工程师分享反激式开关电源的零电压开关设计

合集下载

反激式开关电源设计详解

反激式开关电源设计详解

反激式开关电源设计详解一、工作原理1.开关管控制:反激式开关电源中,开关管起到了关键的作用。

当输入电压施加在开关管上时,开关管处于导通状态,此时电流流经变压器和输出电路,能量存储在变压器核心中。

当输入电压施加在开关管上时,开关管处于截止状态,此时能量释放,通过一对二极管和电容器形成输出脉冲电流。

2.变压器作用:反激式开关电源中的变压器主要用于将输入电压转换为所需的输出电压。

在导通状态下,输入电压施加在变压器的一侧,能量存储在变压器的磁场中。

在截止状态下,变压器的磁场崩溃,能量释放到输出电路中。

3.输出电路过滤:输出电流通过一对二极管和电容器形成脉冲电流。

为了使输出电流更加稳定,需要通过电容器对输出电流进行滤波,降低脉冲幅度,使输出电压更加平稳。

二、基本结构1.输入滤波电路:由于输入电源通常含有较多的噪声和干扰,为了保障开关电源的正常工作,需要在输入端添加一个滤波电路,通过滤波电容和电感将输入电压的尖峰和噪声滤除。

2.开关控制电路:开关控制电路用于对开关管进行控制,使其在合适的时机打开和关闭。

常见的控制方式有定时控制和反馈控制两种。

3.开关管:开关管在反激式开关电源中起到了关键的作用。

常见的开关管有MOS管、IGBT管等,其特性包括导通损耗、截止损耗和开关速度等。

4.变压器:变压器用于将输入电压变换为所需的输出电压。

同时,变压器还能起到隔离输入电源和输出负载的作用,保护负载。

5.输出整流滤波电路:输出整流滤波电路用于对输出电流进行整流和滤波,使输出电压更加稳定。

三、常见设计方法1.脉冲宽度调制(PWM)控制:PWM是一种常用的反激式开关电源控制方法,通过控制开关管的导通时间来调节输出电压和电流。

PWM控制能够实现较高的效率和较低的输出波纹,但需要一定的控制电路。

2.变压器匹配设计:在设计反激式开关电源时,需要合理选择变压器的匝数比,以实现所需的输入输出电压转换。

同时,还需要考虑变压器的大小和功耗。

超详细的反激式开关电源电路图讲解

超详细的反激式开关电源电路图讲解

反激式开关电源电路图讲解一,先分类开关电源的拓扑结构按照功率大小的分类如下:10W以内常用RCC(自激振荡)拓扑方式10W-100W以内常用反激式拓扑(75W以上电源有PF值要求)100W-300W 正激、双管反激、准谐振300W-500W 准谐振、双管正激、半桥等500W-2000W 双管正激、半桥、全桥2000W以上全桥二,重点在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。

优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出.缺点:输出纹波比较大。

(输出加低内阻滤波电容或加LC噪声滤波器可以改善)今天以最常用的反激开关电源的设计流程及元器件的选择方法为例。

给大家讲解如何读懂反激开关电源电路图!三,画框图一般来说,总的来分按变压器初测部分和次侧部分来说明。

开关电源的电路包括以下几个主要组成部分,如图1图1,反激开关电源框图四,原理图图2是反激式开关电源的原理图,就是在图1框图的基础上,对各个部分进行详细的设计,当然,这些设计都是按照一定步骤进行的。

下面会根据这个原理图进行各个部分的设计说明。

图2 典型反激开关电源原理图五,保险管图3 保险管先认识一下电源的安规元件—保险管如图3。

作用:安全防护。

在电源出现异常时,为了保护核心器件不受到损坏。

技术参数:额定电压 ,额定电流 ,熔断时间。

分类:快断、慢断、常规计算公式:其中:Po:输出功率η效率:(设计的评估值)Vinmin :最小的输入电压2:为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。

0.98: PF值六,NTC和MOVNTC 热敏电阻的位置如图4。

图4 NTC热敏电阻图4中的RT为NTC,电阻值随温度升高而降低,抑制开机时产生的浪涌电压形成的浪涌电流。

图4中RV为MOV压敏电阻,压敏电阻是一种限压型保护器件,过电压保护、防雷、抑制浪涌电流、吸收尖峰脉冲、限幅、高压灭弧、消噪、保护半导体元器件等七,XY电容??????????????????????????????????????????????????????????????????????????? 图5 X和Y电容?????? 如图X电容,Y电容。

