无线电讲义导航绪论
第一章绪论 第二节导航定位卫星及其星座
GPS测量定位技术
一、GPS卫星及星座
GPS系统主要是为美国海陆空三军服务的,它具有广 泛的军事用途,例如,为地面部队迅速行动指明方位, 为核潜艇导航,为弹道导弹导航,检测全球核爆炸,摄 取全球性的军事情报,反潜艇,反导弹等等。因此, GPS卫星的内部设备复杂而繁多,例如,为了战略部队 的应急通讯,美国在GPS卫星上安装战略通信机,其重 量达16.03㎏,体积为0.0124m3,采用240-272MHZ、 318-400MHZ和7900-8000MHZ的微波信号,辐射功率 为20W。
GPS测量定位技术
二、前苏联GLONASS全球卫星导航系统
1.卫星星座 GLONASS卫星星座的轨道为三个等间隔椭圆轨道,轨 道面间的夹角为120°,轨道倾角64.8°,轨道的偏心率为 0.01,每个轨道上等间隔地分布8颗卫星。卫星离地面高 度 为 19100km , 运 行 周 期 为 11 小 时 15 分 。 由 于 GLONASS卫星的轨道倾角大于GPS卫星的轨道倾角,所 以在高纬度(50°以上)地区的可视性较好。 每颗GLONASS卫星上装有铯原子钟,以产生高稳定的 时标,并向所有星载设备提供同步信号。星载计算机将从 地面控制站接收到的信息进行处理,生成导航电文向地面 的用户广播。
GPS测量定位技术
第一章 绪论
•学习目标 •第一节 卫星大地测量及其发展 •第二节 导航定位卫星及其星座 •第三节 GPS在国民经济建设中的应用 •本章小结 •思考题与习题
GPS测量定位技术
第一章 绪论
学习目标
•了解GPS系统的构成,卫星的个数及寿命,卫星的 运行周期及发射功率,原子钟的精度,定位信号频 率。GPS的地面控制系统和截止2003年10月,目前GPS在轨工作卫星为28颗,其中 17号星在2003年6月6日至7月23日期间列为不健康状况,7 月9日其星钟从Cs4转为Rb2,卫星移到D6星位上又开始正 常运行。现在工作的卫星编号从1号至31号之间,只有12号、 19号、22号为空缺。28颗卫星中有3颗为BLOCKII卫星,17 颗为BLOCKIIA卫星,8颗为BLOCKIIR卫星,正在用铯钟(Cs) 运行的有11颗卫星,其余均用铷钟(Rb),在1993年11月22 日启用的卫星达15颗,即工作差不多十年以上的卫星数目 过半数,最早的一颗卫星还是1989年6月发射的。原先21号 星是1990年8月2日发射的,去年9月25日出现异常情况, 于2003年1月27日宜布退出服务,现已为2003年3月31日 发射的卫星所接替,后者在4月12日投入正式服务。
领航与导航知识点总结
领航与导航知识点总结第一章绪论一、空中导航的三个基本问题;1.定位:导航的首要和基本问题,是确定应飞航向和飞行时间的基础;可以采用的定位方法:目视,无线电,区域导航等;定位后判断偏航,进而修正航向等参量。
2.确定应飞航向:目的是修正风的影响,使飞机沿着预定的航迹飞行;要根据飞行高度上风速、风向和预定航迹的关系确定实际应飞航向。
3.确定飞行时间:目的是准确把握飞行进程,及时修正飞行速度,确保飞机能够准时到达目的地;根据飞行计划的要求,利用航路检查点检查飞机的飞行进程,采取相应的措施消磨和吸收飞行时间。
二、导航的类型:1.无线电领航(Radio Navigation)(1)根据无线电的传播特性,利用无线电领航设备进行定向、测距、定位,引导飞机飞行。
精度高;(2)定位时间短,可以连续、实时的定位;能够在昼夜、复杂气象条件或缺少地标的条件现使用,大大扩大了飞行时空。
