设单位负反馈控制系统的开环传递函数

合集下载

自动控制原理(非自动化)1-3章答案

自动控制原理(非自动化)1-3章答案

自动控制原理(非自动化类)教材书后第1章——第3章练习题1。

2 根据题1。

2图所示的电动机速度控制系统工作原理图 (1) 将a ,b 与C,d 用线连接成负反馈系统; (2) 画出系统框图。

解:1)由于要求接成负反馈系统,且只能构成串联型负反馈系统,因此,控制系统的净输入电压△U 与U ab 和U cd 之间满足如下关系: 式中,U ab 意味着a 点高,b 点低平,所以,反馈电压U cd 的c 点应与U ab 的a 点相连接,反馈电压U cd 的d 点应与U ab 的b 点相连接.2)反馈系统原理框图如图所示。

1.3题1.3图所示为液位自动控制系统原理示意图。

在任何情况下,希望液面高度c 维持不变,说明系统工作原理并画出系统框图。

题1.3图第二章 习 题2.1 试求下列函数的拉氏变换,设f<O 时,z(f)=0: (1) (2)(3) (4)2。

2试求下列象函数x(s )的拉氏反变换X (t ): 解:(1) 其中(2)2.3 已知系统的微分方程为式中,系统输入变量r(f )=6(£),并设,,(O)=),(0)=O ,求系统的输出y (£)。

题1.2图2.4 列写题2。

4图所示RLC 电路的微分方程。

其中,u i 为输入变量,u o 为输出变量。

解:根据回路电压方程可知2.5 列写题2。

5图所示RLC 电路的微分方程, 其中,u.为输入变量,u 。

为输出变量。

解:由电路可知, 2。

6设运算放大器放大倍数很大,输入阻抗很大,输出阻抗很小。

求题2。

6图所示运 算放大电路的传递函数。

其中,u i 为输入变量,u o 为输出变量.解:根据运算放大器的特点有2.7 简化题2.7图所示系统的结构图,并求传递函数C (s ) / R (s )。

题2.7图解:根据梅逊公式得: 前向通道传递函数P K :回路传递函数L K :(注意到回路中含有二个负号)特征方程式: 余子式:于是闭环传递函数为:2.8 简化题2.8图所示系统的结构图,并求传递函数C (s ) / R (s )。

自动控制原理复习资料

自动控制原理复习资料

一、单选题(共20题,40分)1、在伯德图中反映系统抗高频干扰能力的是( )(2.0)A、低频段B、中频段C、高频段D、无法反应正确答案: C2、设单位负反馈控制系统的开环传递函数G(s)=,其中K>0,a>0,则闭环控制系统的稳定性与()o(2.0)A、K值的大小有关B、a值的大小有关C、a和K值的大小有关D、a和K值的大小无关正确答案: D3、关于线性系统稳态误差,正确的说法是:( )(2.0)A、一型系统在跟踪斜坡输入信号时无误差B、C、增大系统开环增益K可以减小稳态误差D、增加积分环节可以消除稳态误差,而且不会影响系统稳定性正确答案: C4、传递函数定义线性定常系统在零初始状态下系统输出拉氏变换与输入拉氏变换之()。

(2.0)A、积B、比C、和D、差正确答案: B5、下列系统中属于不稳定的系统是( )。

(2.0)A、闭环极点为的系统B、闭环特征方程为的系统C、阶跃响应为的系统D、脉冲响应为的系统正确答案: D6、系统开环对数幅频特性L(ω)中频段主要参数的大小对系统的()性能无影响。

(2.0)A、动态B、稳态C、相对稳定性D、响应的快速性正确答案: D7、设控制系统的开环传递函数为,该系统为( )(2.0)A、 0型系统B、Ⅰ型系统C、Ⅱ型系统D、Ⅲ型系统正确答案: B8、确定系统根轨迹的充要条件是()。

(2.0)A、根轨迹的模方程B、根轨迹的相方程C、根轨迹增益D、根轨迹方程的阶次正确答案: C9、高阶系统的主导闭环极点越靠近虚轴,则系统的 ( )(2.0)A、准确度越高B、准确度越低C、响应速度越快D、响应速度越慢正确答案: D10、闭环系统的动态性能主要取决于开环对数幅频特性的( )(2.0)A、低频段B、开环增益C、高频段D、中频段正确答案: D11、Z变换中复变量z的物理含义是什么?(2.0)A、滞后一个采样周期。

B、超前一个采样周期。

C、跟复变量s一样。

D、没有什么物理含义,就是为了计算方便。

自动控制原理第4章 习题及解析

自动控制原理第4章 习题及解析

4-2 已知单位负反馈系统的开环传递函数如下,试绘制出相应的闭环根轨迹图。

1)*()(1)(3)K G s s s s =++ 2)*(5)()(2)(3)K s G s s s s +=++解:(1)()(1)(3)*K G s s s s =++① 由G (s )知,n =3,m =0,p 1=0,p 2=–1,p 3=–3。

