对策问题五六年级奥数知识讲解

合集下载

小学六年级奥数精品对策问题

小学六年级奥数精品对策问题

第10讲对策问题一、知识要点同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。

生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”。

哪一方的策略更胜一筹,哪一方就会取得最终的胜利。

解决这类问题一般采用逆推法和归纳法。

二、精讲精练【例题1】两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。

挨到谁移走最后一根火柴就算谁输。

如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。

先移火柴的人要取胜,只要取走第999根火柴,即利用逆推法就可得到答案。

设先移的人为甲,后移的人为乙。

甲要取胜只要取走第999根火柴。

因此,只要取到第991根就可以了(如乙取1根甲就取7根;如乙取2根甲就取6根。

依次类推,甲取的与乙取的之和为8根火柴)。

由此继续推下去,甲只要取第983根,第975根,……第7根就能保证获胜。

所以,先移火柴的人要保证获胜,第一次应移走7根火柴。

练习1:1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。

每人每次可以拿1至3根,不许不拿,乙让甲先拿。

问:谁能一定取胜?他要取胜应采取什么策略?2、两人轮流报数,规定每次报的数都是不超过8的自然数,把两人报的数累加起来,谁先报到88,谁就获胜。

问:先报数者有必胜的策略吗?3、把1994个空格排成一排,第一格中放一枚棋子,甲、乙两人轮流移动棋子,每人每次可后移1格、2格、3格,谁先移到最后一格谁胜。

先移者确保获胜的方法是什么?答案1、解:乙一定能取胜,他采取让甲先拿,乙每次拿的根数要保持与甲拿的根数和为4,即甲拿1,乙则拿3;甲拿2,乙则拿2;甲拿3,乙则拿1,便可取胜.故答案为:乙一定能取胜,他采取让甲先拿,乙每次拿的根数要保持与甲拿的根数和为4,即甲拿1,乙则拿3;甲拿2,乙则拿2;甲拿3,乙则拿1,便可取胜.解析仔细看题,读懂题意,细心推敲字词句,准确弄懂题目意图,本题主要练习的是倍数、因数的意义,40是4的整数倍,乙只要与甲拿的根数和为4,即甲拿1,乙则拿3;甲拿2,乙则拿2;甲拿3,乙则拿1,乙便可取胜.看清题意,特别要注重培养具体问题具体分析的习惯和灵活运用知识的能力,让甲先拿,乙每次拿的根数要保持与甲拿的根数和为4,即甲拿1,乙则拿3;甲拿2,乙则拿2;甲拿3,乙则拿1,乙便可取胜.这样,才能使学生对应用题算得正确迅速.2、能报的数有1,2,3,4,5,6∴,如果66是胜利,则也是胜利因为对方1,你就6,对方2,你就5,以此类推.于是,3是第一个必胜点.10是第二个,以此类推.就看谁抢到这些数字直接就报3则必胜3、解:因为,1994个空格,走到终点需要1993步(起点不算),(1994-1)÷(1+3)=498…1,先移者第一次向右移1格,以后每一轮保证向右移的格数与对方加起来是4格,由此,先移者胜.故答案为:解析:因为,(1994-1)÷(1+3)=498…1,所以,先移者确保获胜的方法是:第一次向右移1格,即移到第2格,以后每一轮保证向右移与对方加起来是4格,由此先移者获胜.解答此题的关键是,根据所给的格数和所要求的移动格子数,判断出先移者第一次移动的格数,及先移者每次移动的格子数,先行者即可获胜.【例题2】有1987粒棋子。

六年级奥数分册第37周 对策问题【推荐】

六年级奥数分册第37周  对策问题【推荐】

第三十七周对策问题专题简析:同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。

生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”。

哪一方的策略更胜一筹,哪一方就会取得最终的胜利。

解决这类问题一般采用逆推法和归纳法。

例题1:两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。

挨到谁移走最后一根火柴就算谁输。

如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。

先移火柴的人要取胜,只要取走第999根火柴,即利用逆推法就可得到答案。

设先移的人为甲,后移的人为乙。

甲要取胜只要取走第999根火柴。

因此,只要取到第991根就可以了(如乙取1根甲就取7根;如乙取2根甲就取6根。

依次类推,甲取的与乙取的之和为8根火柴)。

由此继续推下去,甲只要取第983根,第975根,……第7根就能保证获胜。

所以,先移火柴的人要保证获胜,第一次应移走7根火柴。

练习1:1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。

每人每次可以拿1至3根,不许不拿,乙让甲先拿。

问:谁能一定取胜?他要取胜应采取什么策略?2、两人轮流报数,规定每次报的数都是不超过8的自然数,把两人报的数累加起来,谁先报到88,谁就获胜。

问:先报数者有必胜的策略吗?3、把1994个空格排成一排,第一格中放一枚棋子,甲、乙两人轮流移动棋子,每人每次可后移1格、2格、3格,谁先移到最后一格谁胜。

先移者确保获胜的方法是什么?例题2:有1987粒棋子。

甲、乙两人分别轮流取棋子,每次最少取1粒,最多取4粒,不能不取,取到最后一粒的为胜者。

现在两人通过抽签决定谁先取。

你认为先取的能胜,还是后取的能胜?怎样取法才能取胜?从结局开始,倒推上去。

小学奥数精讲:对策问题之必胜策略

小学奥数精讲:对策问题之必胜策略

小学奥数精讲:对策问题之必胜策略小学奥数精讲:必胜策略对策问题知识点总结:1.一取余制胜(取棋子,报数游戏)1.1.每次取1~n个棋子,总数,取最后一个赢策略:总数÷(1+n)如果有余数,先拿必胜,拿掉余数,之后总与对手凑成1+n即可。