局限性:地面限制、电磁干扰(3)测向系统:ADF、VOR、ILS、MLS(方位角、仰角、距离);测距系统:DME;测向测距系统:VOR/DME,TACAN ;测高系统:RA ;测距差系统:OMEGA、LORAN2.惯性导航INS(Inertial Navigation)(1)利用惯性元件测量飞机相对于惯性空间的加速度,在给定的初始条件下,利用导航计算机的积分运算,确定飞机的姿态、位置、速度,引导飞机飞行。
(2)完全自主导航;不受气象条件和地面导航设施限制,隐蔽性好;系统校准后短时定位精度高。
(3)定位误差随时间而不断积累,存在积累误差;成本高。
3.卫星导航通过测量飞机与导航卫星的相关位置来解算领航参数4.)区域导航(1)惯性导航、卫星导航以及飞行管理计算机系统的不断发展,使得导航手段发生了根本的变化。
(2)飞机无需局限于地面导航设施形成的航线逐台飞行,而是根据飞行管理计算机系统管理来自惯性导航系统、卫星导航系统、或地面导航设施的导航信息,编排更加灵活的短捷的希望航线,计算飞机的航线偏离信息,并通过与自动驾驶耦合,实现自动驾驶,引导飞机沿着最佳的飞行路径飞行,从实践和设备上摆脱了地面导航设施的束缚,这种实施导航的方法称之为区域导航(RNAV:AreaNavigation)第二章地球知识一、地球1.地球是一个两极稍扁、赤道略鼓的旋转椭球体,椭球的基本元素包括:极半径a,赤道半径b,扁率e=(b-a)/a 。
无线电导航系统(第2版)-教学大纲、授课计划 吴德伟
《无线电导航系统(第2版)》教学大纲一、课程信息课程名称:无线电导航系统(第2版)课程类别:素质选修课/专业基础课课程性质:选修/必修计划学时:64计划学分,4先修课程:无选用教材:《无线电导航系统(第2版)》,吴德伟主编,2023年,电子工业出版社教材。
适用专业:本课程可作为导航专业课程教学的课程,也可供其他相关专业学生和工程技术人员阅读参考,还可作为导航理论的培训课程。
课程负责人:二、课程简介无线电导航是在20世纪初发展起来的导航门类口第二次世界大战以后,尤其是进入21世纪后,由于军、民用航空导航的需求日益增多和电子技术的飞速发展,无线电导航成为各种导航手段中应用最广、发展最快的种7成为导航中的支柱门类。
本课程从系统的角度完整地介绍了军、民用现代无线电导航系统,内容包括导航的基本概念、相关知识,无线电导航系统的任务、构成、性能和发展;用于近程航空导航的中波导航系统、超短波定向系统、伏尔系统、地美仪系统、塔康系统、俄制近程导航系统,用于远程航空导航的罗兰-C系统、卫星导航系统和自主无线电导航系统:用于飞机着陆引导的米波仪表着陆系统、分米波仪表着陆系统、微波着陆系统和精密进场霄达系统。
三、课程教学要求求与相关教学要求的具体描述。
“关联程度”栏中字母表示二者关联程度。
关联程度按高关联、中关联、低关联三档分别表示为“H”“U”或"1”。
”课程教学要求”及“关联程度”中的空白栏表示该课程与所对应的专业毕业要求条目不相关。
四、课程教学内容五、考核要求及成绩评定六、学生学习建议(-)学习方法建议1.依据专业教学标准,结合岗位技能职业标准,通过案例展开学习,将每个项目分成多个任务,系统化地学习。
2.通过每个项目最后搭配的习题,巩固知识点。
3.了解行业企业技术标准,注重学习新技术、新工艺和新方法,根据教材中穿插设置的智能终端产品应用相关实例,对己有技术持续进行更新。
4.通过开展课堂讨论、实践活动,增强的团队协作能力,学会如何与他人合作、沟通、协调等等。
《无线电导航原理》辅导提纲
