人教版初一数学下册算术平方根

合集下载

人教版七年级数学下册6.1.1算术平方根

人教版七年级数学下册6.1.1算术平方根

(2)
49 81
解:(1) 4 2 (3) (11) 2
112 11
(4) 6 2 6
例3 求下列各数的算术平方根: ⑴ 32 ⑵ 43 ⑶ (10) 2 ⑷
1 10 6
自我检测
自我检测
1、下列各式有意义吗?
± ( 3) (1) 144 (2) 0.81
121 (4) 196
9
16
4
36
6
4 25
2 5
3
(2)你能指出它们的共同特点吗? 都是已知一个正数的 平方,求这个正数.
2.总结概念 一般地,如果一个正数的平方等于 a , 2 即 x a,那么这个正数 x 叫做 a 的算术
平方根. a 的算术平方根记为 a ,读作
“根号 a ”,a 叫做被开方数.
即 0 =0. 即: x a(x ), 规定: 0的算术平方根是 00 , 2 x a ( x 0) 也就是说,若 ,则 x a x叫做a的算术平方根, 例如,由于 52 25 ,5是25的算术平方根, 记作: x a 25 5 即 .
(7)
2、求下列各式的值
13 169 10 ____
100
3 (3) _____;
2
课堂练习 例2:求下列各数的算术平 方根,
1 (1) 81(2)( 25 ) (3) 2 4 解(1)因为 81 9, 9的算术平方根是 3,
2
所以 81 的算术平方根是 3。
(2) (25) 25
①根据算术平方根的定义解题,明确平方与开平方 互为逆运算; ②求带分数的算术平方根,需要先把带分数化成假 分数,然后根据定义去求解; ③0的算术平方根是0。

平方根人教版数学七年级下册教案3篇

平方根人教版数学七年级下册教案3篇

平方根人教版数学七年级下册教案3篇平方根人教版数学七年级下册教案1 人教版七年级数学下册《10.1平方根》教学设计PPT课件导学案教案课题: 10.1 平方根〔1〕教学目的 1.理解算术平方根的概念,会用根号表示正数的算术平方根,并理解算术平方根的非负性;2.理解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根;3.通过对实际生活中问题的解决,让学生体验数学与生活实际是严密联络着的,通过探究活动培养动手才能和激发学生学习数学的兴趣。

教学难点根据算术平方根的概念正确求出非负数的算术平方根。

知识重点算术平方根的概念。

教学过程〔师生活动〕设计理念情境导入同学们,20xx年10月15日,这是我们每个中国人值得骄傲的日子.因为这一天,“神舟”五号飞船载人航天飞行获得圆满成功,实现了中华民族千年的飞天梦想〔多媒体同时出示“神舟”五号飞船升空时的画面〕.那么,你们知道宇宙飞船分开地球进人轨道正常运行的速度是在什么范围吗?这时它的速度要大于第一宇宙速度〔米/秒〕而小于第二宇宙速度:〔米/秒〕.、的大小满足 .怎样求、呢?这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.请看下面的问题.“神舟”五号成功发射和平安着陆,标志着我国在攀登世界科技顶峰的征程上又迈出具有重大历史意义的一步,是我们伟大祖国的荣耀.此内容有感染力,使学生对本章知识的应用价值有一个感性认识,同时激发学生的好奇心和学习的兴趣.这里的计算实际上是幂和乘方的指数求底数的问题,是乘方的逆运算,学生以前没有见过,由此引出了本章所要研究的主要内容,以及研究这些内容的大体思路.提出问题感知新知多媒体展示教科书第160页的问题〔问题略〕,然后提出问题:你是怎样算出画框的边长等于5dm的呢?〔学生考虑并交流解法〕这个问题相当于在等式扩=25中求出正数x的值.练习:教科书第160页的填表.练习:教科书第160页的填表.这个问题抽象成数学问题就是正方形的面积求正方形的边长,这与学生以前学过的正方形的边长求它的面积的过程互逆,教学时可以让学生初步体会这种互逆的过程,为后面的学习做准备。