如果无余数,则后拿,总与对手凑成1+n即可。

1.2.每次取1~n个棋子,总数,取最后一个输策略:最狠的做法就是留给对方一枚棋子,对方不取也得取。

所以想赢的关键就在于能不能取到倒数第二枚棋子。

问题转化为:每次取1~n个棋子,总数,取倒数第二枚棋子赢。

(总数-1)÷(1+n),之后同1中做法。

2.抢占制胜点(倒推法)2.1.能一步到棋子的位置均是不能走的地方即负位2.2.处处为别人着想。

自己不能走的地方逼别人走进去即可,即确定制胜点。

3.对称法3.1.同等情况下,模仿对方步骤可以达到制胜目的。

3.2.不同等情况下,创造对等局面方可制胜。

例题:1.桌子上放着100根火柴,甲、乙二人轮流每次取走1~5根。

规定谁取走最后一根火柴谁获胜。

如果双方都采用最佳方法,甲先取,那么谁将获胜?分析:100÷(1+5)=16……4,有余数,先拿必胜。

甲先拿4个;乙拿a个,甲就拿6-a个。

2.甲乙两人轮流报数,报出的数只能是1~7的自然数。

同时把所报数一一累加起来,谁先使这个累加和达到80,谁就获胜。

请问必胜的策略是什么?分析:80÷(1+7)=10,无余数,后拿必胜。

甲拿a个,乙就拿8-a个必胜。

3.1000个空格排成一行,最左端空格中放有一枚棋子,甲先乙后轮流向右移动棋子,每次移动1~7格。

规定将棋子移到最后一格者谁赢。

甲为了获胜,第一步必须向右移多少格?分析:(1000-1)÷(1+7)=124……7,有余数,先走必胜。

甲先走7格;乙走a格,甲就拿8-a个必胜。

4.5张扑克牌,每人每次只能拿1张到4张。

谁取最后一张谁输。

必胜的策略是什么?分析:先拿4张,留给别人1张就行。

小学数学_《对策问题》教学课件设计

小学数学_《对策问题》教学课件设计

第一场 上等马 下等马 下等马 中等马 中等马 上等马 上等马
第二场 中等马
上等马 中等马 上等马 下等马 中等马 下等马
第三场 下等马
中等马 上等马 下等马 上等马 下等马 中等马
获胜方
田忌 齐王 齐王 齐王 齐王 齐王
观察这张表格,你发现田忌一共赢了几次,田忌只有怎样做才有可能赢?
田忌这种对策在生活中有哪些应用?
对策问题
游戏规则:
两人玩扑克牌比大小的游戏,每人每次出一张牌,各出三次, 每张牌只能用1次,赢两次者胜。
第一局 第二局 第三局 获胜方

9
7
5
黑1
3
8
6

黑2
3
6
8

黑3
6
8
3

黑4
6
3
8

黑5
8
6
3

黑6
8
3
6

温馨提示:
1、先在小组里说一说,黑牌有多少种不同的出牌方案?
2、小组统一意见后,组长把黑牌所有的出牌方案有序地填在表格里。
用数学的观点和方法来研究取胜策略等 问题的数学分支叫做对策论
3、找一找黑牌有几种方案可以获胜?
4、想一想,黑牌怎样才能获胜?
我们通过列表,把应对的所有Fra bibliotek能性 有序的罗列出来,并从中找到最好的 对策,这是数学里一种很重要的方法。
田忌所采用的对策是不是唯一能赢齐威王的方法? 请你想一想田忌一共有多少种对策?把它有序填在表格里。
齐王 田忌1 田忌2 田忌3 田忌4 田忌5 田忌6