反激式开关电源设计详细流程

反激式开关电源设计详细流程

用SG6849设计反激式开关电源摘要:SG6849芯片是SG(System General)公司生产的开关电源专用集成电路,使用该芯片设计小功率开关电源,可大大减少外围电路,降低成本,电路可靠性高,且可以不带副边反馈。

详细介绍了SG6849芯片的工作原理,并基于此芯片设计了一个5.6W的单端反激式开关电源,给出了实验结果。

关键词:SG6849;反激;副边反馈O 引言开关电源因具有重量轻、体积小、效率高、稳压范围宽等优点,在电视、电声、计算机等许多电子设备中得到了广泛的应用。

为了进一步追求开关电源的小型化和低成本,人们不断研制成功一些新的开关电源集成电路芯片。

台湾SG System General)公司开发的SG6 849,集内部振荡器、比较器、反馈补偿电路于一体,只需较少的外围元器件,就可构成一个电路结构简洁、成本低、性能稳定、制作及调试方便的单端反激式开关电源。

在负载调整率要求不高的情况下,甚至可去掉副边反馈,进一步减少体积,节省成本。

1 SG6849芯片功能介绍1.1 内部结构及管脚功能SG6849芯片是台湾SG(System General)公司2004年底推出的SG684X系列PWM集成电路控制芯片。

该芯片具有如下特点:不带副边反馈的恒压和恒流控制;轻载时工作于省电模式;较低的启动电流和较低的工作电流;65kHz和100kHz的固定频率;较少的外围元件;输出过流保护、过温保护和短路保护。

