pcr引物的介绍

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

引物(primer),是一小段单链DNA或RNA,作为DNA复制的起始点,在核酸合成反应时,作为每个多核苷酸链进行延伸的出发点而起作用的多核苷酸链,在引物的3′-OH上,核苷酸以二酯链形式进行合成,因此引物的3′-OH,必须是游离的。

目录

类型

引物设计原则

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

常用引物设计软件

类型

引物设计原则

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

常用引物设计软件

类型

存在有自然中生物的DNA复制引物(RNA引物)和聚合酶链式反应(PCR)中人工合成的引物(通常为

DNA引物)。一般所说引物,指DNA引物,以下简称引物。

引物设计原则

引物是人工合成的两段寡核苷酸序列,一个引物与感兴趣区域一端的一条DNA模板链互补,另一个引物与感兴趣区域另一端的另一条DNA模板链互补。

在PCR(聚合酶链式反应)技术中,已知一段目的基因的核苷酸序列,根据这一序列合成引物,利用PCR扩增技术,目的基因DNA受热变性后解链为单链,引物与单链相应互补序列结合,然后在DNA聚合酶作用下进行延伸,如此重复循环,延伸后得到的产物同样可以和引物结合。 PCR引物设计的目的是找到一对合适的核苷酸片段,使其能有效地扩增模板DNA序列。如前述,引物的优劣直接关系到PCR的特异性与成功与否。对引物的设计不可能有一种包罗万象的规则确保PCR的成功,但遵循某些原则,则有助于引物的设计。

1.引物最好在模板cDNA的保守区内设计。

DNA序列的保守区是通过物种间相似序列的比较确定的。在NCBI上搜索不同物种的同一基因,通过序列分析软件(比如DNAman)比对(Alignment),各基因相同的序列就是该基因的保守区。

2.引物长度一般在15~30碱基之间。

引物长度(primer length)常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA 聚合酶进行反应。

3.引物GC含量在40%~60%间,Tm值最好近72℃

GC含量(composition)过高或过低都不利于引发反应。上下游引物的GC含量不能相差太大。另外,上下游引物的Tm值(melting temperature)是寡核苷酸的解链温度,即在一定盐浓度条件下,50%寡核苷酸双链解链的温度。有效启动温度,一般高于Tm值5~10℃。若按公式Tm= 4(G+C)+2(A+T)估计引物的Tm值,则有效引物的Tm为

55~80℃,其Tm值最好接近72℃以使复性条件最佳。

4.引物3′端要避开密码子的第3位。

如扩增编码区域,引物3′端不要终止于密码子的第3位,因密码子的第3位易发生简并,会影响扩增的特异性与效率。

5.引物3′端不能选择A,最好选择T。

引物3′端错配时,不同碱基引发效率存在着很大的差异,当末位的碱基为A时,即使在错配的情况下,也能有引发链的合成,而当末位链为T时,错配的引发效率大大降低,G、C错配的引发效率介于A、T之间,所以3′端最好选择T。

6. 碱基要随机分布。

引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错误引发(False priming)。降低引物与模板相似性的一种方法是,引物中四种碱基的分布最好是随机的,不要有聚嘌呤或聚嘧啶的存在。尤其3′端不应超过3个连续的G或C,因这样会使引物在GC富集序列区错误引发。

7. 引物自身及引物之间不应存在互补序列。

引物自身不应存在互补序列,否则引物自身会折叠成发夹结构(Hairpin)使引物本身复性。这种二级结构会因空间位阻而影响引物与模板的复性结合。引物自身不能有连续4个碱基的互补。

两引物之间也不应具有互补性,尤其应避免3′ 端的互补重叠以防止引物二聚体(Dimer与Cross dimer)的形成。引物之间不能有连续4个碱基的互补。 引物二聚体及发夹结构如果不可避免的话,应尽量使其△G值不要过高(应小于4.5kcal/mol)。否则易导致产生引物二聚体带,并且降低引物有效浓度而使PCR 反应不能正常进行。

8. 5′ 端和中间△G值应相对较高3′ 端较低

△G值是指DNA 双链形成所需的自由能,它反映了双链结构内部碱基对的相对稳定性,△G值越大,则双链越稳定。应当选用5′ 端和中间△G值相对较高,而3′ 端△G值较低(绝对值不超过9)的引物。引物3′ 端的△G 值过高,容易在错配位点形成双链结构并引发DNA 聚合反应。(不同位置的△G值可以用Oligo 6软件进行分析)

9.引物的5′端可以修饰,而3′端不可修饰。

引物的5′ 端决定着PCR产物的长度,它对扩增特异性影响不大。因此,可以被修饰而不影响扩增的特异性。引物5′ 端修饰包括:加酶切位点;标记生物素、荧光、地高辛、Eu3+等;引入蛋白质结合DNA序列;引入点突变、插入突变、缺失突变序列;引入启动子序列等。

引物的延伸是从3′ 端开始的,不能进行任何修饰。3′ 端也不能有形成任何二级结构可能。

10. 扩增产物的单链不能形成二级结构。

某些引物无效的主要原因是扩增产物单链二级结构的影响,选择扩增片段时最好避开二级结构区域。用有关软件(比如RNAstructure)可以预测估计mRNA的稳定二级结构,有助于选择模板。实验表明,待扩区域自由能(△G°)小于58.6l kJ/mol时,扩增往往不能成功。若不能避开这一区域时,用7-deaza-2′-脱氧GTP取代dGTP对扩增的成功是有帮助的。

11. 引物应具有特异性。

引物设计完成以后,应对其进行BLAST检测。如果与其它基因不具

相关文档
最新文档