【中考几何模型压轴题】专题11《轴对称》
2024年中考数学复习 圆的对称性压轴题六种模型全攻略(原卷+答案解析)
圆的对称性压轴题六种模型全攻略【考点导航】目录【典型例题】1【考点一利用弧、弦、圆心角的关系求解】【考点二利用弧、弦、圆心角的关系求证】【考点三利用垂径定理求值】【考点四利用垂径定理求平行弦问题】【考点五垂径定理的推论】【考点六垂径定理的实际应用】【过关检测】15【典型例题】【考点一利用弧、弦、圆心角的关系求解】1(2023·陕西西安·西安市庆安初级中学校联考模拟预测)如图,AB是⊙O的直径,点C,D在⊙O上,AC=AD,∠AOD=70°,则∠BCO的度数是()A.30°B.35°C.40°D.55°【变式训练】1(2023·全国·九年级专题练习)如图,点A,B,C在⊙O上,∠BAC=40°,则∠BOC的度数为()A.20°B.80°C.50°D.100°2(2023春·安徽合肥·九年级校考阶段练习)下列说法:①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③过直线上两点和直线外一点,可以确定一个圆;④圆是轴对称图形,直径是它的对称轴.其中正确的个数是()A.0B.1C.2D.3【考点二利用弧、弦、圆心角的关系求证】1(2023·全国·九年级专题练习)如图,已知⊙O 的半径OA ,OB ,C 在AB �上,CD ⊥OA 于点D ,CE ⊥OB 于点E ,且CD =CE ,求证:AC=BC.【变式训练】1(2023春·广东惠州·九年级校考开学考试)已知:如图,在⊙O 中,∠ABD =∠CDB .求证:AB =CD .2(2023秋·河北秦皇岛·九年级统考期末)如图,A 、B 是⊙O 上的两点,C 是弧AB 中点.求证:∠A =∠B .【考点三利用垂径定理求值】1(2023秋·辽宁葫芦岛·九年级统考期末)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,连接AD ,若AB =10,CD =6,则弦AD 的长为.【变式训练】1(2023秋·广东惠州·九年级校考阶段练习)已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O 到AB的距离为cm.2(2023·浙江·九年级假期作业)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问:径几何?”转化为现在的数学语言就是:如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,AE=1寸,CD=10寸.则直径AB的长为寸.【考点四利用垂径定理求平行弦问题】1(2023秋·天津和平·九年级校考期末)⊙O半径为5,弦AB∥CD,AB=6,CD=8,则AB与CD间的距离为()A.1B.7C.1或7D.3或4【变式训练】1(2023·全国·九年级专题练习)在半径为10的⊙O中,弦AB=12,弦CD=16,且AB∥CD,则AB 与CD之间的距离是.2(2023春·甘肃武威·九年级校联考阶段练习)⊙O的半径为13cm,AB、CD是⊙O的两条弦,AB⎳CD,AB=24cm,CD=10cm,求AB和CD之间的距离.【考点五垂径定理的推论】1(2023·新疆喀什·统考二模)某公路隧道的截面为圆弧形,设圆弧所在圆的圆心为O,测得其同一水平线上A、B两点之间的距离为12米,拱高CD为4米,则⊙O的半径为米.【变式训练】1(2023·浙江·九年级假期作业)如图是一位同学从照片上前切下来的海上日出时的画面,“图上”太阳与海平线交于A ,B 两点,他测得“图上”圆的半径为10厘米,AB =16厘米.则“图上”太阳从目前所处位置到完全跳出海平面,升起厘米.2(2023春·江苏无锡·九年级校联考期末)《九章算术》中卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?转化为数学语言:如图,OD 为⊙O 的半径,弦AB ⊥OD ,垂足为C ,CD =1寸,AB =1尺(1尺=10寸),则此圆材的直径长是寸.【考点六垂径定理的实际应用】1(2023春·安徽亳州·九年级专题练习)如图,⊙O 的直径AB 与弦CD 交于点E ,CE =DE ,则下列说法错误的是()A.CB =BDB.OE =BEC.CA =DAD.AB ⊥CD【变式训练】1(2023春·九年级单元测试)下列说法正确的是()①平分弧的直径垂直平分弧所对的弦②平分弦的直径平分弦所对的弧③垂直于弦的直线必过圆心④垂直于弦的直径平分弦所对的弧A.②③B.①③C.②④D.①④2(2023·四川攀枝花·校联考二模)下列说法中正确的说法有( )个①对角线相等的四边形是矩形②在同圆或等圆中,同一条弦所对的圆周角相等③相等的圆心角所对的弧相等④平分弦的直径垂直于弦,并且平分弦所对的弧⑤到三角形三边距离相等的点是三角形三个内角平分线的交点A.1B.2C.3D.4【过关检测】一、单选题1(2023·上海普陀·统考二模)下列关于圆的说法中,正确的是()A.过三点可以作一个圆B.相等的圆心角所对的弧相等C.平分弦的直径垂直于弦D.圆的直径所在的直线是它的对称轴2(2023·浙江·模拟预测)已知弦AB把圆周分成1:3两部分,则弦AB所对圆心角的度数为()A.90°B.270°C.90°或270°D.45°或135°3(2023·全国·九年级专题练习)如图,线段CD是⊙O的直径,CD⊥AB于点E,若AB长为16,OE 长为6,则⊙O半径是()A.5B.6C.8D.104(2023秋·浙江台州·九年级统考期末)如图,CD是⊙O的直径,弦AB垂直CD于点E,连接AC,BC,AD,BD,则下列结论不一定成立的是()A.AE=BEB.CE=OEC.AC=BCD.AD=BD5(2023·浙江衢州·统考二模)一次综合实践的主题为:只用一张矩形纸条和刻度尺,如何测量一次性纸杯杯口的直径?小聪同学所在的学习小组想到了如下方法:如图,将纸条拉直紧贴杯口上,纸条的上下边沿分别与杯口相交于A,B,C,D四点,利用刻度尺量得该纸条宽为3.5cm,AB=3cm,CD=4cm.请你帮忙计算纸杯的直径为()A.4cmB.5cmC.6cmD.7cm6(2023春·九年级单元测试)AB 为⊙O 的直径,弦CD ⊥AB 于E ,且CD =6cm ,OE =4cm ,则AB =.7(2023春·北京海淀·九年级101中学校考阶段练习)如图,AB 是⊙O 的直径,BC=CD=DE,∠AOE =78°,则∠COB 的度数是.-8(2023春·九年级单元测试)半径为5的⊙O 内有一点P ,且OP =4,则过点P 的最短的弦长是,最长的弦长是.9(2023·河南南阳·校联考二模)已知半径为5的圆O 中有一条长度为8的弦AB ,分别以A ,B 为圆心,长度大于4为半径作圆弧交于点M ,N ,连接MN ,点C 为直线MN 与圆O 的交点,点D 为直线MN 与弦AB 的交点,则CD 的长度为.10(2023·浙江·九年级专题练习)图1是小文家的木马玩具,图2是木马玩具底座水平放置的示意图,点O 是AB所在圆的圆心,OA =OB ,点A ,点B 离地高度均为15cm ,水平距离AB =90cm .则OA =cm .当半径OA 转到竖直位置时,木马就有翻倒的风险,为安全起见,点B 离地高度应小于cm .三、解答题11(2023秋·河北邢台·九年级校联考期末)如图,AB 是⊙O 的直径,BC=CD,∠COD =50°,求∠AOD 的度数.12(2023·江苏·九年级假期作业)如图,OA=OB,AB交⊙O于点C,D,OE是半径,且OE⊥AB于点F.(1)求证:AC=BD.(2)若CD=8,EF=2,求⊙O的半径.13(2023春·全国·九年级专题练习)如图,⊙O的直径AB垂直于弦CD,垂足为E,AE=2,CD=8.(1)求⊙O的半径长;(2)连接BC,作OF⊥BC于点F,求OF的长.14(2023·河北衡水·校考模拟预测)图1是某种型号圆形车载手机支架,由圆形钢轨、滑动杆、支撑杆组成.图2是它的正面示意图,滑动杆AB的两端都在圆O上,A、B两端可沿圆形钢轨滑动,支撑杆CD的底端C固定在圆O上,另一端D是滑动杆AB的中点,(即当支架水平放置时直线AB平行于水平线,支撑杆CD垂直于水平线),通过滑动A、B可以调节CD的高度.当AB经过圆心O时,它的宽度达到最大值10cm,在支架水平放置的状态下:(1)当滑动杆AB的宽度从10厘米向上升高调整到6厘米时,求此时支撑杆CD的高度.(2)如图3,当某手机被支架锁住时,锁住高度与手机宽度恰好相等(AE=AB),求该手机的宽度.15(2023春·黑龙江哈尔滨·九年级哈尔滨市第十七中学校校考阶段练习)如图1,AB 是⊙O 的弦,点C 在⊙O 外,连接AC 、BC 分别交⊙O 于D 、E ,AC =BC(1)求证:CD =CE .(2)如图2,过圆心O 作PQ ∥AB ,交⊙O 于P 、Q 两点,交AC 、BC 于M 、N 两点,求证:PM =QN .(3)如图3,在(2)的条件下,连接EO 、AO ,∠EON +∠CAO =120°,若CD =112,NQ =32,求弦BE 的长.圆的对称性压轴题六种模型全攻略【考点导航】目录【典型例题】1【考点一利用弧、弦、圆心角的关系求解】【考点二利用弧、弦、圆心角的关系求证】【考点三利用垂径定理求值】【考点四利用垂径定理求平行弦问题】【考点五垂径定理的推论】【考点六垂径定理的实际应用】【过关检测】15【典型例题】【考点一利用弧、弦、圆心角的关系求解】1(2023·陕西西安·西安市庆安初级中学校联考模拟预测)如图,AB是⊙O的直径,点C,D在⊙O上,AC=AD,∠AOD=70°,则∠BCO的度数是()A.30°B.35°C.40°D.55°【答案】B【分析】首先由AC=AD,∠AOD=70°可得∠AOC=∠AOD=70°,再由OB=OC可得出∠OBC=∠AOC=35°.∠OCB=12【详解】解:∵在⊙O中,AC=AD,∠AOD=70°∴∠AOC=∠AOD=70°,∵OB=OC,∠AOC=35°,∴∠OBC=∠OCB=12故选:B.【点睛】此题考查了弧与圆心角的关系、等腰三角形的性质及三角形外角的性质,掌握数形结合思想的应用是解题的关键.【变式训练】1(2023·全国·九年级专题练习)如图,点A,B,C在⊙O上,∠BAC=40°,则∠BOC的度数为()A.20°B.80°C.50°D.100°【答案】B【分析】根据同弧所对的圆周角等于圆心角的一半即可得出答案.【详解】解:∵∠BAC =40°,∴∠BOC =2∠BAC =2×40°=80°,故选:B .【点睛】本题考查了同弧所对的圆周角与圆心角的关系,熟知同弧所对的圆周角等于圆心角的一半是解本题的关键.2(2023春·安徽合肥·九年级校考阶段练习)下列说法:①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③过直线上两点和直线外一点,可以确定一个圆;④圆是轴对称图形,直径是它的对称轴.其中正确的个数是()A.0 B.1 C.2 D.3【答案】B【分析】根据圆心角、弧、弦的关系定理判断①,根据垂径定理的推论判断②;根据不共线的三点共圆可判断③;根据轴对称图形的定义判断④.【详解】解:①同圆或等圆中,相等的圆心角所对的弧相等,故错误;②平分弦不是直径的直径垂直于弦,故错误;③过直线上两点和直线外一点,可以确定一个圆,正确;④圆是轴对称图形,直径所在的直线是它的对称轴,故错误,正确的只有1个,故选:B .【点睛】本题考查了圆心角、弧、弦的关系,垂径定理的推论,轴对称图形的对称轴,圆的性质,熟练掌握定义与性质是解题的关键.【考点二利用弧、弦、圆心角的关系求证】1(2023·全国·九年级专题练习)如图,已知⊙O 的半径OA ,OB ,C 在AB �上,CD ⊥OA 于点D ,CE ⊥OB 于点E ,且CD =CE ,求证:AC=BC.【答案】见解析【分析】根据角平分线的判定定理可得∠AOC =∠BOC ,然后根据弧、弦和圆心角的关系证明即可.【详解】证明:∵CD =CE ,CD ⊥OA ,CE ⊥OB ,∴∠AOC =∠BOC ,∴AC=BC.【点睛】本题主要考查了角平分线的判定定理以及弧、弦和圆心角的关系等知识,准确证明∠AOC =∠BOC 是解题关键.【变式训练】1(2023春·广东惠州·九年级校考开学考试)已知:如图,在⊙O 中,∠ABD =∠CDB .求证:AB =CD .【答案】见解析【分析】根据∠ABD =∠CDB ,可知AD =BC ,则有AD +AC =BC +AC ,由此可得AB =CD,进而可证AB =CD .【详解】证明:∵∠ABD =∠CDB ,∴AD=BC,∴AD +AC=BC +AC,∴AB=CD,∴AB =CD .【点睛】本题考查圆心角、弧、弦之间的关系,即在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,能够熟练掌握圆心角、弧、弦之间的关系是解决本题的关键.2(2023秋·河北秦皇岛·九年级统考期末)如图,A 、B 是⊙O 上的两点,C 是弧AB 中点.求证:∠A =∠B .【答案】见解析【分析】连接OC ,通过证明△AOC ≌△BOC (SAS )即可得结论.【详解】证明:如图,连接OC ,∵C 是AB的中点,∴AC=BC ,∴∠AOC =∠BOC ,在△AOC 和△BOC 中,OA =OB∠AOC =∠BOC OC =OC,∴△AOC ≌△BOC (SAS ),∴∠A =∠B .【点睛】本题考查弧、弦、圆心角的关系,全等三角形的判定和性质等知识,解题的关键是利用全等三角形的判定和性质解决问题,属于中考常考题型.【考点三利用垂径定理求值】1(2023秋·辽宁葫芦岛·九年级统考期末)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,连接AD ,若AB =10,CD =6,则弦AD 的长为.【答案】310【分析】由题意易得DE =12CD =3,OD =5,根据勾股定理可求OE 的长,然后问题可求解.【详解】解:连接OD ,∵AB 是⊙O 的直径,AB =10,∴OD =OB =12AB =5,∵CD ⊥AB ,CD =6,∴DE =12CD =3,∠DEO =90°,∴OE=OD2-DE2=4,∴AE=OA+OE=5+4=9,∴AD=DE2+AE2=92+32=310,故答案为310.【点睛】本题主要考查垂径定理,熟练掌握垂径定理是解题的关键.【变式训练】1(2023秋·广东惠州·九年级校考阶段练习)已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O 到AB的距离为cm.【答案】12【分析】过点O作OH⊥AB于点H,由垂径定理得到BH=12AB=5cm,在Rt△BOH中,利用勾股定理即可得到圆心O到AB的距离.【详解】解:如图,⊙O的半径为13cm,弦AB的长为10cm,过点O作OH⊥AB于点H,则BH=12AB=5cm,∠BHO=90°,∴OH=OB2-BH2=132-52=12cm,即圆心O到AB的距离为12cm,故答案为:12【点睛】此题考查了垂径定理、勾股定理等知识,熟练掌握垂径定理的内容是解题的关键.2(2023·浙江·九年级假期作业)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问:径几何?”转化为现在的数学语言就是:如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,AE=1寸,CD=10寸.则直径AB的长为寸.【答案】26【分析】连接OC构成直角三角形,先根据垂径定理,由CD⊥AB得到点E为CD的中点,由CD=10可求出CE的长,再设出圆的半径OC为x,表示出OE,根据勾股定理建立关于x的方程,求解方程可得2x的值,即为圆的直径.【详解】解:连接OC,∵AB⊥CD,且CD=10寸,∴CE=DE=5寸,设圆O的半径OC的长为x,则OC=OA=x,∵AE=1,∴OE=x-1,在Rt△COE中,根据勾股定理得:x2-(x-1)2=52,化简得:x2-x2+2x-1=25,即2x=26,∴AB=26(寸).故答案为:26.【点睛】本题考查了垂径定理和勾股定理,解题的关键是正确作出辅助线构造直角三角形.【考点四利用垂径定理求平行弦问题】1(2023秋·天津和平·九年级校考期末)⊙O半径为5,弦AB∥CD,AB=6,CD=8,则AB与CD间的距离为()A.1B.7C.1或7D.3或4【答案】C【分析】过O点作OE⊥AB,E为垂足,交CD与F,连OA,OC,由AB∥CD,得到OF⊥CD,根据垂径定理得AE=3,CF=4,再在Rt△OAE中和在Rt△OCF中分别利用勾股定理求出OE,OF,然后讨论:当圆O点在AB、CD之间,AB与CD之间的距离=OE+OF;当圆O点不在AB、CD之间,AB与CD 之间的距离=OE-OF.【详解】解:过O点作OE⊥AB,E为垂足,交CD与F,连OA,OC,如图,∵AB∥CD,∴OF⊥CD,∴AE=BE,CF=DF,而AB=6,CD=8,∴AE=3,CF=4,在Rt△OAE中,OA=5,OE=OA2-AE2=52-32=4;在Rt△OCF中,OC=5,OF=OC2-CF2=52-42=3;当圆O点在AB、CD之间,AB与CD之间的距离=OE+OF=7;当圆O点不在AB、CD之间,AB与CD之间的距离=OE-OF=1;所以AB与CD之间的距离为7或1.故选:C.【点睛】本题考查了垂径定理,即垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理以及分类讨论的思想的运用.【变式训练】1(2023·全国·九年级专题练习)在半径为10的⊙O中,弦AB=12,弦CD=16,且AB∥CD,则AB 与CD之间的距离是.【答案】2或14【分析】由于弦AB与CD的具体位置不能确定,故应分两种情况进行讨论:①弦AB与CD在圆心同侧;②弦AB与CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:①当弦AB与CD在圆心同侧时,如图①,过点O作OF⊥AB,垂足为F,交CD于点E,连接OA,OC,∵AB∥CD,∴OE⊥CD,∵AB=12,CD=16,∴CE=8,AF=6,∵OA=OC=10,∴由勾股定理得:EO=102-82=6,OF=102-62=8,∴EF=OF-OE=2;②当弦AB与CD在圆心异侧时,如图,过点O作OE⊥CD于点E,反向延长OE交AB于点F,连接OA,OC,同理EO=102-82=6,OF=102-62=8,EF=OF+OE=14,所以AB与CD之间的距离是2或14.故答案为:2或14.【点睛】本题考查了勾股定理和垂径定理,解答此题时要注意进行分类讨论,不要漏解.2(2023春·甘肃武威·九年级校联考阶段练习)⊙O的半径为13cm,AB、CD是⊙O的两条弦,AB⎳CD,AB=24cm,CD=10cm,求AB和CD之间的距离.【答案】7cm或17cm.【分析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:①当弦AB和CD在圆心同侧时,如图1∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12-5=7cm;②当弦AB和CD在圆心异侧时,如图2,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm.∴AB与CD之间的距离为7cm或17cm.【点睛】本题考查了勾股定理和垂径定理的应用,正确作出辅助线、灵活运用定理是解题的关键,注意掌握数形结合思想与分类讨论思想的应用.【考点五垂径定理的推论】1(2023·新疆喀什·统考二模)某公路隧道的截面为圆弧形,设圆弧所在圆的圆心为O,测得其同一水平线上A、B两点之间的距离为12米,拱高CD为4米,则⊙O的半径为米.【答案】6.5【分析】连接OA,设⊙O的半径为R,利用垂径定理以及勾股定理求解即可.【详解】解:连接OA,设⊙O的半径为R,则OC=R-4,由题意得,OD⊥AB,AB=6,∴AC=BC=12在Rt△AOC中,由勾股定理得R2=62+R-42,解得R=6.5,则⊙O的半径为6.5米.故答案为:6.5.【点睛】本题考查了垂径定理的应用,根据题意作出辅助线,由勾股定理得出方程是解题的关键.【变式训练】1(2023·浙江·九年级假期作业)如图是一位同学从照片上前切下来的海上日出时的画面,“图上”太阳与海平线交于A,B两点,他测得“图上”圆的半径为10厘米,AB=16厘米.则“图上”太阳从目前所处位置到完全跳出海平面,升起厘米.【答案】16【分析】连接OB,作OD⊥AB于点D,交优弧于点C,利用垂径定理求得AD=BD=8厘米.在Rt△OBD中,利用勾股定理求得OD的长,据此求解即可.【详解】解:连接OB,作OD⊥AB于点D,交优弧于点C,则AD=BD=8厘米.由题意得OB=OC=10厘米,在Rt△OBD中,OD=OB2-BD2=6厘米,∴CD=OD+OC=16厘米,则“图上”太阳从目前所处位置到完全跳出海平面,升起16厘米.故答案为:16.【点睛】本题考查了垂径定理的应用,利用垂径定理构造直角三角形是解题的关键.2(2023春·江苏无锡·九年级校联考期末)《九章算术》中卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?转化为数学语言:如图,OD为⊙O的半径,弦AB⊥OD,垂足为C,CD=1寸,AB=1尺(1尺=10寸),则此圆材的直径长是寸.【答案】26【分析】连接AO,依题意,得出AC=5,设半径为r,则AO=r,在Rt△AOC中,AO2=AC2+CO2,解方程即可求解.【详解】解:如图所示,连接AO,∵CD=1,AB=10,AB⊥OD,OD为⊙O的半径,∴AC=5,设半径为r ,则AO =r ,在Rt △AOC 中,AO 2=AC 2+CO 2,∴r 2=52+r -1 2,解得:r =13,∴直径为26,故答案为:26.【点睛】本题考查了垂径定理的应用,勾股定理,掌握垂径定理是解题的关键.【考点六垂径定理的实际应用】1(2023春·安徽亳州·九年级专题练习)如图,⊙O 的直径AB 与弦CD 交于点E ,CE =DE ,则下列说法错误的是()A.CB =BDB.OE =BEC.CA =DAD.AB ⊥CD【答案】B【分析】根据垂径定理及其推论判断即可.【详解】解:∵AB 是⊙O 的直径与弦CD 交于点E ,CE =DE ,∴根据垂径定理及其推论可得,点B 为劣弧CD的中点,点A 为优弧CD的中点,AB ⊥CD ∴CB=BD,AC=AD,∴CA =DA但不能证明OE =BE ,故B 选项说法错误,符合题意;故选:B .【点睛】本题考查的是垂径定理及其推论,解决本题的关键是熟练掌握垂径定理及其推论:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧,平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【变式训练】1(2023春·九年级单元测试)下列说法正确的是()①平分弧的直径垂直平分弧所对的弦②平分弦的直径平分弦所对的弧③垂直于弦的直线必过圆心④垂直于弦的直径平分弦所对的弧A.②③ B.①③C.②④D.①④【答案】D【详解】根据垂径定理及其推论进行判断.【解答】解:根据垂径定理,①正确;②错误.平分弦(不是直径)的直径平分弦所对的弧;③错误.垂直于弦且平分弦的直线必过圆心;④正确.故选:D.【点评】注意概念性质的语言叙述,有时是专门来混淆是非的,只是一字之差,所以学生一定要养成认真仔细的习惯.2(2023·四川攀枝花·校联考二模)下列说法中正确的说法有( )个①对角线相等的四边形是矩形②在同圆或等圆中,同一条弦所对的圆周角相等③相等的圆心角所对的弧相等④平分弦的直径垂直于弦,并且平分弦所对的弧⑤到三角形三边距离相等的点是三角形三个内角平分线的交点A.1B.2C.3D.4【答案】A【分析】根据矩形的判定方法、圆的性质、垂径定理、三角形的有关性质求解即可.