该芯片采用S0T-26或DlP-8封装形式,内部结构如图1所示。

下面就以DIP-8封装为例,说明各管脚的功能。

脚l(GATE) 门极,用来驱动功率NOSFET。

脚2(VDD) 提供芯片的工作电压,当不带副边反馈时,靠VDD来提供反馈信息,调整输出电压。

脚3、5、6(NC) 悬空。

脚4(SENSE) 过流保护。

该引脚也可用于电流模式的PWM控制。

脚7(FB) 为PWM控制器的内部比较器提供反馈信息,控制占空比;当不带副边反馈的时候,该引脚开路。

反激式开关电源电路设计

反激式开关电源电路设计

反激式开关电源电路设计一、反激式开关电源的基本原理1.输入滤波电路:用于对输入电压进行滤波,消除噪声和干扰。

2.整流电路:将输入交流电压转换为直流电压。

3.开关变压器:通过变压器实现电压的升降。

4.开关管:通过快速开关控制电源的输出。

5.输出滤波电路:对输出电压进行滤波,减小纹波。

二、反激式开关电源的设计步骤1.确定需求:首先需要确定设计要求,包括输出电压和电流、负载稳定性要求、效率要求等。

2.选择开关管和变压器:根据需求选择合适的开关管和变压器,考虑其最大工作电流和功率损耗。

3.转换频率的选择:根据应用的具体要求,选择合适的转换频率。

较高的频率可以减小变压器的尺寸,但也会增加开关管的功耗。

4.控制电路设计:设计开关管的控制电路,包括驱动电路和保护电路,确保开关管的正常工作和保护电路的可靠性。

5.输出滤波电路设计:设计输出滤波电路,用于滤除输出电压中的高频噪声和纹波,提高稳定性和负载能力。

6.开关电路设计:设计开关电路,确保开关管的快速开关和可靠性。

7.其他辅助电路设计:如过温保护电路、过流保护电路等。

8.电路板布局和布线:根据电路设计和要求进行电路板布局和布线,提高电路的可靠性和稳定性。

9.电路仿真和调试:使用仿真软件对设计的电路进行仿真分析,并进行实际的电路调试,确保电路的可靠性和稳定性。

三、反激式开关电源设计的注意事项1.高效率设计:选择合适的元件和电路设计,减小功率损耗,提高电源的整体效率。

2.稳定性设计:考虑负载稳定性的要求,选择合适的控制策略和滤波电路,提高电源的稳定性和负载能力。

3.保护设计:考虑过温、过流、短路等保护功能的设计,保护电源和负载器件的安全。

4.电磁兼容设计:反激式开关电源中产生的高频噪声易对其他电子设备产生干扰,需要采取适当的电磁屏蔽和滤波措施。

5.安全性设计:合理设置安全保护电路和安全措施,确保电源在故障情况下能够及时切断电源,保护用户的安全。

通过以上步骤和注意事项,可以设计出一台高效、稳定、安全的反激式开关电源,满足不同应用领域的需求。

反激式开关电源设计方法

反激式开关电源设计方法

反激式开关电源设计方法1.工作原理反激式开关电源是一种将线性变压器替换为变压器型电感器的开关电源。

它的工作原理是通过开关管周期性的打开和关闭,将直流电源的电能经过变压器转化为需要的输出电压。

当开关管打开时,电流从电源流入变压器进行储能;当开关管关闭时,储存在变压器中的电能会通过二次侧电容器得以释放,并输出到负载上。

2.主要组成部分(1)输入滤波电路:用来消除电源输入端的干扰信号,保证稳定的输入电压。

(2)整流电路:将交流输入电压转化为直流电压,常采用整流桥整流。

(3)激励电路:用来控制开关管的导通和关闭,以实现变压器的能量转移。

(4)变压器:用来完成电能的变换和隔离,将输入端的电能转换为所需的输出电能。

(5)输出电路:包括输出电容和输出滤波电路,用来滤除开关产生的高频脉冲,以得到稳定的输出电压。

3.设计要点在进行反激式开关电源设计时(1)确定输出电压和电流需求:根据实际应用需求,确定所需的输出电压和电流,并根据负载特性选择合适的功率等级。

(2)选择合适的开关管和变压器:根据负载需求和电路参数,选择合适的开关管和变压器,以保证输出电压和效率的要求。

(3)控制开关频率和占空比:根据负载要求和电路特性,选择合适的开关频率和占空比,以保证输出电压的稳定性和整体效果。

(4)进行热设计和保护措施:由于开关管会产生较高的温度,需要进行合理的热设计,同时添加保护电路,如过流保护、过温保护等,以保证电路的安全性和可靠性。

(5)进行EMC设计和测试:由于开关电源会产生较大的电磁干扰,需要进行EMC设计和测试,以满足相关的国际标准要求。

总结:反激式开关电源是一种常用的电源设计方案,其设计方法包括确定输出需求、选择合适的器件、控制开关频率和占空比、进行热设计和保护措施,以及进行EMC设计和测试。

通过合理的设计和选择,可以实现高效率、小型化的电源方案,满足各种电子设备的需求。

(完整版)反激式开关电源的设计方法

(完整版)反激式开关电源的设计方法

1 设计步骤:1.1 产品规格书制作1.2 设计线路图、零件选用.1.3 PCB Layout.1.4 变压器、电感等计算.1.5 设计验证.2 设计流程介绍:2.1 产品规格书制作依据客户的要求,制作产品规格书。

做为设计开发、品质检验、生产测试等的依据。

2.2 设计线路图、零件选用。

2.3 PCB Layout.外形尺寸、接口定义,散热方式等。

2.4 变压器、电感等计算.变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,2.4.1 决定变压器的材质及尺寸:依据变压器计算公式Gauss x NpxAeLpxIp B 100(max ) ➢ B(max) = 铁心饱合的磁通密度(Gauss)➢ Lp = 一次侧电感值(uH)➢ Ip = 一次侧峰值电流(A)➢ Np = 一次侧(主线圈)圈数➢ Ae = 铁心截面积(cm 2)➢B(max) 依铁心的材质及本身的温度来决定,以TDK FerriteCore PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以做较大瓦数的Power 。

2.4.2 决定一次侧滤波电容:滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。

2.4.3 决定变压器线径及线数:变压器的选择实际中一般根据经验,依据电源的体积、工作频率,散热条件,工作环境温度等选择。

当变压器决定后,变压器的Bobbin 即可决定,依据Bobbin 的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm 2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。