② 实轴上[0,–1]、[–3,∞]是根轨迹段。

③ 有n –m =3条渐近线,交点3403310-=---=a σ, 夹角︒±=60a ϕ、180°。

④ 实轴上[0、–1]根轨迹段上有分离点d 。

由0)(1=⎥⎦⎤⎢⎣⎡=ds s G ds d 求d :03832=++s d 解得 45.0-=d (分离点) 3742j d --=(舍去) ⑤求根轨迹与虚轴交点,令jw s =代入0)(=s D ,得⎪⎩⎪⎨⎧=+-==+-=03)(Im 04)(Re 312ωωωωωj j j D K j D 解得3±=o ω 20412*K ω==临根轨迹图见图4-2(1)(2) *(5)()(2)(3)K s G s s s s +=++①由 G (s )知, n =3,m =1,p 1=0,p 2=–2,p 3=–3,p 4=–5②实轴上[-2、0],[-5、-3]是根轨迹段 ③有n-m=2条渐近线:0a σ=,夹角ϕa =±90°④实轴上 [-2、0] 根轨迹段上有分离点d , 由1[]0()s dd ds G s ==求d :3232556300s s s +++=,试凑得 s 1=-0.88 是其解,且是分离点。

根轨迹图见图4-2(2)。

4-3 已知单位负反馈系统的开环传递函数如下,试绘制出相应的闭环根轨迹图。

1)*(2)()(12)(12)K s G s s j s j +=+++- 2)*2()(4)(420)K G s s s s s =+++解:(1)*(2)()(12)(12)K s G s s j s j +=+++-根轨迹图见图4-3(1)(2)*2()(4)(420)K G s s s s s =+++① n =4,m =0,p 1=0,p 2=–4,p 3、4=–2±j 4② p 1、p 2连线中点正好是p 3、p 4实部,开环极点分布对称于垂线s=–2,根轨迹也将对称于该垂线。

设单位负反馈控制系统的开环传递函数

设单位负反馈控制系统的开环传递函数

习 题4-1 设单位负反馈控制系统的开环传递函数1)(+=s K s G g试判断下列点是否是系统根轨迹上的点。

若是根轨迹上的点,则说明g K 值多大时根轨迹经过它。

a 点)0j 2(+−;b 点)1j 0(+;c 点)2j 3(+−4-2 设单位负反馈控制系统的开环传递函数)12()13()(++=s s s K s G g试用解析法绘出根轨迹增益g K 从+∞→0变化时系统的根轨迹图。

4-3 设单位负反馈控制系统的开环传递函数如下,试概略绘出相应的系统根轨迹图。

(1))15.0)(12.0()(++=s s s K s G g(2))21)(21()2()(j s j s s K s G g −++++= (3))204)(4()(2+++=s s s s K s G g4-4 设单位负反馈控制系统的开环传递函数)258()256(9.6)(22++++=s s s s s s G 试用根轨迹法计算系统闭环极点的位置。

4-5 设单位负反馈系统的开环传递函数如下,试绘出参变量b 从+∞→0变化时的系统根轨迹图。

(1)))(4(20)(b s s s G ++= (2))10()(30)(++=s s b s s G 4-6 设单位负反馈控制系统的开环传递函数)2()1()(+−=s s s K s G g试绘制其根轨迹图,并求出使系统产生重实根和纯虚根的g K 值。

4-7 设控制系统的开环传递函数为)4)(2()1()(2+++=s s s s K s G g k试分别画出正反馈系统和负反馈系统的根轨迹图,并指出它们的稳定情况有何不同?4-8 设单位负反馈控制系统的开环传递函数如下)20)(10()()(2+++=s s s z s K s G g试确定使系统的特征根存在一对共轭纯虚根1j ±时的z 值和g K 值。

4-9 实系数多项式函数a s a s s s A ++++=)6(5)(23试确定参数a 的范围,使0)(=s A 的根皆为实数。

单位负反馈系统校正——自动控制原理课程设计

单位负反馈系统校正——自动控制原理课程设计

目录1.设计题目...................................................................... 错误!未定义书签。

2. 摘要 (2)3、未校正系统的分析 (3)3.1.系统分析 (3)3.2.单位阶跃信号下系统输出响应 (4)4、系统校正设计 (7)4.1.校正方法 (7)4.2.设计总体思路 (7)4.3.参数确定 (8)4.4.校正装置 (9)4.5.校正后系统 (10)4.6.验算结果 (11)5、结果 (13)5.1.校正前后阶跃响应对比图 (13)5.2.结果分析 (14)6、总结体会 (15)7、参考文献 (16)1.设计题目设单位负反馈系统的开环传递函数为:))101.0)(1(/()(++=sssKsG用相应的频率域校正方法对系统进行校正设计,使系统满足如下动态和静态性能:1)相角裕度45≥γ;2)在单位斜坡输入下的稳态误差为0625.0≥sse;3)系统的穿越频率大于2rad/s。

要求:1)分析设计要求,说明校正的设计思路(超前校正,滞后校正或滞后- 超前校正);2)详细设计(包括的图形有:校正结构图,校正前系统的Bode图,校正装置的Bode图,校正后系统的Bode图);3)用Matlab编程代码及运行结果(包括图形、运算结果);4)校正前后系统的单位阶跃响应图。