小学奥数精讲:对策问题之必胜方法

小学奥数精讲:对策问题之必胜方法

小学奥数精讲:对策问题之必胜方法简介本文档旨在介绍一些小学奥数中的对策问题以及必胜方法。

学生经常面临各种各样的题型和挑战,本文将提供一些建议和策略,帮助学生克服困难,取得好成绩。

1. 阅读题阅读题是小学奥数中常见的问题之一。

解决阅读题的关键在于提高阅读理解能力和速度。

以下是一些必胜方法:- 阅读练:定期进行阅读练,包括故事书、报纸、杂志等,提高阅读理解能力。

- 注意时间管理:在考试中,合理分配时间给每个阅读题,不要花太多时间在一个问题上。

- 理解关键信息:在阅读过程中,学会提取和理解关键信息,帮助快速回答问题。

2. 计算题计算题需要学生具备强大的计算能力和数学思维。

以下是一些必胜方法:- 熟悉基本运算:熟练掌握加减乘除等基本运算,并做到心算快速准确。

- 多做题:通过不断练提高计算能力和速度,遇到较难的计算题时也能迅速解决。

- 运用技巧:学会利用一些数学技巧和公式简化计算步骤,提高效率。

3. 推理题推理题是需要学生进行逻辑思维和推理的题型。

以下是一些必胜方法:- 分析题目:仔细读题,理解问题背景和要求,分析题目中的条件和关系。

- 列清单:对于复杂的推理题,可以列清单来记录和整理问题中的信息和条件,帮助推理过程。

- 多实践:通过解决各种推理题来锻炼逻辑思维能力,提高解题的准确性和速度。

4. 选填题选填题需要根据题目要求,从给定的选项中选择和填入正确的答案。

以下是一些必胜方法:- 仔细阅读选项:在填写答案之前,仔细阅读选项并理解每个选项的含义。

- 排除法:通过排除一些明显错误的选项,缩小答案的范围,并选择最合适的答案。

- 注意题干:注意题干中的提示和关键信息,帮助选取正确的答案。

结论通过掌握上述对策问题的必胜方法,学生可以在小学奥数中取得更好的成绩。

不仅要提高知识水平,还要培养良好的研究惯和解题思路。

多做练,注重理解和分析,相信每个学生都能在小学奥数中取得成功。

以上是关于小学奥数对策问题之必胜方法的介绍,希望对学生们有所帮助。

六年级数学知识点解析攻克难题要点

六年级数学知识点解析攻克难题要点

六年级数学知识点解析攻克难题要点数学作为一门基础学科,对于六年级学生来说,常常是个头疼的难题。

然而,只要我们能够掌握一些解题要点,攻克这些难题就不再是困难的事情了。

本文将为大家介绍几个六年级数学知识点的解析方法和攻克难题的要点。

一、四则运算四则运算是数学中最基本的运算法则,掌握四则运算的要点对于解决六年级数学难题至关重要。

具体要点如下:1. 加法要点在进行加法运算时,我们要注意两个数字的顺序以及进位的情况。

通常,加法运算的要点包括:- 从右至左对应数字进行加法运算- 若某个位数相加结果大于等于10,则需要进位例如,计算129 + 57时,我们从右至左计算9 + 7 = 16,需要进位;此时,一位计算结果为6,十位进位为1,所以最终结果为186。

2. 减法要点减法运算相对来说较为简单,但也需要注意借位和被减数的大小关系。

常见要点包括:- 当被减数小于减数时,需要借位- 借位时,将前一位减数的数字减1,并且在后一位减数上加上10例如,计算783 - 476时,我们从右至左计算,个位3小于6,需要向十位借位。

借位之后,十位减数变为7-1=6,个位减数变为13-6=7,所以最终结果为307。

3. 乘法要点乘法是六年级数学中较为复杂的运算之一,需要对竖式乘法进行准确的操作。

要点包括:- 将被乘数和乘数按位数进行相乘的计算,得到部分积- 对部分积进行进位操作,得到最终乘积例如,计算25 × 7时,我们先计算个位数部分积(5 × 7 = 35),然后计算十位数部分积(2 × 7 = 14)。

最后将两个部分积相加并进位,得到最终结果175。

4. 除法要点除法是六年级数学中相对较难的运算,需要注意商和余数的计算。

常用要点包括:- 将被除数与除数相除,商即为相除的结果- 如果不能整除,则余数为被除数减去整除的结果例如,计算156 ÷ 6时,我们将156除以6,商为26,没有余数,所以结果为商的整数部分26。

小学奥数精讲:对策问题之必胜策略

小学奥数精讲:对策问题之必胜策略

小学奥数精讲:对策问题之必胜策略知识点总结:一取余制胜(取棋子,报数游戏)1.每次取1~n个棋子,总数,取最后一个赢策略:总数÷(1+n)有余则先,拿掉余数,之后总与对手凑成1+n即可无余则后,总与对手凑成1+n即可2. 每次取1~n个棋子,总数,取最后一个输策略:最狠的做法就是留给对方一枚棋子,对方不取也得取。