【详解】解:①对角线相等的平行四边形是矩形,故错误;②在同圆或等圆中,同一条弦所对的圆周角不一定相等,∵同一条弦所对的圆周角有两种情况,故不正确;③在同圆或等圆中,相等的圆心角所对的弧相等,故错误;④平分非直径的弦的直径垂直于弦,并且平分弦所对的弧,故错误;⑤到三角形三边距离相等的点是三角形的内心,而内心是角平分线的交点,故正确;故选:A.【点睛】本题是对基础概念的考查,熟记概念是解题关键.【过关检测】一、单选题1(2023·上海普陀·统考二模)下列关于圆的说法中,正确的是()A.过三点可以作一个圆B.相等的圆心角所对的弧相等C.平分弦的直径垂直于弦D.圆的直径所在的直线是它的对称轴【答案】D【分析】利用圆的有关定义及性质分别判断后即可确定正确的选项.【详解】解:A、过不在同一直线上的三个点一定能作一个圆,故错误,不符合题意;B、同圆或等圆中,相等的圆心角所对的弧相等,故错误,不符合题意;C、平分弦(不是直径)的直径垂直于弦,故错误,不符合题意;D、圆的直径所在的直线是它的对称轴,正确,符合题意.故选:D.【点睛】本题考查了确定圆的条件及圆的有关性质,解题的关键是了解有关性质及定义,难度不大.2(2023·浙江·模拟预测)已知弦AB把圆周分成1:3两部分,则弦AB所对圆心角的度数为()A.90°B.270°C.90°或270°D.45°或135°【答案】C【分析】分优弧,劣弧两种情况,求解即可.【详解】解:∵弦AB 把圆周分成1:3两部分,∴劣弧AB 的度数为:360°×14=90°,即:劣弧所对的圆心角的度数为90°,优弧AB 的度数为:360°×34=270°,即:优弧所对的圆心角的度数为270°,∴弦AB 所对圆心角的度数为90°或270°;故选C .【点睛】本题考查弦,弧,角之间的关系.注意弦分弧为优弧和劣弧两种情况.3(2023·全国·九年级专题练习)如图,线段CD 是⊙O 的直径,CD ⊥AB 于点E ,若AB 长为16,OE 长为6,则⊙O 半径是()A.5B.6C.8D.10【答案】D【分析】连接OB ,由垂径定理可得BE =AE =8,由勾股定理计算即可获得答案.【详解】解:如图,连接OB ,∵线段CD 是⊙O 的直径,CD ⊥AB 于点E ,AB =16,∴BE =AE =12AB =12×16=8,∴在Rt △OBE 中,可有OB =OE 2+BE 2=62+82=10,∴⊙O 半径是10.故选:D .【点睛】本题主要考查了垂径定理及勾股定理等知识,理解并掌握垂径定理是解题关键.4(2023秋·浙江台州·九年级统考期末)如图,CD 是⊙O 的直径,弦AB 垂直CD 于点E ,连接AC ,BC ,AD ,BD ,则下列结论不一定成立的是()A.AE =BEB.CE =OEC.AC =BCD.AD =BD【答案】B【分析】根据垂径定理对各选项进行逐一分析即可.【详解】解:∵CD 是⊙O 的直径,弦AB 垂直CD 于点E ,∴AE =BE ,AC=BC,AD=BD,∴AC =BC ,AD =BD ,而CE =OE 不一定成立,故选:B .【点睛】本题考查的是垂径定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.5(2023·浙江衢州·统考二模)一次综合实践的主题为:只用一张矩形纸条和刻度尺,如何测量一次性纸杯杯口的直径?小聪同学所在的学习小组想到了如下方法:如图,将纸条拉直紧贴杯口上,纸条的上下边沿分别与杯口相交于A ,B ,C ,D 四点,利用刻度尺量得该纸条宽为3.5cm ,AB =3cm ,CD =4cm .请你帮忙计算纸杯的直径为()A.4cmB.5cmC.6cmD.7cm【答案】B【分析】设圆心为O ,根据垂径定理可以得到CE =2,AF =1.5,再根据勾股定理构建方程解题即可.【详解】设圆心为O ,EF 为纸条宽,连接OC ,OA ,则EF ⊥CD ,EF ⊥AB ,∴CE =12CD =12×4=2,AF =12AB =12×3=1.5,设OE =x ,则OF =3.5-x ,又∵OC =OA ,∴CE 2+OE 2=AF 2+OF 2,即22+x 2=1.52+3.5-x 2,解得:x =1.5,∴半径OC =22+x 2=2.5,即直径为5cm ,故选B .【点睛】本题考查垂径定理,勾股定理,构建直角三角形利用勾股定理计算是解题的关键.二、填空题6(2023春·九年级单元测试)AB 为⊙O 的直径,弦CD ⊥AB 于E ,且CD =6cm ,OE =4cm ,则AB =.【答案】10cm【分析】由垂径定理可知CE =12CD =3cm ,在Rt △CEO 中由勾股定理可求得OC 即AB 的值.【详解】解:如图:依题意可知OA =OC =12AB ,∵AB 为⊙O 的直径,弦CD ⊥AB 于E ,∴CE =12CD =3cm ,在Rt △CEO 中,OC =OE 2+CE 2=42+32=5cm ,∴AB =2OC =10cm ,故答案为:10cm .【点睛】本题考查了垂径定理,勾股定理解直角三角形;解题的关键是熟练掌握相关知识.7(2023春·北京海淀·九年级101中学校考阶段练习)如图,AB 是⊙O 的直径,BC=CD=DE,∠AOE =78°,则∠COB 的度数是.-【答案】34°/34度【分析】先由平角的定义求出∠BOE 的度数,由BC=CD=DE,根据相等的弧所对的圆心角相等可得∠BOC =∠EOD =∠COD =13∠BOE ,即可求解.【详解】∵∠AOE =78°,∴∠BOE =180°-∠AOE =180°-78°=102°,∵BC=CD=DE,∴∠BOC =∠EOD =∠COD =13∠BOE =34°,故答案为:34°.【点睛】此题考查了弧与圆心角的关系.此题比较简单,注意掌握数形结合思想的应用.8(2023春·九年级单元测试)半径为5的⊙O 内有一点P ,且OP =4,则过点P 的最短的弦长是,最长的弦长是.【答案】 610【分析】过点P 的最短的弦是垂直于OP 的弦,过点P 的最长的弦是直径,利用勾股定理和垂径定理进行求解即可得到答案.【详解】解:如图,OP 在直径AB 上,AB ⊥CD 于点P ,过点P 的最短的弦是垂直于OP 的弦,即CD 的长∵OC =5,OP =4,由勾股定理得:PC =OC 2-OP 2=3,∴CD =2PC =6,∴过点P 的最短的弦长是6;过点P 的最长的弦是直径,即AB 的长,∵AB =5×2=10,.∴过点P 的最长的弦长是10,故答案为:6;10.【点睛】本题考查了垂径定理,勾股定理,解题关键是熟练掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.9(2023·河南南阳·校联考二模)已知半径为5的圆O 中有一条长度为8的弦AB ,分别以A ,B 为圆心,长度大于4为半径作圆弧交于点M ,N ,连接MN ,点C 为直线MN 与圆O 的交点,点D 为直线MN 与弦AB 的交点,则CD 的长度为.【答案】2或8【分析】根据作图可知,MN 为AB 的中垂线,则MN 必过圆心O ,连接OA ,利用垂径定理求出OD 的长,分点C 在劣弧AB 上和点C 在优弧AB 上两种情况进行求解即可.【详解】解:由题意,得:MN 是弦AB 的中垂线,D 为AB 的中点,如图,连接OA ,OD ,OB ,则:OA =OB =5,AD =12AB =4,∴OD ⊥AB ,∵CD ⊥AB ,∴O ,C ,D 三点共线,∴OC =5,∴OD =OA 2-AD 2=3;①当点C 在劣弧AB 上时:CD =OC -OD =2;②当点C 在优弧AB 上时:CD =OC +OD =8;故答案为:2或8【点睛】本题考查中垂线的作图,垂径定理.根据作图方法得到MN 是AB 的中垂线,是解题的关键.注意分类讨论.10(2023·浙江·九年级专题练习)图1是小文家的木马玩具,图2是木马玩具底座水平放置的示意图,点O 是AB所在圆的圆心,OA =OB ,点A ,点B 离地高度均为15cm ,水平距离AB =90cm .则OA =cm .当半径OA 转到竖直位置时,木马就有翻倒的风险,为安全起见,点B 离地高度应小于cm .。
中考数学经典几何模型之轴对称最值模型(解析版)
中考数学几何模型:轴对称最值模型名师点睛拨开云雾开门见山B'QDA'AP B C典题探究启迪思维探究重点例题1. 如图,在矩形ABCD中,AB=10,AD=6,动点P满足S△P AB=S矩形ABCD,则点P到A,B两点距离之和P A+PB的最小值为2.【解答】解:设△ABP中AB边上的高是h.∵S△P AB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=4,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=10,AE=4+4=8,∴BE===2,即P A+PB的最小值为2.故答案为:2.变式练习>>>1.如图Rt△ABC和等腰△ACD以AC为公共边,其中∠ACB=90°,AD=CD,且满足AD⊥AB,过点D 作DE⊥AC于点F,DE交AB于点E,已知AB=5,BC=3,P是射线DE上的动点,当△PBC的周长取得最小值时,DP的值为()A.B.C.D.【解答】解:连接PB、PC、P A,要使得△PBC的周长最小,只要PB+PC最小即可,∵PB+PC=P A+PB≥AB,∴当P与E重合时,P A+PB最小,∵AD=CD,DE⊥AC,∴AF=CF,∵∠ACB=90°,∴EF∥BC,∴AE=BE=AB=2.5,∴EF=BC=1.5,∵AD⊥AB,∴△AEF∽△DEA,∴=,∴DE==,故选:B.例题2. 如图所示,凸四边形ABCD中,∠A=90°,∠C=90°,∠D=60°,AD=3,AB=,若点M、N分别为边CD,AD上的动点,求△BMN的周长的最小值.【解答】解:作点B关于CD、AD的对称点分别为点B'和点B'',连接B'B''交DC和AD于点M和点N,DB,连接MB、NB;再DC和AD上分别取一动点M'和N'(不同于点M和N),连接M'B,M'B',N'B和N'B'',如图1所示:∵B'B''<M'B'+M'N'+N'B'',B'M'=BM',B''N'=BN',∴BM'+M'N'+BN'>B'B'',又∵B'B''=B'M+MN+NB'',MB=MB',NB=NB'',∴NB+NM+BM<BM'+M'N'+BN',∴C△BMN=NB+NM+BM时周长最小;连接DB,过点B'作B'H⊥DB''于B''D的延长线于点H,如图示2所示:∵在Rt△ABD中,AD=3,AB=,∴==2,∴∠2=30°,∴∠5=30°,DB=DB'',又∵∠ADC=∠1+∠2=60°,∴∠1=30°,∴∠7=30°,DB'=DB,∴∠B'DB''=∠1+∠2+∠5+∠7=120°,DB'=DB''=DB=2,又∵∠B'DB''+∠6=180°,∴∠6=60°,∴HD=,HB'=3,在Rt△B'HB''中,由勾股定理得:===6.∴C△BMN=NB+NM+BM=6,变式练习>>>2.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°【解答】解:分别作点P关于OA、OB的对称点P1、P2,连接P1P2,交OA于M,交OB于N,则OP1=OP=OP2,∠OP1M=∠MPO,∠NPO=∠NP2O,根据轴对称的性质,可得MP=P1M,PN=P2N,则△PMN的周长的最小值=P1P2,∴∠P1OP2=2∠AOB=80°,∴等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°,故选:B.例题3. 如图,在△ABC中,∠C=90°,CB=CA=4,∠A的平分线交BC于点D,若点P、Q分别是AC 和AD上的动点,则CQ+PQ的最小值是2.【解答】解:如图,作点P关于直线AD的对称点P′,连接CP′交AD于点Q,则CQ+PQ=CQ+P′Q=CP′.∵根据对称的性质知△APQ≌△AP′Q,∴∠P AQ=∠P′AQ.又∵AD是∠A的平分线,点P在AC边上,点Q在直线AD上,∴∠P AQ=∠BAQ,∴∠P′AQ=∠BAQ,∴点P′在边AB上.∵当CP′⊥AB时,线段CP′最短.∵在△ABC中,∠C=90°,CB=CA=4,∴AB=4,且当点P′是斜边AB的中点时,CP′⊥AB,此时CP′=AB=2,即CQ+PQ的最小值是2.故填:2.变式练习>>>3.如图,已知等边△ABC的面积为4,P、Q、R分别为边AB、BC、AC上的动点,则PR+QR的最小值是()A.3B.2C.D.4【解答】解:如图,作△ABC关于AC对称的△ACD,点E与点Q关于AC对称,连接ER,则QR=ER,当点E,R,P在同一直线上,且PE⊥AB时,PR+QR的最小值是PE的长,设等边△ABC的边长为x,则高为x,∵等边△ABC的面积为4,∴x×x=4,解得x=4,∴等边△ABC的高为x=2,即PE=2,故选:B.例题4. 如图,∠MON=30°,A在OM上,OA=2,D在ON上,OD=4,C是OM上任意一点,B是ON上任意一点,则折线ABCD的最短长度为2.【解答】解:作D关于OM的对称点D′,作A作关于ON的对称点A′,连接A′D′与OM,ON的交点就是C,B二点.此时AB+BC+CD=A′B+BC+CD′=A′D′为最短距离.连接DD′,AA′,OA′,OD′.∵OA=OA′,∠AOA′=60°,∴∠OAA′=∠OA′A=60°,∴△ODD′是等边三角形.同理△OAA′也是等边三角形.∴OD'=OD=4,OA′=OA=2,∠D′OA′=90°.∴A′D′==2.变式练习>>>4. 如图,在长方形ABCD中,O为对角线AC的中点,P是AB上任意一点,Q是OC上任意一点,已知:AC=2,BC=1.(1)求折线OPQB的长的最小值;(2)当折线OPQB的长最小时,试确定Q的位置.【解答】解:(1)作点B关于AC的对称点B′,作点O关于AB的对称点O′,连接AB′,QB′,AO′,PO′,B′O′,则QB=QB′,OP=O′P,折线OPQB的长=OP+PQ+QB=O′P+PQ+QB′,∴折线OPQB的长的最小值=B′O′.∵在长方形ABCD中,∠ABC=90°,在△ABC中,AC=2,BC=1,∠ABC=90°,∴∠BAC=30°,∵点B、B′关于AC对称,点O、O′关于AB对称,∴∠B′AC=30°,AB′=AB=,∠O′AB=30°,AO′=AO=1,∴∠B′AO′=90°,∴B′O′=,∴折线OPQB的长的最小值=2;(2)设B′O′交AC于点Q′,∵在Rt△AO′B′中,AO′=1,B′O′=2,∴∠AB′O′=30°,则∠AO′B′=60°,∵在△AO′Q′中,∠Q′AO′=∠Q′AB+∠BAO′=60°,∴△AO′Q′是等边三角形,∴AQ′=AO′=1=AO,∴点Q′就是AC的中点O.∴当折线OPQB的长最小时,点Q在AC的中点.例题5. 如图,矩形ABCD中,AB=4,BC=8,E为CD的中点,点P、Q为BC上两个动点,且PQ=3,当CQ=时,四边形APQE的周长最小.【解答】解:点A向右平移3个单位到M,点E关于BC的对称点F,连接MF,交BC于Q,此时MQ+EQ最小,∵PQ=3,DE=CE=2,AE==2,∴要使四边形APQE的周长最小,只要AP+EQ最小就行,即AP+EQ=MQ+EQ,过M作MN⊥BC于N,设CQ=x,则NQ=8﹣3﹣x=5﹣x,∵△MNQ∽△FCQ,∴=,∵MN=AB=4,CF=CE=2,CQ=x,QN=5﹣x,解得:x=,则CQ=故答案为:.变式练习>>>5.如图,已知A(3,1)与B(1,0),PQ是直线y=x上的一条动线段且PQ=(Q在P的下方),当AP+PQ+QB最小时,Q点坐标为()A.(,)B.(,)C.(0,0)D.(1,1)【解答】解:作点B关于直线y=x的对称点B'(0,1),过点A作直线MN,使得MN平行于直线y=x,并沿MN向下平移单位后得A'(2,0)连接A'B'交直线y=x于点Q,如图理由如下:∵AA'=PQ=,AA'∥PQ∴四边形APQA'是平行四边形∴AP=A'Q∵AP+PQ+QB=B'Q+A'Q+PQ且PQ=∴当A'Q+B'Q值最小时,AP+PQ+QB值最小根据两点之间线段最短,即A',Q,B'三点共线时A'Q+B'Q值最小∵B'(0,1),A'(2,0)∴直线A'B'的解析式y=﹣x+1∴x=﹣x+1,即x=∴Q点坐标(,)故选:A.例题6. 如图,点E、F是正方形ABCD的边BC上的两点(不与B、C两点重合),过点B作BG⊥AE于点G,连接FG、DF,若AB=2,求DF+GF的最小值为.【解答】解:取AB的中点O,点O、G关于BC的对称点分别为O'、G',∵G与G'关于BC对称,∴FG=FG',∴FG+DF=FG'+DF,∴当G(也就是G')固定时,取DG'与BC的交点F,此时能够使得FG+FD最小,且此时FG+DF的最小值是DG',现在再移动点E(也就是移动G),∵BG⊥AE,∴∠AGB=90°,∴当点E在BC上运动时,点G随着运动的轨迹是以O为圆心,OA为半径的90°的圆弧,点G'随着运动的轨迹是以O'为圆心,O'B为半径的90°的圆弧,∴当取DO'与交点为G'时,能够使得DG'达到最小值,且DG'的最小值=DO'﹣O'G'=﹣1=﹣1,即DF+GF的最小值为﹣1.故选:A.变式练习>>>6.如图,平面直角坐标系中,分别以点A(2,3)、点B(3,4)为圆心,1、3为半径作⊙A、⊙B,M,N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值为()A.5﹣4B.﹣1C.6﹣2D.【解答】解:作⊙A关于x轴的对称⊙A′,连接BA′分别交⊙A′和⊙B于M、N,交x轴于P,如图,则此时PM+PN最小,∵点A坐标(2,3),∴点A′坐标(2,﹣3),∵点B(3,4),∴A′B==5,∴MN=A′B﹣BN﹣A′M=5﹣3﹣1=5﹣4,∴PM+PN的最小值为5﹣4.故选:A.例题7. 如图,AD为等边△ABC的高,E、F分别为线段AD、AC上的动点,且AE=CF,当BF+CE取得最小值时,∠AFB=()A.112.5°B.105°C.90°D.82.5°【解答】解:如图,作CH⊥BC,且CH=BC,连接BH交AD于M,连接FH,∵△ABC是等边三角形,AD⊥BC,∴AC=BC,∠DAC=30°,∴AC=CH,∵∠BCH=90°,∠ACB=60°,∴∠ACH=90°﹣60°=30°,∴∠DAC=∠ACH=30°,∵AE=CF,∴△AEC≌△CFH,∴CE=FH,BF+CE=BF+FH,∴当F为AC与BH的交点时,如图2,BF+CE的值最小,此时∠FBC=45°,∠FCB=60°,∴∠AFB=105°,故选:B.变式练习>>>7.如图,等边△ABC中,AD为BC边上的高,点M、N分别在AD、AC上,且AM=CN,连BM、BN,当BM+BN最小时,∠MBN=30度.【解答】解:如图1中,作CH⊥BC,使得CH=BC,连接NH,BH.∵△ABC是等边三角形,AD⊥BC,CH⊥BC,∴∠DAC=∠DAB=30°,AD∥CH,∴∠HCN=∠CAD=∠BAM=30°,∵AM=CN,AB=BC=CH,∴△ABM≌△CHN(SAS),∴BM=HN,∵BN+HN≥BH,∴B,N,H共线时,BM+BN=NH+BN的值最小,如图2中,当B,N,H共线时,∵△ABM≌△CHN,∴∠ABM=∠CHB=∠CBH=45°,∵∠ABD=60°,∴∠DBM=15°,∴∠MBN=45°﹣15°=30°,∴当BM+BN的值最小时,∠MBN=30°,故答案为30.例题8. (1)如图①,Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB边上任意一点,则CD的最小值为.(2)如图②,矩形ABCD中,AB=3,BC=4,点M、点N分别在BD、BC上,求CM+MN的最小值.(3)如图③,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=2,点F是BC边上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG、CG,四边形AGCD的面积是否存在最小值,若存在,求这个最小值及此时BF的长度.若不存在,请说明理由.【解答】解:(1)如图①,过点C作CD⊥AB于D,根据点到直线的距离垂线段最小,此时CD最小,在Rt△ABC中,AC=3,BC=4,根据勾股定理得,AB=5,∵AC×BC=AB×CD,∴CD==,故答案为;(2)如图②,作出点C关于BD的对称点E,过点E作EN⊥BC于N,交BD于M,连接CM,此时CM+MN=EN最小;∵四边形ABCD是矩形,∴∠BCD=90°,CD=AB=3,根据勾股定理得,BD=5,∵CE⊥BC,∴BD×CF=BC×CD,∴CF==,由对称得,CE=2CF=,在Rt△BCF中,cos∠BCF==,∴sin∠BCF=,在Rt△CEN中,EN=CE sin∠BCE==;即:CM+MN的最小值为;(3)如图3,∵四边形ABCD是矩形,∴CD=AB=3,AD=BC=4,∠ABC=∠D=90°,根据勾股定理得,AC=5,∵AB=3,AE=2,∴点F在BC上的任何位置时,点G始终在AC的下方,设点G到AC的距离为h,∵S四边形AGCD=S△ACD+S△ACG=AD×CD+AC×h=×4×3+×5×h=h+6,∴要四边形AGCD的面积最小,即:h最小,∵点G是以点E为圆心,BE=1为半径的圆上在矩形ABCD内部的一部分点,∴EG⊥AC时,h最小,由折叠知∠EGF=∠ABC=90°,延长EG交AC于H,则EH⊥AC,在Rt△ABC中,sin∠BAC==,在Rt△AEH中,AE=2,sin∠BAC==,∴EH=AE=,∴h=EH﹣EG=﹣1=,∴S四边形AGCD最小=h+6=×+6=,过点F作FM⊥AC于M,∵EH⊥FG,EH⊥AC,∴四边形FGHM是矩形,∴FM=GH=∵∠FCM=∠ACB,∠CMF=CBA=90°,∴△CMF∽△CBA,∴,∴,∴CF=1∴BF=BC﹣CF=4﹣1=3.达标检测领悟提升强化落实1. 如图,矩形ABCD中,AB=5,AD=10,点E,F,G,H分别在矩形各边上,点F,H为不动点,点E,G为动点,若要使得AF=CH,BE=DG,则四边形EFGH周长的最小值为()A.5B.10C.15D.10【解答】解:作点F关于CD的对称点F′,连接F′H交CD于点G,此时四边形EFGH周长取最小值,过点H作HH′⊥AD于点H′,如图所示.∵AF=CH,DF=DF′,∴H′F′=AD=10,∵HH′=AB=5,∴F′H==5,∴C四边形EFGH=2F′H=10.故选:D.2. 如图,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于﹣3.【解答】解:作⊙A关于x轴的对称⊙A′,连接BA′分别交⊙A′和⊙B于M、N,交x轴于P,如图,则此时PM+PN最小,∵点A坐标(﹣2,3),∴点A′坐标(﹣2,﹣3),∵点B(3,4),∴A′B==,∴MN=A′B﹣BN﹣A′M=﹣2﹣1=﹣3,∴PM+PN的最小值为﹣3.故答案为﹣3.3. 如图,已知直线y=x+4与两坐标轴分别交于A、B两点,⊙C的圆心坐标为(2,0),半径为2,若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值和最大值分别是8﹣2和8+2.【解答】解:y=x+4,∵当x=0时,y=4,当y=0时,x=﹣4,∴OA=4,OB=4,∵△ABE的边BE上的高是OA,∴△ABE的边BE上的高是4,∴要使△ABE的面积最大或最小,只要BE取最大值或最小值即可,过A作⊙C的两条切线,如图,当在D点时,BE最小,即△ABE面积最小;当在D′点时,BE最大,即△ABE面积最大;∵x轴⊥y轴,OC为半径,∴EE′是⊙C切线,∵AD′是⊙C切线,∴OE′=E′D′,设E′O=E′D′=x,∵AC=4+2=6,CD′=2,AD′是切线,∴∠AD′C=90°,由勾股定理得:AD′=4,∴sin∠CAD′==,∴=,解得:x=,∴BE′=4+,BE=4﹣,∴△ABE的最小值是×(4﹣)×4=8﹣2,最大值是:×(4+)×4=8+2,故答案为:8﹣2和8+2.4. 正方形ABCD,AB=4,E是CD中点,BF=3CF,点M,N为线段BD上的动点,MN=,求四边形EMNF周长的最小值++.