指数函数
指数函数的概念
⑵ y 3 解:(2) 由5x-1≥0得
5 x1
1 x 5 所以,所求函数定义域为
1 x | x 5
由
5x 1 0 得y≥1
所以,所求函数值域为{y|y≥1}
⑶
y 2x 1
由
解:(3)所求函数定义域为R
2 0
x
可得
2 1 1
x
所以,所求函数值域为{y|y>1}
6 5 4
x 1
所以,所求函数值域为 {y|y>0且y≠1}
-6
fx =
0.4 x-1
3
2
1
-4
-2
2
4
6
-1
-2
说明:对于值域的求解,可以令 考察指数函数y= 并结合图象 直观地得到: 函数值域为 {y|y>0且y≠1}
1 t x 1
0.4
t
(t 0)
6
5
4
3
2
1
-4
-2
2
4
6
-1
1 x 1 , x 1 2 2 x 1 , x 1
3.2
3.2 3.2 3.2 3.2 333 3
3
3
-0.2
对于有些复合函数的图象,则常用基本函数图象+变换方法 作出:即把我们熟知的基本函数图象,通过平移、作其对称图 等方法,得到我们所要求作的复合函数的图象,这种方法我们 遇到的有以下几种形式: 函 数 y=f(x+a) y=f(x)+a y=f(-x) y=-f(x) y=-f(-x) y=f(|x|) y=|f(x)| y=f(x) a>0时向左平移a个单位;a<0时向右平移|a|个单位. a>0时向上平移a个单位;a<0时向下平移|a|个单位. y=f(-x)与y=f(x)的图象关于y轴对称. y=-f(x)与y=f(x)的图象关于x轴对称. y=-f(-x)与y=f(x)的图象关于原点轴对称.
指数函数
指数函数概念:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。
注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。
⒉指数函数的定义仅是形式定义。
指数函数的图像与性质:规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。
2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴;当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。
在y轴右边“底大图高”;在y轴左边“底大图低”。
3.四字口诀:“大增小减”。
即:当a >1时,图像在R 上是增函数;当0<a <1时,图像在R 上是减函数。
4. 指数函数既不是奇函数也不是偶函数。
比较幂式大小的方法:1. 当底数相同时,则利用指数函数的单调性进行比较;2. 当底数中含有字母时要注意分类讨论;3. 当底数不同,指数也不同时,则需要引入中间量进行比较;4.对多个数进行比较,可用0或1作为中间量进行比较底数的平移:在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。
在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。
对数函数1.对数函数的概念由于指数函数y=a x 在定义域(-∞,+∞)上是单调函数,所以它存在反函数,我们把指数函数y=a x (a >0,a ≠1)的反函数称为对数函数,并记为y=log a x(a >0,a ≠1).因为指数函数y=a x 的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=log a x 的定义域为(0,+∞),值域为(-∞,+∞).2.对数函数的图像与性质对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x . 据此即可以画出对数函数的图像,并推知它的性质.为了研究对数函数y=log a x(a >0,a ≠1)的性质,我们在同一直角坐标系中作出函数y=log 2x ,y=log 10x ,y=log 10x,y=log 21x,y=log 101x 的草图由草图,再结合指数函数的图像和性质,可以归纳、分析出对数函数y=log a x(a>0,a≠1)的图像的特征和性质.见下表.图象a>1 a<1性质(1)x>0(2)当x=1时,y=0(3)当x>1时,y>00<x<1时,y<0(3)当x>1时,y<00<x<1时,y>0 (4)在(0,+∞)上是增函数(4)在(0,+∞)上是减函数补充性质设y1=log a x y2=log b x其中a>1,b>1(或0<a<1 0<b<1) 当x>1时“底大图低”即若a>b则y1>y2当0<x<1时“底大图高”即若a>b,则y1>y2比较对数大小的常用方法有:(1)若底数为同一常数,则可由对数函数的单调性直接进行判断.(2)若底数为同一字母,则按对数函数的单调性对底数进行分类讨论.(3)若底数不同、真数相同,则可用换底公式化为同底再进行比较.(4)若底数、真数都不相同,则常借助1、0、-1等中间量进行比较.3.指数函数与对数函数对比幂函数幂函数的图像与性质幂函数ny x =随着n 的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握n y x =,当112,1,,,323n =±±±的图像和性质,列表如下. 