所以想赢的关键就在于能不能取到倒数第二枚棋子。

问题转化为:每次取1~n个棋子,总数,取倒数第二枚棋子赢。

(总数-1)÷(1+n),之后同1中做法。

二.抢占制胜点(倒推法)1. 能一步到棋子的位置均是不能走的地方即负位2. 处处为别人着想。

自己不能走的地方逼别人走进去即可,即确定制胜点。

三.对称法1. 同等情况下,模仿对方步骤可以达到制胜目的。

2. 不同等情况下,创造对等局面方可制胜。

1.桌子上放着100根火柴,甲、乙二人轮流每次取走1~5根。

规定谁取走最后一根火柴谁获胜。

如果双方都采用最佳方法,甲先取,那么谁将获胜?分析:100÷(1+5)=16 (4)有余数,先拿必胜,甲必胜。

(1)甲先拿4个;(2)乙拿a个,甲就拿6-a个2.甲乙两人轮流报数,报出的数只能是1~7的自然数。

同时把所报数一一累加起来,谁先使这个累加和达到80,谁就获胜。

请问必胜的策略是什么?分析:80÷(1+7)=10无余数,后拿必胜。

甲拿a个,乙就拿8-a个必胜3.1000个空格排成一行,最左端空格中放有一枚棋子,甲先乙后轮流向右移动棋子,每次移动1~7格。

规定将棋子移到最后一格者谁赢。

甲为了获胜,第一步必须向右移多少格?分析:(1000-1)÷(1+7)=124 (7)有余,先走必胜。

(1)甲先走7格(2)乙走a格,甲就拿8-a个必胜4.5张扑克牌,每人每次只能拿1张到4张。

谁取最后一张谁输。

必胜的策略是什么?分析:先拿4张,留给别人1张就行。

5.现有1000根火柴,甲乙两人轮流去拿,每人每次最少拿1根,最多拿7根,谁取最后一根谁输。

小学奥数 小学奥林匹克数学 竞赛数学 第12讲:统筹与对策

小学奥数 小学奥林匹克数学  竞赛数学 第12讲:统筹与对策

有12枚棋子,甲、乙两人轮流取,规定每次至少取1枚,最多取3枚,以取 走最后一枚棋子者为胜者.如果甲先取,那么谁有必胜策略?如果取走最后 一枚棋子者为败者,并且仍然是甲先取,那么谁有必胜策略?
【10】
现有2008根火柴,甲、乙两个人轮流从中取出火柴.每次最少 从中取出2根,最多取出4根.谁无法再次取出火柴谁就赢.如 果甲先取,请问谁有必胜癿策略?
【5】
下图是一张道路图,每段路旁标注癿数值表示小悦走这段路 所需癿分钟数.问:小悦从A出发走到B最快需要多少分钟?
8 6
4
3
A
5
2B
10
8
15 4
3
【6】
如图,一条路上从西向东有A、B、C、D、E 五所学校,分别有200人、 300 人、400人、500人、600人.任意相邻癿两所学校之间癿距离都是 100米,现在要在某所学校癿门口修建一个公共汽车站,要使所有人到 达车站癿距离之和最小,车站应该建在什么地方?距离癿总和最少是多少?
【11】
甲、乙两人玩一个游戏:有两堆小球,甲、乙两人轮流从中取球,每次只能从同 一堆中取,个数丌为零即可,规定取到最后一个球癿人赢,现在甲先取球. (1)如果开始时两堆球数分别是两个和两个,那么谁有必胜策略?请说明理由; (2)如果开始时两堆球数分别是两个和三个,那么谁有必胜策略?请说明理由; (3)如果开始时两堆球数分别是五个和八个,那么谁有必胜策略?请说明理由.
知识点回顾 游戏对策:
二,处于必胜状态的一方,总能进行一次适当的操作后,把必败的 状态留给对手。反之,处于必败状态的一方,无论采取什么策略, 都只能把必胜状态留给对手.
三,在很多对策问题中,具有对称性的状态往往是解决问题的关键。
四,在问题较复杂时,可以从简单情况入手,寻找规律.

小学奥数精讲对策问题

小学奥数精讲对策问题

小学奥数精讲对策问题本讲的重点和难点是对策问题,虽然涉及的课本知识不多,但是技巧性比较强。

对策问题通常在游戏中运用较多,而用数学的观点和方法来研究取胜策略就是对策问题。

例1中,桌上放着100根火柴棒,甲、乙二人轮流取,每次取1—3根,规定谁取到最后1根谁获胜。

分析可得,谁能让火柴棒最后剩4根,谁就获胜。

因为对方不论拿走几根,剩下的必能一次拿完。

只要让剩下的火柴棒的根数是4的倍数,就可以保证获胜。

由于100是4的倍数,所以后取的人获胜。

因此,乙后取一定获胜。

甲拿n根,乙就拿(4-n)根,这样乙一定可以拿到最后1根而获胜。

例2中,有一排500个空格,预先在左边第1格中放一枚棋子,然后由甲、乙两人轮流走。

甲先乙后。

每人走时,可以将棋子向右移动1~6格,规定谁将棋子走到最后1格谁输。

甲为了必胜,第一步走1格,以后,乙走n格,甲就走(7-n)格,甲一定获胜。

因为要控制取胜就必须保证自己能将最后1格留给对方,自己就要能走到倒数第二格中。

这样一共能走的格子数只有500-1-1=498格。

498÷7=71……1.例3中,甲、乙二人轮流在黑板上写1~10的自然数,规定不能在黑板上写已写过的数的因数,并不重复,最后无数可写的人失败。

如果甲先写,双方都采用最佳方案,那么谁一定获胜?甲先写,甲一定获胜。

甲必须先写6,这样6的因数1,2,3,6就不能再写了。

将剩下的六个数分为4和5,7和9,8和10三组,当乙写这六个数中的某数时,甲就写与它同组的另一数,必可获胜。

例4中,在一个3×3的方格纸中,甲、乙两人轮流往方格中写1,3,4,5,6,7,8,9,10这九个数中的一个,数字不能重复。

最后甲的得分是上、下两行六个数之和,乙的得分是左、右两列六个数之和,得分多者为胜。

为甲找出一种必胜的方法,需要让甲和乙都不能取到数字1和2,因为它们不能同时出现在上下两行和左右两列中。

因此,甲先写数字5,接下来,无论乙写什么数字,甲都可以写与之对称的数字来保证自己得分更高。

小学六年级奥数第37讲 对策问题(含答案分析)

小学六年级奥数第37讲 对策问题(含答案分析)