【解答】解:作点E关于BD的对称点G,则点G在AD上,连接GM,过G作BD的平行线,截取GH=MN=,连接HN,则四边形GHNM是平行四边形,∴HN=GM=EM,过H作PQ⊥BC,交AD于P,交BC于Q,则∠HPG=∠HQF=90°,PQ=AB=4,∵∠PGH=∠ADB=45°,∴HP=PG==1,HQ=4﹣1=3,由轴对称的性质,可得DG=ED=2,∴AP=4﹣2﹣1=1,∴BQ=1,又∵BF=3CF,BC=4,∴CF=1,∴QF=4﹣1﹣1=2,∵当点H、N、F在同一直线上时,HN+NF=HF(最短),此时ME+NF最短,∴Rt△HQF中,FH===,即ME+NF最短为,又∵Rt△CEF中,EF===,∴ME+NF+MN+EF=++,∴四边形EMNF周长的最小值为++.故答案为:++.5. 如图,已知点D,E分别是等边三角形ABC中BC,AB边的中点,BC=6,点F是AD边上的动点,则BF+EF的最小值为3.【解答】解:过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小(根据两点之间线段最短;点到直线垂直距离最短),由于C和B关于AD对称,则BF+EF=CF,∵等边△ABC中,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CF=BF,即BF+EF=CF+EF=CE,∵AD⊥BC,CE⊥AB,∴∠ADB=∠CEB=90°,在△ADB和△CEB中,,∴△ADB≌△CEB(AAS),∴CE=AD,∵BC=6,∴BD=3,∴AD=3,即BF+EF=3.故答案为:3.6. 如图,在边长为1正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA上的点,3AE=EB,有一只蚂蚁从E点出发,经过F、G、H,最后回到E点,则蚂蚁所走的最小路程是.【解答】解:延长DC到D',使CD=CD',G对应位置为G',则FG=FG',同样作D'A'⊥CD',D'A'=DA,H对应的位置为H',则G'H'=GH,再作A'B'⊥D'A',E的对应位置为E',则H'E'=HE.容易看出,当E、F、G'、H'、E'在一条直线上时路程最小,最小路程为EE'===27. 如图,在△ABC中,AC⊥BC,∠B=30°,点E,F是线段AC的三等分点,点P是线段BC上的动点,点Q是线段AC上的动点,若AC=3,则四边形EPQF周长的最小值是8.【解答】解:过E点作E点关于BC的对称点E′,过F点作F点关于AC的对称点F′,∵在△ABC中,AC⊥BC,∠B=30°,AC=3,∴AB=6,∵点E,F是线段AC的三等分点,∴EF=2,∵E′F′=AB=6,∴四边形EPQF周长的最小值是6+2=8.故答案为:8.8. 如图,长为1的线段AB在x轴上移动C(0,1)、D(0,2),则AC+BD的最小值是.【解答】解:如图所示,以AB,BD为边构造平行四边形ABDE,作点C关于x轴的对称点F,连接AF,则DE⊥y轴,OF=OC=1,∵四边形ABDE是平行四边形,∴BD=AE,DE=AB=1,∵AB垂直平分线CF,∴AC=AF,∴AC+BD=AE+AF,如图,当点E,A,F在同一直线上时,AE+AF=EF(最短),此时,∵Rt△DEF中,DE=1,DF=2+1=3,∴EF===,∴AC+BD的最小值是.故答案为:.9. 在矩形ABCD中,AB=8,BC=10,G为AD边的中点.如图,若E、F为边AB上的两个动点,且EF=4,当四边形CGEF的周长最小时,则求AF的长为.【解答】解:∵E为AB上的一个动点,∴如图,作G关于AB的对称点M,在CD上截取CH=4,然后连接HM交AB于E,接着在EB上截取EF=4,那么E、F两点即可满足使四边形CGEF的周长最小.∵在矩形ABCD中,AB=8,BC=10,G为边AD的中点,∴AG=AM=5,MD=15,而CH=4,∴DH=4,而AE∥CD,∴△AEM∽△DHM,∴AE:HD=MA:MD,∴AE===,∴AF=4+=.故答案为:.10. 如图,矩形ABCO的边OC在x轴上,边OA在y轴上,且点C的坐标为(8,0),点A的坐标为(0,6),点E、F分别足OC、BC的中点,点M,N分别是线段OA、AB上的动点(不与端点重合),则当四边形EFNM的周长最小时,点N的坐标为(4,6).【解答】解:如图所示:作点F关于AB的对称点F′,作点E关于y轴的对称点E′,连接E′F′交AB与点N.∵C的坐标为(8,0),点A的坐标为(0,6),点E、F分别足OC、BC的中点,∴OE=OE′=4,FB=CF=3,∴E′C=12,CF′=9.∵AB∥CE′,∴△F′NB∽△F′E′C.∴==,即=,解得BN=4,∴AN=4.∴N(4,6).故答案为:(4,6).11. 如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为2.【解答】解:如图所示,作以BD为对称轴作N的对称点N',连接PN',MN',根据轴对称性质可知,PN=PN',∴PM﹣PN=PM﹣PN'≤MN',当P,M,N'三点共线时,取“=”,∵正方形边长为8,∴AC=AB=,∵O为AC中点,∴AO=OC=,∵N为OA中点,∴ON=,∴ON'=CN'=,∴AN'=,∵BM=6,∴CM=AB﹣BM=8﹣6=2,∴==∴PM∥AB∥CD,∠CMN'=90°,∵∠N'CM=45°,∴△N'CM为等腰直角三角形,∴CM=MN'=2,即PM﹣PN的最大值为2,故答案为:2.12. 如图,两点A、B在直线MN外的同侧,A到MN的距离AC=16,B到MN的距离BD=10,CD=8,点P在直线MN上运动,则|P A﹣PB|的最大值等于10.【解答】解:延长AB交MN于点P′,∵P′A﹣P′B=AB,AB>|P A﹣PB|,∴当点P运动到P′点时,|P A﹣PB|最大,∵BD=10,CD=8,AC=16,过点B作BE⊥AC,则BE=CD=8,AE=AC﹣BD=16﹣10=6,∴AB===10,∴|P A﹣PB|的最大值等于10,故答案为:10.11. 如图△ABC是边长为2的等边三角形,D是AB边的中点,P是BC边上的动点,Q是AC边上的动点,当P、Q的位置在何处时,才能使△DPQ的周长最小?并求出这个最值.【解答】解:作D关于BC、AC的对称点D′、D″,连接D′D″,DQ,DP.∵DQ=D″Q,DP=D′P,∴△DPQ的周长为PQ+DQ+DP=PQ+D″Q+D′P=D′D″,根据两点之间线段最短,D′D″的长即为三角形周长的最小值.∵∠A=∠B=60°,∠BED=∠AFD=90°,∴∠α=∠β=90°﹣60°=30°,∠D′DD″=180°﹣30°﹣30°=120°,∵D为AB的中点,∴DF=AD•cos30°=1×=,AF=,易得△ADF≌△QD''F,∴QF=AF=,∴AQ=1,BP=1,Q、P为AC、BC的中点.∴DD″=×2=,同理,DD′=×2=,∴△DD′D″为等腰三角形,∴∠D′=∠D″==30°,∴D″D′=2DD′•cos30°=2××=3.12. 如图,C 为线段BD 上一动点,分别过点B 、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=5,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问AC+CE的值是否存在最小值?若存在,请求出这个最小值;若不存在请说明理由.(3)根据(2)中的规律和结论,请直接写出出代数式+的最小值为25.【解答】解:(1)由线段的和差,得BC=(8﹣x).由勾股定理,得AC+CE =+=+=+;(2)当A、C、E在同一直线上,AC+CE最小;当A、C、E在同一直线上时,延长AB,作EF⊥AB于点F,∵AB=5,DE=1,∴AF=6,∵∠ABD=90°,∴∠FBD=90°,∵∠BDE=∠BFE=90°,∴四边形BFED是矩形,∴BD=EF=8,∴AE===10;(3)如下图所示:作BD=24,过点B作AB⊥BD,过点D作ED ⊥BD,使AB=3,ED=4,连接AE交BD于点C,当BC=x,∵x+y=24,∴y=24﹣x,AE的长即为代数式的最小值,过点A作AF∥BD交ED的延长线于点F,得矩形ABDF,则AB=DF=3,AF=BD=24,所以AE===25,即代数式+的最小值为25,故答案为:25.- 21 -。
中考数学复习《轴对称》专题训练-带含有参考答案
中考数学复习《轴对称》专题训练-带含有参考答案一、选择题1.下列交通标志中,是轴对称图形的是()A.B.C.D.2.点P关于x轴对称点M的坐标为(4,﹣5),那么点P关于y轴对称点N的坐标为()A.(﹣4,5)B.(4,5)C.(﹣4,﹣5)D.(﹣5,4)3.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,线段AB 的顶点均在格点上.在图中画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N均为格点,这样的线段能画()条.A.2 B.3 C.5 D.64.如图,在△ABC中,DE是AC的垂直平分线AB=5cm,BC=8cm,则△ABD的周长为()A.10cm B.13cm C.15cm D.16cm5.等腰三角形的周长为11,其中一边长为3,则该等腰三角形的底边长为()A.3B.5C.4或5D.3或56.如图,在Rt△ABC中∠ACB=90°,∠B=15°,AB的垂直平分线交AB于点E,交BC于点D,且BD=12cm,则AC的长是()A.12cm B.6cm C.4cm D.6√3cm7.如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G,F,若FG=3,ED=6,则EB+DC的值为()A.7 B.8 C.9 D.108.如图,已知ΔABC是正三角形,D是BC边上任意一点,过点D作DF⊥AC于点F,ED⊥BC交AB于点E,则∠EDF等于()A.50°B.65°C.60°D.75°二、填空题9.某车标是一个轴对称图形,有条对称轴.10.在平面直角坐标系中,点M(a,3)与点N(5,b)关于y轴对称,则a﹣b=.11.如图,在△ABC中,边AB的垂直平分线分别交BC于点D,交AB于点E.若AE=3,△ADC的周长为8,则△ABC的周长为.12.如图,在△ABC中,AB=AC,AD=BD,∠A=36°,则图中等腰三角形的个数是.13.如图,在△ABC中AB=AC,∠C=30°,AB⊥AD,AD=6,BC的长是.三、解答题14.图①、图②均是由边长为1的小正方形组成的网格,每个小正方形的顶点称为格点,点A、B、C均在格点上.请用无刻度的直尺按下列要求在网格中作图.(1)在图①中,连接AC,以线段AC为腰作一个等腰直角三角形ACD;(2)在图②中确定一个格点D,并画出以A、B、C、D为顶点的四边形.使其为轴对称图形.15.如图,在中,的垂直平分线分别交线段,于点M,P,的垂直平分线分别交线段,于点N,Q.(1)如图,当时,求的度数;(2)当时,求的度数.16.如图,在平面直角坐标系xOy中,A(-1,5),B(-1,0),C(-4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点△A1B1C1的坐标.17.如图,在△ABC中,AB=AC,点D、E、F分别在△ABC的三条边上,且BF=CD,BD=CE.(1)求证:△DFE是等腰三角形;(2)若∠A=56°,求∠EDF的度数.18.如图,在△ABC中AB=AC,点D在△ABC内BD=BC,∠DBC=60°点E在△ABC外∠BCE=150°,∠ABE=60° .(1)求∠ADB的度数;(2)判断△ABE的形状并加以证明;(3)连接DE,若DE⊥BD,DE=8求AD的长.参考答案1.B2.A3.C4.B5.D6.B7.C8.C9.310.﹣811.1412.313.1814.(1)解:如图①所示(2)解:如图②所示15.(1)解:∵、分别是的垂直平分线∴∵∴∵∴∴(2)解:∵分别是的垂直平分线∴∴∴当P点在Q点右侧时,如图:∵∴∵∴.当P点在Q点左侧时∵∴∵∴.综上或.16.(1)解:S△ABC= 12×5×3=152(或7.5)(平方单位)(2)解:如图.(3)解:A1(1,5),B1(1,0),C1(4,3). 17.(1)证明:∵AB=AC∴∠B=∠C在△FBD与△DCE中{BF=CD∠B=∠CBD=CE∴△FBD≌△DCE.∴DF=ED,即△DEF是等腰三角形(2)解:∵AB=AC,∠A=56°∴∠B=∠C= 12(180°−56°)=62°.∴∠EDF=∠B=62°.18.(1)解:∵BD=BC,∠DBC=60°∴△DBC是等边三角形,∴DB=DC,∠BDC=∠DBC=∠DCB=60°在△ADB和△ADC中{AB=ACAD=ADDB=DC∴△ADB≌△ADC,∴∠ADB=∠ADC,∴∠ADB= 12(360°﹣60°)=150°.(2)解:结论:△ABE是等边三角形.理由:∵∠ABE=∠DBC=60°,∴∠ABD=∠CBE在△ABD和△EBC中{AB=EB∠ADB=∠BCE=150°∠ABD=∠CBE∴△ABD≌△EBC ∴AB=BE,∵∠ABE=60°,∴△ABE是等边三角形.(3)解:连接DE.∵∠BCE=150°,∠DCB=60°,∴∠DCE=90°,∵∠EDB=90°,∠BDC=60°∴∠EDC=30°,∴EC= 12DE=4,∵△ABD≌△EBC,∴AD=EC=4.。
中考数学解题技巧(十一)轴对称特效
中考数学解题技巧——特效的轴对称(马铁汉)求线段之和(或之差)的最值时,经常用到轴对称(还有旋转、全等转换),将几条线段转移到一条直线上,这就是轴对称的特殊功效。
然后根据两点之间线段最短,或垂线段最短,两边之差小于第三边,得出最值。
下面通过几个中考真题,作简要介绍。
(2022鄂州.10.)如图,定直线MN∥PQ,点B、C分别为MN、PQ上的动点,且BC=12,BC在两直线间运动过程中始终有∠BCQ=60°.点A是MN上方一定点,点D是PQ下方一定点,且AE∥BC∥DF,AE=4,DF=8,AD=24,当线段BC在平移过程中,AB+CD 的最小值为(C)A.24B.24C.12D.12分析:当点B在点E左边往左移时,AB、CD不断增大,如下图,没有最小值。
当点B移动到点E右边时,过点C作AB的平行线,延长AE,两线相交于点G。
直线AE与PQ相交于点W。
当AB∥CD即GC、CD在同一直线上时,AB+CD值最小。
∵AW ∥DF ∴211248=+==AW DF RA DR , ∴DR=38 作DH ⊥PQ 于H. ∵∠HFD=60°,DF=8 ∴HD=34在Rt ∆RHD 中,HD=34, DR=38∴∠HRD=30°.∴∠RDF=90°.在Rt ∆GAD 中,GD=()131********=+说明:本题是动点、最短路径问题探究。
例1、(2021恩施24.)如图,在平面直角坐标系中,四边形ABCD 为正方形,点A ,B 在x轴上,抛物线y =x 2+bx +c 经过点B ,D (﹣4,5)两点,且与直线DC 交于另一点E .(1)求抛物线的解析式;解:D (﹣4,5),B (1,0)代入y =x 2+bx +c ,得322-+=x x y . (2)F 为抛物线对称轴上一点,Q 为平面直角坐标系中的一点,是否存在以点Q ,F ,E ,B 为顶点的四边形是以BE 为边的菱形.若存在,请求出点F 的坐标;若不存在,请说明理P解:BE=265122=+,如图有两种情况: ●()173-2622=,F (-1,5-17)● ()222-2622=,F’(-1,22) (3)P 为y 轴上一点,过点P 作抛物线对称轴的垂线,垂足为M ,连接ME ,BP ,探究EM +MP +PB 是否存在最小值.若存在,请求出的坐标;若不存在,请说明理由.分析:线段MP 长度不变,只需求ME+PB 最小值即可。
八年级数学上册【几何模型三角形轴对称】试卷中考真题汇编[解析版]
八年级数学上册【几何模型三角形轴对称】试卷中考真题汇编[解析版]一、八年级数学 轴对称解答题压轴题(难)1.已知:在平面直角坐标系中,A 为x 轴负半轴上的点,B 为y 轴负半轴上的点.(1)如图1,以A 点为顶点、AB 为腰在第三象限作等腰Rt ABC ∆,若2OA =,4OB =,试求C 点的坐标;(2)如图2,若点A 的坐标为()23,0-,点B 的坐标为()0,m -,点D 的纵坐标为n ,以B 为顶点,BA 为腰作等腰Rt ABD ∆.试问:当B 点沿y 轴负半轴向下运动且其他条件都不变时,整式2253m n +-的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图3,E 为x 轴负半轴上的一点,且OB OE =,OF EB ⊥于点F ,以OB 为边作等边OBM ∆,连接EM 交OF 于点N ,试探索:在线段EF 、EN 和MN 中,哪条线段等于EM 与ON 的差的一半?请你写出这个等量关系,并加以证明.【答案】(1) C(-6,-2);(2)不发生变化,值为3-3)EN=12(EM-ON),证明见详解. 【解析】 【分析】(1)作CQ ⊥OA 于点Q,可以证明AQC BOA ≅,由QC=AD,AQ=BO,再由条件就可以求出点C 的坐标;(2)作DP ⊥OB 于点P ,可以证明AOB BPD ≅,则有BP=OB-PO=m-(-n)=m+n 为定值,从而可以求出结论2253m n +-3- (3)作BH ⊥EB 于点B ,由条件可以得出∠1=30°,∠2=∠3=∠EMO=15°,∠EOF=∠BMG=45°,EO=BM,可以证明ENO BGM ≅,则GM=ON,就有EM-ON=EM-GM=EG ,最后由平行线分线段成比例定理就可得出EN=12(EM-ON). 【详解】(1)如图(1)作CQ ⊥OA 于Q,∴∠AQC=90°,△为等腰直角三角形,∵ABC∴AC=AB,∠CAB=90°,∴∠QAC+∠OAB=90°,∵∠QAC+∠ACQ=90°,∴∠ACQ=∠BAO,又∵AC=AB,∠AQC=∠AOB,≅(AAS),∴AQC BOA∴CQ=AO,AQ=BO,∵OA=2,OB=4,∴CQ=2,AQ=4,∴OQ=6,∴C(-6,-2).(2)如图(2)作DP⊥OB于点P,∴∠BPD=90°,△是等腰直角三角形,∵ABD∴AB=BD,∠ABD=∠ABO+∠OBD=90°,∵∠OBD+∠BDP=90°,∴∠ABO=∠BDP,又∵AB=BD,∠AOB=∠BPD=90°,≅∴AOB BPD∴AO=BP,∵BP=OB-PO=m-(-n)=m+n,∵A ()23,0-, ∴OA=23, ∴m+n=23,∴当点B 沿y 轴负半轴向下运动时,AO=BP=m+n=23, ∴整式2253m n +-的值不变为3-. (3)()12EN EM ON =- 证明:如图(3)所示,在ME 上取一点G 使得MG=ON,连接BG 并延长,交x 轴于H.∵OBM 为等边三角形,∴BO=BM=MO,∠OBM=∠OMB=∠BOM=60°, ∴EO=MO,∠EBM=105°,∠1=30°, ∵OE=OB, ∴OE=OM=BM, ∴∠3=∠EMO=15°, ∴∠BEM=30°,∠BME=45°, ∵OF⊥EB, ∴∠EOF=∠BME, ∴ENO BGM ≅, ∴BG=EN, ∵ON=MG, ∴∠2=∠3, ∴∠2=15°, ∴∠EBG=90°,∴BG=12EG, ∴EN=12EG,∵EG=EM-GM,∴EN=12(EM-GM), ∴EN=12(EM-ON).【点睛】本题考查了等腰直角三角形的性质,等边三角形的性质,等腰三角形的性质,三角形的外角与内角的关系,全等三角形的判定与性质,平行线分线段成比例定理的运用.2.(问题情境)学习《探索全等三角形条件》后,老师提出了如下问题:如图①,△ABC 中,若AB=12,AC=8,求BC边上的中线AD的取值范围.同学通过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,连接BE.根据SAS可证得到△ADC≌△EDB,从而根据“三角形的三边关系”可求得AD的取值范围是.解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.(直接运用)如图②,AB⊥AC,AD⊥AE,AB=AC,AD=AE,AF是ACD的边CD上中线.求证:BE=2AF.(灵活运用)如图③,在△ABC中,∠C=90°,D为AB的中点,DE⊥DF,DE交AC于点E,DF交AB于点F,连接EF,试判断以线段AE、BF、EF为边的三角形形状,并证明你的结论.【答案】(1)2<AD<10;(2)见解析(3)为直角三角形,理由见解析.【解析】【分析】(1)根据△ADC≌△EDB,得到BE=AC=8,再根据三角形的构成三角形得到AE的取值,再根据D为AE中点得到AD的取值;(2)延长AF到H,使AF=HF,故△ADF≌△HCF,AH=2AF,由AB⊥AC,AD⊥AE,得到∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,根据∠D=∠FCH,∠DAF=∠CHF,得到∠ACH+∠CAD=180°,故∠BAE= ACH,再根据AB=AC,AD=AE即可利用SAS证明△BAE≌△ACH,故BE=AH,故可证明BE=2AF.(3)延长FD到点G,使DG=FD,连结GA,GE,证明△DBF≌△DAG,故得到FD=GD,BF=AG,由DE⊥DF,得到EF=EG,再求出∠EAG=90°,利用勾股定理即可求解.【详解】(1)∵△ADC≌△EDB,∴BE=AC=8,∵AB=12,∴12-8<AE<12+8,即4<AE<20,∵D为AE中点∴2<AD<10;(2)延长AF到H,使AF=HF,由题意得△ADF≌△HCF,故AH=2AF,∵AB⊥AC,AD⊥AE,∴∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,∵∠D=∠FCH,∠DAF=∠CHF,∴∠ACH+∠CAD=180°,故∠BAE= ACH,又AB=AC,AD=AE∴△BAE≌△ACH(SAS),故BE=AH,又AH=2AF∴BE= 2AF.(3)以线段AE、BF、EF为边的三角形为直角三角形,理由如下:延长FD到点G,使DG=FD,连结GA,GE,由题意得△DBF≌△ADG,∴FD=GD,BF=AG,∵DE⊥DF,∴DE垂直平分GF,∴EF=EG,∵∠C=90°,∴∠B+∠CAB=90°,又∠B=∠DAG,∴∠DAG +∠CAB=90°∴∠EAG=90°,故EG2=AE2+AG2,∵EF=EG, BF=AG∴EF2=AE2+BF2,则以线段AE、BF、EF为边的三角形为直角三角形.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是根据题意作出辅助线,根据垂直平分线与勾股定理进行求解.3.如图,在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD为一边在CD的下方作等边△CDE,连结BE.(1)求∠CAM的度数;(2)若点D在线段AM上时,求证:△ADC≌△BEC;(3)当动D在直线..AM上时,设直线BE与直线AM的交点为O,试判断∠AOB是否为定值?并说明理由.【答案】(1)30°;(2)答案见解析;(3)∠AOB是定值,∠AOB=60°.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC=BC,DC=EC,∠ACB=∠DCE=60°,由等式的性质就可以∠BCE=∠ACD,根据SAS就可以得出△ADC≌△BEC;(3)分情况讨论:当点D在线段AM上时,如图1,由(2)可知△ACD≌△BCE,就可以求出结论;当点D在线段AM的延长线上时,如图2,可以得出△ACD≌△BCE而有∠CBE=∠CAD=30°而得出结论;当点D在线段MA的延长线上时,如图3,通过得出△ACD≌△BCE同样可以得出结论.【详解】(1)∵△ABC是等边三角形,∴∠BAC=60°.