从中可以归纳出以下结论:① 它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限.② 11,,1,2,332a =时,幂函数图像过原点且在[)0,+∞上是增函数.③ 1,1,22a =---时,幂函数图像不过原点且在()0,+∞上是减函数.④ 何两个幂函数最多有三个公共点..定义域R R R奇偶性奇奇奇非奇非偶奇在第Ⅰ象限的增减性在第Ⅰ象限单调递增在第Ⅰ象限单调递增在第Ⅰ象限单调递增在第Ⅰ象限单调递增在第Ⅰ象限单调递减ny x=奇函数偶函数非奇非偶函数1n>01n<<0 n<O xyO xyO xyO xyO xyO xyO xyO xyO xy幂函数y x α=(x ∈R ,α是常数)的图像在第一象限的分布规律是:①所有幂函数y x α=(x ∈R ,α是常数)的图像都过点)1,1(;②当21,3,2,1=α时函数y x α=的图像都过原点)0,0(;③当1=α时,y x α=的的图像在第一象限是第一象限的平分线(如2c );④当3,2=α时,y x α=的的图像在第一象限是“凹型”曲线(如1c )⑤当21=α时,y x α=的的图像在第一象限是“凸型”曲线(如3c )⑥当1-=α时,y x α=的的图像不过原点)0,0(,且在第一象限是“下滑”曲线(如4c )当0>α时,幂函数y x α=有下列性质:(1)图象都通过点)1,1(),0,0(;(2)在第一象限内都是增函数;(3)在第一象限内,1>α时,图象是向下凸的;10<<α时,图象是向上凸的; (4)(在第一象限内,过点)1,1(后,图象向右上方无限伸展。
指数函数公式运算法则
指数函数公式运算法则指数函数是一种常见的数学函数,其公式形式为f(x) = a^x,其中a为底数,x为指数。
指数函数在数学中有着广泛的应用,因此掌握指数函数的运算法则对于解决实际问题具有重要意义。
本文将介绍指数函数的运算法则,包括指数函数的加减乘除、指数函数的幂函数、指数函数的对数函数等内容。
一、指数函数的加减乘除1. 指数函数的加法当两个指数函数相加时,如果它们的底数相同,则可以将它们的指数相加,即a^x + a^y = a^(x+y)。
例如,2^3 + 2^4 =2^(3+4) = 2^7。
2. 指数函数的减法同样地,当两个指数函数相减时,如果它们的底数相同,则可以将它们的指数相减,即a^x - a^y = a^(x-y)。
例如,3^5 - 3^3 = 3^(5-3) = 3^2。
3. 指数函数的乘法当两个指数函数相乘时,如果它们的底数相同,则可以将它们的指数相加,即(a^x) * (a^y) = a^(x+y)。
例如,2^3 * 2^4 =2^(3+4) = 2^7。
4. 指数函数的除法当两个指数函数相除时,如果它们的底数相同,则可以将它们的指数相减,即(a^x) / (a^y) = a^(x-y)。
例如,3^5 / 3^3 =3^(5-3) = 3^2。
二、指数函数的幂函数指数函数的幂函数是指数函数的一种特殊形式,其公式为f(x) = (a^x)^n,其中a为底数,x为指数,n为幂次。
当计算指数函数的幂函数时,可以将指数函数的指数与幂次相乘,即(a^x)^n =a^(x*n)。
例如,(2^3)^2 = 2^(3*2) = 2^6。
三、指数函数的对数函数指数函数的对数函数是指数函数的逆运算,其公式为y =log_a(x),其中a为底数,x为指数,y为对数。
对数函数的作用是求解指数函数的指数,即log_a(x) = y 等价于 a^y = x。
例如,log_2(8) = 3 等价于 2^3 = 8。
【高中数学】指数函数
高中数学学科
A.a>b>c
B.a>c>b
C.c>a>b
D.b>c>a
解析:选 A 由 0.2<0.6,0.4<1,并结合指数函数的图象可知 0.40.2>0.40.6,即 b>c;
因为 a=20.2>1,b=0.40.2<1,所以 a>b.综上,a>b>c.
1 4.(2019·南宁调研)函数 f(x)= 2 xx2 的单调递增区间是( )
高中数学学科
指数函数
一、基础知识
1.指数函数的概念 函数 y=ax(a>0,且 a≠1)叫做指数函数,其中指数 x 是自变量,函数的定义域是 R,a 是底数. 形如 y=kax,y=ax+k(k∈R 且 k≠0,a>0 且 a≠1)的函数叫做指数型函数,不是指数函 数. 2.指数函数 y=ax(a>0,且 a≠1)的图象与性质
(1)若 a=-1,求 f(x)的单调区间;
高中数学学科
(2)若 f(x)有最大值 3,求 a 的值.
1 [解] (1)当 a=-1 时,f(x)= 3 -x2-4x+3 ,
令 g(x)=-x2-4x+3,由于 g(x)在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,
1 而 y= 3 t 在 R 上单调递减,所以 f(x)在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,
研究.
二、常用结论
指数函数图象的特点 -1,1
(1)指数函数的图象恒过点(0,1),(1,a), a ,依据这三点的坐标可得到指数函数 的大致图象.
1 (2)函数 y=ax 与 y= a x(a>0,且 a≠1)的图象关于 y 轴对称. (3)底数 a 与 1 的大小关系决定了指数函数图象的“升降”:当 a>1 时,指数函数的图 象“上升”;当 0<a<1 时,指数函数的图象“下降”.