2.摘要用频率法对系统进行超前校正的实质是将超前网络的最大超前角补在校正后系统开环频率特性的截止频率处,提高校正后系统的相角裕度和截止频率,从而改善系统的动态性能。

为此,要求校正网络的最大相位超前角出现在系统的截止频率处。

只要正确地将超前网络的交接频率1/aT和1/T设置在待校正系统截止频率Wc的两边,就可以使已校正系统的截止频率Wc和相裕量满足性能指标要求,从而改善系统的动态性能。

串联超前校正主要是对未校正系统在中频段的频率特性进行校正。

确保校正后系统中频段斜率等于-20dB/dec,使系统具有45°~60°的相角裕量。

自动控制原理第4章习题解——邵世凡

自动控制原理第4章习题解——邵世凡

第四章 习题4-1 绘制具有下列开环传递函数的负反馈系统的根轨迹1、()()()()54*++=s s s K s H s G解:首先确定开环传递函数中的零极点的个数各是多少。

由开环传递函数可知 m=0,n=3,n -m=3。

即,有限零点为0个,开环极点为3个。

其中,3个开环极点的坐标分别为:p 1=0,p 2=-4,p 3=-5。

然后,在[s]平面上画出开环极点的分布情况,根据根轨迹方程的幅角条件:首先确定实轴上的闭环系统的根轨迹。

如图所示。

接着再通过所需参数的计算画出比较精确的根轨迹通过画实轴上的根轨迹图可知,有3条闭环根轨迹,分别从p 1=0,p 2=-4,p 3=-5出发奔向无穷远处的零点。

在这一过程中,从p 1=0,p 2=-4两个极点出发的根轨迹在实轴上相遇后进入复平面,因此,有必要进行分离点的坐标计算,渐进线在实轴上的坐标点和渐进线的角度计算,以及与虚轴交点的计算。

根据公式有:渐进线303054011-=----=--=∑∑==mn zp n i mj jiσ()() ,,331212ππππϕ±±=+=-+=k mn k a从p 1=0,p 2=-4两个极点出发的根轨迹在实轴上相遇后将沿着±60º进入复平面,分离点:设:()1=s N ;()()()s s s s s s s D 2095423++=++=;()0'=s N ;()201832'++=s s s D则有:()()()()()0201832''=++-=⋅-⋅s s s D s N s D s N[s ]0201832=++s s解得方程的根为s 1= -4.5275(不合题意舍去);s 2= -1.4725 得分离点坐标:d = -1.4725。

与虚轴的交点:在交点处,s=j ω,同时也是闭环系统的特征根,必然符合闭环特征方程,于是有:()020********=++--=+++*=*K j j K s s sj s ωωωω整理得: 0203=-ωω;092=-*ωK 解得01=ω;203,2±=ω;18092==*ωK 最后,根据以上数据精确地画出根轨迹。

习题答案第3章

习题答案第3章

t s (2%) 4T
T ,为惯性环节的时间常数。 将已知数据 t s (2%)=15 秒代入上式,求得惯性环节的时间常数 T
则闭环传递函数为
3.75 秒。
WB ( s )
单位反馈系统的开环传递函数为
1 15s 1
WK ( s )
WB ( s) 1 1 WB ( s ) 15s
s0
劳斯表中出现 s 行为全 0 行,且无符号变化,则闭环系统临界稳定,有 2 对对称于原 点的特征根。可通过辅助方程得到。
3
令 F ( s ) 3s 18s 12 0
4 2
解得
3-9 系统如图 P3-4 所示,问 取何值系统方能稳定。
s1, 2 j 0.87 , s 3, 4 j 2.29 10 s ( s 1)
则 令 xc (t ) 0

xc (t ) L1 [ X c ( s )] 1 e t cos(3t )
可得 t m 0.94 s
阶跃响应的最大峰值 根据超调量的定义
x max (t m ) 1.37
%
调节时间 t s (5%)
x max (t m ) xc () 100% 37% x c ( )
0.2 sX c ( s ) 2 X r ( s )
又输入信号为 X r ( s )
1 ,则输出 s
X c ( s ) 10 s2
拉氏反变换后,得单位阶跃响应为
xc (t ) 10t
c (t ) 0.24 x c (t ) (2) 0.04 x
微分方程两侧同时取拉氏变换,得
5 4 3 2
(4) s 4 s 4 s 4 s 7 s 8s 10 0

自动控制原理课后习题

自动控制原理课后习题
已知系统开环传递函数,
分析稳定性,若稳定计
算性能指标。
G
(
s
)
(
s
1
)
1 (0
0 .
0
1
s
1
)2
1、环节特性分析
2、Bode曲线的绘制 3、性能指标计算 结论:系统稳定。
ωc≈10;
令 得
::(t gωγ111ω)88014128.02013ltt8ggωg01101c100.0c021tωg11 0.ω10c8101100
0
(-1,j0)
已知:Gk
(s)
k s(Ts 1)
得:P
1, q
1
绘制Nyquist曲线
N p 2(a b) 1 2(0 0.5) 2
结论:不稳定,右半平面有两个特征根。
0
(1)T1>T2 (-1,j0)
0 (2) T1<T2
已知:Gk
(s)
k(T2 s 1) , s 2 (T1s 1)
其中:( Ta ) 或( Ta )
2)分析两种情况下系统的稳定性.
3、某最小相位系统的如图所示。
1)求传递函数 2)求剪切频率和相角裕量
G k( s )
k(10s 1)2
s2 s 1(Ts 1)
(10s 1)2
s2 s 1(0.003 s
1)
c 100 , 73.76
4、已知单位反馈系统的
(-1,j0)
0
(2)
(1)
0
(-1,j0)
已知:P 2, q 0
已知:G(s) k , p 1,q 0,绘制Nyquist曲线,系统1: k 1;系统2 : k 1。 (Ts 1)