∵线段AM 为BC 边上的中线,∴∠CAM 12=∠BAC ,∴∠CAM =∠BAM =30°. (2)∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD +∠DCB =∠DCB +∠BCE ,∴∠ACD =∠BCE .在△ADC 和△BEC 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS );(3)∠AOB 是定值,∠AOB =60°.理由如下:①当点D 在线段AM 上时,如图1,由(2)可知△ACD ≌△BCE ,则∠CBE =∠CAD =30°,又∠ABC =60°,∴∠CBE +∠ABC =60°+30°=90°.∵△ABC 是等边三角形,线段AM 为BC 边上的中线,∴AM 平分∠BAC ,即11603022BAM BAC ∠∠==⨯︒=︒,∴∠BOA =90°﹣30°=60°.②当点D 在线段AM 的延长线上时,如图2. ∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠DCB =∠DCB +∠DCE ,∴∠ACD =∠BCE .在△ACD 和△BCE 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴∠CBE =∠CAD =30°. 由(1)得:∠BAM =30°,∴∠BOA =90°﹣30°=60°. ③当点D 在线段MA 的延长线上时. ∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD +∠ACE =∠BCE +∠ACE =60°,∴∠ACD =∠BCE .在△ACD 和△BCE 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴∠CBE =∠CAD . 由(1)得:∠CAM =30°,∴∠CBE =∠CAD =150°,∴∠CBO =30°,∠BAM =30°,∴∠BOA =90°﹣30°=60°.综上所述:当动点D 在直线AM 上时,∠AOB 是定值,∠AOB =60°.【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.4.某数学兴趣小组开展了一次活动,过程如下:设(090BAC θθ∠=︒<<︒).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB 、AC 上.活动一、如图甲所示,从点1A 开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直(12A A 为第1根小棒) 数学思考:(1)小棒能无限摆下去吗?答: (填“能”或“不能”) (2)设11223AA A A A A ==,求θ的度数;活动二:如图乙所示,从点1A 开始,用等长的小棒依次向右摆放,其中12A A 为第一根小棒,且121A A AA =. 数学思考:(3)若已经摆放了3根小棒,则213A A A ∠= ,423A A A ∠= ,43 A A C ∠= ;(用含θ的式子表示)(4)若只能摆放5根小棒,则θ的取值范围是 .【答案】(1)能;(2)θ=22.5°;(3)2θ,3θ,4θ;(4)15°≤θ<18°. 【解析】 【分析】(1)由小棒与小棒在端点处互相垂直,即可得到答案;(2)根据等腰直角三角形的性质和三角形外角的性质,即可得到答案;(3)由121A A AA =,得∠AA 2A 1=∠A 2AA 1=θ,从而得213A A A ∠=∠AA 2A 1+∠A 2AA 1=2θ,同理得423 A A A ∠=∠A 2AA 1+231A A A ∠=θ+2θ=3θ,43 A A C ∠=∠A 2AA 1+243 A A A ∠=θ+3θ=4θ;(4)根据题意得:5θ<90°且6θ≥90°,进而即可得到答案. 【详解】(1)∵小棒与小棒在端点处互相垂直即可, ∴小棒能无限摆下去, 故答案是:能;(2)∵A 1A 2=A 2A 3,A 1A 2⊥A 2A 3, ∴∠A 2A 1A 3=45°, ∴∠AA 2A 1+θ=45°, ∵AA 1=A 1A 2∴∠AA 2A 1=∠BAC=θ, ∴θ=22.5°; (3)∵121A A AA =, ∴∠AA 2A 1=∠A 2AA 1=θ,∴213A A A ∠=∠AA 2A 1+∠A 2AA 1=2θ, ∵3122A A A A =,∴213A A A ∠=231A A A ∠=2θ,∴423A A A ∠=∠A 2AA 1+231A A A ∠=θ+2θ=3θ, ∵3342A A A A =,∴423A A A ∠=243 A A A ∠=3θ, ∴43A A C ∠=∠A 2AA 1+243 A A A ∠=θ+3θ=4θ, 故答案是:2θ,3θ,4θ;(4)由第(3)题可得:645A A A ∠=5θ,65 A A C ∠=6θ, ∵只能摆放5根小棒, ∴5θ<90°且6θ≥90°, ∴15°≤θ<18°. 故答案是:15°≤θ<18°.【点睛】本题主要考查等腰三角形的性质以及三角形外角的性质,掌握等腰三角形的底角相等且小于90°,是解题的关键.5.如图,在平面直角坐标系中,A(﹣3,0),点 B是 y轴正半轴上一动点,点C、D在 x 正半轴上.(1)如图,若∠BAO=60°,∠BCO=40°,BD、CE 是△ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长_____.(2)如图,△ABD是等边三角形,以线段BC为边在第一象限内作等边△BCQ,连接 QD并延长,交 y轴于点 P,当点 C运动到什么位置时,满足 PD=23DC?请求出点C的坐标;(3)如图,以AB为边在AB的下方作等边△ABP,点B在 y轴上运动时,求OP的最小值.【答案】(1)6;(2)C的坐标为(12,0);(3)3 2 .【解析】【分析】(1)作∠DCH=10°,CH 交BD 的延长线于H,分别证明△OBD≌△HCD 和△AOB≌△FHC,根据全等三角形的对应边相等解答;(2)证明△CBA≌△QBD,根据全等三角形的性质得到∠BDQ=∠BAC=60°,求出CD,得到答案;(3)以OA 为对称轴作等边△ADE,连接EP,并延长EP 交x 轴于点F.证明点P 在直线EF 上运动,根据垂线段最短解答.【详解】解:(1)作∠DCH =10°,CH 交 BD 的延长线于 H , ∵∠BAO =60°, ∴∠ABO =30°, ∴AB =2OA =6,∵∠BAO =60°,∠BCO =40°, ∴∠ABC =180°﹣60°﹣40°=80°, ∵BD 是△ABC 的角平分线, ∴∠ABD =∠CBD =40°,∴∠CBD =∠DCB ,∠OBD =40°﹣30°=10°, ∴DB =DC , 在△OBD 和△HCD 中,==OBD HCD DB DC ODC HDC ∠∠⎧⎪=⎨⎪∠∠⎩∴△OBD ≌△HCD (ASA ), ∴OB =HC , 在△AOB 和△FHC 中,==ABO FCH OB HC AOB FHC ∠∠⎧⎪=⎨⎪∠∠⎩∴△AOB ≌△FHC (ASA ), ∴CF=AB=6, 故答案为6;(2)∵△ABD 和△BCQ 是等边三角形, ∴∠ABD =∠CBQ =60°, ∴∠ABC =∠DBQ , 在△CBA 和△QBD 中,BA BD ABCDBQ BC BQ =⎧⎪∠=∠⎨⎪=⎩∴△CBA ≌△QBD (SAS ), ∴∠BDQ =∠BAC =60°, ∴∠PDO =60°, ∴PD =2DO =6, ∵PD =23DC , ∴DC =9,即 OC =OD+CD =12, ∴点 C 的坐标为(12,0);(3)如图3,以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点F . 由(2)得,△AEP ≌△ADB , ∴∠AEP =∠ADB =120°, ∴∠OEF =60°, ∴OF =OA =3,∴点P 在直线 EF 上运动,当 OP ⊥EF 时,OP 最小, ∴OP =12OF =32则OP 的最小值为32.【点睛】本题考查的是等边三角形的性质,全等三角形的判定和性质,垂线段最短,掌握全等三角形的判定定理和性质定理是解题的关键.6.如图,在平面直角坐标系中,点B 坐标为()6,0-,点A 是y 轴正半轴上一点,且10AB =,点P 是x 轴上位于点B 右侧的一个动点,设点P 的坐标为()0m ,.(1)点A 的坐标为___________;(2)当ABP △是等腰三角形时,求P 点的坐标;(3)如图2,过点P 作PE AB ⊥交线段AB 于点E ,连接OE ,若点A 关于直线OE 的对称点为A ',当点A '恰好落在直线PE 上时,BE =_____________.(直接写出答案) 【答案】(1)()0,8;(2)()4,0或()6,0或7,03⎛⎫ ⎪⎝⎭;(3)425【解析】 【分析】(1)根据勾股定理可以求出AO 的长,则可得出A 的坐标; (2)分三种情况讨论等腰三角形的情况,得出点P 的坐标; (3)根据PE AB ⊥,点A '在直线PE 上,得到EAGOPG ,利用点A ,A '关于直线OE 对称点,根据对称性,可证'OPG EAO ,可得'8OP OA ,82AP,设BE x =,则有6AE x ,根据勾股定理,有:22222BP BE EP AP AE解之即可. 【详解】解:(1)∵点B 坐标为6,0,点A 是y 轴正半轴上一点,且10AB =,∴ABO 是直角三角形,根据勾股定理有:22221068AOAB BO ,∴点A 的坐标为()0,8; (2)∵ABP △是等腰三角形, 当BPAB 时,如图一所示:OP BP BO,∴1064∴P点的坐标是()4,0;=时,如图二所示:当AP ABOP BO∴6∴P点的坐标是()6,0;=时,如图三所示:当AP BP设OP x =,则有6AP x∴根据勾股定理有:222OP AO AP += 即:22286x x解之得:73x =∴P 点的坐标是7,03; (3)当ABP △是钝角三角形时,点A '不存在; 当ABP △是锐角三角形时,如图四示:连接'OA ,∵PE AB ⊥,点A '在直线PE 上,∴AEG △和GOP 是直角三角形,EGAOGP∴EAGOPG ,∵点A ,A '关于直线OE 对称点, 根据对称性,有'8OA OA ,'EAEA∴'FAO FAO,'FAE FAE∴'EAGEAO则有:'OPG EAO∴'AOP 是等腰三角形,则有'8OP OA ,∴22228882APAO OP ,设BE x =,则有6AE x ,根据勾股定理,有:22222BP BE EP AP AE 即:2222688210x x解之得:425BE x【点睛】本题考查了三角形的综合问题,涉及的知识点有:解方程,等腰三角形的判定与性质,对称等知识点,能分类讨论,熟练运用各性质定理,是解题的关键.7.如图所示,已知ABC ∆中,10AB AC BC ===厘米,M 、N 分别从点A 、点B 同时出发,沿三角形的边运动,已知点M 的速度是1厘米/秒的速度,点N 的速度是2厘米/秒,当点N 第一次到达B 点时,M 、N 同时停止运动. (1)M 、N 同时运动几秒后,M 、N 两点重合? (2)M 、N 同时运动几秒后,可得等边三角形AMN ∆?(3)M 、N 在BC 边上运动时,能否得到以MN 为底边的等腰AMN ∆,如果存在,请求出此时M 、N 运动的时间?【答案】(1)10;(2)点M 、N 运动103秒后,可得到等边三角形AMN ∆;(3)当点M 、N 在BC 边上运动时,能得到以MN 为底边的等腰AMN ∆,此时M 、N 运动的时间为403秒. 【解析】 【分析】(1)设点M 、N 运动x 秒后,M 、N 两点重合,1102x x ⨯+=;(2)设点M 、N 运动t 秒后,可得到等边三角形AMN ∆,如图①,1AM t t =⨯=,102AN AB BN t =-=-根据等边三角形性质得102t t =-;(3)如图②,假设AMN ∆是等腰三角形,根据等腰三角形性质证ACB ∆是等边三角形,再证ACM ∆≌ABN ∆(AAS ),得CM BN =,设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,AMN ∆是等腰三角形,故10CM y =-,302NB y =-,由CM NB =,得10302y y -=-;【详解】解:(1)设点M 、N 运动x 秒后,M 、N 两点重合,1102x x ⨯+=解得:10x =(2)设点M 、N 运动t 秒后,可得到等边三角形AMN ∆,如图①1AM t t =⨯=,102AN AB BN t =-=-∵三角形AMN ∆是等边三角形 ∴102t t =- 解得103t =∴点M 、N 运动103秒后,可得到等边三角形AMN ∆. (3)当点M 、N 在BC 边上运动时,可以得到以MN 为底边的等腰三角形, 由(1)知10秒时M 、N 两点重合,恰好在C 处, 如图②,假设AMN ∆是等腰三角形, ∴AN AM =, ∴AMN ANM ∠=∠, ∴AMC ANB ∠=∠, ∵AB BC AC ==, ∴ACB ∆是等边三角形, ∴C B ∠=∠, 在ACM ∆和ABN ∆中,∵AC AB C B AMC ANB =⎧⎪∠=∠⎨⎪∠=∠⎩, ∴ACM ∆≌ABN ∆(AAS ), ∴CM BN =,设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,AMN ∆是等腰三角形, ∴10CM y =-,302NB y =-,CM NB =,10302y y -=-解得:403y =,故假设成立. ∴当点M 、N 在BC 边上运动时,能得到以MN 为底边的等腰AMN ∆,此时M 、N 运动的时间为403秒.【点睛】考核知识点:等边三角形判定和性质,全等三角形判定和性质.理解等腰三角形的判定和性质,把问题转化为方程问题是关键.8.(1)问题发现:如图1, ABC 和ADE 均为等边三角形,点B D E 、、在同一直线上,连接.CE①求证: BD CE =; ②求BEC ∠的度数.(2)拓展探究:如图2, AB C 和ADE 均为等腰直角三角形,90BAC DAE ∠=∠=︒,点B D E 、、在同一直线上AF ,为ADE 中DE 边上的高,连接.CE ①求BEC ∠的度数:②判断线段AF BE CE 、、之间的数量关系(直接写出结果即可).()3解决问题:如图3,AB 和ADE 均为等腰三角形,BAC DAE n ∠=∠=,点B D E 、、在同一直线上,连接CE .求AEC ∠的度数(用含n 的代数式表示,直接写出结果即可).【答案】(1)①证明见解析;②60°;(2)①90°;②BE =CE+2AF ;(3)∠AEC =90°+12n ︒. 【解析】 【分析】(1)根据等边三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=60°,根据SAS 进一步证明△BAD ≌△CAE,依据其性质可得 BD CE =,再根据对应角相等求出BEC ∠的度数;(2)根据等腰直角三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=90°,根据SAS 进一步证明△BAD ≌△CAE ,根据对应角相等求出BEC ∠的度数;因为DE=2AF,BD=EC,结合线段的和差关系得出结论;(3)根据等腰三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=n °,根据SAS 进一步证明△BAD ≌△CAE ,根据对应角相等求出得出∠ADB=BEC ∠的度数,结合内角和用n 表示∠ADE 的度数,即可得出结论. 【详解】(1)①∵△ABC 和△ADE 均为等边三角形(如图1), ∴ AB=AC ,AD=AE ,∠BAC=∠DAE=60°, ∴ ∠BAC-∠DAC=∠DAE-∠DAC , ∴ ∠BAD=∠CAE. ∴ △BAD ≌△CAE (SAS ) ∴ BD=CE.② 由△CAE ≌△BAD ,∴ ∠AEC=∠ADB=180°-∠ADE=120°.∴ ∠BEC=∠AEC-∠AED=120°-60°=60°. (2)①∵△ABC 和△ADE 均为等腰直角三角形(如图2), ∴ AB=AC ,AD=AE ,∠ADE=∠AED=45°,∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴ BD=CE,∠AEC=∠ADB=180°-∠ADE=135°. ∴∠BEC=∠AEC-∠AED=135°-45°=90°.② BE=CE+2AF.(3)如图3:∠AEC=90°+12n︒,理由如下,∵△ABC和△ADE均为等腰直角三角形,∴ AB=AC,AD=AE,∠ADE=∠AED=n°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴∠AEC=∠ADB=180°-∠ADE=180°-1801809022n n.∴∠AEC=90°+12n︒.【点睛】本题考查等边三角形、等腰直角三角形的性质及旋转型三角形全等,掌握全等常见模型及由特殊到一般找出解题规律是解答此题的关键.9.八年级的小明同学通到这样一道数学题目:△ABC为边长为4的等边三角形,E是边AB 边上任意一动点,点D在CB的延长线上,且满足AE=BD.(1)如图①,当点E 为AB 的中点时,DE = ;(2)如图②,点E 在运动过程中,DE 与EC 满足什么数量关系?请说明理由;(3)如图③,F 是AC 的中点,连接EF .在AB 边上是否存在点E ,使得DE +EF 值最小?若存在,求出这个最小值;若不存在,请说明理由.(直角三角形中,30°所对的边是斜边的一半)【答案】(1)23;(2)DE =CE ,理由见解析;(3)这个最小值为27;【解析】【分析】(1)如图①,过点E 作EH ⊥BC 于H ,由等边三角形的性质可得BE =DB =AE =2,由直角三角形的性质可求BH =1,EH 3=,由勾股定理可求解;(2)如图②,过E 作EF ∥BC 交AC 于F ,可证△AEF 是等边三角形,AE =EF =AF =BD ,由“SAS ”可证△DBE ≌△EFC ,可得DE =CE ;(3)如图③,将△ABC 沿AB 翻折得到△ABC ',连接C 'F 交AB 于点E ',连接CE ',DE ',过点F 作FH ⊥AC '于点H ,由“SAS ”可证△ACE '≌△AC 'E ',可得C 'E '=CE ',可得当点C ',点E ',点F 三点共线时,DE +EF 的值最小,由勾股定理可求最小值.【详解】(1)如图①,过点E 作EH ⊥BC 于H ,∵△ABC 为边长为4的等边三角形,点E 是AB 的中点,∴AE =BE =2=DB ,∠ABC =60°,且EH ⊥BC ,∴∠BEH =30°,∴BH =1,EH 3=3=∴DH =DB +BH =2+1=3,∴DE 2293DH EH =+=+=23故答案为:3(2)DE =CE.理由如下:如图②,过E 作EF ∥BC 交AC 于F .∵△ABC 是等边三角形,∴∠ABC =∠ACB =∠A =60°,AB =AC =BC.∵EF ∥BC ,∴∠AEF =∠ABC =60°,∠AFE =∠ACB =60°,∴∠AEF =∠AFE =∠A =60°,∴△AEF 是等边三角形,∴AE =EF =AF ,∴AB ﹣AE =AC ﹣AF ,∴BE =CF.∵∠ABC =∠ACB =∠AFE =60°,∴∠DBE =∠EFC =120°,且AE =EF =DB ,BE =CF ,∴△DBE ≌△EFC (SAS),∴DE =CE ,(3)如图③,将△ABC 沿AB 翻折得到△ABC ',连接C 'F 交AB 于点E ',连接CE ',DE ',过点F 作FH ⊥AC '于点H.∵将△ABC 沿AB 翻折得到△ABC ',∴AC =AC '=BC =BC '=4,∠BAC =∠BAC '=60°,且AE '=AE ',∴△ACE '≌△AC 'E '(SAS),∴C 'E '=CE ',由(2)可知:DE '=CE ',∴C 'E '=CE '=DE '.∵DE +EF =C 'E +EF =C 'E '+EF ,∴当点C ',点E ',点F 三点共线时,DE +EF 的值最小.∵F 是AC 的中点,∴AF =CF =2,且HF ⊥AC ',∠FAH =180°﹣∠CAB ﹣∠C 'AB =60°,∴AH =1,HF 3=3=∴C 'H =4+1=5,∴C 'F 22'253C H HF =+=+=27, ∴DE +EF 的最小值为27.【点睛】本题是三角形综合题,考查了等边三角形的判定和性质,直角三角形的性质,全等三角形的判定和性质,折叠的性质,添加恰当辅助线是解答本题的关键.10.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段....叫做这个三角形的三分线.(1)图①是顶角为36︒的等腰三角形,这个三角形的三分线已经画出,请你在图②中用不同于图①的方法画出顶角为36︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数(若两种方法分得的三角形成3对全等三角形,则视为同一种);(2)图③是顶角为45︒的等腰三角形,请你在图③中画出顶角为45︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(3)ABC 中,30B ∠=︒,AD 和DE 是ABC 的三分线,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,设c x ∠=︒,则x 所有可能的值为_________.【答案】(1)见详解;(2)见详解;(3)20或40.【解析】【分析】(1)作底角的平分线,再作底边的平行线,即可得到三分线;(2)过底角定点作对边的高,形成一个等腰直角三角形和一个直角三角形,然后再构造一个等腰直角三角形,即可.(3)根据题意,先确定30°角然后确定一边为BA ,一边为BC ,再固定BA 的长,进而确定D 点,分别考虑AD 为等腰三角形的腰和底边,画出示意图,列出关于x 的方程,即可得到答案.【详解】(1)如图所示:(2)如图所示:(3)①当AD=AE 时,如图4,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠ADE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30=2x+x ,解得:x=20;②当AD=DE 时,如图5,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠DAE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30+2x+x=180,解得:x=40.③当AE=DE 时,则∠EAD=∠EDA=1802(90)2x x -=-, ∴∠ADC=∠EDA+∠EDC=(90-x)+x=90°又∵∠ADC=30+30=60°,∴这种情况不存在.∴x 所有可能的值为20或40.故答案是:20或40图4 图5【点睛】本题主要考查等腰三角形的判定和性质定理的综合应用,分类讨论,画出图形,是解题的关键.。
(完整word版)八年级轴对称与对称轴提高压轴题_PDF压缩