指数函数知识点归纳
指数函数知识点归纳指数函数是一种常见的数学函数,它以底数为常数且大于零的实数来表示自变量的幂。
指数函数有着重要的数学性质和应用。
在这篇文章中,我们将归纳指数函数的一些重要知识点。
1.定义和表示:指数函数可以写成f(x)=a^x的形式,其中a是底数,x是指数。
2.基本性质:(1)当底数a大于1时,指数函数呈现增长态势,即函数值随着自变量的增加而增加;(2)当底数a等于1时,指数函数保持恒定,即f(x)=1;(3)当底数a介于0和1之间时,指数函数呈现减少态势,即函数值随着自变量的增加而减少。
3.导数:指数函数的导数与其本身成正比。
具体地,f'(x) = a^x * ln(a),其中ln(a)是以自然对数e为底的对数。
4.指数函数的图像和性质:(1)当底数a大于1时,指数函数的图像在x轴的右侧逐渐上升;(2)当底数a等于1时,指数函数的图像是一条恒定值的水平直线;(3)当底数a介于0和1之间时,指数函数的图像在x轴的右侧逐渐下降;(4)指数函数的图像通过点(0,1),即f(0)=15.指数函数的性质:(1)指数函数具有不断增长或不断减少的性质;(2)指数函数的图像关于y轴对称;(3)当底数a大于1时,函数值在正无穷大和负无穷大之间无限逼近;(4)当底数a介于0和1之间时,函数值在0和正无穷大之间无限逼近。
6.指数函数和对数函数的关系:指数函数和对数函数是互为反函数的。
即,f(x) = a^x 和 g(x) = loga(x)是一对互为反函数的指数函数和对数函数。
函数f(x) = a^x的定义域是实数集R,值域是正实数集R+;函数g(x) = loga(x)的定义域是正实数集R+,值域是实数集R。
7.指数函数的应用:指数函数在各个领域有着广泛的应用,例如经济增长模型、无线电活动强度计算、化学反应速率、放射性衰变等。
指数函数在实际问题中能够提供一种简洁而有效的数学模型。
综上所述,指数函数是一种基于底数为常数的幂函数,具有增长、恒定或减少的性质。
指数函数的概念及其解法
指数函数的概念及其解法
1. 概念
指数函数是数学中一种重要的函数,它的定义形式为 f(x) = a^x,其中 a 是非零实数,x 是任意实数。
2. 解法
指数函数的求解方法主要有以下两种:
2.1. 对数法
对数法是指将指数函数转化为对数函数来求解。
对数函数是指
以某个正实数为底的对数,即 f(x) = log_a(x)。
对数法的基本思路是通过将指数函数的等式转化为对数函数的等式,从而求得未知数 x
的值。
2.2. 变换法
变换法是指通过对指数函数进行变换,将其转化为可以直接求
解的形式。
常用的变换包括平移变换、对称变换、缩放变换等。
通
过合理选择变换的方式,可以简化指数函数的求解过程。
3. 示例
以下是一个简单的指数函数求解的示例:
已知 f(x) = 2^x = 8,求解 x 的值。
3.1. 对数法解法
我们可以将指数函数转化为对数函数的等式,得到 log_2(8) = x。
通过计算,我们可以得到x ≈ 3。
3.2. 变换法解法
我们可以先将指数函数进行变换,将 f(x) = 2^x = 8 变换为 f(x-3) = 1。
这样,我们可以直接得出 x-3 = 0,从而得到x ≈ 3。
以上是指数函数的概念及其解法的简要介绍。
指数函数在数学中有着广泛的应用,深入理解和掌握其概念及解法对于数学学习和应用都具有重要意义。
指数函数知识点总结
指数函数知识点总结指数函数是高中数学中的重要内容,它在数学和科学领域中都有着广泛的应用。
指数函数的概念和性质对于学生来说是一个比较抽象和难以理解的内容,但只要我们掌握了其中的一些关键知识点,就能够很好地理解和运用指数函数。
本文将对指数函数的知识点进行总结,希望能够帮助学生更好地掌握这一部分内容。
一、指数函数的定义。
指数函数是以指数为自变量的函数,一般写作y=a^x,其中a是底数,x是指数,y是函数值。
当底数a大于1时,函数呈现增长趋势;当底数a在0和1之间时,函数呈现下降趋势。
指数函数的图像一般为一条曲线,随着指数的增大或减小而逐渐增长或减小。
二、指数函数的性质。
1. 指数函数的定义域是实数集,值域是正实数集。
2. 当底数a大于1时,函数呈现增长趋势;当底数a在0和1之间时,函数呈现下降趋势。
3. 指数函数的图像一般为一条曲线,随着指数的增大或减小而逐渐增长或减小。
4. 指数函数的图像经过点(0,1),并且不过x轴。
三、指数函数的运算。
1. 指数函数的乘法,a^m a^n = a^(m+n)。
2. 指数函数的除法,a^m / a^n = a^(m-n)。
3. 指数函数的幂运算,(a^m)^n = a^(mn)。
四、指数函数的应用。
1. 指数函数在经济学中的应用,例如复利计算、指数增长模型等。
2. 指数函数在生物学中的应用,例如细菌繁殖、人口增长等。
3. 指数函数在物理学中的应用,例如放射性衰变、电路中的电流变化等。
五、指数函数的解析式和图像。