第37讲对策问题一、知识要点同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。

生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”。

哪一方的策略更胜一筹,哪一方就会取得最终的胜利。

解决这类问题一般采用逆推法和归纳法。

二、精讲精练【例题1】两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。

挨到谁移走最后一根火柴就算谁输。

如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。

先移火柴的人要取胜,只要取走第999根火柴,即利用逆推法就可得到答案。

设先移的人为甲,后移的人为乙。

甲要取胜只要取走第999根火柴。

因此,只要取到第991根就可以了(如乙取1根甲就取7根;如乙取2根甲就取6根。

依次类推,甲取的与乙取的之和为8根火柴)。

由此继续推下去,甲只要取第983根,第975根,……第7根就能保证获胜。

所以,先移火柴的人要保证获胜,第一次应移走7根火柴。

练习1:1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。

每人每次可以拿1至3根,不许不拿,乙让甲先拿。

问:谁能一定取胜?他要取胜应采取什么策略?2、两人轮流报数,规定每次报的数都是不超过8的自然数,把两人报的数累加起来,谁先报到88,谁就获胜。

问:先报数者有必胜的策略吗?3、把1994个空格排成一排,第一格中放一枚棋子,甲、乙两人轮流移动棋子,每人每次可后移1格、2格、3格,谁先移到最后一格谁胜。

先移者确保获胜的方法是什么?【例题2】有1987粒棋子。

甲、乙两人分别轮流取棋子,每次最少取1粒,最多取4粒,不能不取,取到最后一粒的为胜者。

现在两人通过抽签决定谁先取。

六年级奥数 第37讲 对策问题

六年级奥数  第37讲 对策问题

第37讲对策问题一、知识要点同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。

生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”。

哪一方的策略更胜一筹,哪一方就会取得最终的胜利。

解决这类问题一般采用逆推法和归纳法。

二、精讲精练【例题1】两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。

挨到谁移走最后一根火柴就算谁输。

如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。

先移火柴的人要取胜,只要取走第999根火柴,即利用逆推法就可得到答案。

设先移的人为甲,后移的人为乙。

甲要取胜只要取走第999根火柴。

因此,只要取到第991根就可以了(如乙取1根甲就取7根;如乙取2根甲就取6根。

依次类推,甲取的与乙取的之和为8根火柴)。

由此继续推下去,甲只要取第983根,第975根,……第7根就能保证获胜。

所以,先移火柴的人要保证获胜,第一次应移走7根火柴。

练习1:1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。

每人每次可以拿1至3根,不许不拿,乙让甲先拿。

问:谁能一定取胜?他要取胜应采取什么策略?2、两人轮流报数,规定每次报的数都是不超过8的自然数,把两人报的数累加起来,谁先报到88,谁就获胜。

问:先报数者有必胜的策略吗?3、把1994个空格排成一排,第一格中放一枚棋子,甲、乙两人轮流移动棋子,每人每次可后移1格、2格、3格,谁先移到最后一格谁胜。

先移者确保获胜的方法是什么?【例题2】有1987粒棋子。

甲、乙两人分别轮流取棋子,每次最少取1粒,最多取4粒,不能不取,取到最后一粒的为胜者。

现在两人通过抽签决定谁先取。

对策问题:轮流取棋子,谁能胜(六年级奥数)

对策问题:轮流取棋子,谁能胜(六年级奥数)
对策问题:轮流取棋子,谁能胜
2020粒棋子,甲、乙两人分别轮流,每次最多取1粒,最少取4粒,不能不取, 取到最后1粒得为获胜者.假设甲先取,那么谁一定获胜,如何获胜?
思路:对策问题,从可控的方式去思考,比如双方每轮可以取的总数是可控的
每次最多取1粒,最少取4粒,不能不取 每一轮,无论双方怎么取,最多可取:1+4=5(粒)
同时每一轮都取5粒,是可确保的棋子,可以取:2020÷5=404(轮)
无余数,则后取者胜 乙能胜利,他确保每一轮取的数和甲加起来是5粒
最后一轮5粒中,无论甲如何取,乙都能取到其中的最后一粒

小学六年级奥数学习的重点和方法

小学六年级奥数学习的重点和方法

小学六年级奥数学习的重点和方法六年级是小升初的重要阶段,如果这一时期的奥数学的好,在小升初择校的竞争中优势是非常明显的。

这里跟大家介绍小学六年级奥数学习重点和方法,希望对大家有所帮助。

学习重点难点一、分数百分数问题,比和比例这是六年级的重点内容,在历年各个学校测试中所占比例非常高,重点应该掌握好以下内容:对单位1的正确理解,知道甲比乙多百分之几和乙比甲少百分之几的区别;求单位1的正确方法,用具体的量去除以对应的分率,找到对应关系是重点;分数比和整数比的转化,了解正比和反比关系;通过对“份数”的理解结合比例解决和倍(按比例分配)和差倍问题;二.行程问题应用题里最重要的内容,因为综合考察了学生比例,方程的运用以及分析复杂问题的能力,所以常常作为压轴题出现,重点应该掌握以下内容:路程速度时间三个量之间的比例关系,即当路程一定时,速度与时间成反比;速度一定时,路程与时间成正比;时间一定时,速度与路程成正比。

特别需要强调的是在很多题目中一定要先去找到这个“一定”的量;当三个量均不相等时,学会通过其中两个量的比例关系求第三个量的比;学会用比例的方法分析解决一般的行程问题;有了以上基础,进一步加强多次相遇追及问题及火车过桥流水行船等特殊行程问题的理解,重点是学会如何去分析一个复杂的题目,而不是一味的做题;三.几何问题几何问题是各个学校考察的重点内容,分为平面几何和立体几何两大块,具体的平面几何里分为直线形问题和圆与扇形;立体几何里分为表面积和体积两大部分内容。

学生应重点掌握以下内容:等积变换及面积中比例的应用;与圆和扇形的周长面积相关的几何问题,处理不规则图形问题的相关方法;立体图形面积:染色问题、切面问题、投影法、切挖问题;立体图形体积:简单体积求解、体积变换、浸泡问题;四.数论问题常考内容,而且可以应用于策略问题,数字谜问题,计算问题等其他专题中,相当重要,应重点掌握以下内容:掌握被特殊整数整除的性质,如数字和能被9整除的整数一定是9的倍数等;最好了解其中的道理,因为这个方法可以用在许多题目中,包括一些数字谜问题;掌握约数倍数的性质,会用分解质因数法,短除法,辗转相除法求两个数的最大公因数和最小公倍数;学会求约数个数的方法,为了提高灵活运用的能力,需了解这个方法的原理;了解同余的概念,学会把余数问题转化成整除问题,下面的这个性质是非常有用的:两个数被第三个数去除,如果所得的余数相同,那么这两个数的差就能被这个数整除;能够解决求一个多位数除以一个较小的自然数所得的余数问题,例如求1011121314…9899除以11的余数,以及求20082008除以13的余数这类问题;五.计算问题计算问题通常在前几个题目中出现概率较高,主要考察两个方面,一个是基本的四则运算能力,同时,一些速算巧算及裂项换元等技巧也经常成为考察的重点。

小学奥数第二十八讲 对策问题.doc

小学奥数第二十八讲  对策问题.doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】第二十八讲对策问题阅读与思考战国时期,齐王与大将田忌约定,双方各出上、中、下三个等级的马各一匹,进行三场对抗赛,输一场付给胜者黄金一千两。