轴对称压轴题1.问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接 A B′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为_________.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.2.(1)观察发现如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为_________.(2)实践运用如图(3):已知⊙O的直径CD为2,的度数为60°,点B是的中点,在直径CD上作出点P,使BP+AP 的值最小,则BP+AP的值最小,则BP+AP的最小值为_________.(3)拓展延伸如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN+MN的值最小,保留作图痕迹,不写作法.如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值:_________.4.(1)观察发现:如(a)图,若点A,B在直线l同侧,在直线l上找一点P,使AP+BP的值最小.做法如下:作点B关于直线l的对称点B',连接AB',与直线l的交点就是所求的点P.再如(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE 的最小值为_________.(2)实践运用:如(c)图,已知⊙O的直径CD为4,∠AOD的度数为60°,点B是的中点,在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.(3)拓展延伸:如(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留作图痕迹,不必写出作法.5.几何模型:条件:如下图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).模型应用:(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B 与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是_________;(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.6.如图,已知平面直角坐标系,A、B两点的坐标分别为A(2,﹣3),B(4,﹣1).(1)若P(p,0)是x轴上的一个动点,则当p=_________时,△PAB的周长最短;(2)若C(a,0),D(a+3,0)是x轴上的两个动点,则当a=_________时,四边形ABDC的周长最短;(3)设M,N分别为x轴和y轴上的动点,请问:是否存在这样的点M(m,0)、N(0,n),使四边形ABMN的周长最短?若存在,请求出m=_________,n=_________(不必写解答过程);若不存在,请说明理由.7.需要在高速公路旁边修建一个飞机场,使飞机场到A,B两个城市的距离之和最小,请作出机场的位置.8.如图所示,在一笔直的公路MN的同一旁有两个新开发区A,B,已知AB=10千米,直线AB与公路MN的夹角∠AON=30°,新开发区B到公路MN的距离BC=3千米.(1)新开发区A到公路MN的距离为_________;(2)现要在MN上某点P处向新开发区A,B修两条公路PA,PB,使点P到新开发区A,B的距离之和最短.此时PA+PB=_________(千米).9.如图:(1)若把图中小人平移,使点A平移到点B,请你在图中画出平移后的小人;(2)若图中小人是一名游泳者的位置,他要先游到岸边l上点P处喝水后,再游到B,但要使游泳的路程最短,试在图中画出点P的位置.10.如图,在直角坐标系中,等腰梯形ABB1A1的对称轴为y轴.(1)请画出:点A、B关于原点O的对称点A2、B2(应保留画图痕迹,不必写画法,也不必证明);(2)连接A1A2、B1B2(其中A2、B2为(1)中所画的点),试证明:x轴垂直平分线段A1A2、B1B2;(3)设线段AB两端点的坐标分别为A(﹣2,4)、B(﹣4,2),连接(1)中A2B2,试问在x轴上是否存在点C,使△A1B1C与△A2B2C的周长之和最小?若存在,求出点C的坐标(不必说明周长之和最小的理由);若不存在,请说明理由.11.某大型农场拟在公路L旁修建一个农产品储藏、加工厂,将该农场两个规模相同的水果生产基地A、B的水果集中进行储藏和技术加工,以提高经济效益.请你在图中标明加工厂所在的位置C,使A、B两地到加工厂C的运输路程之和最短.(要求:用尺规作图,保留作图痕迹,不写作法和证明)12.阅读理解如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠B n A n C的平分线A n B n+1折叠,点B n与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C 的平分线A1B2折叠,此时点B1与点C重合.探究发现(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?_________(填“是”或“不是”).(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为_________.应用提升(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.13.如图,△ABC中AB=AC,BC=6,,点P从点B出发沿射线BA移动,同时,点Q从点C出发沿线段AC的延长线移动,已知点P、Q移动的速度相同,PQ与直线BC相交于点D.(1)如图①,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线垂足为E,当点P、Q在移动的过程中,线段BE、DE、CD中是否存在长度保持不变的线段?请说明理由;14.(2012?东城区二模)已知:等边△ABC中,点O是边AC,BC的垂直平分线的交点,M,N分别在直线AC,BC上,且∠MON=60°.(1)如图1,当CM=CN时,M、N分别在边AC、BC上时,请写出AM、CN、MN三者之间的数量关系;(2)如图2,当CM≠CN时,M、N分别在边AC、BC上时,(1)中的结论是否仍然成立?若成立,请你加以证明;若不成立,请说明理由;(3)如图3,当点M在边AC上,点N在BC 的延长线上时,请直接写出线段AM、CN、MN三者之间的数量关系.15.如图,线段CD垂直平分线段AB,CA的延长线交BD的延长线于E,CB的延长线交AD的延长线于F,求证:DE=DF.16.如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.求证:(1)△ABC≌△DCB;(2)点M在BC的垂直平分线上.17.如图,△ABC的边BC的垂直平分线DE交△BAC的外角平分线AD于D,E为垂足,DF⊥AB于F,且AB >AC,求证:BF=AC+AF.18.已知△ABC的角平分线AP与边BC的垂直平分线PM相交于点P,作PK⊥AB,PL⊥AC,垂足分别是K、L,求证:BK=CL.19.某私营企业要修建一个加油站,如图,其设计要求是,加油站到两村A、B的距离必须相等,且到两条公路m、n的距离也必须相等,那么加油站应修在什么位置,在图上标出它的位置.(要有作图痕迹)20.如图,在△ABC中,AB=AC,∠A=120°,BC=9cm,AB的垂直平分线MN交BC于M,交AB于N,求BM 的长.21.如图,在△ABC中,∠BAC的平分线与BC的垂直平分线PQ相交于点P,过点P分别作PN⊥AB于N,PM⊥AC 于点M,求证:BN=CM.22.如图己知在△ABC中,∠C=90°,∠B=15°,DE垂直平分AB,E为垂足交BC于D,BD=16cm,求AC长.2013年10月初中数学组卷参考答案与试题解析一.解答题(共22小题)1.(2013?日照)问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接 A B′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为2.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.考点:轴对称-最短路线问题.分析:(1)找点A或点B关于CD的对称点,再连接其中一点的对称点和另一点,和MN的交点P就是所求作的位置.根据题意先求出∠C′AE,再根据勾股定理求出AE,即可得出PA+PB的最小值;(2)首先在斜边AC上截取AB′=AB,连结BB′,再过点B′作B′F⊥AB,垂足为F,交AD于E,连结BE,则线段B′F的长即为所求.解答:解:(1)作点B关于CD的对称点E,连接AE交CD于点P此时PA+PB最小,且等于AE.作直径AC′,连接C′E.根据垂径定理得弧BD=弧DE.∵∠ACD=30°,∴∠AOD=60°,∠DOE=30°,∴∠AOE=90°,∴∠C′AE=45°,又AC′为圆的直径,∴∠AEC′=90°,∴∠C′=∠C′AE=45°,∴C′E=AE=AC′=2,即AP+BP的最小值是2.故答案为:2;(2)如图,在斜边AC上截取AB′=AB,连结BB′.∵AD平分∠BAC,∴点B与点B′关于直线AD对称.过点B′作B′F⊥AB,垂足为F,交AD于E,连结BE,则线段B′F的长即为所求.(点到直线的距离最短)在Rt△AFB′中,∵∠BAC=45°,AB′=AB=10,sin45°=AB?sin45°=10×=5,∴B′F=AB′?∴BE+EF的最小值为.点评:此题主要考查了利用轴对称求最短路径问题以及锐角三角函数关系等知识,根据已知得出对应点P位置是解题关键.2.(2013?六盘水)(1)观察发现如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为.(2)实践运用如图(3):已知⊙O的直径CD为2,的度数为60°,点B是的中点,在直径CD上作出点P,使BP+AP 的值最小,则BP+AP的值最小,则BP+AP的最小值为.(3)拓展延伸如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN+MN的值最小,保留作图痕迹,不写作法.考点:圆的综合题;轴对称-最短路线问题.专题:压轴题.分析:(1)观察发现:利用作法得到CE的长为BP+PE的最小值;由AB=2,点E是AB的中点,根据等边三角形的性质得到CE⊥AB,∠BCE=∠BCA=30°,BE=1,再根据含30度的直角三角形三边的关系得CE=;(2)实践运用:过B点作弦BE⊥CD,连结AE交CD于P点,连结OB、OE、OA、PB,根据垂径定理得到CD平分BE,即点E与点B关于CD对称,则AE的长就是BP+AP的最小值;由于的度数为60°,点B是的中点得到∠BOC=30°,∠AOC=60°,所以∠AOE=60°+30°=90°,于是可判断△OAE为等腰直角三角形,则AE=OA=;(3)拓展延伸:分别作出点P关于AB和BC的对称点E和F,然后连结EF,EF交AB于M、交BC于N.解答:解:(1)观察发现如图(2),CE的长为BP+PE的最小值,∵在等边三角形ABC中,AB=2,点E是AB的中点∴CE⊥AB,∠BCE=∠BCA=30°,BE=1,∴CE=BE=;故答案为;(2)实践运用如图(3),过B点作弦BE⊥CD,连结AE交CD于P点,连结OB、OE、OA、PB,∵BE⊥CD,∴CD平分BE,即点E与点B关于CD对称,∵的度数为60°,点B是的中点,∴∠BOC=30°,∠AOC=60°,∴∠EOC=30°,∴∠AOE=60°+30°=90°,∵OA=OE=1,∴AE=OA=,∵AE的长就是BP+AP的最小值.故答案为;(3)拓展延伸如图(4).点评:本题考查了圆的综合题:弧、弦和圆心角之间的关系以及圆周角定理在有关圆的几何证明中经常用到,同时熟练掌握等边三角形的性质以及轴对称﹣最短路径问题.3.(2012?凉山州)在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值:8.考点:轴对称-最短路线问题.专题:压轴题.分析:(1)根据提供材料DE不变,只要求出DP+PE的最小值即可,作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求;(2)利用中位线性质以及勾股定理得出D′E的值,即可得出答案.解答:解:(1)作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求;(2)∵点D、E分别是AB、AC边的中点,∴DE为△ABC中位线,∵BC=6,BC边上的高为4,∴DE=3,DD′=4,∴D′E===5,∴△PDE周长的最小值为:DE+D′E=3+5=8,故答案为:8.点评:此题主要考查了利用轴对称求最短路径以及三角形中位线的知识,根据已知得出要求△PDE周长的最小值,求出DP+PE的最小值即可是解题关键.4.(2010?淮安)(1)观察发现:如(a)图,若点A,B在直线l同侧,在直线l上找一点P,使AP+BP的值最小.做法如下:作点B关于直线l的对称点B',连接AB',与直线l的交点就是所求的点P.再如(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE 的最小值为.(2)实践运用:如(c)图,已知⊙O的直径CD为4,∠AOD的度数为60°,点B是的中点,在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.(3)拓展延伸:如(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留作图痕迹,不必写出作法.考点:轴对称-最短路线问题.分析:(1)首先由等边三角形的性质知,CE⊥AB,在直角△BCE中,∠BEC=90°BC=2,BE=1,由勾股定理可求出CE的长度,从而得出结果;(2)要在直径CD上找一点P,使PA+PB的值最小,设A′是A关于CD的对称点,连接A′B,与CD的交点即为点P.此时PA+PB=A′B是最小值,可证△OA′B是等腰直角三角形,从而得出结果.(3)画点B关于AC的对称点B′,延长DB′交AC于点P.则点P即为所求.解答:解:(1)BP+PE的最小值===.(2)作点A关于CD的对称点A′,连接A′B,交CD于点P,连接OA′,AA′,OB.∵点A与A′关于CD对称,∠AOD的度数为60°,∴∠A′OD=∠AOD=60°,PA=PA′,∵点B是的中点,∴∠BOD=30°,∴∠A′OB=∠A′OD+∠BOD=90°,∵⊙O的直径CD为4,∴OA=OA′=2,∴A′B=2.∴PA+PB=PA′+PB=A′B=2.(3)如图d:首先过点B作BB′⊥AC于O,且OB=OB′,连接DB′并延长交AC于P.(由AC是BB′的垂直平分线,可得∠APB=∠APD).点评:此题主要考查轴对称﹣﹣最短路线问题,解决此类问题,一般都是运用轴对称的性质,将求折线问题转化为求线段问题,其说明最短的依据是三角形两边之和大于第三边.5.(2009?漳州)几何模型:条件:如下图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).模型应用:(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B 与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是;(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.考点:轴对称-最短路线问题.专题:压轴题;动点型.分析:(1)由题意易得PB+PE=PD+PE=DE,在△ADE中,根据勾股定理求得即可;(2)作A关于OB的对称点A′,连接A′C,交OB于P,求A′C的长,即是PA+PC的最小值;(3)作出点P关于直线OA的对称点M,关于直线OB的对称点N,连接MN,它分别与OA,OB的交点Q、R,这时三角形PEF的周长=MN,只要求MN的长就行了.解答:解:(1)∵四边形ABCD是正方形,∴AC垂直平分BD,∴PB=PD,由题意易得:PB+PE=PD+PE=DE,在△ADE中,根据勾股定理得,DE=;(2)作A关于OB的对称点A′,连接A′C,交OB于P,PA+PC的最小值即为A′C的长,∵∠AOC=60°∴∠A′OC=120°作OD⊥A′C于D,则∠A′OD=60°∵OA′=OA=2∴A′D=∴;(3)分别作点P关于OA、OB的对称点M、N,连接OM、ON、MN,MN交OA、OB于点Q、R,连接PR、PQ,此时△PQR周长的最小值等于MN.由轴对称性质可得,OM=ON=OP=10,∠MOA=∠POA,∠NOB=∠POB,∴∠MON=2∠AOB=2×45°=90°,在Rt△MON中,MN===10.即△PQR周长的最小值等于10.点评:此题综合性较强,主要考查有关轴对称﹣﹣最短路线的问题,综合应用了正方形、圆、等腰直角三角形的有关知识.6.(2006?湖州)如图,已知平面直角坐标系,A、B两点的坐标分别为A(2,﹣3),B(4,﹣1).(1)若P(p,0)是x轴上的一个动点,则当p=时,△PAB的周长最短;(2)若C(a,0),D(a+3,0)是x轴上的两个动点,则当a=时,四边形ABDC的周长最短;(3)设M,N分别为x轴和y轴上的动点,请问:是否存在这样的点M(m,0)、N(0,n),使四边形ABMN的周长最短?若存在,请求出m=,n=﹣(不必写解答过程);若不存在,请说明理由.考点:轴对称-最短路线问题;坐标与图形性质.专题:压轴题.分析:(1)根据题意,设出并找到B(4,﹣1)关于x轴的对称点是B',其坐标为(4,1),进而可得直线AB'的解析式,进而可得答案;(2)过A点作AE⊥x轴于点E,且延长AE,取A'E=AE.做点F(1,﹣1),连接A'F.利用两点间的线段最短,可知四边形ABDC的周长最短等于A'F+CD+AB,从而确定C点的坐标值.(3)根据对称轴的性质,可得存在使四边形ABMN周长最短的点M、N,当且仅当m=,n=﹣;时成立.解答:解:(1)设点B(4,﹣1)关于x轴的对称点是B',其坐标为(4,1),设直线AB'的解析式为y=kx+b,把A(2,﹣3),B'(4,1)代入得:,解得,∴y=2x﹣7,令y=0得x=,即p=.(2)过A点作AE⊥x轴于点E,且延长AE,取A'E=AE.做点F(1,﹣1),连接A'F.那么A'(2,3).直线A'F的解析式为,即y=4x﹣5,∵C点的坐标为(a,0),且在直线A'F上,∴a=.(3)存在使四边形ABMN周长最短的点M、N,作A关于y轴的对称点A′,作B关于x轴的对称点B′,连接A′B′,与x轴、y轴的交点即为点M、N,∴A′(﹣2,﹣3),B′(4,1),∴直线A′B′的解析式为:y=x﹣,∴M(,0),N(0,﹣).m=,n=﹣.点评:考查图形的轴对称在实际中的运用,同时考查了根据两点坐标求直线解析式,运用解析式求直线与坐标轴的交点等知识.7.(2007?庆阳)需要在高速公路旁边修建一个飞机场,使飞机场到A,B两个城市的距离之和最小,请作出机场的位置.考点:轴对称-最短路线问题.专题:作图题.分析:利用轴对称图形的性质可作点A关于公路的对称点A′,连接A′B,与公路的交点就是点P的位置.解答:解:点P就是飞机场所在的位置.(5分)点评:本题主要是利用轴对称图形来求最短的距离.用到的知识:两点之间线段最短.8.(2006?贵港)如图所示,在一笔直的公路MN的同一旁有两个新开发区A,B,已知AB=10千米,直线AB与公路MN的夹角∠AON=30°,新开发区B到公路MN的距离BC=3千米.(1)新开发区A到公路MN的距离为8;(2)现要在MN上某点P处向新开发区A,B修两条公路PA,PB,使点P到新开发区A,B的距离之和最短.此时PA+PB=14(千米).考点:轴对称-最短路线问题.专题:计算题;压轴题.分析:(1)先求出OB的长,从而得出OA的长,再根据三角函数求得到公路的距离.(2)根据切线的性质得EF=CD=BC=3,AF=AE+EF=AE+BC=11,再根据余弦概念求解.解答:解:(1)∵BC=3,∠AOC=30°,∴OB=6.过点A作AE⊥MN于点E,AO=AB+OB=16,∴AE=8.即新开发区A到公路的距离为8千米;(2)过D作DF⊥AE的延长线(点D是点B关于MN的对称点),垂足为F.则EF=CD=BC=3,AF=AE+EF=AE+BC=11,过B作BG⊥AE于G,∴BG=DF,∵BG=AB?cos30°=5,∴,连接PB,则PB=PD,∴PA+PB=PA+PD=AD=14(千米).点评:此题主要考查学生利用轴对称的性质来综合解三角形的能力.9.(2006?巴中)如图:(1)若把图中小人平移,使点A平移到点B,请你在图中画出平移后的小人;(2)若图中小人是一名游泳者的位置,他要先游到岸边l上点P处喝水后,再游到B,但要使游泳的路程最短,试在图中画出点P的位置.考点:轴对称-最短路线问题;作图-轴对称变换;作图-平移变换.专题:作图题.分析:根据平移的规律找到点B,再利用轴对称的性质和两点之间线段最短的性质,找到点A的对称点,连接A1B与l相交于点P,即为所求.解答:解:点评:本题考查的是平移变换与最短线路问题.最短线路问题一般是利用轴对称的性质解题,通过作轴对称图形,利用轴对称的性质和两点之间线段最短可求出所求的点.作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.10.(2003?泉州)如图,在直角坐标系中,等腰梯形ABB1A1的对称轴为y轴.(1)请画出:点A、B关于原点O的对称点A2、B2(应保留画图痕迹,不必写画法,也不必证明);(2)连接A1A2、B1B2(其中A2、B2为(1)中所画的点),试证明:x轴垂直平分线段A1A2、B1B2;(3)设线段AB两端点的坐标分别为A(﹣2,4)、B(﹣4,2),连接(1)中A2B2,试问在x轴上是否存在点C,使△A1B1C与△A2B2C的周长之和最小?若存在,求出点C的坐标(不必说明周长之和最小的理由);若不存在,请说明理由.考点:作图-轴对称变换;线段垂直平分线的性质;轴对称-最短路线问题.专题:作图题;证明题;压轴题;探究型.分析:(1)根据中心对称的方法,找点A2,B2,连接即可.(2)设A(x1,y1)、B(x2,y2)依题意与(1)可得A1(﹣x1,y1),B1(﹣x2,y2),A2(﹣x1,﹣y1),B2(﹣x2,﹣y2),得到A1、B1关于x轴的对称点是A2、B2,所以x轴垂直平分线段A1A2、B1B2.(3)根据A1与A2,B1与B2均关于x轴对称,连接A2B1交x轴于C,点C为所求的点.根据题意得B1(4,2),A2(2,﹣4)设直线A2B1的解析式为y=kx+b则利用待定系数法.解得,所以可求直线A2B1的解析式为y=3x﹣10.令y=0,得x=,所以C的坐标为(,0).即点C(,0)能使△A1B1C与△A2B2C的周长之和最小.解答:解:(1)如图,A2、B2为所求的点.(2)设A(x1,y1)、B(x2,y2)依题意与(1)可得A1(﹣x1,y1),B1(﹣x2,y2),A2(﹣x1,﹣y1),B2(﹣x2,﹣y2)∴A1、B1关于x轴的对称点是A2、B2,∴x轴垂直平分线段A1A2、B1B2.(3)存在符合题意的C点.由(2)知A1与A2,B1与B2均关于x轴对称,∴连接A2B1交x轴于C,点C为所求的点.∵A(﹣2,4),B(﹣4,2)依题意及(1)得:B1(4,2),A2(2,﹣4).设直线A2B1的解析式为y=kx+b则有解得∴直线A2B1的解析式为y=3x﹣10,令y=0,得x=,∴C的坐标为(,0)综上所述,点C(,0)能使△A1B1C与△A2B2C的周长之和最小.点评:主要考查了轴对称的作图和性质,以及垂直平分线的性质.要知道对称轴垂直平分对应点的连线.会根据此性质求得对应点利用待定系数法解一次函数的解析式是解题的关键.11.(2001?宜昌)某大型农场拟在公路L旁修建一个农产品储藏、加工厂,将该农场两个规模相同的水果生产基地A、B的水果集中进行储藏和技术加工,以提高经济效益.请你在图中标明加工厂所在的位置C,使A、B两地到加工厂C的运输路程之和最短.(要求:用尺规作图,保留作图痕迹,不写作法和证明)考点:轴对称-最短路线问题.专题:作图题.分析:作A关于直线L的对称点E,连接BE交直线L于C,则C为所求.