单位负反馈系统校正——自动控制原理课程设计

单位负反馈系统校正——自动控制原理课程设计

目录1.设计题目 ............................................................ 错误!未定义书签。

2.摘要 (2)3、未校正系统的分析 (3)3.1.系统分析 (3)3.2.单位阶跃信号下系统输出响应 (4)4、系统校正设计 (7)4.1.校正方法 (7)4.2.设计总体思路 (7)4.3.参数确定 (8)4.4.校正装置 (9)4.5.校正后系统 (10)4.6.验算结果 (11)5、结果 (13)5.1.校正前后阶跃响应对比图 (13)5.2.结果分析 (14)6、总结体会 (15)7、参考文献 (16)1.设计题目设单位负反馈系统的开环传递函数为:))101.0)(1(/()(++=s s s K s G用相应的频率域校正方法对系统进行校正设计,使系统满足如下动态和静态性能:1)相角裕度045≥γ;2)在单位斜坡输入下的稳态误差为0625.0≥ss e ; 3)系统的穿越频率大于2rad/s 。

要求:1)分析设计要求,说明校正的设计思路(超前校正,滞后校正或滞后-超前校正);2)详细设计(包括的图形有:校正结构图,校正前系统的Bode 图,校正装置的Bode 图,校正后系统的Bode 图);3)用Matlab 编程代码及运行结果(包括图形、运算结果);4)校正前后系统的单位阶跃响应图。

2.摘要用频率法对系统进行超前校正的实质是将超前网络的最大超前角补在校正后系统开环频率特性的截止频率处,提高校正后系统的相角裕度和截止频率,从而改善系统的动态性能。

为此,要求校正网络的最大相位超前角出现在系统的截止频率处。

只要正确地将超前网络的交接频率1/aT和1/T设置在待校正系统截止频率Wc的两边,就可以使已校正系统的截止频率Wc和相裕量满足性能指标要求,从而改善系统的动态性能。

串联超前校正主要是对未校正系统在中频段的频率特性进行校正。

确保校正后系统中频段斜率等于-20dB/dec,使系统具有45°~60°的相角裕量。

自动控制原理试题

自动控制原理试题
4、典型二阶系统极点分布如图1所示,则无阻尼自然频率 ,
阻尼比 ,
该系统的特征方程为
该系统的单位阶跃响应曲线为衰减振荡。
5、若某系统的单位脉冲响应为 ,
则该系统的传递函数G(s)为 。
6、根轨迹起始于开环极点,终止于开环零点。
7、设某最小相位系统的相频特性为 ,则该系统的开环传递函数为 。
8、PI控制器的输入-输出关系的时域表达式是 ,其相应的传递函数为 ,由于积分环节的引入,可以改善系统的稳态性能。
答案:(1)

20logK=40 所以 ,故可得
(5分)

所以 (7分)
③ (3分)
(2)
所以 (5分)
1、反馈控制又称偏差控制,其控制作用是通过给定值与反馈量的差值进行的。
2、复合控制有两种基本形式:即按输入的前馈复合控制和按扰动的前馈复合
3、两个传递函数分别为G1(s)与G2(s)的环节,以并联方式连接,其等效传递函数为 ,则G(s)为G1(s)+G2(s)(用G1(s)与G2(s)表示)。
A、 F(s)的零点就是开环传递函数的极点
B、 F(s)的极点就是开环传递函数的极点
C、 F(s)的零点数与极点数相同
D、 F(s)的零点就是闭环传递函数的极点
2、已知负反馈系统的开环传递函数为 ,则该系统的闭环特征方程为B
A、 B、
C、 D、与是否为单位反馈系统有关
3、一阶系统的闭环极点越靠近S平面原点,则( D )。
3.通过测量输出量,产生一个与输出信号存在确定函数比例关系值的元件称为(d)
A.比较元件B.给定元件C.反馈元件D.放大元件
4.ω从0变化到+∞时,延迟环节频率特性极坐标图为(a)

《自动控制原理》---丁红主编---第三章习题答案

《自动控制原理》---丁红主编---第三章习题答案

习题3-1.选择题:(1)已知单位负反馈闭环系统是稳定的,其开环传递函数为:)1(2)s )(2+++=s s s s G (,系统对单位斜坡的稳态误差是: 3-2 已知系统脉冲响应t e t k 25.10125.0)(-=试求系统闭环传递函数)(s Φ。