无线电导航原理课程辅导提纲军区空军自考办第一章无线电导航概论一、内容提要本章分五节,主要讲述了航空导航导的基本任务、航空导航的基本参量、导航技术的发展历程与技术特点,无线电波段的划分及此波段常用的导航设备、导航信号的特点、导航参数与位置线、位置线交点定位的方法,航空器对无线电导航的基本要求、无线电导航设备的种类和系统分类,对无线电导航系统的基本要求等内容。
二、重点内容、要求(一)航空导航基本概念1、能够阐明航空导航各基本参量的定义及意义;2、能够阐明各种导航方法的原理及特点;3、能够把握航空导航的核心任务和主要任务。
(二)无线电导航基本理论1、能够阐明各波段无线电导航信号的传播方式及特点;2、能够阐明位置线的定义以及位置线的分类;3、能够理解无线电导航的物理基础;4、能够掌握如何利用位置线交点法定位实现导航定位。
(三)无线电导航系统的分类及基本要求l、能够说出无线电导航系统的分类方法;2、能够说出对无线电导航系统各种性能指标的要求;3、理解工作容量的含义。
三、典型例题(一)填空题1、电台所在点的地理子午线北端顺时针到飞机方向的夹角在水平面的投影称为飞机真方位角。
2、惯性导航的物理依据是牛顿第二定律。
3、飞机与两导航台距离之差相等各点的连线是一条双曲线位置线。
4、飞机重心在空间运动时的轨迹称为航迹。
5、飞机重心在空间运动时的轨迹在地面上的投影称为航线。
6、飞机重心点的子午线北向顺时针到飞机纵轴之间的夹角在水平面的投影称为航向。
7、利用无线电技术测定飞机位置、方向和距离等参数,引导飞机航行的方法称为无线电导航。
8、飞机所在点的磁子午线北端顺时针到电台方向的夹角在水平面的投影称为电台磁方位角。
9、电台所在点的地理子午线北端顺时针到飞机方向的夹角在水平面的投影称为飞机真方位角。
10、电台所在点的磁子午线北端顺时针到飞机方向的夹角在水平面的投影称为飞机磁方位角。
11、飞机与地面投影点的垂直距离称为飞机的真实高度。
无线电导航系统概论
无线电导航系统概论——发展简史
10、其它导航系统 (1)前苏联及俄国建设情况 ①曾建立相应的双曲线定为系统,包括 BRAS
( Б р а с ) 、 RS-10 ( р с -10 ) 、 MARS-75 、 Chayka (ЧАЙКА)、 α 系统。 BRAS : 相 当 于 DECCA 系 统 , 精 度 达 12m ( 双 距 ) 12~60m(双曲线),包括1主台2副台,使用1660~2115 kHz,有6个频率,初始定位时间8~10分钟,提供位置间 隔1分钟。 RS-10类似于BRAS,但有5~6个副台。
2012-3-9 37 - 15
无线电导航系统概论——发展简史
(2)欧洲卫星导航系统建设情况 ①Navsat卫星导航系统 欧洲空间局于1982年提出建议,想通过国际合 作,研制满足海、空导航、搜索、营救、进出港、 民航机着陆等要求的民用卫星导航系统-Navsat卫 星导航系统。 特点:卫星网计划24颗星,提供三维定位、三 维速度和时间,定位精度分为10米和100米。
2012-3-9 37 - 27
无线电导航系统概论——定位原理
它可利用天线灵 敏度最小(理论灵敏 度为零)来确定电波 传播方向; 也利用天线方向性图的最大值来确定来波方向。 (2) 相位法
2π 4π ∆φ = 2 rd = D AB cos θ λ λ
2012-3-9 37 - 28
无线电导航系统概论——定位原理
2012-3-9
37 - 18
无线电导航系统概论——发展简史
地面系统: 主要由2个位于欧洲的Galileo控制中心(GCC) 和20个分布全球的Galileo传感器站(GSS)组 成,另外还有一个用于进行控制与卫星之间数 据交换的分布全球的5个S波段上行站和10个C波 段上行站。控制站与传感器站之间通过冗余通 信网络连接。
无线电技术导论前言-第一章