由于田忌的马比齐王同等级的马都要逊一筹,所以,同等级的马进行比赛时,齐王赢了三场,得到了三千两黄金。

当齐王再次邀请田忌赛马时,田忌好为难:一方面是必败的结果,另一方面是不能违抗大王的旨意。

就去与军师孙膑商量,孙膑是位足智多谋的军事家,他巧妙地帮田忌出了一个主意:用自己的下等马与国王的上等马比赛,而用自己的上等马与国王的中等马比赛,再用自己的中等马与国王的下等马比赛。

结果是田忌输了第一场,胜了第二、三场,还赢了国王的一千两黄金。

这就是著名的“田忌赛马”的故事,它是斗智策略的精彩范例。

在用数学解决问题时,有时也经常出现一些有趣的智力“对弈”问题,如何取胜呢?就需要我们利用数学中的原理和方法,正确、合理地选择“对策”,使自己获胜或取得最佳效果。

用数学的观点和方法来研究取胜策略问题的数学分支叫做对策论或博弈论。

这类问题是思想和方法在日常生活及一些军事、体育比赛中得到了越来越广泛的应用。

解决这类问题往往需要设想对方可能采取的各种方案,并使自己的策略能在对方所采取的各种方案中都占据有利的局面。

我们把这种局面称作“胜局”,所心在一种具体规则下,是否存在胜局,怎样寻找胜局和如何把握胜局就成了研究对策问题的关键。

在对策问题中,我们通常采用的是逆推法和对称法。

逆推法就是在设计游戏策略时,往往从正面不容易想到好的方法,就从结果逆推游戏过程,采用逆向思维从后面往前面想的一种策略;对称法就是通过模仿对方的游戏步骤,使得对方始终面临平衡状态的一种策略。

典型例题|例1|两人轮流报数,但报出的数只能是1至8的自然数,同时把所报的数一一累加起来,谁先使累加数的和达到80,谁就获胜,问怎样才能确保获胜?训练1:两人轮流报数,每人每次报一个数,但只能报1至5五个自然数,同时把所报的数一一累加起来,谁先使这个累加和达到40,谁就获胜。

六下奥数9(解决问题的策略)

六下奥数9(解决问题的策略)

六年级奥数讲义第9讲 【解决问题的策略】 姓名 等级1【奥数第一关:知识归纳】本单元内容是转化的策略。

转化是解决问题时经常采用的方法,能把较复杂的问题变成较简单的问题,把新的问题变成已经解决的问题。

转化既是一种策略,也是一种数学的思想方法。

【奥数第二关:重难点解析】例1:图中各个圆的面积都是20平方厘米,那么阴影部分的面积是多少平方厘米?例2:×100的末尾有多少个零?例3:甲、乙、丙三个生产同一种零件。

乙7天生产的个数是甲4天生产的2倍;丙3天生产的个数比乙5天生产的还多1个;丙每天比甲多生产70个,甲每天生产多少个?【方法点睛】从上面的例题可以看出,用转化的策略解决问题时,往往需要用到我们以往已经学过的策略,如替换、还原等。

只有把多种策略有机地结合在一起,才能实现灵活地转化。

多思多做多练:1. 下面图形中的涂色部分和空白部分的面积相等吗?为什么?2.一个盛有水的圆柱形玻璃容器。

它的底面半径是6厘米,现将一石块入入容器内,这时水面上升了4厘米。

石块的体积是多少立方厘米?3.计算。

4.四个圆紧靠在一起,它们的的半径都是3.5分米,求阴影部分的面积。

5.空白部分的面积是正方形面积的几分之几?6.一座古钟的钟面如图。

红色部分与蓝色部分哪个面积大?为什么?【奥数第三关:用构造法解题】例4:如果每个月的18日恰逢星期六,那么这一天就是“红色星期六”。

在某个平年中,“红色星期六”最多出现几次?分别出现在哪几个月?例5:请找出七个自然数,使它们都是合数。

【技巧点拨】用构造法解决问题,先根据题意构造一个数或量,把这个数或量代入问题中进行演算或推理,再根据最后结果进行适当的调整,以得到最后结果。

小学六年级奥数第37讲 对策问题(含答案分析)

小学六年级奥数第37讲 对策问题(含答案分析)