解 Φ()()./(.)s L k t s ==+001251253-3 一阶系统结构图如图3-45所示。

要求系统闭环增益2=ΦK ,调节时间4.0≤s t s ,试确定参数21,K K 的值。

图 题3-3图解 由结构图写出闭环系统传递函数111)(212211211+=+=+=ΦK K sK K K s K sK K s K s 令闭环增益212==ΦK K , 得:5.02=K 令调节时间4.03321≤==K K T t s ,得:151≥K 。

3-4 设二阶控制系统的单位阶跃响应曲线如图 所示。

如果该系统为单位反馈控制系统,试确定其开环传递函数。

图 题3-4图 解:由图知,开环传递函数为3-5 设角速度指示随动统结构图如图3-40所示。

若要求系统单位阶跃响应无超调,且调节时间尽可能短,问开环增益K 应取何值,调节时间s t 是多少图3-40 题3-5图解:依题意应取 1=ξ,这时可设闭环极点为02,11T -=λ。

写出系统闭环传递函数Ks s Ks 101010)(2++=Φ闭环特征多项式20022021211010)(⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛+=++=T s T s T s K s s s D 比较系数有 ⎪⎪⎩⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛=K T T 101102200 联立求解得 ⎩⎨⎧==5.22.00K T 因此有 159.075.40''<''==T t s3-6 图所示为某控制系统结构图,是选择参数K 1和K 2,使系统的ωn =6,ξ=1.3-7 已知系统的特征方程,试判别系统的稳定性,并确定在右半s 平面根的个数及纯虚根。

(完整版)自东控制原理题库

(完整版)自东控制原理题库

1. 已知单位反馈系统的开环传递函数,试绘制参数b从0→∞的根轨迹,并写出b=2时系统的闭环传递函数。

(1)(2)答案:[提示] 求等效开环传递函数,画根轨迹。

(1)分离点坐标:d1=-8.472,d2=0.472(舍),出射角θp=153.4&deg;;(2)两支根轨迹,分离点的坐标-202. 已知系统的开环传递函数为(1)确定实轴上的分离点及K*的值;(2)确定使系统稳定的K*值范围。

答案:(1)实轴上的分离点d1=-1,d2=-1/3,对应的K*1=0,K2*=22/27;(2)稳定范围0<K*<63. 设单位负反馈系统的开环传递函数如下:(1)绘制系统准确的根轨迹图;(2)确定使系统临界稳定的开环增益K c的值;(3)确定与系统临界阻尼比相应的开环增益K。

答案:(1)分离点坐标:d1=-79(舍),d2=-21;(2)K c=150;(3)K=9.64. 设单位负反馈控制系统开环传递函数已知,要求:(1)确定产生纯虚根的开环增益K;(2)确定产生纯虚根为&plusmn;j1的z值和K*值。

答案:(1)用劳斯判据求临界稳定点得K*=110,化成开环增益K=11(2)将&plusmn;j1任一点代入闭环特征方程得K*=30,z=199/305. 反馈系统的开环传递函数为试用根轨迹法确定出阶跃响应有衰减的振荡分量和无振荡分量时的开环增益K值范围。

答案:[提示] 特征根全为负实数时无振荡分量,为复数时有振荡分量6. 已知系统的特征方程为(1)s3+9s2+K*s+K*=0 (2)(s+1)(s+1.5)(s+2)+K*=0(3)(s+1)(s+3)+K*s+K*=0试绘制以K*为参数的根轨迹图。

答案:[提示] 将带K*项合并,方程两端同除不带K*项的多项式,求出等效的开环传函7. 已知单位反馈系统的开环传递函数为试绘制闭环系统的根轨迹图。

答案:[提示] 开环极点分布图分离点有3个,不要画错。

武汉理工控制工程第四章习题解答

武汉理工控制工程第四章习题解答

武汉理工控制工程第四章习题解答习题解答:4-1 负反馈系统的开环传递函数()()()()21++=s s s K s F s G G,试绘制闭环系统的根轨迹。

解:根轨迹有3个分支,分别起始于0,-1,-2,终止于无穷远。

1-=aσ,︒±︒=60,180aφ。

实轴上的根轨迹是(-∞,-2]及[-1,0]。

)23(23=++dss s s d可得,422.01-=s,578.12-=s;422.01-=s是分离点。

根轨迹见图4-28。

图4-284-2系统的开环传递函数为()()()()()421+++=s s s K s F s G G,试证明点311j s +-=在根轨迹上,并求出相应的根轨迹增益GK 和开环增益K 。

解:若点1s 在根轨迹上,则点1s 应满足相角条件π)12()()(+±=∠k s H s G ,如图4-29所示。

图4-29 对于311js+-=,由相角条件=∠)()(11s H s G )431()231()131(0++-∠-++-∠-++-∠-j j jππππ-=---=6320满足相角条件,因此311j s+-=在根轨迹上。

将1s 代入幅值条件:1431231131)()(11=++-⋅++-⋅++-=j j j K s H s G G所以,12=GK,238==G K K4-3 已知开环零点z ,极点p ,试概略画出相应的闭环根轨迹图。

(1)2-=z ,6-,0=p ,3-; (2)0=p ,2-,442,1j z ±-=;(3)11-=p ,123,2j p±-=;(4)0=p ,1-,5-,4-=z ,6-;解:图4-30(1)图4-30(2)图4-30(3)图4-30(4)4-4 设单位反馈控制系统开环传递函数为()()()()()23235.31j s j s s s s K s G G-+++++=试概略绘出其闭环根轨迹图(要求确定根轨迹的分离点,起始角和与虚轴的交点)。