卫星通信技术
1
卫星通信技术是无线电领域的一个重要分支,它 利用地球同步轨道卫星实现全球范围内的通信和 广播服务。
2
随着技术的不断发展,卫星通信技术也在不断进 步,包括更高的传输速率、更低的时延、更灵活 的通信方式等。
3
卫星通信技术的应用范围非常广泛,包括国际通 信、远程教育、气象监测等领域,为人们的生活 和工作带来了很多便利。
解调原理
解调是从已调制的信号中提取出低频信号的过程, 与调制过程相反。
3
调制解调的应用
调制解调技术在通信、广播、电视等领域有着广 泛的应用。
无线电信号的传输方式
无线电信号传输方式
无线电信号可以通过视距传播、绕射传播和散射传播等方式进行 传输。
无线电信号传输损耗
无线电信号在传输过程中会受到各种因素的影响,如大气、地形、 建筑物等,导致信号强度逐渐减弱。
05
结语
本章总结
01
无线电技术导论是介绍无线电技术的基本概念、原理和应用的重要书籍。通过 阅读本书,读者可以了解无线电技术的发展历程、基本原理以及在各个领域的 应用。
02
本书第一章主要介绍了无线电技术的历史背景、发展历程和基本概念。通过这 一章的学习,读者可以对无线电技术有一个初步的认识和了解,为后续章节的 学习打下基础。
THANKS
感谢观看
导航
无线电技术用于卫星导航系统,如 GPS,为全球范围内的用户提供精 确的定位和导航服务。
电子战
无线电技术用于电子战系统, 通过干扰和侦查敌方信号来获
取情报和实施攻击。
02
无线电技术的原理
电磁波的传播原理
电磁波传播方式
01
电磁波可以通过空间传播,也可以通过介质传播,如空气、水、
《无线电导航原理》辅导提纲解析
无线电导航原理课程辅导提纲军区空军自考办第一章无线电导航概论一、内容提要本章分五节,主要讲述了航空导航导的基本任务、航空导航的基本参量、导航技术的发展历程与技术特点,无线电波段的划分及此波段常用的导航设备、导航信号的特点、导航参数与位置线、位置线交点定位的方法,航空器对无线电导航的基本要求、无线电导航设备的种类和系统分类,对无线电导航系统的基本要求等内容。
二、重点内容、要求(一)航空导航基本概念1、能够阐明航空导航各基本参量的定义及意义;2、能够阐明各种导航方法的原理及特点;3、能够把握航空导航的核心任务和主要任务。
(二)无线电导航基本理论1、能够阐明各波段无线电导航信号的传播方式及特点;2、能够阐明位置线的定义以及位置线的分类;3、能够理解无线电导航的物理基础;4、能够掌握如何利用位置线交点法定位实现导航定位。
(三)无线电导航系统的分类及基本要求l、能够说出无线电导航系统的分类方法;2、能够说出对无线电导航系统各种性能指标的要求;3、理解工作容量的含义。
三、典型例题(一)填空题1、电台所在点的地理子午线北端顺时针到飞机方向的夹角在水平面的投影称为飞机真方位角。
2、惯性导航的物理依据是牛顿第二定律。
3、飞机与两导航台距离之差相等各点的连线是一条双曲线位置线。
4、飞机重心在空间运动时的轨迹称为航迹。
5、飞机重心在空间运动时的轨迹在地面上的投影称为航线。
6、飞机重心点的子午线北向顺时针到飞机纵轴之间的夹角在水平面的投影称为航向。
7、利用无线电技术测定飞机位置、方向和距离等参数,引导飞机航行的方法称为无线电导航。
8、飞机所在点的磁子午线北端顺时针到电台方向的夹角在水平面的投影称为电台磁方位角。
9、电台所在点的地理子午线北端顺时针到飞机方向的夹角在水平面的投影称为飞机真方位角。
10、电台所在点的磁子午线北端顺时针到飞机方向的夹角在水平面的投影称为飞机磁方位角。
11、飞机与地面投影点的垂直距离称为飞机的真实高度。
(整理)1 无线电导航基础.