人教版七年级下数学《平方根》实数PPT教学课件

人教版七年级下数学《平方根》实数PPT教学课件
学校要举行美术作品比赛,小美想裁出一块面积为9 dm2的正方形画布,临摹自己的最喜欢的作品参加比赛, 这块正方形画布的边长应取多少?
你一定会算出边长应取3 dm. 说一说,你是怎样算出来的? 因为32=9,所以这个正方形 画布的边长应取3 dm.
课程讲授
1 算术平方根
填表:
正方形的 面积/dm2
1
课程讲授
2 估算算术平方根
如此进行下去,可以得到 2 的更精确的近似值. 事实 上, 2 =1. 414 213 562 373…,它是一 个无限不循环 小数. 实际上,许多正有理数的算术平方根(例如 3, 5, 7 等)都是无限不循环小数.
小数位数无限,且小数部分 不循环的小数称为无限不循 环小数.
… 0.062 5 0.625 6.25 62.5 625 6 250 62 500 … … 0.25 0.790 6 2.5 7.906 25 79.06 250 …
课程讲授
3 用计算器求一个正数的算术平方根
归纳小结:被开方数的小数点向右每移动 位,它的算2术平方 根的小数点就向右移动 位;被开方数的小数点向1左每移动 位,
(5) x (6) x2 (7) x2 1 (8) 1
x1
x2
(9) x 2 4 2x
第六章 实 数
6.1 平方根
第1课时
新知导入 课程讲授
随堂练习 课堂小结
知识要点
1.算术平方根 2.估算算术平方根
3.用计算器求一个正数的算术平方根
新知导入
试一试:根据所学知识,试着解决下列问题.
课程讲授
1 算术平方根
例 求下列各数的算术平方根:
(1)100;
(2)49 ; 64
(3)0.000 1.

人教版七年级数学下册6.1《算术平方根》教案

人教版七年级数学下册6.1《算术平方根》教案
1.培养学生的逻辑推理能力:通过算术平方根的学习,使学生能够理解和运用数学定义、性质进行逻辑推理,提高解决问题的能力。
2.提升学生的数学运算能力:使学生掌握求算术平方根的方法,并能熟练地进行相关运算,解决实际问题。
3.培养学生的数学建模素养:引导学生将算术平方根应用于实际问题,建立数学模型,增强数学应用意识。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“算术平方根在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-难点c:教师可以设计一些实际问题,如计算一个边长为5米的正方形的对角线长度,引导学生运用算术平方根解决问题。
-难点d:通过数轴上的表示,说明一个数的平方根在数轴上的位置,强调算术平方根的非负性。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《算术平方根》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要求解一个数的平方根的情况?”(如求解一个正方形边长)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索算术平方根的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解算术平方根的基本概念。算术平方根是指一个非负数的平方根,它是……(解释其定义和性质)。算术平方根在数学运算和实际问题中具有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。如求解一个边长为3米的正方形的对角线长度,这个案例展示了算术平方根在实际中的应用,以及它如何帮助我们解决问题。

人教版数学七年级下册6.1.1算术平方根优秀教学案例

人教版数学七年级下册6.1.1算术平方根优秀教学案例
(二)讲授新知
在导入新课后,教师开始讲授新知识。首先,教师可以利用多媒体课件或实物模型,为学生提供丰富的感性材料,引导学生观察和操作。例如,教师可以展示一个正方形的模型,让学生观察并描述其特征,从而引导学生思考正方形的面积与边长之间的关系。接着,教师提出算术平方根的概念,并通过举例解释其含义。
(三)学生小组讨论
在讲授新知识后,教师将学生分成若干小组,让学生在小组内进行讨论、交流和合作。教师可以设计以下任务:
1.每个小组探究一个正整数的算术平方根,并总结求解方法。
2.小组成员共同讨论,归纳算术平方根的性质。
3.小组合作解决一个实际问题,如计算教室地板的面积。
(四)总结归纳
在学生小组讨论结束后,教师组织学生进行总结归纳。教师可以引导学生回顾本节课所学的内容,让学生总结算术平方根的定义、性质以及求解方法。同时,教师要注意关注学生的个体差异,引导每个学生都能参与到总结归纳的过程中。
人教版数学七年级下册6.1.1算术平方根优秀教学案例
一、案例背景
在我国基础教育课程体系中,算术平方根的概念是学生从小学过渡到初中阶段必须掌握的重要数学知识。对于七年级下册的学生而言,他们在学习了有理数、整数等基础知识后,算术平方根的概念及其性质,不仅是对原有知识的深化,更是为后续的代数学习奠定基础。
2.小组成员共同讨论,归纳算术平方根的性质。
3.小组合作解决一个实际问题,如计算教室地板的面积。
(四)反思与评价
本节课的教学结束时,教师引导学生进行反思与评价,使学生对所学知识有一个清晰的认识。教师可以设计以下问题:
1.你在这节课中学到了什么?你对自己的学习有何评价?
2.你觉得算术平方根在实际生活中有哪些应用?
二、教学目标
(一)知识与技能