反激式开关电源的设计计算

反激式开关电源的设计计算

反激式开关电源的设计计算首先,需要明确设计参数:1. 输入电压(Vin):反激式开关电源的输入电压一般为交流电网的标称电压,如220V或110V。

2. 输出电压(Vout):反激式开关电源的输出电压需要满足目标设备的需求,例如5V、12V等。

3. 输出功率(Pout):反激式开关电源的输出功率是根据目标设备的功率需求确定的,一般以瓦(W)为单位。

4. 开关频率(fsw):反激式开关电源的开关频率一般在10kHz到100kHz之间,根据具体需求和性能要求确定。

设计步骤如下:1.计算电流和电压波形:根据输出功率和输出电压,可以计算出输出电流:Iout = Pout / Vout。

同时,可以根据输入和输出的电压波形关系,使用变压器的变比关系计算输入电流波形。

2.选择开关元件:根据开关频率和输出功率,可以选择合适的功率场效应管(MOSFET)作为开关元件。

选择时需要考虑开关速度、导通和截止损耗等因素。

3.选择变压器:根据输入和输出电压的变比,可以选择合适的变压器。

变压器的选择需要考虑输入输出功率、开关频率、能量传输效率等因素。

4.计算电感和电容:通过计算电流波形和电压波形的变化率,可以确定所需的输入和输出电感。

同时,通过计算输出电压的纹波和电流的纹波,可以选择合适的输出电容。

5.设计控制电路:根据输入和输出电压、开关频率以及开关元件的特性,设计合适的控制电路。

常见的控制方案有可变频率、可变占空比等,需要根据具体需求确定。

6.完善保护电路:7.电路仿真和优化:通过电路仿真软件可以对设计的开关电源进行仿真,并对效果进行优化,如进一步降低纹波、提高效率等。

以上是基于反激式开关电源的设计计算的基本步骤,实际设计中还需要考虑其他因素,如电源的稳定性、EMI(电磁干扰)等。

设计计算的具体细节和参数计算可以根据具体的需求和设备要求进行调整和优化。

反激式开关电源电路设计

反激式开关电源电路设计

反激式开关电源电路设计首先,反激式开关电源的基本原理是利用开关管来开闭电源电流,从而实现电流的快速切换。

这样可以有效地提高电源的转换效率。

设计反激式开关电源的步骤如下:1.确定输出电压和电流要求:首先需要确定电源的输出电压和电流要求,这对于选取合适的电源电路和元器件非常重要。

2.确定输入电压范围:根据使用环境和应用需求,确定电源的输入电压范围。

通常情况下,反激式开关电源的输入电压范围为100V至240V。

3.选择开关管和变压器:选择合适的开关管和变压器是设计过程中的关键步骤。

开关管需要具有高效率和可靠性,变压器需要满足电源的输入输出要求。

4.设计开关电路:设计开关电路是反激式开关电源设计的核心部分。

开关电路的设计需要根据输入输出电压和电流的要求,选择合适的电感和电容元件,以及适当的反馈电路。

5.设计保护电路:设计反激式开关电源的过程中,需要考虑各种保护电路,以确保电源的安全和稳定性。

常见的保护电路包括过温保护、过压保护、过流保护等。

6.PCB布局和元件选型:进行PCB布局和元件选型是设计的最后一步。

在PCB布局中,需要考虑电源电路的稳定性和EMC(电磁兼容)的问题。

在元件选型过程中,需要考虑电压和电流的要求,以及元件的可靠性和成本。

设计完成后,需要对反激式开关电源进行测试和验证。

测试过程可以包括输入输出电压波形、效率和稳定性等方面的测试。

总之,反激式开关电源的设计需要考虑多个因素,包括输出电压和电流要求、输入电压范围、开关管和变压器的选择、开关电路和保护电路的设计、PCB布局和元件选型等。

只有综合考虑这些因素,并进行有效的测试和验证,才能设计出稳定、高效的反激式开关电源。

反激式开关电源的设计思路(附带设计图)

反激式开关电源的设计思路(附带设计图)

反激式开关电源的设计思路开关电源的思路:要实现输出的稳定的电压,先获取输出端的电压,然后反馈给输出端调控输出功率(电压低则增大输出功率,反之则减小),终达到一个动态平衡,稳定电压是一个不断反馈的结果。