自动控制原理精品课程第三章习题解(1)

自动控制原理精品课程第三章习题解(1)

3-1 设系统特征方程式:4322101000s s Ts s ++++=试按稳定要求确定T 的取值范围。

解:利用劳斯稳定判据来判断系统的稳定性,列出劳斯列表如下:4321011002105100(10250)/(5)100s T s s T s T T s ---欲使系统稳定,须有5025102500T T T ->⎧⇒>⎨->⎩ 故当T>25时,系统是稳定的。

3-2 已知单位负反馈控制系统的开环传递函数如下,试分别求出当输入信号为,21(),t t t 和 时,系统的稳态误差(),()().ssp ssv ssa e e e ∞∞∞和22107(1)8(0.51)(1)()(2)()(3)()(0.11)(0.51)(4)(22)(0.11)s s D s D s D s s s s s s s s s ++===++++++解:(1)根据系统的开环传递函数可知系统的特征方程为: ()(0.11)(0.51)100.050.6110D s sz s s s =+++=++=由赫尔维茨判据可知,n=2且各项系数为正,因此系统是稳定的。

由G(s)可知,系统是0型系统,且K=10,故系统在21(),t t t 和输入信号作用下的稳态误差分别为: 11(),(),()111ssp ssv ssa e e e K ∞==∞=∞∞=∞+ (2)根据系统的开环传递函数可知系统的特征方程为: 432()6101570D s s s s s =++++=由赫尔维茨判据可知,n=2且各项系数为正,且2212032143450,/16.8a a a a a a a ∆=-=>∆>=以及,因此系统是稳定的。

227(1)(7/8)(1)()(4)(22)s(0.25s+4)(0.5s 1)s s D s s s s s s ++==+++++由G(s)可知,系统式I 型系统,且K=7/8,故系统在21(),t t t 和 信号作用下的稳态误差分别为:()0,()1/,()ssp ssv ssa e e K e ∞=∞=∞=∞ (3)根据系统的开环传递函数可知系统的特征方程为: 32()0.1480D s s s s =+++=由赫尔维茨判据可知,n=2且各项系数为正,且21203 3.20a a a a ∆=-=>因此系统是稳定的。

自动控制原理习题解答

自动控制原理习题解答

第三章3-3 已知各系统的脉冲响应,试求系统的闭环传递函数()s Φ:()()1.25(1)()0.0125;(2)()510sin 445;(3)()0.11t t k t e k t t t k t e --==++=-解答: (1) []0.0125()() 1.25s L k t s Φ==+(2)[])222223222()()5sin 4cos 425452442142511616116s L k t L t t t s s s s s s s s ⎡⎤Φ==++⎢⎥⎣⎦⎫=++⎪++⎭⎛⎫+++ ⎪⎝⎭=⎛⎫+ ⎪⎝⎭(3)[]()111()()0.1110313s L k t s s s s ⎡⎤⎢⎥Φ==-=⎢⎥+⎢⎥+⎣⎦ 3-4 已知二阶系统的单位阶跃响应为)6.1sin(5.1210)(1.532.1︒-+-=t t h et试求系统的超调量σ%,峰值时间tp和调节时间ts.解答:因为0<ξ<1,所以系统是欠阻尼状态。

阻尼比ξ=cos(1.53︒)=,自然频率26.0/2.1==w n,阻尼振荡频率wd=6.16.01212=-⨯=-=ξw w n d 1. 峰值时间tp的计算96.16.1===ππwt dp2. 调节时间ts的计算9.226.05.35.3=⨯==w t ns ξ3. 超调量σ%的计算%48.9%1006.0%100%221/6.01/=⨯=⨯=-⨯---eeππξξσ3-5设单位反馈系统的开环传递函数为)6.0(14.0)(++=s s s s G ,试求系统在单位阶跃输入下的动态性能。

解答:方法一:根据比例-微分一节推导出的公式)135(6.014.0)12/()1()(+⨯⨯+=++=s s s s s s K s G w T n d ξ1)5.2(4.0114.0)6.0(14.01)6.0(14.0)2()(1)()(22222+++=+++=+++++=+++=+=s s s s s s s s s s s zs z S G s G s s s w w s w nn dn ξφ)1()](1[12)1sin(1)(222222ξξξξξξξπψξddnddndnn ddn tarctg z arctg z r t w r t h www w zw e n d -+--+-=-+-=ψ+-+=-把z=1/Td=,1=wn,5.0=ξd代入可得)3.8323sin(5.005.11)7.9623sin(5.005.11)( ---=--+=t e t t e t t h峰值时间的计算0472.1)1(2=-=ξξβdddarctg ,-1.6877=ψ158.312=--=ξβψdndpwt超调量得计算%65.21%10011%22=⨯--=-ξξξσddetrpd调节时间得计算29.6)ln(21ln )2ln(2131222=--+-+=-ww w z t ndn n d sd z ξξξ方法二:根据基本定义来求解闭环传递函数为114.0)6.0(14.01)6.0(14.0)(1)()(2+++=+++++=+=s s s s s s s s S G s G s s φ当输入为单位阶跃函数时 )232()21(21.0)232()21(2)21(116.01)1(14.0)(22++-++++-+=++--+=+++=s s s s s s s s s s s C s s 得单位阶跃响应)23sin(1.0)23cos(1)(2121t t t h e et --⨯--=)3.8423sin(121 +-=-t et )0(≥t 1. 峰值时间tp的计算 对h(t)求导并令其等于零得023)23cos()23sin(3.843.842121=⨯+-+︒-︒-t e t epp t t p p 3)23tan(3.84=+︒t p t p = 2. 超调量σ%的计算 %100)()()(%⨯∞∞-=h h h t p σ=%3. 调节时间ts得计算05.0)84.523sin(21≤-⨯-t est s5.33=t s3-6.已知控制系统的单位阶跃响应为6010()10.2 1.2t t h t e e --=+- ,试确定系统的阻尼比ζ和自然频率n ω。