1. 当底数a大于1时,指数函数的解析式为y=a^x,图像为逐渐增长的曲线。
2. 当底数a在0和1之间时,指数函数的解析式为y=a^x,图像为逐渐减小的曲线。
六、指数函数与对数函数的关系。
指数函数和对数函数是互为反函数的函数关系,它们之间有着密切的联系。
指数函数的解析式为y=a^x,对数函数的解析式为y=loga(x),它们之间的关系可以通过换底公式进行转换。
指数函数公式
指数函数公式
指数函数是数学中的一种重要函数,也是很多科学研究和应用中常用的函数形式。
它的定义是:当x>0时,指数函数f(x)=ax(a>0,且a≠1),是一种特殊函数,其中a叫作指数,x叫作底数,而f(x)叫作指数函数的值。
指数函数是一种特殊的函数,它的特点是它的函数图像是一条竖直线,而且它的斜率可以由x的值来确定,其图像也可以由其参数a 来确定。
指数函数的图像在x=0处有一个垂直下降,它以不断增大的速度向上升,且不会越界,绝对值也会不断增大。
指数函数具有很多特点,它是一种单调函数,即指数函数的增减性质在整个定义域中是唯一的,它具有切线不变性,即曲线上任意点的切线斜率是定值。
指数函数的参数a可以是任意大于零的常数,当a增大时,曲线上函数值单调增加的速度就越快,相反,当a减小时,曲线上函数值单调增加的速度就越慢。
指数函数在各个领域都有着广泛的应用,在物理学中,它可以用来描述物体离原点距离随时间变化的情况;在经济学中,它可以用来描述商品价格随时间变化的情况;在数学中,它可以用来描述函数的变化趋势,以及函数的性质等等。
总的来说,指数函数是一种十分重要的函数,它不仅在数学中有着
重要的地位,而且在物理学、经济学等领域也有着重要的应用。
它的参数a的变化可以改变曲线的性质,使它能够更好地描述实际情况,从而对很多实际问题有着十分重要的作用。
(完整版)指数函数公式汇总
(完整版)指数函数公式汇总(完整版) 指数函数公式汇总1. 指数函数的定义与性质指数函数是数学中的一类特殊函数,可以用指数的形式表示。
它的一般形式为:$f(x) = a \cdot b^x$,其中$a$和$b$为常数,$b$称为底数。
指数函数具有以下基本性质:- 当$b > 1$时,指数函数呈现增长的趋势,随着$x$的增大,$f(x)$的值也会增加。
- 当$0 < b < 1$时,指数函数呈现衰减的趋势,随着$x$的增大,$f(x)$的值会变小。
- 当$b = 1$时,指数函数变成常数函数,$f(x) = a$。
2. 常见的指数函数公式2.1. 指数函数的基本公式- $f(x) = e^x$:自然指数函数,其中$e$为自然对数的底数。
2.2. 指数函数的变形公式- $f(x) = a \cdot e^x$:常倍增长指数函数,其中$a$为常数。
- $f(x) = a \cdot e^{kx}$:指数倍增长指数函数,其中$k$为常数。
2.3. 指数函数的反函数公式- $f(x) = \log_b(x)$:底数为$b$的对数函数,是指数函数$f(x) = b^x$的反函数。
2.4. 指数函数的微分公式- $f'(x) = a \cdot b^x \ln(b)$:指数函数$f(x) = a \cdot b^x$的微分公式,其中$\ln(b)$为底数为$b$的自然对数。
2.5. 指数函数的积分公式- $\int f(x) dx = \frac{1}{\ln(b)} \cdot a \cdot b^x + C$:指数函数$f(x) = a \cdot b^x$的积分公式,其中$\ln(b)$为底数为$b$的自然对数,$C$为常数。
3. 指数函数的应用指数函数在实际应用中具有广泛的用途,例如:- 金融领域中的复利计算,涉及到以指数形式增长的利率变动。
- 自然科学中的衰变和增长问题,如放射性元素的衰变过程和细菌增长的模拟。
指数函数-高考数学复习
考向4 指数型函数的综合应用
2
1 -2-3
f(x)=(3)
的图象经过点(3,1),
例 5(多选题)(2024·重庆云阳模拟)若函数
则( AC )
A.a=1
B.f(x)在(-∞,1)内单调递减
1
C.f(x)的最大值为 81
D.f(x)的最小值为81
解析 对于 A,由题意
1 9a-6-3
f(3)=( )
解析 若a>1,则f(x)在[-1,0]上单调递增,所以f(x)max=f(0)=a=2,即a=2;
若0<a<1,则f(x)在[-1,0]上单调递减,所以f(x)min=f(-1)=a-1=2,
即
1
a= .综上,a=2
2
或
1
a= .
2
考向2 比较幂值的大小
例3(1)(2024·江西赣州模拟)已知函数f(x)=ex,若a=f(40.99),b=f(21.99),c=f(ln 2),
则a,b,c的大小关系为( C )
A.a<b<c
B.a<c<b
C.c<a<b
D.c<b<a
解析 依题意,21.99>21.98=40.99>20=1>ln 2,而函数f(x)=ex在R上单调递增,
因此f(21.99)>f(40.99)>f(ln 2),即c<a<b,故选C.
