. 3.(2013·福建文)函数f(x)=ln(x2+1)的图象大致是____________.①②③④答案①解析依题意,得f(-x)=ln(x2+1)=f(x),所以函数f(x)为偶函数,即函数f(x)的图象关于y 轴对称,故排除③.因为函数f(x)过定点(0,0),排除②,④,故选①.4.为了得到函数y=2x-3-1的图象,只需把函数y=2x的图象上所有的点____________.①向右平移3个单位长度,再向下平移1个单位长度②向左平移3个单位长度,再向下平移1个单位长度③向右平移3个单位长度,再向上平移1个单位长度④向左平移3个单位长度,再向上平移1个单位长度答案①解析 y =2x 先向右平移3个单位长度,得到y =2x -3,再向下平移1个单位长度,得到y =2x -3-1.故选①.5.函数y =1-1x -1的图象是____________. ① ② ③ ④答案 ②解析 将y =-1x 的图象向右平移1个单位,再向上平移一个单位,即可得到函数y =1-1x -1的图象.6.若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值范围是____________. 答案 (0,+∞) 解析 由题意a =|x |+x ,令y =|x |+x =⎩⎪⎨⎪⎧2x ,x ≥0,0,x <0,图象如图所示, 故要使a =|x |+x 只有一解,则a >0.7. 若log a 2<0(a >0,且a ≠1),则函数f (x )=log a (x +1)的图象大致是____________.① ② ③ ④答案 ②解析 ∵log a 2<0,∴0<a <1,由f (x )=log a (x +1)单调性可知①、④错误,再由定义域知②选项正确.8.(2015山东文)要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象向____平移____个单位..答案 右,π12解析 ∵y =sin ⎝⎛⎭⎫4x -π3=sin ⎣⎡⎦⎤4⎝⎛⎭⎫x -π12, ∴要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象向右平移π12个单位. 9.(2015新课标II 文)已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a =________. 答案 -2解析 由函数f (x )=ax 3-2x 过点(-1,4),得4=a (-1)3-2×(-1),解得a =-2.10.函数f (x )=2x +1x -1图象的对称中心的坐标是________. 答案 (1,2)解析 f (x )=2+3x -1. 11.为了得到函数y =2x-3的图象,只需把函数y =2x 的图象上所有的点向________平移________个单位长度.答案 右 3二、解答题 12.分别画出下列函数的图象:(1)y =|lg x |;(2) y =x 2-2|x |-1解析 (1) y =⎩⎪⎨⎪⎧ lg x , x ≥1,-lg x , 0<x <1图象如图 (2) y =⎩⎪⎨⎪⎧x 2-2x -1, x ≥0,x 2+2x -1, x <0.图象如图 13.若直线y =2a 与函数y =|a x -1|(a >0且a ≠1)的图象有两个公共点,求a 的取值范围.解析 当0<a <1时,y =|a x -1|的图象如图1所示,由已知得0<2a <1,即0<a <12. 当a >1时,y =|a x -1|的图象如图2所示,由已知可得0<2a <1,即0<a <12,但a >1,故a ∈. 综上可知,a 的取值范围为⎝⎛⎭⎫0,12.。