中文版教材习题五答案

中文版教材习题五答案


z
*

30 199
30
(2)分离点为: d 0.4 ,分离角为: (2k 1)
l
2
起始角: p4 268 , p5 268
与虚轴的交点:
K1*

0 0
K2,3*

1.034 73.04
K4*,5165.553104
K(3s 1)
s(2s 1) K(3s 1)
闭环特征方程: 2s 2 (1 3K)s K 0
闭环特征根: s1,2 (1 3K)
(1 3K)2 8K (1 3K) 9K 2 2K 1

4
4

K=0
时,特征根
s1

0, s2


1 2
(1 3K ) (3K 1)2 8
(1)
G(s)

K s(s 1)2
(2)
G(s)

K(s s(s2 4s
4) 29)
(3) G(s)
K
s(s 2 4s 8)
试概略画出闭环系统根轨迹图。 5-4 参考答案:
(a) G(s)H (s) K s(s 1)2
(4) G(s) K (s 5)(s 4) s(s 1)(s 3)
-4 -3
Im
-1
0
Re 5
44
“自动控制原理”第五章习题参考答案
5-5
已知开环传递函数为 G(s)H (s)
K s(s 4)(s2 4s 20)
,请概略画出闭环系统根轨。
5-5 参考答案:
与虚轴交点:

K

自动控制原理计算题题库

自动控制原理计算题题库

自动控制原理计算题题库 1 某系统结构如图二所示,求系统的开环传递函数和闭环传递函数。

当C 值为200时,求R 的值。

2 已知单位反馈系统的开环传递函数为)3)(1(22)(++=s s s G 系统输入量为r(t),输出量为C(t),试求:(1) 当r(t)=1(t)时,输出C(t)的稳态值和最大值;(2) 为了减少超调量,使阻尼比等于0.6,对系统实施速度反馈控制,试画出速度反馈系统方框图,并确定速度反馈系数。

3 已知系统的开环传递函数)10)(2()()(++=s s s K s H s G 为保证系统稳定,并且在)(2)(1)(t t t r +=作用下的稳态误差2.0≤ss e ,试确定K 的取值范围。

4 已知某系统的开环传递函数为)7)(2()()(++=s s s K s H s G , (1)画出以K 为参数的闭环系统根轨迹图;(2)求出使系统不出现衰减振荡的K 值范围。

5 已知某最小相角系统的对数幅频特性如图六中)(0ωL 所示:(1) 求系统的开环传递函数并计算相角裕量γ,判别闭环系统稳定性;(2) 为了改善系统性能,采用1100110)(++=s s s G c 的校正装置进行串联校正,试画出校正后系统的Bode 图,求出相角裕量γ';(3) 在Bode 图上标出相角裕量γ'及幅值裕量)(dB h 。

6 系统微分方程如下:试画出结构图,并求传递函数)()(s R s C7 某系统的结构图如图所示,图中放大器参数4=p k ,电动机参数1.0,1==m d T k 秒, 01.0=d T 秒,(1) 求系统的单位阶跃响应及其s t %,σ和ss e ;(2) 如要求稳态误差小于或等于%)5(e 5%ss ≤,应该变哪一参数,并计算该参数的值。

试分析该参数变化对系统性能的影响。

8 设单位反馈系统的闭环传递函数为n n n n n n a s a s a s a s a s ++++=---1111.......)(φ,试证明系统在单位斜坡函数作用下,稳态误差为零。