(2)(2024·辽宁大连模拟)已知
e +1
1-()
1-()
当-1<f(x)<0 时,[f(x)]=-1;当 0≤f(x)<1 时,[f(x)]=0,
因此[f(x)]的值域为{-1,0},故选 B.
指数函数知识点总结
指数函数知识点总结指数函数是数学中的一种常见函数形式。
具体来说,指数函数可以表示为 f(x) = a^x 或 f(x) = e^x 的形式,其中 a 和 e 分别代表底数。
以下是指数函数的一些重要知识点总结:1. 指数函数的性质- 指数函数的定义域为实数集,值域为正实数集。
- 指数函数具有单调递增性质,即底数为正数时,随着自变量x 的增大,函数值增加;底数为负数时,随着自变量 x 的增大,函数值减小。
- 当底数 a 大于 1 时,函数呈现增长趋势,当底数 a 在 0 到 1 之间时,函数呈现衰减趋势。
- 当底数为 e (自然对数的底数) 时,该指数函数称为自然指数函数,常用符号为 f(x) = e^x。
2. 指数运算法则- 指数运算法则包括乘法法则、除法法则、幂的乘方法则和幂的除法法则。
根据这些法则,可以对指数之间的运算进行简化和转换,方便计算和推导。
具体的运算法则请参考数学教材或相关研究资源。
3. 指数函数的图像- 根据指数函数的性质,可以绘制指数函数的图像。
对于一般的指数函数 f(x) = a^x,图像在 x 轴右侧递增,斜率随底数 a 的大小变化而改变;而自然指数函数 f(x) = e^x 的图像在全区间上都是递增的,且斜率始终为正。
- 对于指数函数的图像研究,可以通过计算关键点、确定导数、绘制函数图像等方法进行分析和描绘。
4. 指数函数的应用- 指数函数广泛应用于各个学科和领域。
在数学中,指数函数是指数与对数概念的核心。
在经济学、物理学、生物学等自然科学中,指数函数的增长和衰减特性被广泛用于建模和预测。
- 例如,指数函数可用于描述细菌或病毒的增长情况,经济学中的指数增长模型等。
指数函数的应用领域较为广泛,具体的应用案例可根据不同学科和实际问题进行研究。
以上是关于指数函数的一些重要知识点总结。
更多深入的学习和应用内容,建议参考相关数学教材或专业文献。
祝你学业顺利!。
指数函数
.
例 2:函数y = a + 1 a > 0, 且 a ≠ 1, b ∈ R 的图象恒过定点(1,2),求 b 的值。 8.指数函数的单调性 例:讨论函数y =
2 1 x −2x
3
的单调性。
习题 1、比较下列各组数的大小:
(1)若 (2)若 (3)若 (4)若 (5)若
,比较 ,比较 ,比较
x
当k=0或k 1时, 直线y=k与函数 y | 3 1 | 的图象有唯一的交点,所以方程有一解;
x
当 0<k<1 时, 直线 y=k 与函数 y | 3 1 | 的图象有两个不同交点,所以方程有两解。
函数性质 a 1 0 a 1 函数的定义域为 R 非奇非偶函数 函数的值域为 R+ a0 1 增函数 减函数
x 0, a x 1
x 0, a x 1
x 0, a x 1
x 0, a x 1
函数值开 函数值开 始增长较 始减小极 图象上升 图象上升 慢,到了 快,到了 趋势是越 趋势是越 某一值后 某一值后 来越陡 来越缓 增长速度 减小速度 极快; 较慢; 注意:利用函数的单调性,结合图象还可以看出: (1)在[a,b]上, f (x) a x (a 0且a 1) 值域是 [f (a ), f (b)] 或 [f (b), f (a )] ; (2)若 x 0 ,则 f (x) 1 ; f ( x ) 取遍所有正数当且仅当 x R ; (3)对于指数函数 f (x) a x (a 0且a 1) ,总有 f (1) a ;
∞) 上是增函数, ∴函数 y (a2 2a 5) x 在 (∞,
∴ 3 x 1 x ,解得 x
指数函数的基本公式
指数函数的基本公式
指数函数是数学中的一类重要函数,通常写成$f(x)=a^x$ 的形式,其中$a$ 为底数,$x$ 为指数。
指数函数的基本公式如下:
$a^0 = 1$,任何数的0 次方都等于1。
$a^1 = a$,任何数的1 次方等于它本身。
$a^n \times a^m = a^{n+m}$,相同底数的指数幂相乘等于底数不变、指数相加的幂。
$\frac{a^n}{a^m} = a^{n-m}$,相同底数的指数幂相除等于底数不变、指数相减的幂。
$(a^n)^m = a^{nm}$,指数幂的幂等于底数不变、指数相乘的幂。
$a^{-n} = \frac{1}{a^n}$,任何数的负指数幂等于它的倒数。
$a^{n} \times b^{n} = (ab)^n$,底数不同但指数相等的幂的积等于它们的乘积的指数幂。
需要注意的是,当底数$a>1$ 时,指数函数是单调增函数;当$0<a<1$ 时,指数函数是单调减函数。
指数函数的图像在坐标系中呈现出类似于指数增长或指数衰减的形态。
指数函数知识点汇总
指数函数知识点汇总指数函数是高中数学中的重要内容,它是指以一个常数为底的对数函数的逆运算,也就是说指数函数是对数函数的反函数。
以下将从指数函数的定义、特点、性质和应用等方面进行汇总。
1.指数函数的定义:指数函数是以一个正数a(a>0且a≠1)为底的函数,记作y=a^x,其中x是自变量,y是因变量,称为以a为底的指数函数。