第1章绪论1.1 导航的发展简史1.1.1 导航的基本概念导航是一门研究导航原理和导航技术装置的学科。
导航系统是确定航行体的位置方向,并引导其按预定航线航行的整套设备(包括航行体上的、空间的、地面上的设备)。
一架飞机从一个机场起飞,希望准确的飞到另外一个机场就必须依靠导航、制导技术。
导航,即引导航行的意思,也就是正确的引导航行体沿预定的航线,以要求的精度,在指定的时间内将航行体引导至目的地。
由此可知除了知道起始点和目标位置之外,还要知道航向体的位置、速度、姿态等导航参数。
其中最主要的是知道航行体的位置。
1.1.2 导航系统的发展在古代,我们的祖先一直利用天上的星星进行导航,在古石器时代,为了狩猎方便,人们利用简单的恒星导航方法,这就是最早的天文导航方法。
后来,随着技术的不断发展和人们对事物认知的发展,人们利用导航传感器来导航,最早是我们祖先发明的指南针。
现有的导航传感器包括六分仪、磁罗盘、无线电罗盘、空速表、气压高度表、惯性传感器、雷达、星体跟踪器、信号接收机等。
以航空领域为例,从20世纪20年代开始飞机出现了仪表导航系统。
30年代出现了无线电导航系统,即依靠飞机上的信标接收机和无线电罗盘来获得地面导航台的信息已进行导航。
40年代开始研制甚高频导航系统。
1954年,惯性导航系统在飞机上试飞成功,从而开创了惯导时代。
50年代出现了天文导航系统和多普勒导航系统。
1957年世界上第一颗卫星发射成功以后,利用卫星进行导航、定位的研究工作被提上了议事日程,并着手建立海事卫星系统用于导航定位。
随着1967年海事卫星系统经美国政府批准对其广播星历解密并提供民用,由此显示出卫星定位的巨大潜力。
60年代开始使用远程无线电罗兰-C导航系统,同时还有塔康导航系统、远程奥米伽导航系统以及自动天文导航系统。
60年代后,无线电导航得到进一步发展,并与人造卫星导航相结合。
70年代以后,全球定位导航系统得到进一步发展和应用。
在此过程中,为了发挥不同导航系统的优点,互为补充,出现了各种组合导航系统,它们主要以惯性导航系统为基准。
《导航概论》PPT课件
第1章 导航概论
导航概论>无线电技术基础>天线及馈线>天线的分类
4. 面天线
• 面天线可等效为若干基本辐射源的组合,空 间的电磁场分布是这些基本辐射源叠加的结 果。其方向性图取决于面上电磁波的相位和 幅度分布。
• 二次辐射型的面天线主要分为反射器天线和 透镜天线两大类。
第1章 导航概论
导航概论>无线电技术基础>天线及馈线>天线的分类
第1章 导航概论
导航概论>无线电技术基础>无线电波的产生
x
随t增加,波形向+z方向移动
Ex
z Hy
y
• 对应空间某处z,电场随时间周期性变化,角频率 为ω,振幅为Em;对应某时刻z,电场在空间呈周 期性分布,空间角频率为β,振幅为Em。
• 电波传播时,空间磁场 Hy(z,t)始终与空间电场 Ex(z , t)垂直,并且它们都与传播方向垂直。
第1章 导航概论
导航概论>无线电技术基础>无线电波的传播方式
1.3.天波传播
• 电离层反射无线电波的能力与电波频率、入射(角)有关。 天波传播与电离层密切相关。
• 天波传播的主要特点是传输损耗小和超视距传播,可用较 小功率实现远距离通信,如果经过电离层折射与地面反射 的多次跳跃传播,还可实现数千km、甚至几万km的信号 传输。长、中、短波都可利用电离层反射传播,但以短波 为主,是大多数短波通信、广播的主要传播方式。其他频 段的无线电波可能被吸收或穿越大气层进入太空,因而无 法利用天波传播。
1/ LC,理想的L、C并不消耗能量,只进行能
量的交换。
• 一个完全开放的平板电容,当它被频率为ω的电压 激励时,就向空间辐射电磁波。
最新2019-无线电导航理论基础第1章-PPT课件
协调世界时(Universal Time Coordinate)
为了协调原子时与世界时的关系,建立了一 种折衷的时间系统称之为协调世界时UTC
原子时虽然是秒长均匀的,稳定度很高的时间系 统,但其与地球自转无关。
世界时虽不均匀,但与地球自转紧密相关。 原子时的秒长与世界时的秒长不相等,两者每年
第一章 无线电导航理论基础
1.1 时间基准系统
1.1 宇宙时间系统 1.2 原子时间系统
1.2 空间坐标系统
1.2.1 地球几何形状 1.2.2 导航空间坐标系 1.2.3 空间坐标转换
1.3 载体航行基本导航参数