第37讲对策问题一、知识要点同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。

生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”。

哪一方的策略更胜一筹,哪一方就会取得最终的胜利。

解决这类问题一般采用逆推法和归纳法。

二、精讲精练【例题1】两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。

挨到谁移走最后一根火柴就算谁输。

如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。

先移火柴的人要取胜,只要取走第999根火柴,即利用逆推法就可得到答案。

设先移的人为甲,后移的人为乙。

甲要取胜只要取走第999根火柴。

因此,只要取到第991根就可以了(如乙取1根甲就取7根;如乙取2根甲就取6根。

依次类推,甲取的与乙取的之和为8根火柴)。

由此继续推下去,甲只要取第983根,第975根,……第7根就能保证获胜。

所以,先移火柴的人要保证获胜,第一次应移走7根火柴。

练习1:1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。

每人每次可以拿1至3根,不许不拿,乙让甲先拿。

问:谁能一定取胜?他要取胜应采取什么策略?2、两人轮流报数,规定每次报的数都是不超过8的自然数,把两人报的数累加起来,谁先报到88,谁就获胜。

问:先报数者有必胜的策略吗?3、把1994个空格排成一排,第一格中放一枚棋子,甲、乙两人轮流移动棋子,每人每次可后移1格、2格、3格,谁先移到最后一格谁胜。

先移者确保获胜的方法是什么?【例题2】有1987粒棋子。

甲、乙两人分别轮流取棋子,每次最少取1粒,最多取4粒,不能不取,取到最后一粒的为胜者。

现在两人通过抽签决定谁先取。

六年级奥数提升策略与技巧

六年级奥数提升策略与技巧

六年级奥数提升策略与技巧在六年级奥数学习中,经典题目不仅帮助学生巩固基础知识,还能有效提升解题能力和思维深度。

经典题目往往涵盖了不同的数学概念和解题技巧,通过对这些题目的深入分析和练习,学生能够掌握解决奥数难题的有效方法。

本文将介绍一些六年级奥数提升中的经典题目及其解题思路,帮助学生更好地应对各种奥数挑战。

首先,几何经典题目是六年级奥数中的重要部分。

例如,“一个正方形的边长为10厘米,将其沿对角线分成两个三角形,求其中一个三角形的面积。

”这个题目考查了学生对正方形及其对角线性质的理解。

解题时,首先需要知道正方形的对角线将其分成两个完全相等的直角三角形。

正方形的面积为边长的平方,即100平方厘米。

由于对角线将正方形分成两个面积相等的三角形,因此每个三角形的面积为50平方厘米。

这个题目帮助学生理解和运用几何图形的基本性质。

其次,数论经典题目也常出现在六年级奥数中。

例如,“找出两个不同的正整数a 和b,使得a² - b² = 21。

”这是一个涉及差平方的经典数论题目。

首先,利用平方差公式将其转换为(a - b)(a + b) = 21。

由于21的因数对为(1, 21)和(3, 7),可以尝试不同的因数组合,解得a和b的值。

通过代入验证,a = 11,b = 10满足条件。

这个题目帮助学生理解和运用数论中的基本公式和技巧。

第三,代数经典题目也是六年级奥数中不可或缺的一部分。

例如,“解方程2(x - 3) + 4 = 3x - 5。

”这个题目考查了学生对代数方程的解法。

首先,展开方程左边得到2x - 6 + 4 = 3x - 5,化简得到2x - 2 = 3x - 5。

然后,将含x的项移到方程一边,得到-x = -3,解得x = 3。

通过这个题目,学生可以练习代数方程的基本解法,并熟悉解方程的步骤。

第四,排列组合经典题目也在六年级奥数中占有重要地位。

例如,“从5个人中选择2人组成一个小组,有多少种不同的选择?”这是一个基本的组合问题。

六年级数学奥数举一反三小升初数学对策问题37

六年级数学奥数举一反三小升初数学对策问题37

3、在黑板上写n—1(n>3)个数:2,3,4,……,n。甲、乙两人轮流 在黑板上擦去一个数。如果最后剩下的两个数互质,则乙胜,否则甲胜。 N分别取什么值时:(1)甲必胜?(2)乙必胜?必胜的策略是什么?
小学数学六年级奥数举一反三
【例题4】甲、乙两人轮流在黑板上写下不超过10的自然数,规定禁止在 黑板上写已写过的数的约数,最后不能写的人为失败者。如果甲第一个 写,谁一定获胜?写出一种获胜的方法。 【思路导航】 这里关键是第一次写什么数,总共只有10个数,可通过归纳试验。甲不 能写1,否则乙写6,乙可获胜;甲不能写3,5,7,否则乙写8,乙可获 胜;甲不能写4,9,10,否则乙写6,乙可获胜。因此,甲先写6或8,才 有可能获胜。 甲可以获胜。如甲写6,去掉6的约数1,2,3,6,乙只能写4,5,7,8, 9,10这六个数中的一个,将这六个数分成(4,5),(7,9),(8, 10)三组,当乙写某组中的一个数,甲就写另一个数,甲就能获胜。
小学数学六年级奥数举一反三
【练习4】
1、甲、乙两人轮流在黑板上写上不超过14的自然数。书写规则是:不允 许写黑板上已写过的数的约数,轮到书写人无法再写时就是输者。现甲 先写,乙后写,谁能获胜?应采取什么对策? 2、甲、乙两人轮流从分别写有3,4,5,……,11的9张卡片中任意取走 一张,规定取卡人不能取已取过的数的倍数,轮到谁无法再取时,谁就 输。现甲先取,乙后取,甲能否必然获绳?应采取的对策是什么?
小学数学六年级奥数举一反三
【练习1】 1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。每人每 次可以拿1至3根,不许不拿,乙让甲先拿。问:谁能一定取胜?他要取 胜应采取什么策略?