2.指数函数的特点:-当a>1时,指数函数是递增函数,即随着自变量的增加,因变量也会增加;-当0<a<1时,指数函数是递减函数,即随着自变量的增加,因变量会减小;-当x=0时,指数函数的值都为1;-当x为负数时,指数函数的值在(0,1)之间或者大于1,根据指数的奇偶性确定。
3.指数函数的性质:-过点(0,1)的指数函数y=a^x的图像必过点(a,a);-指数函数在定义域内是连续的;-指数函数的值域是(0,+∞);-指数函数的图像是一条平滑的曲线,且不会与x轴平行;-指数函数的图像均经过点(0,1),但随着底数a的不同,曲线的形状也不同。
4.指数函数的常见形式:-y=2^x:底数为2的指数函数,也称为指数函数的最简形式;-y=10^x:底数为10的指数函数,也称为常用对数函数。
5.指数函数的应用:指数函数在实际生活中有重要的应用,尤其在经济学、生物学、物理学等领域中-经济学中的复利计算:复利计算是指在固定利率下,一笔资金每经过一定的时间后,利息加到本金上,再按照同样的利率计算下一期的利息,如此类推;-生物学中的指数增长模型:指数增长模型描述了生物群体在适宜生存环境下,其个体数量随时间而呈指数增长的情况;-物理学中的放射性衰变:放射性衰变过程中,放射物质中的原子核数量随着时间的推移而呈指数减少的趋势;-金融学中的指数收益率计算:指数收益率表示其中一特定指数指数中所包括的个股价格变动情况,用以评价股票市场的整体走势。
总结:指数函数是数学中的重要内容,通过对指数函数的定义、特点、性质和应用的汇总,可以帮助我们更好地理解和应用指数函数。
指数函数的概念与计算
指数函数的概念与计算指数函数是数学中常见且重要的一类函数,它是以常数e(自然对数的底数)为底的幂函数。
指数函数在各种科学领域和经济领域中都有广泛应用,如物理学、生物学、金融学等。
本文将介绍指数函数的概念以及如何进行指数函数的计算。
一、指数函数的概念指数函数的一般形式为:y = a * e^x,其中a为常数,e为自然对数的底数,x为自变量,y为因变量。
指数函数中的指数x可以是任意实数,因此指数函数可以表示正、负、零的实数幂。
1. 自然指数函数当a = 1时,指数函数的形式为y = e^x,这就是常见的自然指数函数。
自然指数函数的图像是一个递增的、连续的曲线,在坐标系中从原点开始,并且过点(0, 1)。
自然指数函数在x轴的正半轴上是逐渐增大的,在负半轴上是逐渐趋近于零的。
2. 广义指数函数当a不等于1时,指数函数的形式为y = a * e^x,它是自然指数函数的一般形式,也被称为广义指数函数。
广义指数函数不仅可以进行水平平移(通过调整a的值),还可以进行垂直平移、压缩和伸缩等变换。
二、指数函数的计算计算指数函数时,可以利用一些常用的指数函数性质和运算法则。
下面将分别介绍指数函数的常用运算法则和指数函数的图像特点。
1. 指数函数的运算法则(1)指数函数的加减法则:指数函数满足加减法法则,即e^(x+y) = e^x * e^y,e^(x-y) = e^x / e^y。
这个法则可以简化指数函数的计算,特别是当指数函数中的指数为复杂的代数式时。
(2)指数函数的乘除法则:指数函数还满足乘除法法则,即(e^x)^y = e^(xy),e^(x/y) =(e^x)^(1/y)。
这个法则可以简化指数函数的运算,特别是当指数函数需要进行幂运算或开根运算时。
2. 指数函数的图像特点指数函数的图像特点主要包括增减性、奇偶性以及渐近线等。
(1)增减性:自然指数函数e^x在整个实数范围内是递增的,即随着x的增大,函数值也增大。
指数函数
在函数y=a^x中可以看到:(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a 不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凸的。
(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过指数函数程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。
其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,并且永不相交。
(7)函数总是通过(0,1)这点,(若y=a^x+b,则函数定过点(0,1+b)(8)显然指数函数无界。
(9)指数函数既不是奇函数也不是偶函数。
(10)当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。
(11)当指数函数中的自变量与因变量一一映射时,指数函数具有反函数。
底数的平移:对于任何一个有意义的指数函数:在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。
在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。
即“上加下减,左加右减”底数与指数函数图像:指数函数(1)由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。
(2)由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。