一、整体概括
下图是一个反激式开关电源的原理图。

输入电压范围在AC100V~144V,输出DC12V的电压。

二、瞬变滤波电路解析
市电接入开关电源之后,首先进入瞬变滤波电路(Transient Filtering),也就是我们常说的EMI电路。

下图描述的是本次举例说明的瞬变滤波电路的电路图。

各个器件说明:
F1-->保险管:当电流过大时,断开保险管,保护电路。

CNR1-->压敏电阻:抑制市电瞬变中的尖峰。

R31、R32-->普通贴片电阻:给这部分滤波放电,使用多个电阻的原因是分散各个电阻承受的功率。

C1-->X电容:对差模干扰起滤波作用。

T2-->共模电感:衰减共模电流。

R2-->热敏电阻:在电路的输入端串联一个负温度系数热敏电阻增加线路的阻抗,这样就可以有效的抑制开机时产生的浪涌电压形成的
浪涌电流。

当电路进入稳态工作时,由于线路中持续工作电流引起的NTC发热,使得电阻器的电阻值变得很小,对线路造成的影响可以完全忽略。

三、整流部分
各个器件说明:
BD1->整流桥
L1、EC1、EC2->π型LC滤波电路,主要起的就是滤波,使输出的电流更平滑。

四、开关电源主体部分
开关电源的主题部分如下图:五、输出端滤波电路
下图是输出端滤波电路:。

反激式开关电源设计

反激式开关电源设计

反激式开关电源设计反激式开关电源(Flyback Switching Power Supply)是一种常见的开关电源拓扑结构,广泛应用于各种电子设备中。

它具有体积小、效率高、成本低以及输出功率可调等优点,是现代电子产品中常见的电源设计方案之一反激式开关电源的基本工作原理如下:输入电压通过输入滤波电容进行滤波处理后,经过输入电阻和整流二极管进入变压器的一侧,经过一定的变换比转化为高压脉冲,在一段时间内使得磁场存储能量。

然后,纳秒级的开关管被打开,导通磁漏感能量在负载中释放,给负载提供电能。

在变压器中,输出输出电压通过输出二极管、滤波电容等元件经过滤波处理后,提供给负载。

同时,负载电流的反馈信息通过反馈电路控制控制器,实现对输出电压的稳定调节。

1.输入电压范围:反激式开关电源应能适应不同输入电压,以保证电源的稳定输出。

2.输出电压范围:根据具体应用需求确定输出电压范围,可通过反馈电路和调节元件进行调节。

3.输出功率:根据负载的需求确定输出功率大小,确保负载能够正常工作。

4.效率:反激式开关电源的效率较高,设计时应尽量选择低损耗的元件和合适的电路结构,以提高整个系统的效率。

5.稳定性:设计时需要考虑输出电压的稳定性,可通过反馈控制和滤波电路等手段实现。

6.保护功能:考虑到电源在使用过程中可能遇到的过载、过压过流等问题,设计中应加入相应的保护电路,以保护电源和负载安全。

在具体的反激式开关电源设计过程中,需要按照以下步骤进行:1.根据负载的需求确定输入和输出电压,并计算所需的输出功率。

2.选取适合的开关管和变压器,根据输入和输出电压比计算变压器的变换比。

3.根据变换比确定合适的工作频率和占空比。

该步骤可通过电路仿真软件进行验证。

4.设计反馈控制回路,以控制输出电压的稳定性。

可选择基于电压模式或者电流模式进行控制。

5.根据设计参数选择合适的滤波电容和输出二极管等元件,以保证输出电压质量。

6.添加必要的保护电路,如过载保护、过压保护等,以保护电源和负载安全。

反激式(RCD)开关电源原理及设计

反激式(RCD)开关电源原理及设计

反激式(RCD)开关电源原理及设计[导读]反激拓扑的前身是Buck-Boost变换器,只不过就是在Buck-Boost变换器的开关管和续流二极管之间放入一个变压器,从而实现输入与输出电气隔离的一种方式,因此,反激变换器也就是带隔离的Buck-Boost变换器。

关键词:反激式开关电源因该电源是公司产品的一个配套使用,且各项指标都不是要求太高,故选用最常用的反激拓扑,这样既可以减小体积(给的体积不算大),还能降低成本,一举双的!反激拓扑的前身是Buck-Boost变换器,只不过就是在Buck-Boost变换器的开关管和续流二极管之间放入一个变压器,从而实现输入与输出电气隔离的一种方式,因此,反激变换器也就是带隔离的Buck-Boost变换器。

先学习下Buck-Boost变换器工作原理简单介绍下1.在管子打开的时候,二极管D1反向偏置关断,电流Is流过电感L,电感电流IL线性上升,储存能量!2.当管子关断时,电感电流不能突变,电感两端电压反向为上负下正,二极管D1正向偏置开通!给电容C充电及负载提供能量!3.接着开始下个周期!从上面工作可以看出,Buck-Boost变换器是先储能再释放能量,VS不直接向输出提供能量,而是管子打开时,把能量储存在电感,管子关断时,电感向输出提供能量!根据电流的流向,可以看出上边输出电压为负输出!根据伏秒法则Vin*Ton=Vout*ToffTon=T*DToff=T*(1-D)代入上式得Vin*D=Vout*(1-D)得到输出电压和占空比的关系Vout=Vin*D/(1-D)看下主要工作波形从波形图上可以看出,晶体管和二极管D1承受的电压应力都为Vs+Vo(也就是Vin+Vout);再看最后一个图,电感电流始终没有降到0,所以这种工作模式为电流连续模式(Ccm模式)。

如果再此状态下把电感的电感量减小,减到一定条件下,会出现这个波形!从上图可以看出,电感电流始终降到0后再到最大,所以这种模式叫不连续模式(DCM模式)。

电源工程师必备!开关电源设计方案汇总(附电路图,通俗易懂!)