人教版七年级数学课件《平方根》

人教版七年级数学课件《平方根》
1.包含关系:平方根包含算术平方根,算术平方根是平方根的一种.
联系
2.只有非负数才有平方根和算术平方根.
3.0的平方根是0,算术平方根也是0.
区别
1.个数不同:一个正数有两个平方根,但只有一个算术平方根.
2.表示法不同:平方根表示为± ,而算术平方根表示为 .
达标检测
人教版数学七年级下册
1.下列各数中没有平方根的数是( D)
∴2 − 1 = 9, − 1 = 16,
∴ = 5, = 17.
∵是 13的整数部分,3 < 13 < 4,
∴ = 3.
∴ + 2 − = 5 + 17 × 2 − 3 = 36.
∵36的平方根是±6.
∴ + 2 − 的平方根为±6.
总结提升
人教版数学七年级下册
平方根与算术平方根的联系与区别:
∴原来正方形的边长为16.
小结梳理
人教版数学七年级下册
一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或
二次方根. 这就是说,如果x2=a,那么x叫做a的平方根.
求一个数a的平方根的运算,叫做开平方.
1.正数有两个平方根,它们互为相反数;
2.0的平方根是0;
3.负数没有平方根.
正数a的算术平方根可以表示为 ,正数a的负的平方根,可以表
则有2a+1+a-4=0,即3a-3=0,
解得a=1.
所以这个数为(2a+1)2=(2+1)2=9.
典例解析
人教版数学七年级下册
例4.已知2 − 1的算术平方根是3, − 1的平方根是±4,
是 13的整数部分,求 + 2 − 的平方根.
解:∵2 − 1的算术平方根是3; − 1的平方根是±4,

七年级数学下册教学课件《算术平方根》

七年级数学下册教学课件《算术平方根》
(2) 9 3; (3) 22 2. 25 5
3. (1)若一个数的算术平方根是 13 ,则这个数 是___1_3___.
4
(2)① 16 =___4__, 16的算术平方根是___2___;
② ( - 5)2 =___5___,( - 5)2 的算术平方根是 ___5___,(-5)2的算术平方根是____5___.
概念
提取 ( 0 )2 = 0 ,规定:0 的算术平方根是 0.
一般地,如果一个正数 x 的平方等于 a,
即 x2 = a,那么这个正数 x 叫做 a 的算术平
方根.
(非负数 x )2 = a
非负数 x 是非负数 a 的算术平方根
那么 1,9,16,36,4 的算术平方根是?
25
概念 提取
a 的算术平方根记为 a ,读作“根 号 a”,a 叫做被开方数.
(1)根据计算结果,回答 a2 一定等于 a 吗?你
发现其中的规律了吗?请你用自己的语言描述出来. (2)利用你总结的规律,计算:(3.14-)2 .
解:(1) a2 不一定等于a, a2 a .
(2)原式 = |3.14-π| = π-3.14 .
课堂总结
一般地,如果一个正数 x 的平方等于 a, 即 x2 = a,那么这个正数 x 叫做 a 的算术平

100 10

大 到
49 7 64 8
大 到


0.0001 0.1
被开方数越大,对应的算术平方根也越大.
若a b 0,则 a __>___ b.
对应训练
【选自教材P41练习 第1题】
1. 求下列各数的算术平方根: (1)0.0025;(2)81;(3)32.