2、两人轮流报数,规定每次报的数都是不超过8的自然数,把两人报的 数累加起来,谁先报到88,谁就获胜。问:先报数者有必胜的策略吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.有1999个球,甲、乙两人轮流取 球,每人每次至少取一个,最多取5 个,取到最后一个球的人为输。如果 甲先取,那么谁将获胜?
3、有100根火柴,甲乙两人轮流玩火 柴游戏,规定每人每次可取10根以内 的任何火柴(包括10根),以谁取完 火柴使对手无火柴可取者胜,如果甲 先取,问谁一定能获胜?他怎样才能 获胜?
请同学们想一想,如果在上面玩法中,两堆 火柴数目一开始就相同,例如两堆都是35根火 柴,那么先取者还能获胜吗?
例7 有3堆火柴,分别有1根、2根与3根火柴。 甲先乙后轮流从任意一堆里取火柴,取的 根数不限,规定谁能取到最后一根或最后 几根火柴就获胜。如果采用最佳方法,那 么谁将获胜?
分析与解:根据例6的解法,谁在某次取过火柴之 后,恰好留下两堆数目相等的火柴,谁就能取胜。
对策问题五六年级奥数
智取火柴
在数学游戏中有一类取火柴游戏, 它有很多种玩法,由于游戏的规 则不同,取胜的方法也就不同。 但不论哪种玩法,要想取胜,一 定离不开用数学思想去推算。
例1 桌子上放着60根火柴,甲、乙二 人轮流每次取走1~3根。规定谁取走 最后一根火柴谁获胜。如果双方都采 用最佳方法,甲先取,那么谁将获胜?
分析与解:本例是例3的变形,但应注意, 一开始棋子已占一格,棋子的右面只有 1111-1=1110(个)空格。由例3知,只 要甲始终留给乙(1+7=)8的倍数加1格, 就可获胜。
(111-1)÷(1+7)=138……6,
所以甲第一步必须移5格,还剩下1105 格,1105是8的倍数加1。以后无论乙移几 格,甲下次移的格数与乙移的格数之和是 8,甲就必胜。因为甲移完后,给乙留下 的空格数永远是8的倍数加1。
由例3看出,在每次取1~n根火柴,取到最后 一根火柴者为输的规定下,谁能做到总给对方留 下(1+n)的倍数加1根火柴,谁将获胜。
有许多游戏虽然不是取火柴的形式,但游戏 取胜的方法及分析思路与取火柴游戏完全相同。
例4 两人从1开始按自然数顺序轮流依 次报数,每人每次只能报1~5个数, 谁先报到50谁胜。你选择先报数还是 后报数?怎样才能获胜?
4.甲、乙二人轮流报数,甲先乙后,每 次每人报1~4个数,谁报到第888个数 谁胜。谁将获胜?怎样获胜?
5.有两堆枚数相等的棋子,甲、乙两人 轮流在其中任意一堆里取,取的枚数 不限,但不能不取,谁取到最后一枚 棋子谁获胜。如果甲后取,那么他一 定能获胜吗?
பைடு நூலகம்
6.黑板上写着一排相连的自然数1,2, 3,…,51。甲、乙两人轮流划掉连续的3 个数。规定在谁划过之后另一人再也划不 成了,谁就算取胜。问:甲有必胜的策略 吗?
解:对照例1、例2可以看出,本例是取火柴 游戏的变形。因为50÷(1+5)=8……2, 所以要想获胜,应选择先报,第一次报2个 数,剩下48个数是(1+5=)6的倍数,以 后总把6的倍数个数留给对方,必胜。
例5 1111个空格排成一行,最左端空格中 放有一枚棋子,甲先乙后轮流向右移动棋 子,每次移动1~7格。规定将棋子移到最 后一格者输。甲为了获胜,第一步必须向 右移多少格?
例6 今有两堆火柴,一堆35根,另一 堆24根。两人轮流在其中任一堆中拿 取,取的根数不限,但不能不取。规 定取得最后一根者为赢。问:先取者 有何策略能获胜?
分析与解:本题虽然也是取火柴问题,但由于火 柴的堆数多于一堆,故本题的获胜策略与前面 的例题完全不同。
先取者在35根一堆火柴中取11根火柴,使得 取后剩下两堆的火柴数相同。以后无论对手在 某一堆取几根火柴,你只须在另一堆也取同样 多根火柴。只要对手有火柴可取,你也有火柴 可取,也就是说,最后一根火柴总会被你拿到。 这样先取者总可获胜。
例3 将例1中“谁取走最后一根火柴谁获胜” 改为“谁取走最后一根火柴谁输”,其余 不变,情形又将如何?
解:最后留给对方1根火柴者必胜。按照例1中的 逆推的方法分析,只要每次留给对方4的倍数加1 根火柴必胜。甲先取,只要第一次取3根,剩下57 根(57除以4余1),以后每次都将除以4余1的根 数留给乙,甲必胜。
在例1中为什么一定要留给对方4的倍数根, 而不是5的倍数根或其它倍数根呢?关键 在于规定每次只能取1~3根,1+3=4, 在两人紧接着的两次取火柴中,后取的 总能保证两人取的总数是4。利用这一特 点,就能分析出谁采用最佳方法必胜, 最佳方法是什么。由此出发,对于例1的 各种变化,都能分析出谁能获胜及获胜 的方法。
例2 在例1中将“每次取走1~3根”改 为“每次取走1~6根”,其余不变, 情形会怎样?
分析与解:由例1的分析知,只要始终留给对方 (1+6=)7的倍数根火柴,就一定获胜。因为 60÷7=8……4,所以只要甲第一次取走4根,剩 下56根火柴是7的倍数,以后总留给乙7的倍数根 火柴,甲必胜。
由例2看出,在每次取1~n根火柴,取到最后 一根火柴者获胜的规定下,谁能做到总给对方留 下(1+n)的倍数根火柴,谁将获胜。
甲先取,共有六种取法:从第1堆里取1根, 从第2堆里取1根或2根;第3堆里取1根、2根或3 根。无论哪种取法,乙采取正确的取法,都可以 留下两堆数目相等的火柴(同学们不妨自己试 试),所以乙采用最佳方法一定获胜。
练习25 1.桌上有30根火柴,两人轮流从中
拿取,规定每人每次可取1~3根,且 取最后一根者为赢。问:先取者如何 拿才能保证获胜?
分析与解:本题采用逆推法分析。获胜方在最后一次取 走最后一根;往前逆推,在倒数第二次取时,必须留给 对方4根,此时无论对方取1,2或3根,获胜方都可以取 走最后一根;再往前逆推,获胜方要想留给对方4根, 在倒数第三次取时,必须留给对方8根……由此可知, 获胜方只要每次留给对方的都是4的倍数根,则必胜。 现在桌上有60根火柴,甲先取,不可能留给乙4的倍数 根,而甲每次取完后,乙再取都可以留给甲4的倍数根, 所以在双方都采用最佳策略的情况下,乙必胜。
7.有三行棋子,分别有1,2,4枚棋子,两 人轮流取,每人每次只能在同一行中至少 取走1枚棋子,谁取走最后一枚棋子谁胜。 问:要想获胜是先取还是后取?
相关文档
最新文档