解答:答:如图:.点评:本题主要考查对轴对称﹣最短路线的问题的理解和掌握,根据题意正确画出图形是解此题的关键,12.(2012?淮安)阅读理解如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠B n A n C的平分线A n B n+1折叠,点B n与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C 的平分线A1B2折叠,此时点B1与点C重合.探究发现(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?是(填“是”或“不是”).(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C.应用提升(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.考点:翻折变换(折叠问题).专题:压轴题;规律型.分析:(1)在小丽展示的情形二中,如图3,根据根据三角形的外角定理、折叠的性质推知∠B=2∠C;(2)根据折叠的性质、根据三角形的外角定理知∠A1A2B2=∠C+∠A2B2C=2∠C;根据四边形的外角定理知∠BAC+2∠B﹣2C=180°①,根据三角形ABC的内角和定理知∠BAC+∠B+∠C=180°②,由①②可以求得∠B=3∠C;利用数学归纳法,根据小丽展示的三种情形得出结论:∠B=n∠C;(3)利用(2)的结论知∠B=n∠C,∠BAC是△ABC的好角,∠C=n∠A,∠ABC是△ABC的好角,∠A=n∠B,∠BCA是△ABC的好角;然后三角形内角和定理可以求得另外两个角的度数可以是4、172;8、168;16、160;44、132;88°、88°.解答:解:(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是△ABC的好角;理由如下:小丽展示的情形二中,如图3,∵沿∠BAC的平分线AB1折叠,∴∠B=∠AA1B1;又∵将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合,∴∠A1B1C=∠C;∵∠AA1B1=∠C+∠A1B1C(外角定理),∴∠B=2∠C,∠BAC是△ABC的好角.故答案是:是;(2)∠B=3∠C;如图所示,在△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分,将余下部分沿∠B2A2C的平分线A2B3折叠,点B2与点C重合,则∠BAC是△ABC的好角.证明如下:∵根据折叠的性质知,∠B=∠AA1B1,∠C=∠A2B2C,∠A1 B1C=∠A1A2B2,∴根据三角形的外角定理知,∠A1A2B2=∠C+∠A2B2C=2∠C;∵根据四边形的外角定理知,∠BAC+∠B+∠AA1B1﹣∠A1 B1C=∠BAC+2∠B﹣2∠C=180°,根据三角形ABC的内角和定理知,∠BAC+∠B+∠C=180°,∴∠B=3∠C;由小丽展示的情形一知,当∠B=∠C时,∠BAC是△ABC的好角;由小丽展示的情形二知,当∠B=2∠C时,∠BAC是△ABC的好角;由小丽展示的情形三知,当∠B=3∠C时,∠BAC是△ABC的好角;故若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C;(3)由(2)知设∠A=4°,∵∠C是好角,∴∠B=4n°;∵∠A是好角,∴∠C=m∠B=4mn°,其中m、n为正整数得4+4n+4mn=180∴如果一个三角形的最小角是4°,三角形另外两个角的度数是4、172;8、168;16、160;44、132;88°、88°.点评:本题考查了翻折变换(折叠问题).解答此题时,充分利用了三角形内角和定理、三角形外角定理以及折叠的性质.难度较大.13.(2013?青羊区一模)如图,△ABC中AB=AC,BC=6,,点P从点B出发沿射线BA移动,同时,点Q从点C出发沿线段AC的延长线移动,已知点P、Q移动的速度相同,PQ与直线BC相交于点D.(1)如图①,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线垂足为E,当点P、Q在移动的过程中,线段BE、DE、CD中是否存在长度保持不变的线段?请说明理由;。
(完整word版)中考数学压轴题破解策略专题11《轴对称》
专题11《轴对称》破题策略成轴对称的两个图形全等;如果两个图形关于某条直线对称,那么对成轴是任何一对对应点所连线段的垂直平分线.通常所说的翻折实质上就是轴对称变换.图形沿着某条直线翻折,这条直线即为对称轴,利用轴对称的性质,再借助方程的知识就能很快解决问题.例题讲解例1 在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为点E,连接BE、DE,其中DE交直线AP于点F.(1)如图1,若∠PAB=20°,求∠ADF的度数;(2)如图2,若45°<∠PAB<90°,用等式表示AE、FE、FD之间的数量关系,并证明;解(1)如图3,连接AE,则∠PAE=∠PAB=20°,AE=AB.四边形ABCD为正方形∴∠BAD=90°,AB=AD∴∠EDA=130° ∴∠ADF=25°(2)如图4,连接AE,BF,BD,由轴对称知EF=BF,AE=AB=AD∴∠ABF=∠AEF=∠ADF,∴∠BFD=∠BAD=90° ∴BF2+FD2=BD2∴EF2+FD2=2AB22例 2 菱形纸片ABCD的边长为2,折叠菱形纸片,将B、D两点重合在对角线BD上的同一点处,折痕分别为EF、GH.当重合点在对角线BD上移动时,六边形AEFCHG的周长的变化情况是怎样的?小明发现:若∠ABC=60°,①如图1,当重合点在菱形的对称中心O处时,六边形AEFCHG的周长为_________;②如图2,当重合点在对角线BD上移动时,六边形AEFCHG的周长_________(填“改变”或“不变”).请帮助小明解决下面问题:如果菱形纸片ABCD 边长仍为2,改变∠ABC 的大小,折痕EF 的长为m .(1)如图3,若∠ABC =120°,则六边形AEFCHG 的周长为_________;(2)如图4,若∠ABC 的大小为α2,则六边形AEFCHG 的周长可表示为________.答案:(1)①6;②不变;(2)324 ;4+4sin .(1)如图1,因为EF =AB =FC =CH =AG =GH =1,所以周长为6.如图2,因为△EBF 、△GHD 为等边三角形,所以EF =BE ,GH =GD因为四边形FCDG 、AEHD 为平行四边形,所以FC =GD =DH =AE ,同理可得CH =BE =AG 所以周长不变(2)当∠ABC =120°时,EP =BE 3,GH =GD 3.因为AE =DH =DG =FC ,AG =BF =BE =CH所以六边形AEFCHG 的周长为AB +AD +BE 3+GD 3=4+23.当∠ABC =2α时,EF =2BE sin α,,GH =2DGE sin α所以六边形AEFCHG 的周长为4+4sin α例3 有一个数学活动,其具体操作过程是:第一步:对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展开(如图1);第二步:再一次折叠纸片,使点A 落在EF 上,并使折痕经过点B ,得到折痕BM ,同时得到线段BN (如图2).请解答以下问题:(1)如图2,若延长MN 交BC 于P ,△BMP 是什么三角形?请证明你的结论;(2)在图2中,若AB =a ,BC =b ,a 、b 满足什么关系,才能在矩形纸片ABCD 上剪出符合(1)中结论的三角形纸片BMP ?(3)设矩形ABCD 的边AB =2,BC =4,并建立如图3所示的直角坐标系.设直线BM ′为y =kx ,当∠M ′BC =60°时,求k 的值,此时,将△ABM ′沿BM ′折叠,点A 是否落在EF 上(E 、F 分别为AB 、CD 中点),为什么?解:(1)△BMP 是等边三角形连接AN∵EF 垂直平分AB ,∴AN =BN由折叠知AB =BN ,∴AN =AB =BN ,∴△ABN 为等边三角形,∴∠ABN =60°∴∠PBN =30°又∵∠ABM =∠NBM =30°,∠BNM =∠A =90°,∴∠BPN =60°,∠MBP =∠MBN +∠PBN =60°∴∠BMP =60°,∴∠MBP =∠BMP =∠BPM =60°∴△BMP 为等边三角形.(2)要在矩形纸片ABCD 上剪出等边△BMP ,则BC ≥BP在Rt△BNP 中,BN =BA =a ,∠PBN =30° ∴∴∴b a 23≤ 所以当b a 23≤时,在矩形上能剪出这样的等边△BMP .tan (3)∵∠M ′BC =60°,∴∠ABM ′=90°-60°=30°在Rt△ABM ′中,AB M A M AB '='∠tan ∴∴∴M ’(332,2),代入y =kx 中,得33322==k 设△ABM ′沿BM ′折叠后,点A 落在矩形ABCD 内的点为A ′,过A ′作A ′H ⊥BC 交BC 于H ∵△A ′BM ′≌△ABM ′,∴∠A 'BM '=∠ABM '=30°,A ′B =AB =2∴∠A 'BH =∠M 'BH -∠A 'BM '=30°在Rt△A ′BH 中,A ′H =21AB =1,BH =3 ∴∴A ′落在EF 上.进阶训练1.已知:在菱形ABCD 中,∠ADC =120°,E 是对角线AC 上一点,连结DE ,∠DEC =50°,将线段BC 绕点B 逆时针旋转50°并延长得到射线BF ,交ED 的廷长线于点G .求证:EG =B C .2.如图,有一矩形纸片ABCD ,AB =8,AD =17,将此矩形纸片折叠,使顶点A 落在BC 上的A '处,折痕所在直线同时经过边AB ,AD (包括端点),设BA '=x ,则x 的取值范围是______.3.如图,将正方形ABCD 翻折,使点B 落在CD 边上点E 处(不与C ,D 重合),压平 后得到折痕MN .设n CD CE 1=,则___________=BNAM (用含n 的式子表示).。
中考数学复习《轴对称》专项练习题-附带有答案
中考数学复习《轴对称》专项练习题-附带有答案一、单选题1.下列四个腾讯软件图标中,属于轴对称图形的是()A.B.C.D.2.如果等腰三角形两边长是6cm和3 cm,那么它的周长是()A.9 cm B.12 cm C.12cm或15cm D.15cm3.△ABC中,∠B=30°,∠C=50°,点B、点C分别在线段AD、AE的中垂线上,则∠EAD=()A.40°B.50°C.80°D.60°4.如图,在Rt△ABC中,∠C=90°,∠CAB=60°,AD平分∠CAB,点D到AB的距离为3.8,则BC的长为()A.3.8 B.7.6 C.11.4 D.11.25.如图,点D,E分别在等腰△ABC的腰AB,AC上,添加下列条件,不能判定△ABE≌△ACD的是()A.∠DCB=∠EBC B.∠ADC=∠AEB C.AD=AE D.BE=CD6.如图,在△ABC中,∠B=∠C=60,点D为AB边的中点,DE⊥BC于E,若BE=1,则AC的长为()A.2 B.√3C.4 D.2√37.如图,在△ABC中,AB的垂直平分线交AC于点D,交AB于点E,如果AC=5cm,BC=4cm那么△DBC 的周长是()A.6 cm B.7 cm C.8 cm D.9 cm8.邢台主城区持续打造“五分钟健身圈”,2023年底前将再建40家健身驿站,总数达到100家.如图,有三个小区的位置成三角形,现决定在三个小区之间修建一个健身驿站,使该驿站到三个小区的距离相等,则驿站应建在()A.三条中线的交点处B.三条角平分线的交点处C.三条高线的交点处D.三条边的垂直平分线的交点处二、填空题9.一个等腰三角形的底边长为 5,一腰上中线把其周长分成的两部分的差为 3,则这个等腰三角形的腰长为10.在△ABC中,AB=AC,∠A=50°,AB的垂直平分线DE交AC于D,垂足为E,则∠DBC的度数是.11.如图,正方形ABCD的边长为16,M在DC上,且DM=4,N是AC上的一动点,则DN+MN的最小值是.12.如图,在平面直角坐标系xOy中,点A(2,0),B(4,2),若点P在x轴下方,且以O,A,P为顶点的三角形与△OAB全等,则满足条件的P点的坐标是.13.如图,在△ABC中AB=AC,D是BC的中点,DE⊥AC,垂足为E,∠BAC=40°则∠ADE的度数为.三、解答题14.如图,在△ABC中,∠A=40°,AB=AC,点D为AC上任意一点,若△BCD是以BC为腰的等腰三角形,求∠BDC的度数.15.如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.16.如图所示,AD为△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点O.求证:AD 垂直平分EF.17.如图.(1)在网格中画出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(3)在y轴上确定一点P,使PA+PB最短.(只需作图保留作图痕迹)18.如图,已知△ABC和△CDE均为等边三角形,且点B、C、D在同一条直线上,连接AD、BE,交CE和AC分别于G、H点,连接GH.(1)请说出AD=BE的理由;(2)试说出△BCH≅△ACG的理由;(3)试猜想:△CGH是什么特殊的三角形,并加以说明.答案1.D2.D3.A4.C5.D6.C7.D8.D9.810.1511.2012.(4,−2)或(−2,−2)13.70°14.解:∵∠A=40°,AB=AC∴∠ABC=∠C=12(180°−∠A)=70°若△BCD是以BC为腰的等腰三角形,分两种情况:①当BC=BD时,∠BDC=∠C=70°;②当BC=CD时∠BDC=∠DBC=12(180°−∠C)=55°综上所述,∠BDC的度数为70°或55°15.证明:△ABC中∵AB=AC∴∠DBM=∠ECM∵M是BC的中点∴BM=CM在△BDM和△CEM中{BD=CE∠DBM=∠ECMBM=CM∴△BDM≌△CEM(SAS)∴MD=ME.16.∵AD为△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠AED=∠AFD=90°,∴∠DEF=∠DFE,∴∠AEF=∠AFE,∴AE=AF.∵AD为△ABC的角平分线,∴AD垂直平分EF.17.(1)解:如图所示:(2)解:A2(﹣3,﹣2),B2(﹣4,3),C2(﹣1,1)(3)解:连结AB1或BA1交y轴于点P,则点P即为所求18.(1)解:∵△ABC和△CDE均为等边三角形∴AC=BC DC=EC∠ACB=∠ECD=60°∴∠ECD+∠ACE=∠ACB+∠ACE即∠ACD=∠BCE在△ACD和△BCE中{AC=BC∠ACD=∠BCEDC=EC∴△ACD≅△BCE(SAS)∴AD=BE(2)解:由(1)已证:△ACD≅△BCE∴∠CBE=∠CAD,即∠CBH=∠CAG∵∠ACB=∠ECD=60°,点B、C、D在同一条直线上∴∠ACG= 180°−∠ACB−∠ECD=60°∴∠BCH=∠ACG=60°在△BCH和△ACG中(3)解:△CGH是等边三角形,理由如下:由(2)已证:△BCH≅△ACG∴CH=CG又∵∠ACG=60°∴△CGH是等边三角形(有一内角为60度的等腰三角形为等边三角形)。
重难专题11 轴对称有关的探究压轴题(解析版)
2023-2024学年八年级数学上册重难点突破专题11 轴对称有关的探究压轴题在ABC V 中,AB AC =,点D 是射线BC 上的一个动点(不与B 、C 重合),以AD 为一边向AD 的左侧作ADE V ,使AD AE =,DAE BAC Ð=Ð,过E 作BC 的平行线EF ,交直线AB 于点F 连接BE .(1)如图甲,若60ÐаDAE BAC ==,求证:BEF △是等边三角形;(2)若60DAE BAC Ð=й°,①如图乙,当点D 在线段BC 上移动,判断BEF △的形状,并说明理由;②当点D 在线段BC 的延长线上移动,BEF △是______三角形.【分析】(1)由题意可得AED △与ABC V 均为等边三角形,由等边三角形的性质可得60C ABC Ð=Ð=°,证明EAB DAC Ð=Ð,再由SAS 证明EAB DAC △≌△,得到==60EBA C Ðа,由平行线的性质可得60EFB ABC Ð=Ð=°,即可得证;(2)①由题意得AED △和ABC V 均为等腰三角形,由等腰三角形的性质可得C ABC Ð=Ð,证明EAB DAC Ð=Ð,再由SAS 证明EAB DAC △≌△,得到EBA C Ð=Ð,由平行线的性质可得EFB ABC Ð=Ð,即可得证;②由题意得AED △和ABC V 均为等腰三角形,由等腰三角形的性质可得ACB ABC Ð=Ð,证明EAB DAC Ð=Ð,再由SAS 证明EAB DAC △≌△,得到EBA DCA Ð=Ð,从而证得Ð=ÐEBF ACB ,由平行线的性质可得EFB ABC Ð=Ð,从而得到EBF EFB Ð=Ð,即可证得结论.【详解】(1)证明:AB AC =Q ,AD AE =,60BAC DAE Ð=Ð=°,AED \V 与ABC V 均为等边三角形,60C ABC \Ð=Ð=°,EAD BAD BAC BAD \Ð-Ð=Ð-Ð,即EAB DAC Ð=Ð,在EAB V 和DAC △中,AE AD EAD DAC AB AC =ìïÐ=Ðíï=î,()SAS EAB DAC \V V ≌,60EBA C \Ð=Ð=°,EF BC Q P ,60EFB ABC \Ð=Ð=°,60EFB EBF \Ð=Ð=°,EFB \△为等边三角形;(2)①BEF △为等腰三角形,理由如下:AB AC =Q ,AD AE =,AED \V 和ABC V 均为等腰三角形,C ABC \Ð=Ð,BAC DAE Ð=ÐQ ,EAD BAD BAC BAD \Ð-Ð=Ð-Ð,即EAB DAC Ð=Ð,在EAB V 和DAC △中,AE AD EAD DAC AB AC =ìïÐ=Ðíï=î,()SAS EAB DAC \V V ≌EBA C \Ð=Ð,EF BC Q P ,EFB ABC \Ð=Ð,ABC C Ð=ÐQ ,EBA EFB \Ð=Ð,EFB \△为等腰三角形;②BEF △为等腰三角形,如图所示:,AB AC=Q,AD AE=,AED\V和ABCV均为等腰三角形,ACB ABC\Ð=Ð,BAC DAEÐ=ÐQ,EAD BAD BAC BAD\Ð-Ð=Ð-Ð,即EAB DACÐ=Ð,在EABV和DAC△中,AE ADEAD DACAB AC=ìïÐ=Ðíï=î,()SASEAB DAC\V V≌EBA DCA\Ð=Ð,180EBA EBFÐ+Ð=°Q,180DCA ACBÐ+Ð=°,EBF ACB\Ð=Ð,EF BCQ P,EFB ABC\Ð=Ð,ABC ACBÐ=ÐQ,EBF EFB\Ð=Ð,EFB\△为等腰三角形,故答案为:等腰.如图①,在ABCV中,90BACÐ=°,AB AC=,直线MN过点A,且MN BC∥,点D是直线MN 上一点,不与点A重合(1)若点E 是图①中线段AB 上一点,且DE DA =,请判断线段DE 与DA 的位置关系,并说明理由;(2)如图②,在(1)的条件下,连接BD ,过点D 作DP DB ^交线段AC 于点P ,求证:ADP EDB ≌△△;(3)如图③,在图①的基础上,改变点D 的位置后,连接BD ,过点D 作DP DB ^交线段CA 的延长线于点P ,请判断线段DB 与DP 的数量关系,并说明理由【分析】(1)先求出=45ABC а,进而求出45BAM Ð=°,从而判断出90ADE Ð=°,即可得结论;(2)先判断出Ð=ÐADP BDE ,再判断出Ð=ÐBED PAD ,根据ASA 判断两个三角形全等;(3)过点D 作DF DA ^交线段AB 的延长线于点F ,判断出Ð=ÐPAD F ,再判断出Ð=ÐADP BDF ,根据ASA 判断两个三角形全等,然后由全等的性质即可得.【详解】(1)解:DE AD ^.证明:在ABC V 中,90BAC Ð=°,AB AC =,\45ABC C Ð=Ð=°,Q MN BC ∥,\45Ð=Ð=°MAB ABC ,Q DE DA =,\45Ð=Ð=°MAB DEA ,\90ADE Ð=°,\DE AD ^;(2)Q DP DB ^,\90BDE EDP Ð+Ð=°,Q DE AD ^,\90ADE Ð=°,90ADP EDP Ð+Ð=°,\Ð=ÐADP BDE ,Q BED Ð是ADE V 的外角,\9045135Ð=Ð+Ð=°+°=°BED EDA DAE ,Q 9045135Ð=Ð+Ð=°+°=°PAD PAE DAE ,\Ð=ÐBED PAD ,在EDB △和ADP △中,Q BDE ADP DE DABED PAD Ð=Ðìï=íïÐ=Ðî\≌V V EDB ADP ()ASA ;(3)如图:过点D 作DF DA ^交线段AB 的延长线于点F ,\90ADF Ð=°,Q 45DAB Ð=°,\45F Ð=°,DF DA =,Q 90CAB Ð=°,\45PAD Ð=°,\Ð=ÐPAD F ,Q DP DB ^,\90Ð+Ð=°BDA ADP Q DF AD ^,\90Ð+Ð=°BDA BDF ,\Ð=ÐADP BDF ,在FDB △和ADP △中,Q BDF ADP DF DAF PAD Ð=Ðìï=íïÐ=Ðî\EDB ADP V V ≌()ASA ,\DB DP =.如图(1),在ABC V 中,已知4cm AB BC CA ===,AD BC ^于D ,点P 、Q 分别从B 、C 两点同时出发,其中点P 沿BC 向终点C 运动,速度为1cm/s ;点Q 沿CA 、AB 向终点B 运动,速度为2cm/s ,设它们运动的时间为()s x .(1)当x = 时,PQ AC ^;(2)当02x <<时,求出使PQ AB ∥的x 值;(3)当24x <<时,①是否存在x ,使BPQ V 是直角三角形?若存在,请求出x 的值,若不存在,请说明理由; ②设PQ 与AD 交于点O ,探索:OP 与OQ 的关系,并说明理由.∵PQ AB ∥,∴60QPC B Ð=Ð=°,∴PCQ △为等边三角形,∴PC CQ =,即4x -∵AD BC ^,∴30QAH Ð=°,BD ∴(11222QH AQ x ==QOH POD QHO PDO QH PD Ð=ÐìïÐ=Ðíï=î,∴()AAS OQE OPD V V ≌,∴OP OQ =.1.如图,C 为线段AE 上一动点(不与点A E 、重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .(1)求证:BEC ADC △≌△ ;(2)求证:ACP BCQ △≌△;(3)判断PCQ △的形状,并说明理由.【分析】(1)由ABC V 和CDE V 是等边三角形可得60AC BC CD CE ABC DCE ==Ð=Ð=°,,,由ACB BCD DCE BCD Ð+Ð=Ð+Ð可得ACD BCE Ð=Ð,由“SAS ”即可证明BEC ADC △≌△;(2)由ABC V 和CDE V 是等边三角形可得60AC BC ABC DCE =Ð=Ð=°,,由180ACB BCD DCE Ð+Ð+Ð=°可得60BCD Ð=°,从而得到60ACP BCQ Ð=Ð=°,由BEC ADC △≌△可得CAP CBQ Ð=Ð,利用“ASA ”即可证明ACP BCQ △≌△;(3)由(2)可得:60PCQ Ð=°,由ACP BCQ △≌△,可得CP CQ =,从而即可得到答案.