七年级-人教版-数学-下册-第1课时-算术平方根

七年级-人教版-数学-下册-第1课时-算术平方根
第1课时 算术平方根
学校要举行美术作品比赛,小鸥想裁 出一块面积为 25 dm2的正方形画布,画上 自己的得意之作参加比赛,这块正方形画 布的边长应取多少?
你一定会算出边长应取 5 dm,说一说,你是怎样算出来的?
因为 52=25,所以这个正方形画布的边长应取 5 dm.
填表:
正方形的
4
1 面积 / dm2
9
16
36
25
正方形的
2
1
3
边长 / dm
4
6
5
你能指出它们的共同特点吗?
上面的问题,实际上是已知一个正数的平方,求这个正数的 问题.
一般地,如果一个正数 x 的平方等于 a ,即 x2 a ,那么 这个正数 x 叫做 a 的算术平方根.a 的算术平方根记为 a,读 作“根号 a ”, a 叫做被开方数.
例3 计算:(-1)2 023-|-5|×(-6)+ 49 .
解:原式=-1-5×(-6)+7 =-1+30+7 =36.
综合计算题的运算顺序 解决综合计算题要从高级运算到低级运算,即先算乘 方、开方,再算乘除,最后算加减,有括号的要先算括号 里面的,同级运算要按照从左到右的顺序进行.
例4 已知 x 1 ( y 2)2 z 3 0,求 x+y+z 的值.
算术平方根
算术平方根的相关概念 算术平方根的非负性 算术平方根的应用
a 的算术平方根
根号
a
被开方数a
规定:0 的算术平方根是 0.
所以,若 x2 a x 0 ,则 x a .
由 x2 a 和 x a 思考: (1)a 的取值范围是什么?
a 是非负数,即 a≥0. (2)算术平方根 x 的取值范围是什么?

七年级下册数学人教版 第六章6.1.1算术平方根

七年级下册数学人教版 第六章6.1.1算术平方根


乘胜追击
小组合作
(1)被开方数可以取任何数吗?
(2) 可以取哪些数?
真相大白
小组合作
(1)被开方数 是 非负数 ,即 a ≥0 .
(2)一个数的算术平方根是 非负数 ,
即 ≥ .
算术平方根具有双重非负性!
勇攀高峰
师友PK
9
(1)81的算术平方根是

(2) 的算术平方根是
3
(3)已知 =3 ,则=_____.
9

(4)3的算术平方根是______.
(5) ≥ 时, − 有意义.
.
加油
哦!
最强大脑

若( − ) + + = ,
-1
则+ =______.
师友拓展
走进生活
学校要定制120块正方形的画板,奖励在手
抄报比赛中获奖的同学,总面积为10.8平方米,
你能设计出这样的画板吗?它的边长为多少?
么这个正数叫做的算术平方根.
=
,那
自主探究
师友探究
5.表示方法
a 的算术平方根记作:
根号
读作: “ 根号a ”

算术平方根
被开方数
例:根据定义求36的算术平方根.
因为62 = 36,所以36的算术平方根是6,
即 =6.
小试牛刀
师友巩固
例1 根据定义求下列各数的算术平方根:
(1)100; (2)


2
5
上面的问题实际是个什么问题?
已知一个 正数 的平方,求这个 正数 的问题.
自主探究
3.学习新知
例如: 22 = 4
2叫做4的 算术平方根 .

算术平方根(教学课件)七年级数学下册(人教版)

算术平方根(教学课件)七年级数学下册(人教版)

64 8
(3) 因为0.012=0.0001,所以0.0001的算术平方根出:被开方数越大,
对应的算术平方根也越大.
求下列各数的算术平方根:
(1) 0.0025
(2) 81
(3) 32
解:(1) 因为0.052=0.0025,所以0.0025的算术平方根是0.05,即 0.0025
D.±2
5. 16的算术平方根是( C )
A.4
B.±4
6.设 441=a,则下列结论正确的是( D )
A.a=441
B.a=4412
C.a=-21
D.a=21
7.若一个数的算术平方根是 5,则这个数是_______.
5
8.(-1.44)2的算术平方根为_______.
1.44
0或1
9.算术平方根等于它本身的数是_________.
∴ − 4 ≥ 0, + 3 ≥ 0
∴ − 4 = 0, + 3 = 0,
∴ = 4, = −3,
把 = 4, = −3代入,( + )2019 = [4 + (−3)]2019 = 12019 = 1,
∴( + )2019 的算术平方根是1.
例4.高空抛物严重威胁着人们的“头顶安全”,即便是常见小物件,一旦高
1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点)
2.会求非负数的算术平方根,掌握算术平方根的非负性.(重点、难点)
中国空间站
同学们,你们知道宇宙飞船离开地球进入轨道正
常运行的速度在什么范围吗?
学校要举行美术作品比赛,小鸥想裁出一块面积为25dm2的正方形画布,画
上自己的得意之作参加比赛,这块正方形画布的边长应取多少?

