计算机图形学习题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机图形学部分习题答案

王飞

1.流水线的主要特点是每个基元可以单独处理,这样的结构不尽使性能更快,而且降低了内存需求,主要缺点是我们不能操控大多数全局效果,如阴影,反射

2.视帧缓存的深度而定,以帧缓存为深度为1为例,速度为1024*1280*1*72b=11.25MB/s,即读取一个像素用时倒数分之1每秒。隔行扫描,72变30.

3.每帧480*640像素的视频显示仅含有300K像素(普屏动画),而2000*3000像素的电影帧有6M像素,约多了18倍的显示时间,因此需要18倍的时间进行渲染。

4.略

5.分别在x方向和y方向上对这个问题进行解答。变换是线性的,也就是,Xs=ax+b,Ys=cy+d,映射的时候必须保证比例保持不变,即有

X−Xmin Xmax−Xmin =Xs−u

w

得到

Xs=u+w*X−Xmin

Xmax−Xmin

同理可得

Ys=v+h*X−Xmin

Ymax−Ymin

6.可以使用扫描线的方式,每一个扫描线对应于帧缓存中的一行像素,通过交点的方式判断点是否在多边形内部。按照一定的方向观察扫描线与多边形的交点,第一个交点是扫描线上接下来一系

列在多边形内部的点的起点,第二个交点是离开多边形的起点,第三个交点又是进入的起点。依次进行,根据点在那两个交点之间即可判断是否在多边形内。按照一定方向移动扫描线,即可完成对所有点的判断。

7.可以得知帧缓存的深度为6

8.使用扫描线判断。每一条扫面线与凸多边形至多有两个交点,从一个方向朝另一个方向移动扫描线,扫描完毕,只要中途未出现两个人以上交点,则为凸多边形。

9.定义笔画字体时,最主要的问题是如何描述具有弯曲笔画和孔的字符,比如字母“a”和字母“q”

10.会出现很多潜在的问题,比如,应用程序会把对象坐标系中不同的点映射到屏幕坐标系的相同位置,第二,屏幕坐标系上的点转换回对象坐标系时,改点可能会落在用户窗口以外。

11.使用游戏杆的游戏大多操作比较简单,共有两个三位置转换开关,则可产生九中不同组合的编码控制信息,进而控制游戏的进行。

12.略

(1)旋转和均匀缩放

假设缩放矩阵为

[S0

0S 00 00

00 00S0 01

]

旋转矩阵为(绕Z轴旋转)

[cosa −sina

sina cosa 000000001001] T1=[S 00S 00000000S 001]*[cosa −sina sina cosa 0

00000001001]=[Scosa −Ssina Ssina Scosa 00

000000S 001] T2=[cosa −sina sina cosa 000000001001]*[S 00S 0

0000000S 001

]=[Scosa −Ssina Ssina Scosa 00

000000S 001

] T1=T2,得旋转和缩放是可交换的。

(2) 绕同一个轴的两个旋转 假设均绕z 轴且旋转矩阵分别为

[cosa −sina sina cosa 000000001001]以及[cosb −sinb sinb cosb 00

0000001001] T1=[cosa −sina sina cosa 000000001001]*[cosb −sinb sinb cosb 00

0000001001]=[cosacosb −sinasinb −cosasinb −sinacosb sinacosb +cosasinb −sinasinb +cosacosb 0

00000001001

] T2=[cosb −sinb sinb cosb 000000001001]*[cosa −sina sina cosa 00

0000001001]=

[cosacosb −sinasinb

−cosasinb −sinacosb sinacosb +cosasinb −sinasinb +cosacosb 000000001001

] T1=T2,所以绕同一个轴的两个旋转可交换

(3) 两个平移

设平移矩阵分别为

[1

0010a 0b 00001c 01]以及[10010d 0e 00001f 01] T1=[1

0010a 0b 00001c 01]*[10010d 0e 00001f 01]=[10010a +d 0b +e 00001c +f 01] T2=[1

0010d 0e 00001f 01]*[10010a 0b 0

0001c 01]=[10010a +d 0b +e 00001

c +f 01

] T1=T2,所以两个平移操作可交换

14.在三维仿射变换中有12个自由度,考虑点p [x,y,z,1]T ,该点呗矩阵M 转换为p ,[x ,,y ,,z ,,1]T ,因为我们已经有了关系p ,=p,在该式中,p, p ,都是未知的,因此,我们可以得到拥有12个未知数的三个等式,如果我们有四对这样的点,我们就会有12个含有这12个未知数的方程,这可以帮助我们找到矩阵M 的元素。因此,如果我们知道一个四边形是如何构成的,我们就可以得出仿射矩阵。在二维的情况下,在矩阵M 中有6个自由度,但是p 和p ,只有x 和y 两个变量,因此,如果我们知道变换前得三个点一级变换后对应的三个点,我们就会得6个含有6个未知数的等式,因此,在二维情况下,如果我们知道三角形是如何构成的,我们就能得到仿射变换。

15. 所有的正弦项全部取反

16.

17.

18.

19. 不能,比如,一个正方形,对其先进行非一致性的缩放,然后再进行旋转,和先进行旋转,再进行非一致性缩放得到的结果是不同的。前者变换的结果是长方体,后者可能会被拉伸成平行六面体,再进行平移操作,显然两者的结果不同。

20. 向量a=u*v是正交的与u和v的,向量b=u*a是正交于u和a 的,因此,u,a和b构成了一个正交坐标系,且b在u和v所确定的平面内部。

21. 日食是物体投影到非平面表面的好例子,任何时候,阴影被投射到曲面上,那么就产生了非平面投影。所有的地图都是曲线投影的例子,如果投影线不弯曲,就不可能把一个弯曲的椭球型表面投影到一个矩形上。

22. u的方向等于VPN与VUP叉积所得结果的方向,然后,v的方向等于u与VPN叉积所得结果的方向

23. C OP位于(0,0,d),则产生的投影相当于是COP位于

(0,0,0)时产生的投影沿Z轴正方向移动了d,所以把投影变换矩阵第三行第四列的值加d即可

24.

25. 在定义材质属性时,我们指定的是材质的环境光反射系数,漫反

相关文档
最新文档