【详解】(1)证明:ABC QV 和CDE V 是等边三角形,60AC BC CD CE ABC DCE \==Ð=Ð=°,,,ACB BCD DCE BCD \Ð+Ð=Ð+Ð,ACD BCE ÐÐ\=,在BEC V 和ADC △中,AC BC ACD BCE CD CE =ìïÐ=Ðíï=î,()SAS BEC ADC \V V ≌;(2)证明:ABC QV 和CDE V 是等边三角形,60AC BC ABC DCE \=Ð=Ð=°,,180ACB BCD DCE Ð+Ð+Ð=°Q ,18060BCD ACB DCE \Ð=°-Ð-Ð=°,60ACP BCQ \Ð=Ð=°,BEC ADC QV V ≌,CAP CBQ \Ð=Ð,在ACP △和BCQ △中,CAP CBQ AC BCACP BCQ Ð=Ðìï=íïÐ=Ðî,()ASA ACP BCQ \V V ≌;(3)解:PCQ △为等边三角形,理由如下:由(2)可得:60PCQ Ð=°,Q ACP BCQ △≌△,CP CQ \=,PCQ \V 为等边三角形.2.如图1,等边ABC V 中,点D 为BC 中点,点E 为边AC 上一动点(不与点C 重合),CDE V 关于DE 的轴对称图形为FDE V.(1)如图1,当点F 在AC 上时,求证:DF AB ∥;(2)如图2,当点F 在ABC V 内部时,求BDF AEF Ð+Ð的度数;(3)如图3,当点F 在ABC V 外部,AC 上方时,直接写出BDF AEF Ð-Ð的度数.【分析】(1)由等边ABC V 得60A C Ð=Ð=°,由CDE V 关于DE 的轴对称图形为FDE V 得60DFE C Ð=Ð=°,即可证出结论.(2)由CDE V 关于DE 的轴对称图形为FDE V 得CD DF =,CE EF =,DCE DFE Ð=Ð,然后利用三角形的一个外角等于和它不相邻得两个内角的和,即可求出BDF AEF Ð+Ð的值.(3)由CDE V 关于DE 的轴对称图形为FDE V 得CD DF =,CE EF =,DCE DFE Ð=Ð,然后利用三角形的一个外角等于和它不相邻得两个内角的和,即可求出BDF AEF Ð-Ð的值.【详解】(1)证明:ABC QV 是等边三角形,60A C \Ð=Ð=°,CDE QV 关于DE 的轴对称图形为FDE V ,CDE FDE \≌V V ,60DFE C \Ð=Ð=°,DFE A \Ð=Ð,DF AB \∥;(2)解:连接CFAEF ÐQ 是CEF △的一个外角,AEF ECF EFC \Ð=Ð+Ð①,BDF ÐQ 是CDF V 的一个外角,BDF DCF DFC \Ð=Ð+Ð②,CDE QV 关于DE 的轴对称图形为FDE V ,CD DF \=,CE EF =,DCE DFE Ð=Ð,DCF DFC \Ð=Ð,ECF EFC Ð=Ð,由①+②得:2260120AEF BDF DCE DFE DCE Ð+Ð=Ð+Ð=Ð=´°=°.(3)120BDF AEF Ð-Ð=°,解:连接CF ,AEF ÐQ 是CEF △的一个外角,AEF ECF EFC \Ð=Ð+Ð①,BDF ÐQ 是CDF V 的一个外角,BDF DCF DFC \Ð=Ð+Ð②,CDE QV 关于DE 的轴对称图形为FDE V ,CD DF \=,CE EF =,DCE DFE Ð=Ð,DCF DFC \Ð=Ð,ECF EFC Ð=Ð,由-①②得:()22260120BDF AEF DCF FCE DCE Ð-Ð=Ð-Ð=Ð=´°=°.3.如图,ABC V 中,过点A ,B 分别作直线AM ,BN ,且AM BN ∥,过点C 作直线DE 交直线AM 于D ,交直线BN 于E .(1)如图1,若AC ,BC 分别平分DAB Ð和EBA Ð,求ACB Ð的度数;(2)在(1)的条件下,若1AD =,52BE =,求AB 的长;(3)如图2,若AC AB =,且60DEB BAC Ð=Ð=°,H 是EB 上一点,EH EC =,连接CH ,如果AD a =,BE b =,求BH 的长.(用含a ,b 的式子表示)【分析】(1)由AC ,BC 分别平分DAB Ð和EBA Ð,求出12CAB MAC MAB Ð=Ð=Ð,12CBA NBC NBA Ð=Ð=Ð,进而得出1()2BAC ABC MAB NBA Ð+Ð=Ð+,由AM BN ∥,得出180MAB NBA Ð+Ð=°,代入计算即可得到结果;(2)在AB 上取一点F ,使1AF AD ==,连接CF ,证明AFC ADC V V ≌,再证明BFC BEC △≌△,AB AF BF =+,代入计算即可求得结果;(3)在EB 上截取EH EC =,连接CH ,先证明V ECH ,ABC V 均为等边三角形,再证明DAC HBC △≌△,即可得到BH BE HE BE AD =-=-.【详解】(1)解:AC Q 平分MAB Ð,\12CAB MAC MAB Ð=Ð=Ð,同理,12CBA NBC NBA Ð=Ð=Ð,AM BN ∥Q ,180MAB NBA \Ð+Ð=°,\1()902BAC ABC MAB NBA Ð+Ð=Ð+=°,180()1809090ACB CAB ABC \Ð=°-Ð+Ð=°-°=°;(2)如图1,在AB 上取一点F ,使AF AD =,连接CF ,在AFC △和ADC △中,AF AD FAC DAC AC AC =ìïÐ=Ðíï=î,(SAS)AFC ADC \△≌△,ADC AFC \Ð=Ð,AM BN ∥Q,180AFC BFC Ð+Ð=°Q ,BFC BEC \Ð=Ð,在BFC △和BEC V 中,BFC BEC FBC EBC BC BC Ð=ÐìïÐ=Ðíï=î,(AAS)BFC BEC \△≌△,\52EB BF ==,\57122AB AF BF =+=+=;(3)如图2,AC AB =Q ,60BAC Ð=°,ABC \V 为等边三角形,AC BC \=,60ACB Ð=°,EC EH =Q ,60DEB Ð=°,ECH \V 为等边三角形,60ECH EHC \Ð=Ð=°,120BHC \Ð=°,AM BN ∥Q ,180ADC DEB \Ð+Ð=°,120ADC \Ð=°,ADC CHB \Ð=Ð,60DAC DCA Ð+Ð=°,180DCA ACB HCB ECH Ð+Ð+Ð+Ð=°Q,DAC HCB \Ð=Ð,(AAS)DAC HCB \△≌△,AD CH HE \==,BH BE HE BE AD b a \=-=-=-.4.如图1,在ABC V 中,90ABC Ð=°,AB BC =,点P 在线段BC 上(不与点B 、点C 重合)运动,以AP 为腰在AB 上方作等腰直角PAD V ,90PAD Ð=°,DE AC ^于点E ,且与AB 交于点M .(1)求证:A AMD PC V V ≌;(2)如图2,DM 交AP 于点N ,连接PM ,证明:2PM AE DM +=.【分析】()1由直角三角形的性质证出ADE PAC Ð=Ð,根据AAS 可证明A AMD PC V V ≌;()2过点A 作AG AM ^交DM 于点G ,用SAS 证明DAG PAM V V ≌,由全等三角形的性质证出DG PM =,则可得出结论.【详解】(1)证明:DAP QV 是等腰直角三角形,90DAP \Ð=°,DA AP =,DE AC ^Q ,90AED \Ð=°,90ADE DAE \Ð+Ð=°,90DAE PAC Ð+Ð=°Q ,ADE PAC \Ð=Ð,90ABC Ð=°Q ,AB AC =,45C BAC \Ð=Ð=°,45AME \Ð=°,在AMD V 和PCA V 中,AMD C ADM PAC AD AP Ð=ÐìïÐ=Ðíï=î,()AAS AMD PCA \V V ≌(2)证明:如下图,过点A 作AG AM ^交DM 于点G ,Q 在ABC V 中,90ABC Ð=°,AB BC =,45BAC \Ð=°,又DE AC ^Q ,AG AM ^,45AME \Ð=°,45AGM Ð=°,AG AM \=,AE GM ^Q ,\V AEG 和AME △都是等腰直角三角形,AE EG EM \==,2GM AE \=,90DAP GAM Ð=Ð=°Q ,DAG MAP \Ð=Ð,又DA AP =Q ,()SAS DAG PAM \V V ≌,DG PM \=,2PM AE DG GM DM\+=+=5.阅读下面材料:小明遇到这样一个问题:如图1,在ABC V 中,AD 平分BAC Ð,2ABC C Ð=Ð.求证:AC AB BD =+;小明通过思考发现,可以通过“截长、补短”两种方法解决问题:方法一:如图2,在AC 上截取AE ,使得AE AB =,连接DE ,可以得到全等三角形,进而解决问题.方法二:如图3,延长AB 到点E ,使得BE BD =,连接DE ,可以得到等腰三角形,进而解决问题.(1)根据阅读材料,任选一种方法证明AC AB BD =+,根据自己的解题经验或参考小明的方法,解决下面的问题;(2)如图4,四边形ABCD 中,E 是BC 上一点,EA ED =,2DCB B Ð=Ð,90DAE B Ð+Ð=°,探究DC CE BE 、、之间的数量关系,并证明.(3)活学活用如图5,AC BD 、是四边形ABCD 的对角线,60ACB ACD ABD ADB Ð=Ð=Ð=Ð=°,求证:AC BC CD =+.(4)思维拓展如图6,在ABC V 中,30B Ð=°,点D 是BC 的中点,DE BC ^交AB 于点E ,点O 在DE 上,OA OC =,请直接写出DO ,OE ,AE 三者之间的数量关系 .【分析】(1)方法一:证明ABD AED ≌V V 得到BD ED =,2AED ABC C Ð=Ð=Ð,根据三角形的外角性质和等腰三角形的判定证得ED EC =,则BD EC =,进而可得结论;方法二:先根据等腰三角形的性质和外角性质证得E C Ð=Ð,再证明()AAS EAD CAD V V ≌得到AE AC =,进而可得结论;(2)先根据等腰三角形的性质和外角性质证得AEB CDE Ð=Ð,再证明()SAS AEF EDC ≌V V ,得到AF CE =,2AFE C B Ð=Ð=Ð,再根据等腰三角形的判定和外角性质证得BF AF =,则BF CE =,进而可得结论;(3)如图5所示:延长CB 到E ,使BE CD =,连接AE ,先根据已知和等边三角形的判定与性质证明ABD △是等边三角形得到AB AD =,再利用三角形的内角和定理推导出ABE ADC Ð=Ð,进而证明()SAS ABE ADC ≌V V 得到AE AC =,60AEC ACD Ð=Ð=°,证明ACE △是等边三角形得到CE AC =,进而可得结论;(4)如图6,连接BO ,过点O 作OF AB ^,根据含30度角的直角三角形的性质得到2BE DE =,60DEB Ð=°,再根据线段垂直平分线的性质和等腰三角形的性质CO BO = BF AF =,再求得12EF OE =,进而得到122AF BF BE EF DE OE ==-=-,然后由2AE AF EF DO OE =-=+得结论.【详解】(1)证明:方法一:∵AD 平分BAC Ð,∴BAD CAD Ð=Ð,在BAD V 和EAD V 中,AD AD =,BAD EAD Ð=Ð,AB AE =,∴()SAS ABD AED V V ≌∴BD ED =,2AED ABC C Ð=Ð=Ð,∵AED C EDC Ð=Ð+Ð,∴EDC C Ð=Ð,∴ED EC =,∴BD EC =,∴AC AB BD =+;方法二:如图3,延长AB 到点E ,使得BE BD =,连接DE ,∴E BDE Ð=Ð,则2ABD E BDE E Ð=Ð+Ð=Ð,∵2ABC C Ð=Ð,∴E C Ð=Ð,∵AD 平分BAC Ð,∴BAD CAD Ð=Ð,在EAD V 和CAD V 中,EAD CAD Ð=Ð,E C Ð=Ð,AD AD =,∴()AAS EAD CAD V V ≌,∴AE AC =,∵AE AB BE =+,∴AC AB BD =+;(2)解:BE DC CE =+,证明:在EB 上截取EF ,使得EF DC =,连接AF ,∵EA ED =,∴EAD EDA Ð=Ð,∴2180DAE AED Ð=°-Ð,∵90DAE B Ð+Ð=°,∴22180DAE B Ð+Ð=°,∴2AED B C Ð=Ð=Ð,∵BED CDE C AEB AED Ð=Ð+Ð=Ð+Ð,∴AEB CDE Ð=Ð,在AEF △和EDC △中,EF DC =,AEF CDE Ð=Ð,AE DE =,∴()SAS AEF EDC ≌V V ,∴AF CE =,2AFE C B Ð=Ð=Ð,∵AFE B BAF Ð=Ð+Ð,∴B BAF Ð=Ð,∴BF AF =,则BF CE =,∴BE DC CE =+;(3)解:如图5所示:延长CB 到E ,使BE CD =,连接AE ,∵60ACB ACD ABD ADB Ð=Ð=Ð=Ð=°,∴180180606060BAD ABD ADB Ð=°-Ð-Ð=°-°-°=°,∴60BAD ABD ADB Ð=Ð=Ð=°,∴ABD △是等边三角形,∴AB AD =,∵60ACB ACD ABD ADB Ð=Ð=Ð=Ð=°,∴120BCD Ð=°,∴18060120ABE CBD CBDÐ=°-°-Ð=°-Ð,()60180120120ADC CBD CBD Ð=°+°-°-Ð=°-Ð,∴ABE ADC Ð=Ð,又AB AD =,BE CD =,∴()SAS ABE ADC ≌V V ,∴AE AC =,60AEC ACD Ð=Ð=°,∴ACE △是等边三角形,则CE AC =,∵CE BC BE BC CD =+=+,∴AC BC CD =+;(4)解:如图6,连接BO ,过点O 作OF AB ^,∵30B Ð=°,DE BC ^,∴2BE DE =,60DEB Ð=°,∵点D 是BC 的中点,DE BC ^,∴CO BO =,又CO AO =,∴AO BO =,又OF AB ^,∴BF AF =,∵OF AB ^,60OEF Ð=°,∴30EOF Ð=°,∴12EF OE =,∴122AF BF BE EF DE OE ==-=-,∴11222222AE AF EF DE OE OE DO OE OE DO OE =-=--=+=+-,故答案为:2AE DO OE =+.6.在ABC V 中,90ACB Ð=°,AC BC =,直线l 经过点C ,AE l ^于点E ,BF l ^于点F .(1)操作发现:若直线l 不与线段AB 相交,如图①所示,你能发现线段CE 与BF 之间的数量关系吗?并证明你发现的结论.(2)类比猜想:若直线l 绕点C 旋转到与线段AB 相交,如图②所示,猜想(1)中的结论是否仍然成立?并说明理由.(3)拓展探究:Ⅰ:如图③所示,直线l 不与线段AB 相交,点M 是AB 的中点,连接ME ,MF ,试探究MEF V 的形状,并说明理由.Ⅱ:如图④所示,直线l 绕点C 旋转到与线段AB 相交,且AE BF >,点M 是AB 的中点,连接ME ,MF .请判断MEF V 的形状:______.【分析】(1)通过证明()AAS AEC CFB △≌△即可解答;(2)通过证明()AAS AEC CFB △≌△即可解答;(3)Ⅰ:通过证明()ECM FBM SAS V V ≌可得EM FM =,EMC FMB Ð=Ð,再根据等腰三角形的性质可等量代换可得90EMF Ð=°,即可说明MEF V 是等腰直角三角形;Ⅱ:方法同Ⅰ.【详解】(1)解:发现结论:CE BF =,证明如下:∵AE l ^,BF l ^,∴90AEC CFB Ð=Ð=°,∴90ACE EAC Ð+Ð=°,又∵90ACB Ð=°,∴90ACE BCF Ð+Ð=°,∴EAC BCF Ð=Ð,在AEC △和CFB V 中,AEC CFB EAC BCF AC BC Ð=ÐìïÐ=Ðíï=î,∴()AAS AEC CFB △≌△,∴CE BF =.(2)解:猜想(1)中的结论仍然成立,即CE BF =,理由如下:∵AE l ^,BF l ^ ,∴90AEC CFB Ð=Ð=°,∴90ACE EAC Ð+Ð=°,又∵90ACB Ð=°,∴90ACE BCF Ð+Ð=°,∴EAC BCF Ð=Ð,在AEC △和CFB V 中,AEC CFB EAC BCF AC BC Ð=ÐìïÐ=Ðíï=î,∴()AAS AEC CFB △≌△,∴CE BF =.(3)解:如图③,连接CM ,由(1)知AEC CFB V V ≌,∴CE BF =,ECA FBC Ð=Ð,∵在ABC V 中,90ACB Ð=°,AC BC =,点M 是AB 的中点∴45CAB CBA ACM BCM Ð=Ð=Ð=Ð=°∴ECA ACM FBC CBA Ð+Ð=Ð+Ð,CM BM =,即ECM FBMÐ=Ð在ECM V 和FBM V 中EC BF ECM FBM CM BM =ìïÐ=Ðíï=î,∴()SAS ECM FBM V V ≌,∴EM FM =,EMC FMBÐ=Ð∵AC BC =,点M 是的中点∴90CMB Ð=°,即90CMF FMB Ð+Ð=°∴90CMF EMC Ð+Ð=°,即90EMF Ð=°∴MEF V 是等腰直角三角形;Ⅱ:MEF V 是等腰直角三角形,理由如下:解:如图④,连接CM ,由(1)知AEC CFB V V ≌,∴CE BF =,ECA FBC Ð=Ð,∵在ABC V 中,90ACB Ð=°,AC BC =,点M 是AB 的中点∴45CAB CBA ACM BCM Ð=Ð=Ð=Ð=°∴ECA ACM FBC CBA Ð+Ð=Ð+Ð,CM BM =,即ECM FBMÐ=Ð在ECM V 和FBM V 中EC BF ECM FBM CM BM =ìïÐ=Ðíï=î,∴()SAS ECM FBM V V ≌,∴EM FM =,EMC FMB Ð=Ð,∵AC BC =,点M 是AB 的中点,∴90CMB Ð=°,即90CME EMB Ð+Ð=°∴90BMF EMB Ð+Ð=°,即90EMF Ð=°∴MEF V 是等腰直角三角形.7.ABC V 是等边三角形,点D 是AC 边上动点,()030CBD Ða a °=<<°,把ABD △沿BD 对折,得到A BD ¢V .(1)如图1,若15a =°,则CBA Т= °.(2)如图2,点P 在BD 延长线上,且DAP DBC a Ð=Ð=.①连接CP ,试探究AP ,BP ,CP 之间是否存在一定数量关系,猜想并说明理由.②连接CA ¢,若A ¢,C ,P 三点共线,10BP =,1CP =,求CA ¢的长.【分析】(1)利用等边三角形的性质和折叠的性质可求60A BD ABD α¢Ð=Ð=°-,进而求出602CBA a ¢Ð=°-,然后把a 代入即可求解;(2)①在BP 上取一点P ¢,使得BP AP ¢=,连接CP ¢,先证明BCP ACP ¢≌V V ,得到BCP ACP ¢Ð=Ð,CP CP ¢=,再证明PCP ¢△是等边三角形,得到CP PP ¢=,即可得到AP 、BP 、CP 之间的数量关系;②根据折叠的性质可知,ADB A DB ¢Ð=Ð,AD A D ¢=,易证()SAS ADP A DP ¢≌V V ,得到9AP A P ¢==,再利用三点共线,得到AP CA CP ¢=+,即可求出CA ¢的长.【详解】(1)解:∵ABC V 是等边三角形,∴60ABC Ð=°,∵CBD a Ð=,ABD △沿BD 对折得到A BD ¢V ,∴A BD ABD ABC α¢Ð=Ð=Ð-,∴2602CBA A BD αABC αα¢¢Ð=Ð-=Ð-=°-,∵15a =°,∴6021530CBA ¢Ð=°-´°=°,故答案为:30;(2)解:①BP AP CP +=,理由如下:如图1,连接CP ,在BP 上取一点P ¢,使BP AP ¢=,∵ABC V 是等边三角形,∴60ACB Ð=°,BC AC =,∵DAP DBC a Ð=Ð=,∴()SAS BP C APC ¢≌V V ,∴CP CP ¢=,BCP ACP ¢Ð=Ð,∴60PCP ACP ACP BCP ACP ACB ¢¢¢¢ÐÐ+=Ð+Ð=Ð=°=,∵CP CP ¢=,∴CPP ¢V 是等边三角形,∴60CPB Ð=°,PP CP ¢=,∴BP BP PP AP CP ¢¢=+=+,即BP AP CP =+;②如图2,∵点A ¢、C 、P 在同一直线上,即PA PC CA ¢¢+=,由折叠知,BA BA ¢=,ADB A DB ¢ÐÐ=,∴180180ADB A DB ¢°-Ð=°-Ð,∴ADP A DP ¢ÐÐ=,∵DP DP =,∴()SAS ADP A DP ¢≌V V ,∴A P AP ¢=,由①知,BP AP CP +=,∵10BP =,1CP =,∴1019AP BP CP =-=-=,∴9A P AP ¢==,∴918CA A P CP ¢¢=-=-=.8.课堂上老师给出了以下命题:等腰三角形的顶角等于腰上的高与底边所夹的角的二倍.聪明的小刚通过特例等边三角形说明了这一问题:“如图1,在等边ABC V 中,顶角60A Ð=°,腰与腰上的高所夹的角30CBH Ð=°,所以顶角等于腰上的高与底边所夹的角的二倍.”(1)小明写出了已知和求证:“如图2,在ABC V 中,AB AC =,90BHC Ð=°.求证:2CAB CBH Ð=Ð.”并提出了自己的想法,过点A 作AG BC ^,垂足为G ,即可证明.请你帮助小明完成证明.(2)小丽受到启发有了自己的想法,如图3,过点B 作射线BG 交AC 于点G ,使GBH CBH Ð=Ð,即可说明2A CBH Ð=Ð.请根据以上思路写出证明过程.(3)根据上面两位同学的解法,添加合适的辅助线可以有效地解决几何问题.如图4,在等边ABC V 中,E 是边AC 上一定点,D 是线段BC 上一动点,以DE 为边作等边DEF V ,连接CF ,试说明:CE CF CD +=.【分析】(1)可证2CAB CAG Ð=Ð,=90AGC а,从而可证CAG CBH Ð=Ð,即可得证.(2)可证BHC BHG ≌V V ,可得BGH C Ð=Ð,可证BGH ABC Ð=Ð,从而可证A GBC Ð=Ð,即可求证.(3)在CD 边上取点G ,使得CG CE =,可证EGC V 为等边三角形,可得EG EC =,60GEC Ð=°,DEG FEC ≌V V ,可得DG CF =,即可得证.【详解】(1)证明:Q AG BC ^,AB AC =,\2CAB CAG Ð=Ð,=90AGC а,\90CAG C Ð+Ð=°,Q 90BHC Ð=°,\90CBH C Ð+Ð=°,\CAG CBH Ð=Ð,\2CAB CBH Ð=Ð.(2)证明:由(1)得:90BHG BHC Ð=Ð=°,在BHC △和BHG V 中,GBH CBH BH BHBHG BHC Ð=Ðìï=íïÐ=Ðî,\BHC BHG ≌V V (ASA ),\BGH C Ð=Ð,Q AB AC =,\ABC C Ð=Ð,\BGH ABC Ð=Ð,Q BGH A ABG Ð=Ð+Ð,\A BGH ABGÐ=Ð-ÐABC ABG =Ð-Ð,Q GBC ABC ABG Ð=Ð-Ð,\A GBC Ð=Ð,\2A CBH Ð=Ð.(3)证明:如图,在CD 边上取点G ,使得CG CE =,Q ABC V 是等边三角形,∴60ACB Ð=°,Q CG CE =,\EGC V 为等边三角形,\EG EC =,60GEC Ð=°,Q DEF V 为等边三角形,\DE EF =,60DEF GEC Ð=Ð=°,\DEF FEG GEC FEG Ð-Ð=Ð-Ð,\DEG FEC Ð=Ð,在DEG △和FEC V 中,DE EF DEG FEC EG EC =ìïÐ=Ðíï=î,\DEG FEC ≌V V (SAS ),\DG CF =,\CE CF CG DG +=+,\CG DG CD +=.。
中考压轴题之轴对称2