电源工程师必备!开关电源设计方案汇总(附电路图,通俗易懂!)

电源工程师必备!开关电源设计方案汇总(附电路图,通俗易懂!)一、单端反激式开关电源单端反激式开关电源的典型电路如图三所示。

电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。

所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。

当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

单端反激式开关电源是一种成本最低的电源电路,输出功率为20-100W,可以同时输出不同的电压,且有较好的电压调整率。

唯一的缺点是输出的纹波电压较大,外特性差,适用于相对固定的负载。

单端反激式开关电源使用的开关管VT1 承受的最大反向电压是电路工作电压值的两倍,工作频率在20-200kHz之间。

二、单端正激式开关电源单端正激式开关电源的典型电路如图四所示。

这种电路在形式上与单端反激式电路相似,但工作情形不同。

当开关管VT1导通时,VD2也导通,这时电网向负载传送能量,滤波电感L储存能量;当开关管VT1截止时,电感L通过续流二极管VD3 继续向负载释放能量。

在电路中还设有钳位线圈与二极管VD2,它可以将开关管VT1的最高电压限制在两倍电源电压之间。

为满足磁芯复位条件,即磁通建立和复位时间应相等,所以电路中脉冲的占空比不能大于50%。

由于这种电路在开关管VT1导通时,通过变压器向负载传送能量,所以输出功率范围大,可输出50-200 W的功率。

电路使用的变压器结构复杂,体积也较大,正因为这个原因,这种电路的实际应用较少。

三、自激式开关稳压电源自激式开关稳压电源的典型电路如图五所示。

这是一种利用间歇振荡电路组成的开关电源,也是目前广泛使用的基本电源之一。

1、电路工作原理:当接入电源后在R1给开关管VT1提供启动电流,使VT1开始导通,其集电极电流Ic在L1中线性增长,在L2 中感应出使VT1 基极为正,发射极为负的正反馈电压,使VT1 很快饱和。