已知单位负反馈系统被控制对象的开环传递函数

已知单位负反馈系统被控制对象的开环传递函数

已知单位负反馈系统被控制对象的开环传递函数题目:已知单位负反馈系统被控制对象的开环传递函数kG(s), ks(0.1s,1)1(绘制出闭环系统单位阶跃响应曲线 (1)num=[1];den=[0.1 11];t=0:0.001:50step(num,den,t);xlabel('t,sec');ylabel('output');Step Response1.41.2System: sysSettling Time (sec): 3.591System: sysPeak amplitude: 1System: sysOvershoot (%): 8.37e-0120.8Rise Time (sec): 1.98At time (sec): 50output0.60.40.2550t,sec (sec)(2)系统动态性能指标最大超调量8.37e-012%上升时间1.98s调节时间3.59s当阻尼比>1时,由图可知相应的单位阶跃响应是非周期的趋于稳态输出.2.绘制根轨迹图function prog3num=[1];den=[0.1 1 0];kaihuan=tf(num,den);[n,d]=cloop(num,den);bihuan=tf(n,d);rlocus(n,d);Root Locus43System: sysGain: 2.58Pole: -5 + 3.29iSystem: sysSystem: sys2Damping:0.835Gain: 0.582Gain: 0.38Overshoot (%): 0.847Pole: -8.03Pole: -1.65Frequency (rad/sec): 5.99Damping: 1Damping: 11Overshoot (%):0Overshoot (%): 0Frequency (rad/sec): 8.03Frequency (rad/sec): 1.65 0Imaginary Axis-1System: sysGain: 2.54Pole: -5 - 3.22i-2Damping:0.841Overshoot (%): 0.758Frequency (rad/sec): 5.95-3-4-9-8-7-6-5-4-3-2-10Real Axis并分别取Kc值等于0.38、0.582、2.54、2.58时,绘出此时的单位阶跃响应曲线,分别如下:选择K=0.38时,利用单位阶跃响应观察系统动态性能Kc=0.38,num=[0.38];den=[0.1 1 1 0.38];t=0:0.001:10step(num,den,t);xlabel('t,sec');ylabel('output');Step Response1.41.2System: sysSystem: sysFinal Value: 1Settling Time (sec): 6.151System: sysPeak amplitude: 1.01System: sysOvershoot (%): 1.070.8Rise Time (sec): 3.92At time (sec): 8.57output0.60.40.20012345678910t,sec (sec)选择K=0.582时,利用单位阶跃响应观察系统动态性能Kc=0.582,num=[0.582;den=[0.1 1 0582];t=0:0.001:10step(num,den,t);xlabel('t,sec');ylabel('output');Step Response1System: sysSystem: sysFinal Value: 10.9Settling Time (sec):6.41System: sysRise Time (sec): 3.550.80.70.60.5output0.40.30.20.10012345678910t,sec (sec)选择K=02.54时,利用单位阶跃响应观察系统动态性能Kc=2.54,num=[2.54];den=[0.1 1 2.54];t=0:0.001:10 step(num,den,t);xlabel('t,sec');ylabel('output');Step Response1.41.2System: sysSystem: sysFinal Value: 1Settling Time (sec): 1.141System: sysPeak amplitude: 1System: sysOvershoot (%): 1.63e-0090.8Rise Time (sec): 0.659At time (sec): 4.97output0.60.40.20012345678910t,sec (sec)K变化对根轨迹的影响:在根轨迹图上,随着K值从0的变化,系统是稳定的;由根轨,,cc迹的对称性, 随着K值从0?-?的变化,系统是不稳定的. c3.K=5时对系统进行频域分析,绘制Nyquist图以及Bode图,确定系统的稳定性。

单位负反馈控制系统的开环传递函数

单位负反馈控制系统的开环传递函数

单位负反馈控制系统的开环传递函数单位负反馈控制系统是一种可以接受外部输入信号并通过内部控制器进行处理后输出控制信号的系统。

在这种系统中,输入信号会经过一个比例器,将其与反馈信号相乘,并通过一个补偿网络进入系统。

补偿网络的作用是对输入信号进行调整,以保持系统的稳定性。

之后,输出信号会被送入执行器,达到对系统的控制作用。

控制系统的开环传递函数可以表示成以下的形式:G(s) = Kp * Gp(s)其中,G(s)表示开环传递函数,Kp是控制器的增益系数,Gp(s)是过程函数。

在单位负反馈控制系统中,开环传递函数可以被表示为:G(s) = Kp * Gp(s) / (1 + Kp * Gp(s))这个式子可以看出,开环传递函数是一个分式。

分母代表着反馈网络的作用,反馈网络可以影响系统的稳定性与性能。

分子表示控制器的增益系数乘以过程函数,过程函数是控制对象的数量级模型。

过程函数描述的是输入信号和输出信号之间的关系,可以量化控制对象的特征。

增益系数代表着控制器的调节能力,增益越大则表示控制器越灵敏。

通过单位负反馈控制系统的开环传递函数,我们可以对控制系统的稳定性和性能进行分析和调节。

当增益系数过大时,反馈网络就会失效,系统会变得不稳定,产生振荡现象,易引发失控。

因此,我们需要对控制器的增益系数进行调节,找到一个适当的平衡点,以确保系统的稳定性。

在调节控制器之前,我们需要先了解系统的过程函数。

过程函数可以通过实验或理论计算等方法获得。

通过过程函数,我们可以了解控制对象的特性,然后针对性地调节控制器的增益系数。

在实际应用中,我们通常使用PID控制器来对系统进行控制。

PID 控制器的作用是通过对比实际输出信号与设定值的偏差来调节输出信号。

PID控制器中的三个参数——比例系数Kp、积分时间Ti、微分时间Td可以对开环传递函数进行调节。

比例系数代表着变化率的调节能力,积分时间代表着配平系统误差的能力,微分时间代表着系统的稳定性和动态特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档