人教版数学七年级下册 用计算器求算术平方根及其大小比较

人教版数学七年级下册 用计算器求算术平方根及其大小比较

典例精析 例1 (1) 估计与
最接近的两个整数是多少?
解:因为 32 = 9,42 = 16, 所以 3 < < 4.
所以与 最接近的两个整数是 3 和 4.
例1 (2) 估计与 最接近的一个整数是多少? 太小 太大
解:因为 3 < < 4, 而 3.52 = 12.25, 所以 < 3.5 . 所以最接近 的整数是 3 .
解:由题意知正方形纸片的边长为 20 cm. 设长方形的长为 3x cm,则宽为 2x cm. 则有
3x 2x 300,x2 50,x 50 ,3x 3 50.
∵50>49 ,∴ 50 >7. ∴3 50 >21. 3 50 就是 3 50
∴小丽不能裁出符合要求的纸片.
练一练
2.某地气象资料表明,当地雷雨持续的时间 t (h)
导入中
是一个_无__限__不__循__环_小数
有多大呢? 因为 52 = 25,62 = 36,
所以 5< 30<6.
练一练
1. 设 a、b 是两个连续的整数,若a < 30 < b, 求 a + b 的值.
分析: 25< 30< 36 ,即 5 < 30 < 6,
总结 ∴ a + b = 5 + 6 = 11. 估算 a (a>0)在哪两个整数之间及整数、小数的部分: 根据算术平方根的定义,有 m2<a<n2,其中 m,n 是 连续非负整数,则 m< a <n,则 a 的整数部分为 m, 小数部分为 a m .
(2)用计算器计算 3 (精确到 0.001),并利用你在 (1) 中发现的规律说出 0.03 , 300 , 3000 的近似值. 你 能根据 3 的值直接得到 30 是多少吗?

人教版七年级数学下册《算术平方根》课件ppt

人教版七年级数学下册《算术平方根》课件ppt

解得
x 7 , y 7 , z 35 ,
3
66
x
3y
4z
7 3
3
7 6
4
35 6
175 6
.
定义: 一般地,如果一个正数的平方等于a,即 x2 = a , 那么这个正数x叫做a的算术平方根.
性质: 算术平方根的双重非负性.
填表:
表1 正方形的边长 正方形的面积
1
2 0.5 2
3
1
4
0. 25
4 9
思考:你能从表1发现什么共同点吗?
已知一个正数,求这个正数的平方,这是平方运算.
表2 正方形的面积
1
4
正方形的边长
1
2
思考:你能从表2发现什么共同点吗? 已知一个正数的平方,求这个正数ห้องสมุดไป่ตู้ 表一和表二中的两种运算有什么关系?
到目前为止,表示非负数的式子有:
a≥0, |a|≥0, a2 ≥0, a ≥0,
例5:自由下落物体下落的距离h(米)与下落时间t(秒)的关系为h 4.9t 2
有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?
解:将h=19.6代入公式19.6 4.9t2,
得 t2 4 ,
所以正数 t 4 2 (秒). 即铁球到达地面需要2秒.
是0.01,即 0.0001 0.01.
3.下例列4式下子列表式子示表什示么什么意意义义??你你能能求求出它出们它的们值吗的?值吗?
⑴1
⑵9 25
⑶ 22 ⑷ 32 ⑸ 132 122
解: 1=1,
9 =3, 25 5
22 =2, 32 =3
132 122 =5
4.用大小完全相同的240块正方形地板砖,铺一间面积为60 m2的会议室的地 面,每块地板砖的边长是多少?

人教版七年级数学下册第六章 第3课时 平方根

人教版七年级数学下册第六章 第3课时 平方根
区别: 有一个算术平方根. 2. 表示法不同:平方根表示为 a,而算术 平方根表示为 a .
1.下列说法正确的是_①__④__⑤___ ① -3 是 9 的平方根;② 25 的平方根是 5;③ -36 的 平方根是 -6;④ 平方根等于 0 的数是 0;⑤ 64 的算 术平方根是 8. 2.下列说法不正确的是( B ) A. 0 的平方根是 0
第六章 实数
6.1 平方根
第3课时 平方根
回顾与思考 1. 什么叫做算术平方根?
2. 判断下列各数有没有算术平方根,如果有,请 求出它们的算术平方根. 100;1; 36 ;0;-0.0025;(-3)2;-25.
121
3. 填空:
(1)32 = 9 ,(-3)2 = 9 ;
(2)
2 3
2
4 9
(2)295 ; 有两个平方根
解:由于
=
5
2
3
25 9