反激式开关电源的设计

反激式开关电源的设计

反激式开关电源的设计1.反激式开关电源的基本原理与拓扑结构2.反激式开关电源的设计步骤(1)选择合适的开关器件:根据设计需求确定开关器件的额定电流和电压。

应选择满足设计需求的高效开关器件,以确保电源的稳定性和可靠性。

(2)设计变压器:变压器是反激式开关电源中非常重要的组成部分,其设计影响着整个电源的性能。

变压器的设计应根据输入电压、输出电压及负载电流等确定变比。

(3)设计输入滤波器:输入滤波器主要用于去除输入电源的高频噪声和电磁干扰。

应根据设计要求选择合适的滤波器元件。

(4)选择输出滤波器:输出滤波器用于去除输出电压中的高频噪声和波动。

应选择满足设计要求的输出滤波器元件。

(5)选择控制器和反馈电路:反激式开关电源需要一个控制器来控制开关器件的开关频率和占空比。

应根据具体设计需求选择合适的控制器和反馈电路。

(6)设计保护电路:反激式开关电源应设计有相应的保护电路,以防止过流、过压和过温等情况的发生,保证电源的安全可靠运行。

(7)进行电路仿真和调试:应使用电子设计自动化工具进行电路仿真和调试,以验证电源设计的正确性和稳定性。

3.注意事项和常见问题(1)电源设计应考虑效率和性能的平衡,既要保持高效率,又要满足设计要求。

(2)电源设计时要合理布局电路板,降低电磁干扰和噪声。

(3)电源设计应注意选择合适的元件,在成本和性能之间进行权衡。

(4)在进行电路仿真和调试时,应注意保护器件和测试仪器的安全,避免电源短路和电流过大导致元器件损坏。

(5)设计完成后,应进行严格的测试和质量控制,确保电源的稳定性和可靠性。

总结:反激式开关电源是一种常见的开关电源拓扑结构,在设计中需要考虑元件选择、变压器设计、滤波器设计、控制器和反馈电路选择等多个因素。

合理的设计和调试能够确保电源的稳定性和可靠性,满足设备的电源需求。

反激式开关电源的设计方法

反激式开关电源的设计方法

反激式开关电源的设计方法反激式开关电源是一种常用于电子设备中的高效率电源。

它通过将输入电源的直流电压转换为高频脉冲信号,再进行变压、整流和滤波等处理,最终得到所需要的输出电压。

本文将介绍反激式开关电源的设计方法,包括主要元件的选择、电路的设计和调试等内容。

一、元件的选择1.变压器:反激式开关电源的核心元件之一、在选择变压器时,需要根据设计好的输入和输出电压来确定变比。

同时,还需要考虑变压器的工作频率、功率损耗、功率因数等参数。

一般情况下,选择具有较高工作频率和较低损耗的变压器效果会更好。

2.开关管:开关管主要用于开关电源中的开关操作。

在选择开关管时,需要考虑电流和电压的要求,以及其承受功率和导通损耗等参数。

常见的开关管有MOSFET和IGBT等。

3.控制芯片:控制芯片用于控制开关管的导通和关闭时间,以及输入输出电压的稳定性等。

选择合适的控制芯片需要考虑芯片的工作频率、控制方式、保护功能等参数。

4.输出电容和滤波电感:输出电容和滤波电感用于平滑输出电压和滤除高频噪声。

在选择时,需要考虑电容和电感的电压和电流容量,以及使用寿命等因素。

二、电路的设计1.输入滤波电路:输入滤波电路主要用于去除输入电源中的高频噪声和波动。

常见的输入滤波电路包括滤波电容和滤波电感的串联组合,以及降压电感和降压二极管的并联组合。

2.开关电路:开关电路是反激式开关电源的核心部分,它通过开关管的导通和关闭操作,将输入电源的直流电压转换为高频脉冲信号。

开关电路一般由开关管、变压器、滤波电容和滤波电感等元件组成。

3.输出调整电路:输出调整电路用于稳定输出电压,并提供过载、过流和短路等保护功能。

常见的输出调整电路包括反馈电路、比较电路和控制芯片等。

4.反馈电路:反馈电路用于检测输出电压,并通过控制芯片对开关管的导通和关闭时间进行调节,从而稳定输出电压。

反馈电路一般由分压电阻、运放和电压比较器等组成。

三、电路的调试1.输出电压调节:利用调整反馈电路中的分压电阻,可以实现对输出电压的调节。

反激式开关电源设计方法

反激式开关电源设计方法

反激式开关电源设计方法1.输入变压器设计:反激式开关电源的输入变压器主要用于实现能量的储存和传递。

其设计方法一般包括确定变压器的变比、计算绕线参数和计算磁芯截面积。

变比的选择要根据输入和输出电压的关系来确定,一般采用副边大于主边的变比。

绕线参数的计算要根据输入电压、输出功率和开关频率来确定。

磁芯截面积的计算要根据输入电压、输出功率和变频器频率来确定。

2.控制电路设计:反激式开关电源的控制电路主要用于实现开关管的开关和关断控制。

其设计方法一般包括选择适合的开关管和控制芯片、设计反馈电路和设计保护电路。

选择合适的开关管和控制芯片要考虑输入和输出电压、输出功率和开关频率等因素。

设计反馈电路主要是为了实现恒定的输出电压,一般采用反馈误差放大器和锁相环等。

设计保护电路主要是为了提高电源的可靠性和稳定性,一般包括过流保护、过压保护和过温保护等。

3.输出滤波电路设计:反激式开关电源的输出滤波电路主要用于滤除开关管开关过程中产生的高频脉冲噪声,保证输出电压的稳定性和纹波度。

其设计方法一般采用LC滤波器或电容滤波器。

LC滤波器具有较好的滤波效果,但体积较大,适用于功率较大的电源。

电容滤波器体积小,但滤波效果相对较差,适用于功率较小的电源。

4.保护电路设计:反激式开关电源的保护电路主要用于保护电源,防止出现过流、过压、过温等故障。

其设计方法一般包括选择合适的保护元件和设计合理的保护电路。

选择合适的保护元件要考虑其额定参数和动态特性,以满足电源的保护要求。

设计合理的保护电路要考虑多种故障情况,实现对电源的全方位保护。

以上是反激式开关电源设计的基本方法和步骤,设计师在实际设计过程中还需考虑电源的稳定性、可靠性、效率等因素,并根据具体的应用需求进行优化设计。

同时,还要注意电源设计中的安全性和可调度性,确保电源工作的稳定性和可靠性。

零电压开通高效反激电源设计与分析(FFR AHB)

零电压开通高效反激电源设计与分析(FFR AHB)