中考压轴题之轴对称(折叠)问题轴对称、平移、旋转是平面几何的三大变换.由一个平面图形变为另一个平面图形,并使这两个图形关于某一条直线成轴对称,这样的图形改变叫做图形的轴对称变换.轴对称具有这样的重要性质:(1)成轴对称的两个图形全等;(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.中考压轴题中轴对称(折叠)问题,包括有关三角形的轴对称性问题;有关四边形的轴对称性问题;有关圆的轴对称性问题;有关利用轴对称性求最值问题;有关平面解析几何中图形的轴对称性问题.原创模拟预测题1.如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点.若MN=1,则△PMN周长的最小值为()A.4 B.5 C.6 D.7【答案】B.【解析】试题分析:作N关于AB的对称点N′,连接MN′,NN′,ON′,ON.∵N关于AB的对称点N′,∴MN′与AB的交点P′即为△PMN周长的最小时的点,∵N是弧MB的中点,∴∠A=∠NOB=∠MON=20°,∴∠MON′=60°,∴△MON′为等边三角形,∴MN′=OM=4,∴△PMN 周长的最小值为4+1=5.故选B.考点:轴对称-最短路线问题;圆周角定理;综合题.原创模拟预测题2.如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC 折叠,使点C与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=()A.34B.45C.56D.67【答案】B.【解析】考点:翻折变换(折叠问题);相似三角形的判定与性质;综合题.原创模拟预测题3.如图,在矩形OABC中,OA=8,OC=4,沿对角线OB折叠后,点A 与点D重合,OD与BC交于点E,则点D的坐标是()A.(4,8)B.(5,8)C.(245,325)D.(225,365)【答案】C.【解析】考点:翻折变换(折叠问题);坐标与图形性质;综合题.原创模拟预测题4.如图,矩形纸片ABCD 中,AB =4,BC =8,将纸片沿EF 折叠,使点C 与点A 重合,则下列结论错误的是( )A .AF =AEB .△ABE ≌△AGFC .EF =25D .AF =EF【答案】D .【解析】试题分析:∵AD ∥BC ,∴∠AFE=∠FEC ,∵∠AEF=∠FEC ,∴∠AFE=∠AEF ,∴AF=AE ,∴选项A 正确;∵ABCD 是矩形,∴AB=CD ,∠B=∠C=90°,∵AG=DC ,∠G=∠C ,∴∠B=∠G=90°,AB=AG ,∵AE=AF ,∴△ABE ≌△AGF ,∴选项B 正确;[来源:]设BE=x ,则CE=BC ﹣BE=8﹣x ,∵沿EF 翻折后点C 与点A 重合,∴AE=CE=8﹣x ,在Rt △ABE 中,222AB BE AE +=,即2224(8)x x +=-,解得x=3,∴AE=8﹣3=5,由翻折的性质得,∠AEF=∠CEF ,∵矩形ABCD 的对边AD ∥BC ,∴∠AFE=∠CEF ,∴∠AEF=∠AFE ,∴AE=AF=5,过点E 作EH ⊥AD 于H ,则四边形ABEH 是矩形,∴EH=AB=4,AH=BE=3,∴FH=AF ﹣AH=5﹣3=2,在Rt △EFH 中,EF=25C 正确; 由已知条件无法确定AF 和EF 的关系,故选D .考点:翻折变换(折叠问题);综合题;压轴题.原创模拟预测题5.如图,在矩形ABCD 中,AB=10,BC=5.若点M 、N 分别是线段ACAB 上的两个动点,则BM+MN 的最小值为( )[来源:学科网ZXXK]A .10B .8C .53D .6[来源:学§科§网]【答案】B .【解析】试题分析:如图所示:由题意可得出:作C 点关于BD 对称点C′,交BD 于点E ,连接BC′,过点C′作C′N ⊥BC 于点N ,交BD 于点M ,连接MC ,此时CM+NM=C′N 最小,∵AB=10,BC=5,在Rt △BCD 中,由勾股定理得:BD=22BC CD +=55,∵S △BCD=12BC•CD=12BD•CE ,∴CE=BC CD BD ⋅=10555⨯=25,∵CC′=2CE ,∴CC′=45,∵NC′⊥BC ,DC ⊥BC ,CE ⊥BD ,∴∠BNC′=∠BCD=∠BEC=∠BEC′=90°,∴∠CC′N+∠NCC′=∠CBD+∠NCC′=90°,∴∠CC′N=∠CBD ,∴△BCD ∽△C′NC ,∴''CC NC BDBC =,即45'1055NC =,∴NC′=8,即BM+MN 的最小值为8.故选B .考点:轴对称-最短路线问题;综合题;最值问题;压轴题. 原创模拟预测题6.如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A2处,称为第1次操作,折痕DE 到BC 的距离记为h1;还原纸片后,再将△ADE 沿着过AD 中点D1的直线折叠,使点A 落在DE 边上的A2处,称为第2次操作,折痕D1E1到BC 的距离记为h2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D2014E2014到BC 的距离记为h2015,到BC 的距离记为h2015.若h1=1,则h2015的值为( )A .201521B .201421C .2015211-D .2014212-【答案】D .考点:相似三角形的判定与性质;三角形中位线定理;翻折变换(折叠问题);规律型;综合题.原创模拟预测题7.如图,AC 是矩形ABCD 的对角线,⊙O 是△ABC 的内切圆,现将矩形ABCD 按如图所示的方式折叠,使点D 与点O 重合,折痕为FG .点F ,G 分别在边AD ,BC 上,连结OG ,DG .若OG ⊥DG ,且⊙O 的半径长为1,则下列结论不成立的是( )A.CD+DF=4 B.CD﹣DF=233-C.BC+AB=234+D.BC﹣AB=2【答案】A.【解析】试题分析:如图,设⊙O与BC的切点为M,连接MO并延长MO交AD于点N,∵将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,∴OG=DG,∵OG⊥DG,∴∠MGO+∠DGC=90°,∵∠MOG+∠MGO=90°,∴∠MOG=∠DGC,在△OMG和△GCD中,∵∠OMG=∠DCG=90°,∠MOGA=∠DGC,OG=DG,∴△OMG≌△GCD,∴OM=GC=1,CD=GM=BC﹣BM﹣GC=BC﹣2.∵AB=CD,∴BC﹣AB=2.设AB=a,BC=b,AC=c,⊙O的半径为r,⊙O是Rt△ABC的内切圆可得r=12(a+b﹣c),∴c=a+b﹣2.在Rt△ABC中,由勾股定理可得222(2)a b a b+=+-,整理得2ab﹣4a﹣4b+4=0,又∵BC﹣AB=2即b=2+a,代入可得2a(2+a)﹣4a﹣4(2+a)+4=0,解得113a=+,213a=-(舍去),∴13a=+,33b=+,∴BC+AB=234+.再设DF=x,在Rt△ONF中,FN=331x+--,OF=x,ON=1313+-=,由勾股定理可得222(23)(3)x x+-+=,解得43x=-,∴CD﹣DF=31(43)+--=233-,CD+DF=3143++-=5.综上只有选项A错误,故选A.[来源:]考点:三角形的内切圆与内心;翻折变换(折叠问题).原创模拟预测题8.如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q 分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.【答案】92.【解析】考点:轴对称-最短路线问题;正方形的性质.原创模拟预测题9.如图,在△ABC中,CD是高,CE是中线,CE=CB,点A、D关于点F 对称,过点F作FG∥CD,交AC边于点G,连接GE.若AC=18,BC=12,则△CEG的周长为.【答案】27.考点:三角形中位线定理;等腰三角形的性质;轴对称的性质.原创模拟预测题10.如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB1E,则△AB1E与四边形AECD重叠部分的面积为()[来源:Z_xx_]A.0.7 B.0.9 C.22−2 D.22【答案】C.考点:菱形的性质;翻折变换(折叠问题).。
中考压轴题系列专题 几何三大变换问题之轴对称
轴对称、平移、旋转是平面几何的三大变换。
由一个平面图形变为另一个平面图形,并使这两个图形关于某一条直线成轴对称,这样的图形改变叫做图形的轴对称变换。
轴对称具有这样的重要性质:(1)成轴对称的两个图形全等;(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
中考压轴题中轴对称 (折叠)问题,包括有关三角形的轴对称性问题;有关四边形的轴对称性问题;有关圆的轴对称性问题;有关利用轴对称性求最值问题;有关平面解析几何中图形的轴对称性问题。
一.有关三角形的轴对称性问题原创模拟预测题1.如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是点E,F,连接EF,交AD于点G,求证:AD⊥EF.原创模拟预测题2.如图,在Rt△ABC中,∠C=900,∠B=300,BC=23,点D是BC边上一动点(不与点B、C重合),过点D作DE⊥BC交AB边于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处,当△AEF为等腰三角形时,BD的长为。
F DCEAB【答案】3。
【考点】翻折问题,轴对称的性质,锐角三角函数定义,特殊角的三角函数值,勾股定理,等腰三角形的判定,分类思想的应用。
二. 有关四边形的轴对称性问题原创模拟预测题3. 如图①是3×3菱形格,将其中两个格子涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕菱形ABCD 的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有【 】A.4种 B.5种 C.6种 D.7种【答案】B。
【考点】利用旋转的轴对称设计图案。
【分析】根据轴对称的定义及题意要求画出所有图案后即可得出答案:得到的不同图案有:共5个。
故选B。
原创模拟预测题4.如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长。
小萍同学灵活运用了轴对称知识,将图形进行翻折变换,巧妙地解答了此题。
(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D、C点的对称点分别为E、F,延长EB、FC相交于G点,求证:四边形AEGF是正方形;(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值。
利用轴对称的特性解决问题压轴题四种模型全攻略(学生版)--初中数学
利用轴对称的特性解决问题压轴题四种模型全攻略【考点导航】目录【典型例题】1【类型一几何图形中的最小值问题】【类型二实际问题中的最短路径问题】【类型三一次函数中线段和最小值问题】【类型三一次函数中线段差最大值问题】【典型例题】【类型一几何图形中的最小值问题】1(2023秋·重庆南川·八年级统考期末)如图,△ABC是等腰三角形,底边BC的长为6,面积是30,腰AC 的垂直平分线EF分别交AC、AB于点E、F.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值是()A.11B.13C.18D.24【变式训练】1(2022春·七年级单元测试)如图,△ABC中,∠ACB=90°,AC=BC,AB=4,点E在BC上,且BE=2,点P在∠ABC的平分线BD上运动,则PE+PC的长度最小值为()A.1B.2C.3D.42(2023秋·甘肃·八年级统考期末)如图,∠AOB=15°,M是边OA上的一个定点,且OM=12cm,N,P分别是边OA、OB上的动点,则PM+PN的最小值是.3(2023春·福建漳州·七年级福建省漳州第一中学校考期末)如图,在等边三角形ABC中,AD⊥BC,垂足是D,且AD=5,点E,F分别是线段AD,AC上的动点,则EC+EF的最小值是.4(2023春·广东揭阳·七年级惠来县第一中学校考期末)如图,在等腰△ABC中,AB=AC,BC=7,作AD⊥BC于点D,AD=12AB,点E为AC边上的中点,点P为BC上一动点,则PA+PE的最小值为.5(2023春·全国·七年级专题练习)如图,等边△ABC(三边相等,三个内角都是60°的三角形)的边长为10cm,动点D和动点E同时出发,分别以每秒1cm的速度由A向B和由C向A运动,其中一个动点到终点时,另一个也停止运动,设运动时间为t,0<t≤10,DC和BE交于点F.(1)在运动过程中,CD与BE始终相等吗?请说明理由;(2)连接DE,求t为何值时,DE∥BC;(3)若BM⊥AC于点M,点P为BM上的点,且使PD+PE最短.当t=7时,PD+PE的最小值为多少?请直接写出这个最小值,无需说明理由.6(2023春·广东佛山·八年级校考期中)如图,已知△ABC≌△CDA,将△ABC沿AC所在的直线折叠至△AB C的位置,点B的对应点为B ,连结BB .(1)直接填空:B B与AC的位置关系是;(2)点P、Q分别是线段AC、BC上的两个动点(不与点A、B、C重合),已知△BB C的面积为36,BC= 8,求PB+PQ的最小值;(3)试探索:△ABC的内角满足什么条件时,△AB E是直角三角形?【类型二实际问题中的最短路径问题】1(2023春·广东广州·八年级华南师大附中校考期中)如图,A、B两个村子在笔直河岸的同侧,A、B两村到河岸的距离分别为AC=2km,BD=5km,CD=6km,现在要在河岸CD上建一水厂E向A、B两村输送自来水,要求水厂E到A、B两村的距离之和最短.(1)在图中作出水厂E的位置(要求:尺规作图,不写作法,保留作图痕迹);(2)求水厂E到A、B两村的距离之和的最小值.【变式训练】1(2023春·八年级课时练习)如图,A,B两个村庄在河CD的同侧,两村庄的距离为a千米,a2=13,它们到河CD的距离分别是1千米和3千米.为了解决这两个村庄的饮水问题,乡政府决定在河CD边上修建一水厂向A,B两村输送水.(1)在图上作出向A,B两村铺设水管所用材料最省时的水厂位置M.(只需作图,不需要证明)(2)经预算,修建水厂需20万元,铺设水管的所有费用平均每千米为3万元,其他费用需5万元,求完成这项工程乡政府投入的资金至少为多少万元.2(2021秋·江苏苏州·八年级校考阶段练习)如图,小区A与公路l的距离AC=200米,小区B与公路l的距离BD=400米,已知CD=800米,(1)政府准备在公路边建造一座公交站台Q,使Q到A、B两小区的路程相等,求CQ的长;(2)现要在公路旁建造一利民超市P,使P到A、B两小区的路程之和最短,求PA+PB的最小值,并求CP的长度.3(2023春·全国·七年级专题练习)问题情境:老师在黑板上出了这样一道题:直线l同旁有两个定点A,B,在直线l上是否存在点P,使得PA+PB的值最小?小明的解法如下:如图,作点A关于直线l的对称点A ,连接A B,则A B与直线l的交点即为P,且PA+ PB的最小值为A B.问题提出:(1)如图,等腰Rt△ABC的直角边长为4,E是斜边AB的中点,P是AC边上的一动点,求PB+PE的最小值.问题解决:(2)如图,为了解决A,B两村的村民饮用水问题,A,B两村计划在一水渠上建造一个蓄水池M,从蓄水池M处向A,B两村引水,A,B两村到河边的距离分别为AC=3千米,BD=9千米,CD=9千米.若蓄水池往两村铺设水管的工程费用为每千米15000元,请你在水渠CD上选择蓄水池M的位置,使铺设水管的费用最少,并求出最少的铺设水管的费用.【类型三一次函数中线段和最小值问题】1(2023春·山东德州·八年级校考阶段练习)如图,一次函数y=12x+2的图象分别与x轴、y轴交于点A、B,以线段AB为边在第二象限内作等腰Rt△ABC,∠BAC=90°.(可能用到的公式:若A(x1,y1),B(x2,y2),①AB中点坐标为x1+x22,y1+y22;②AB=x1-x22+y1-y22(1)求线段AB的长;(2)过B、C两点的直线对应的函数表达式.(3)点D是BC中点,在直线AB上是否存在一点P,使得PC+PD有最小值?若存在,则求出此最小值;若不存在,则说明理由.【变式训练】1(2023春·河北石家庄·八年级石家庄市第四十一中学校考期中)一次函数y=kx+b的图像经过两点A4,0在这个函数图像上.点D m,4,B0,8(1)求这个一次函数表达式;(2)求m的值;(3)点C为OA的中点,点P为OB上一动点,求PC+PD的最小值.2(2023春·湖南长沙·八年级校联考期中)如图,直线l1经过点A4,0,与直线l2:y=x交于点.B a,43(1)求a的值和直线l1的解析式;(2)直线l1与y轴交于点C,求△BOC的面积;(3)在y轴上是否存在点P,使得PB+PA的值最小,若存在,请求出PB+PA的最小值,若不存在,请说明理由.3(2023春·重庆万州·九年级重庆市万州第一中学校联考期中)如图1,直线l1:y=-14x+1与x轴,y轴分别交于A,B两点,直线l2与x轴,y轴分别交于C,D两点,两直线相交于点P,已知点C的坐标为( -2,0),点P的横坐标为-45.(1)直接写出点A、P的坐标,并求出直线l2的函数表达式;(2)如图2,过点A作x轴的垂线,交直线l2于点M,点Q是线段AM上的一动点,连接QD,QC,当△QDC的周长最小时,求点Q的坐标和周长的最小值.(3)在第(2)问的条件下,若点N是直线AM上的一个动点,以D,Q,N三点为顶点的三角形是等腰三角形,请直接写出此时点N的坐标.【类型三一次函数中线段差最大值问题】1(2023秋·四川成都·八年级统考期末)如图所示,直线l1:y=x-1与y轴交于点A,直线l2:y=-2x-4与x轴交于点B,直线l1与l2交于点C.(1)求点A,C的坐标;(2)点P在直线l1上运动,求出满足条件S△PBC=S△ABC且异于点A的点P的坐标;(3)点D(2,0)为x轴上一定点,当点Q在直线l1上运动时,请直接写出DQ-BQ的最大值.【变式训练】1(2022秋·重庆沙坪坝·八年级重庆八中校考期中)如图1所示,在平面直角坐标系中,点A0,2,点B在x轴负半轴上,OB=2OA.(1)求直线AB的解析式:(2)点C-3,m是第三象限内一点,△ABC的面积为6-3,若点P是x轴上一动点,求PA-PC的最大值;(3)如图2,在第(2)问的条件下,过点C作直线CD∥x轴,点Q为直线CD上一动点,是否存在以A,B,Q为顶点的三角形是以AB为腰的等腰三角形,若存在,请直接写出点Q的坐标,若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考几何压轴题(几何模型30讲)
最
新
讲
义
专题11《轴对称》
破题策略
成轴对称的两个图形全等;如果两个图形关于某条直线对称,那么对成轴是任何一对对应点所连线段的垂直平分线.通常所说的翻折实质上就是轴对称变换.图形沿着某条直线翻折,这条直线即为对称轴,利用轴对称的性质,再借助方程的知识就能很快解决问题.
例题讲解
例1 在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为点E,连接BE、DE,其中DE交直线AP于点F.
(1)如图1,若∠PAB=20°,求∠ADF的度数;
(2)如图2,若45°<∠PAB<90°,用等式表示AE、FE、FD之间的数量关系,并证明;
解(1)如图3,连接AE,则∠PAE=∠PAB=20°,AE=AB.
Θ四边形ABCD为正方形∴∠BAD=90°,AB=AD∴∠EDA=130° ∴∠ADF=25°(2)如图4,连接AE,BF,BD,由轴对称知EF=BF,AE=AB=AD
∴∠ABF=∠AEF=∠ADF,∴∠BFD=∠BAD=90° ∴BF2+FD2=BD2∴EF2+FD2=2AB22
例 2 菱形纸片ABCD的边长为2,折叠菱形纸片,将B、D两点重合在对角线BD上的同一点处,折痕分别为EF、GH.当重合点在对角线BD上移动时,六边形AEFCHG的周长的变化情况是怎样的?
小明发现:若∠ABC=60°,
①如图1,当重合点在菱形的对称中心O处时,六边形AEFCHG的周长为_________;
②如图2,当重合点在对角线BD上移动时,六边形AEFCHG的周长_________(填“改变”或“不变”).
请帮助小明解决下面问题:
如果菱形纸片ABCD 边长仍为2,改变∠ABC 的大小,折痕EF 的长为m .
(1)如图3,若∠ABC =120°,则六边形AEFCHG 的周长为_________;
(2)如图4,若∠ABC 的大小为α2,则六边形AEFCHG 的周长可表示为________.
答案:(1)①6;②不变;(2)324 ;4+4sin .
(1)如图1,因为EF =AB =FC =CH =AG =GH =1,所以周长为6.
如图2,因为△EBF 、△GHD 为等边三角形,所以EF =BE ,GH =GD
因为四边形FCDG 、AEHD 为平行四边形,所以FC =GD =DH =AE ,同理可得CH =BE =AG 所以周长不变
(2)当∠ABC =120°时,EP =BE 3,GH =GD 3.
因为AE =DH =DG =FC ,AG =BF =BE =CH
所以六边形AEFCHG 的周长为AB +AD +BE 3+GD 3=4+23.
当∠ABC =2α时,EF =2BE sin α,,GH =2DGE sin α
所以六边形AEFCHG 的周长为4+4sin α
例3 有一个数学活动,其具体操作过程是:第一步:对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展开(如图1);第二步:再一次折叠纸片,使点A 落在EF 上,并使折痕经过点B ,得到折痕BM ,同时得到线段BN (如图2).请解答以下问题:
(1)如图2,若延长MN 交BC 于P ,△BMP 是什么三角形?请证明你的结论;
(2)在图2中,若AB =a ,BC =b ,a 、b 满足什么关系,才能在矩形纸片ABCD 上剪出符合
(1)中结论的三角形纸片BMP ?
(3)设矩形ABCD 的边AB =2,BC =4,并建立如图3所示的直角坐标系.设直线BM ′为y =kx ,当∠M ′BC =60°时,求k 的值,此时,将△ABM ′沿BM ′折叠,点A 是否落在EF 上(E 、F 分别为AB 、CD 中点),为什么?
解:(1)△BMP 是等边三角形
连接AN
∵EF 垂直平分AB ,
∴AN =BN
由折叠知AB =BN ,
∴AN =AB =BN ,
∴△ABN 为等边三角形,
∴∠ABN =60°
∴∠PBN =30°
又∵∠ABM =∠NBM =30°,∠BNM =∠A =90°,
∴∠BPN =60°,∠MBP =∠MBN +∠PBN =60°
∴∠BMP =60°,
∴∠MBP =∠BMP =∠BPM =60°
∴△BMP 为等边三角形.
(2)要在矩形纸片ABCD 上剪出等边△BMP ,则BC ≥BP
在Rt△BNP 中,BN =BA =a ,∠PBN =30° ∴
∴
∴b a 23≤ 所以当b a 23≤
时,在矩形上能剪出这样的等边△BMP .tan (3)∵∠M ′BC =60°,
∴∠ABM ′=90°-60°=30°
在Rt△ABM ′中,AB M A M AB '='∠tan ∴
∴
∴M ’(332,2),代入y =kx 中,得33
3
22==k 设△ABM ′沿BM ′折叠后,点A 落在矩形ABCD 内的点为A ′,过A ′作A ′H ⊥BC 交BC 于H ∵△A ′BM ′≌△ABM ′,
∴∠A 'BM '=∠ABM '=30°,A ′B =AB =2
∴∠A 'BH =∠M 'BH -∠A 'BM '=30°
在Rt△A ′BH 中,A ′H =21AB =1,BH =3 ∴
∴A ′落在EF 上.
进阶训练
1.已知:在菱形ABCD 中,∠ADC =120°,E 是对角线AC 上一点,连结DE ,∠DEC =50°,将线段BC 绕点B 逆时针旋转50°并延长得到射线BF ,交ED 的廷长线于点G .求证:EG =B C .
2.如图,有一矩形纸片ABCD ,AB =8,AD =17,将此矩形纸片折叠,使顶点A 落在BC 上的A '处,折痕所在直线同时经过边AB ,AD (包括端点),设BA '=x ,则x 的取值范围是______.
3.如图,将正方形ABCD 翻折,使点B 落在CD 边上点E 处(不与C ,D 重合),压平 后得到折痕MN .设n CD CE 1=,则___________=BN
AM (用含n 的式子表示).。