(3)指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低”。
(如右图)》。
幂的大小比较:比较大小常用方法:(1)比差(商)法:(2)函数单调性法;(3)中间值法:要比较A 与B的大小,先找一个中间值C,再比较A与C、B与C的大小,由不等式的传递性得到A与B 之间的大小。
指数函数的定义和性质
指数函数的定义和性质在数学中,指数函数是一种基本的函数之一。
它的应用非常广泛,包括在金融、科学、工程和计算机科学等领域。
指数函数的定义和性质是数学学科中非常重要的一部分,本文将着重介绍指数函数的定义和性质,以帮助读者更好地理解这一重要概念。
一、指数函数的定义指数函数的定义非常简单,它是以自然常数e为底数的幂函数。
即:f(x) = e^x其中,e是自然常数,它的值约为2.71828。
根据这个定义,我们可以得到一些指数函数的基本性质。
二、指数函数的性质1. 增长速度指数函数是一个无限增长的函数。
随着x的增大,e的x次方也会越来越大。
这意味着,指数函数的增长速度非常快,远远快于其他函数,比如多项式函数和三角函数。
2. 渐近线指数函数的图像会与y = 0轴有一个渐近线。
这条线是指数函数的图像在x轴右侧逼近y = 0而趋近于它时所形成的。
3. 对称轴指数函数的对称轴为y = 0轴。
这是因为当x为正数时,e的x 次方和e的-x次方是关于y = 0轴对称的,即f(x) = f(-x)。
4. 交点指数函数和y = 1直线有一个交点,这个交点的坐标为(0,1)。
这个交点是由于e的0次方为1引起的。
5. 常函数关系指数函数和指数函数之间还存在常函数的关系。
换句话说,如果f(x) = e^x,那么g(x) = ln(x)就是f(x)的反函数。
这意味着,指数函数和对数函数是相互关联的。
6. 求导指数函数的求导结果还是自身。
换句话说,如果f(x) = e^x,那么f'(x) = e^x。
这个性质在微积分中是非常有用的。
三、应用指数函数有很多应用,包括用于描述人口增长率、财务计算、化学反应速率等方面。
这些应用需要对指数函数的性质有深入的理解,并能够使用指数函数进行数学建模。
例如,在人口学中,指数函数可以描述人口的增长率。
假设某个国家的人口现在为P0,每年的增长率为r,那么在t年后,该国的人口大小为:P(t) = P0 * e^(rt)这个方程式体现了指数函数的性质,即随着时间的增加,该国的人口会迅速增加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
③④
C 1<a <b< c < d
D a<b <1 <d < c
练习.
4
1 3
,2
2 3
,
2
3
,
3
1 2
3 3 4
变式1
2、解不等式:
(1)
2 3
3x1
2 3
2 x
;(2)(1)x2 2 2
2.
变式2 a3x1 a2x (a 0且a 1)
二、新 课
例求1、单求调下区列间函数的单调区间:
(1) y 3 ; x2 2x3
(2) y 2 ; x2 2x3
(32)
yy
12122x
4
x
x.
2
(3)y (1)x 1 x 1 4 2
例:3:当a>1时,讨论函数f(x)= ax 1 的奇偶性和单 ax 1
P59 T7
练习:1。设y1
=40.9
,y2
=80.48
,y
3
=
1 2
-1.5
,则(
)
A.y3 y 1 y2 , B.y2 y 1 y3,
C.y1 y2 y3, D.y1 y3 y2.
2.F
x
1
2 2x 1
f
xx
0 是偶函数,且f
(4)是R上的增函数
(4)是R上的减函数
练习
求定义域 (1) y (1) x 9
3
函数y=ax+2+1(a>0,且a≠1)必经过哪个定 点?
【例2】 比较下列各题中两个值的大小: (1)1.72.5,1.73;(2)0.8-0.1,0.8-0.2; (3)1.70.3,0.93.1.
方法引导: 比较两数值的大小,常可以归结为比较两函数值的大小,所以需 要我们能够恰当地构造函数,使两数值为同一函数的两个函数值 ,然后根据函数的单调性来比较大小. 有时也需要借助中间量0,1 来过渡。
画图
y = (1)x
2
y
y= 2x
8 7 6 5 4 3 2 1
-3 -2 -1 0 1 2 3 4 5 6 7 8 x
y 2x和
y
-1
1-2 ( )-3
x
的图象有什么关系?,
2
y
2x和
y
(1)x 2
的图象关于y轴对称,
y a x 和 y ax 的图象关于y轴对称
y=f(x)与y=f(-x)的图像关于y轴对称
一、问题引入
问题三、认真观察并回答下列问题:
(1)、一张白纸对折一次得两层,对折两次得4层,
对折3次得8层,问若对折 x 次所得层数为y,则y与x
的函数关系是:
y 2x,(x N)
1
中间剪(2一)、次一剩根下1米1 长米的,绳若子这从条中绳间子剪剪一x次次剩剩下下y米2 米,,则再y与从
x的函数关系是:4
y 2x 1
作业:
作函数y 1 x2 , y ( 1)x 1
2
2
的图象,并由图像指出其单调区间
二、新 课
例1例、2求:下求列下函列数函的数单的调值区域间:
(1) y 3 ; x2 2x3
(0 x 3)
(2) y 2 ; x2 2x3
(3) y 12 2x 4x .