因此
25 9
的平方根是
5 3

-
5 3
.
即±
25 9

5 3
.
(3)1.21. 有两个平方根
解:由于 1.12 = 1.21,
因此 1.21 的平方根是 1.1 与 -1.1.
即 ± 1.21 = ± 1.1 .
三、平方根的数学符号表示 一个非负数的平方根的表示方法:
(3)
121 = 11 . 196 14
平方根的概念
平方根
平方根的性质
开平方及相关运算
a 表示 a 的正的平方根 (算术平方根) a 表示 a 的负的平方根
记作 a
a﹙a≥0﹚的平方根表示为 a.
说一说

人教版七年级数学下册算术平方根(共张PPT)

人教版七年级数学下册算术平方根(共张PPT)
(2)-6是 36 的算术平方根; x2=a , 那么这个正数x就叫做a的算术平方根.
3.能熟练求一个非负数的算术平方根。 (1)121的算术平方根是

这个问题实际上就是求:
一般地,一个正数x的平方等于a,即
, 那么,这个正数x就叫做a的算术平方根.
4.掌握算术平方根的双重非负性。 要剪出一张边长是5厘米的正方形纸片,它的面积是多少?

11²=121 (3)
(4)
三、0的算术平方根是_______,表示
(2)100的算术平方根是

16²=256
(2)100的算术平方根是

:表示 的算术平方根,等于 ;
12²=144 0 的算术平方根是

(1)121的算术平方根是

17²=289
这是已知底数和指数,求幂的运算
三、0的算术平方根是_______,表示
25的算术平方根是

5.能运用算术平方根的定义解决问题。 的算术平方根是

0. ★乘法与除法互为逆运算;
(5)-5是-25的算术平方根。
一、 a的算术平方根(a>0)怎么表示___________.
我们已学过了有理数的加法、减法、乘法、除法、乘方这五种运算。
0081 的算术平方根是

1、 的算术平方根等于____
( )2 25
显然,括号里应是±5,但 -5不符题意。 ∴方桌面的边长应是5厘米。
25平方厘米 ?厘米
身边小事
为了趣味接力比赛, 要在运动场上圈出一 个面积为100平方米的 正方形场地,这个正方 形场地的边长为多少?
10米
因为102 =100
在括号里填上适当的正数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
出示多媒体课件:
问题 学校要举行美术作品比赛,小鸥很高兴.想裁出一块面积为25dm2的正 方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?
2
师:•••5 =25,a这个正方形画布的边长应取5dm.
二、讲授新课
师:请同学们填表:
正方形的面积
1
9
16
36ቤተ መጻሕፍቲ ባይዱ
边长
1
3
4
6
师:上面的问题,实际上是已知一个正数的平方,求这个正数的问题.
【例2】自由下落物体下落的距离s(m)与下落时间t(s)的关系为s=4.9t:
有一铁球从19.6 m高的建筑物上自由下落,到达地面需要多长时间?
【答案】将s=19.6代入公式s=4.9t2,得t2=4,所以t==2(s).即铁球到达地
面需要2s.
四、课堂小结 师:本节课你学到了哪些知识?与同伴交流.师生共同归纳算术平方根的定义及其表示方法.
教师活动:巡视、指导,派一学生上黑板板演 师生共同完成.
【答案】(1)••• 102=100. •••100的算术平方根是10.即=10.⑵•••()2=,•••的 算术平方根是,即=.(3)v0.012=0.0001,
••• 0.0001的算术平方根是0.01.即=0.01.(4)14年算术平方根是.
师:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术
平方根.记作,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0,即=0.
师:我们一起来做题.
三、例题讲解
【例1】求下列各数的算术平方根:
(1)100; (2) ;(3)0.0001;(4)14.
学生活动:尝试独立完成.
算术平方根
教学目标
【知识与技能】
理解并掌握算术平方根的定义,会求一个数的算术一平方根•
【过程与方法】
掌握求一个数的算术平方根的方法.
【情感、态度与价值观】
培养同学们热爱代数的兴趣•
教学重难点
重点
算术平方根的概念及其符号表示.
难点
求一个数的算术平方根.
教学过程
一、创设情境,引入新课
师:请同学们看图片.
相关文档
最新文档