1.1时间基准系统
时间基准是自然科学理论及应用领 域中最基本的测量基准。
的电磁振荡9192631770周所经历时间为1原子秒; (2)原定义为1958年元月一日UT2零时为起算点。
但事后经国际上多台原子钟比对发现,原定义存在 误差,实际原子时的原点为:
(3)原子时是由高精度原子钟来保持的。目前,国 际上约有100台原子钟通过互相比对,并经过数据 处理推算出统一的原子时,称为国际原子时(TAI)。
平太阳日是以平子夜瞬间作为零点。
M TLA S1Th 2
3、世界时(Universal Time)
以平子夜为零时起计算的格林尼治平 U太TG 阳A 时M 称1T 为2 h 世界U时 TG 。 A SMT S1h2 从1956年开始,在世界时中加入了极
移修正和自转速度修正,得到的世界 时相应表示为UT1和UT2 UUTT21 未UUT经T10修T正s 的 世 界1 1 时(5 x 以psUTi0n 表y示pc。o )tsg
一、宇宙时间系统
以天体运动为基准的时间系统。
第1章 无线电导航基本理论
1.2 无线电导航的发展简史和发展趋势
二、第二阶段(从二战至20世纪60年代初)(7)
7.战术空中导航系统-塔康(TACAN) 军用测距测角系统,美国海军1955年研制; TACAN在功能上相当于民航的VOR和DME; TACAN台安装在航母或地面上,可为飞机同时 提供距地面台(航母)的方位和距离信息;
ADF-NDB,VOR,DME,ILS,MLS,GPS。
5.自主式(自备式)导航系统
只包括航行体上的无线电导航系统就能完 成导航任务的导航系统。
LRRA,INS(非无线电导航系统)。
中国民航大学 CAUC
1.4 无线电导航系统的分类
一、常用无线电导航术语(6) 6.导航台 具有确定位置、辐射与导航参数有关的有 规定信号格式的发射/接收处理系统。
1.3 导航的分类 三、天体导航
1.定义:通过观测两个以上星体的位置参数( 如仰角),来确定观察者在地球上的位置,从 而引导运动体航行 。 2.举例:通过观测两颗星的仰角来确定航行体 的位置。
3.特点:为自主式导航,保密性强,定位精度 高,受气候及环境影响,定位时间较长,比较 适合航海导航。
中国民航大学 CAUC
1. 台卡系统(DECCA)
主要用于航海; 英国台卡导航仪公司研制; 1937年提出,1944年研制成功; 1954年开始普及(在欧洲应用最为广泛) ; 随着罗兰-C的建设和发展,台卡用户逐渐 减少。
中国民航大学 CAUC
1.2 无线电导航的发展简史和发展趋势
二、第二阶段(从二战至20世纪60年代初)(2) 2. 罗兰系统(LORAN) 主要用于航海,美国研制; 罗兰-A,罗兰-C;
1.按所测量的电气参量划分
无线电导航
测角位置线是一根径向线,测距的位置线是一个圆
以极坐标显示位置,又叫“极坐标系统”
N r M
α O
只 需 一 个 导 航 台就可定位
S
3.1.3 双曲线导航系统
罗兰-C采用测距差原理进行导航定位
罗兰-C的特点
采用100kHz低频率,传播范围远;
利用脉冲和相位测量电波延迟时间,提高了测
DM —— P点到M点距离
tS ——收到S点发出脉冲信号时刻
tM ——收到M点发出脉冲信号时刻
(二)相位法
相位测距法是测量两个导航台发射的信号到达航行 体的相位差。
λ
DA
DB
A
B
A 2
DA
B 2
DB
A —— P点收到A导航台的相位
B —— P点Βιβλιοθήκη 到B导航台的相位DA —— P点到A导航台距离
TSi —卫星i时钟偏置(相对GPS时)
dGi —各种误差引起的时延(是时间t和距离r的函数)
罗兰-C测量的伪距为:
i (t ) Li(t ) u(t ) CTL (t ) TLi (t ) d Li (t, r)
Li’—罗兰-C导航台i发射机经地球曲率修正的位置矢量
u
罗兰-C测量的伪距为:
i (t ) Li(t ) u(t ) CTL (t ) TLi (t ) d Li (t, r)
量精度。
作 用 距 离 1 2 0 0 n
0.25n mile(460m)。
mile,定位精度
双曲线导航原理
距离差位置线:测定航行体到两个导航台的距离 之差,可得到距离差位置线; 用距离差位置线来确定航行体位置的方法,称作 测距差导航; 因为距离差位置线为双曲线,所以又称作双曲线 导航。