1
(n∈N*);
③负整数指数幂:a-p=__a_p__(a≠0,p∈N*);
m
④正分数指数幂:a n
=__n__a_m__(a>0,m、n∈N*,
且n>1);
⑤负分数指数幂:a
m n
=
1
m
an
=1 a n m
(a>0,m、n
∈N*,且n>1).
⑥0的正分数指数幂等于___0___,0的负分数指数幂
定义域 值域
_R__ _(_0_,__+_∞__)___
(1)过定点_(_0_,_1_)____
(2)当x>0时,__y_>_1_; (2)当x>0时,_0_<_y_<_1__;
性质 x<0时,_0_<_y__<_1_
x<0时,_y_>_1__
(3)在(-∞,+∞) (3)在(-∞,+∞)上是
练习:在同一坐标系中画出下列函数的图象:
y (1)x 3
y 3x
问题3:
你能发现函数的图象与 其底数之间有什么样的 规律?
你能根据指数函数的图 象概括、归纳指数函数 的性质吗?
观问察题右一边:图象,回答下列问题:y (12
)
x
y
(1) 3
x
图象分别在哪几个象限?
y=3X
Y y=2x
答:四个图象都在第_Ⅰ_、_Ⅱ_象限
问题二: 图象的上升、下降与底数a有联系吗O ?
Y=1
X
答:当底数_a >_1时图象上升;当底数_0 _< a_<_1 时图象下降.
顺
问题三: 图象中有哪些特殊的点?
答:四个图象都经过点_(_0_,1_) .
a>1
图
0<a<1
象
性 (1)定义域为(-∞,+ ∞ ),值域为(0,+ ∞ ) (2)图像都过点(0,1),当x=0时,y=1
(x)
a
2 2x 1
(a
R):
(1)探索函数f (x)的单调性
(2)是否存在实数a使得f (x)为奇函数?
二、新 课
例3、(1)若x
[0,
2],
求y
x1
42
3
2x
5的取值范围;
(2)若函数y 4x 3 2x 3的值域为[1, 7],求x范围;
(3)已知关于x的方程2|x| m 1有实根,求实数m
x
不恒等于0,则f x( )
A.是奇函数,B.是偶函数
C.可能是奇函数也可能偶函数
D.不是奇函数也不是偶函数
练习2、此图是①y=ax,②y=bx, ③y=cx,④y=dx的图象,则a,b, c,d与1的大小关系是( )
A a<b <1 < c < d ① ②
B b<a <1 < d < c
质 (3)当x>0时,y>1;x<0时,0<y<1(3)当x>0时,0<y<1;x<0时,y>1
(4)是R上的增函数
(4)是R上的减函数
例1、已知指数函数f(x)=ax (a>0,且a≠1)的图 象经过点(3,π),求f(0)、f(1)、f(-3)的值.
问题:你能根据本例说出确定一个指数函数需要几个条件吗?
1练求习下:列函数的定义域值域:
(1)y 3 x2 (3) y 1
(2) y
1
x
2
(4) y
(1)x 1 3
1 2x
(5) y (2x 1)x
练习、函数y=ax-3+2(a>0,且a≠1)必经 过哪个定点?
练习、函数y=ax+1-1(a>0,且a≠1)必经过 哪个定点?
y
3
x
2
例2:说明下列函数的图象与 指数函数y=2x的图象的关系, 并画出它们的示意图 (1)y=2x+1 (2) y 2x2
(3) y 2x 1 (4) y 2x (5) y 2x
作函数y 2 x 的图象, 并由图像指出其单调区间
变式y 2 x2
指数函数的概念 指数 自变量
形如y = a x函数叫做指数函数
底数(a>0且a≠1) 常数
(1)y=1.073x
(2)
p
(
1
t
) 5730
2
二、新 课
思考:为何规定a0,且a1?
0
1
a
1
当a0时,ax有些会没有意义,如(-2)2
,0
1 2
等都没有意义;
而当a=1时,函数值y恒等于1,没有研究的必要.
(3)y
(1)x 4
1 x 2
1
3
x
2
例3:求函数 y (1)x2 2x 的单调区间 2
二、新 课
一、指数型复合函数的单调性:同增异减
一般地,对于函数y a f (x) (a 0且a 1)令u f (x), x D,u D, D R.则y au。 (1)当a 1时, y ax在R上单调递增。若u f (x)在D上 单增,则y a f (x)在D上单增;若u f (x)在D上单减, 则y a f (x)在D上单减。 (2)当0 a 1时, y ax在R上单调递减。若u f (x)在D上 单增,则y a f (x)在D上单减;若u f (x)在D上单减, 则y a f (x)在D上单增。
变式:函数 f(x) ax (a 0, a 1)在区间1,2
上的最大值与最小值差 为 a ,求a的值。 2
变式:最大值和最小值 的 和为12,求a的值
1求下列函数的定义域值域:
(1)y 3 x2
(3) y (1)x 1 3
练习:
(2) y
1
1
x