零电压开通高效反激电源设计与分析梁晓军(Leo Liang)大纲如何实现高功率密度的USB PD电源基于强制谐振反激零电压开通拓扑设计与分析基于不对称半桥反激拓扑设计与分析123大纲如何实现高功率密度的USB PD电源基于强制谐振反激零电压开通拓扑设计与分析基于不对称半桥反激拓扑设计与分析123如何实现高功率密度的USB PD电源§高频(140K-250K近两三年最佳工作频率)§软开关拓扑§平面变压器§可调整的频率法则§较小的共模EMI噪声这是什么?§USB PD 充电器§功率密度(28W/In3 )§采用平面变压器§效率:93%拓扑比较普通反激&QR反激有源钳位反激全工作范围零电压开通反激LLC半桥不对称半桥反激准谐振反激高压输入条件下,仍然有非常高的开关损耗有源钳位反激使用硅器件功率密度小于20W/inch3。

开关频率变化大,需要使用GaN器件,高压轻载效率偏低,控制复杂。

只有电感储能,变压器体积大。

全电压范围零电压开通反激LLC半桥不适合宽电压输入输出不对称半桥反激集LLC和反激优点实现ZVS,ZCS适合宽输入宽输出变化,变压器和谐振电容储能,变压器体积大幅度减小。

使用硅器件功率密度可高达28W/inch3今天低成本易设计拓扑选择93~96%91~93%93~96%明天高功率密度91~93%可调整的频率法则需求(优化效率)§类定频工作,最大工作频率可调到200kHz•全电压满载频率较高,变化小(如20kHz)•优化变压器选择,更合适小型化§工作频率曲线可调,轻载降频•改善轻载效率,平均效率•改善待机性能EMI设计1如何减小EMI噪声LC滤波器›理想LC滤波器可以看到增益下降到一个点之后,反而开始上升,也就是说滤波器的效果在这个频点之后,就会变差›寄生电容的影响LC滤波器›寄生电感的影响LC滤波器›寄生电容和电感影响›高频段非常糟糕LC滤波器Flyback电路变压器共模噪声抵消技术当Vp*Cps=Vs*Csp 时,变压器副边的 净电荷将相互抵消为零Flyback电路变压器共模噪声抵消技术Vp*Cps和Vs*Csp 总是同方向加强的,噪声增强Flyback电路变压器共模噪声抵消技术反激变换器的共模噪声传播路径Flyback电路变压器共模噪声抵消技术1:1变压器结构图反激电路拓扑EMI 从哪里出来的?•接触的 -•可以通过原理图理解•非接触的 -•不可见电容和不可见电感小结高功率密度USB PD电源拓扑选择1)准谐振反激2)全电压范围零电压开通反激3)有源钳位反激4)LLC半桥5)不对称半桥反激✗✓✓✗✗大纲如何实现高功率密度的USB PD电源基于强制谐振反激零电压开通拓扑设计与分析基于不对称半桥反激拓扑设计与分析123电路有什么不同增加ZVS辅助开关v ZVS脉冲在下列情况不会发生•检测不到过零点。

反激式开关电源设计详解上ppt课件

反激式开关电源设计详解上ppt课件
• 压敏电阻的响应时间为ns级,比空气放电管快,比TVS 管(瞬间抑制二极管)稍慢一些,一般情况下用于电子电 路的过电压保护,其响应速度可以满足电路要求。
选取压敏电阻的方法
• 压敏电阻虽然能吸收很大的浪涌电能量,但不能承受毫安级以上的持 续电流,在用作过压保护时必须考虑到这一点。压敏电阻的选用,一 般选择标称压敏电压V1mA和通流容量两个参数。
– 有源功率因数校正是使用所谓的有源电流控制功率因数 的校正方法,可以迫使输入电流跟随供电的正弦电压变 化。这种功率因数校正有体积小、重量轻、功率因数可 接近1等优点。
NTC电阻的作用
• NTC(负温度系数)电阻,是以氧化锰等为主要 原料制造的精细半导体电子陶瓷元件。电阻值随 温度升高而降低且呈现非线性变化。利用这一特 性,在电路的输入端串联一个负温度系数热敏电 阻增加线路的阻抗,这样可以有效的抑制电路开 机时产生的浪涌电压形成的浪涌电流。当电路进 入稳态工作时,由于线路中的持续工作电流引起 NTC发热,使得电阻器的电阻值变得很小,对线 路的影响可以完全忽略。
要用于限制MOS关断时高频变压器漏感的能量引起的尖峰电压和次级线 圈反射电压的叠加,叠加的电压产生在MOS管由饱和转向关断的过程中, 漏感中的能量通过D向C充电,C上的电压可能冲到反电动势与漏感电压 的叠加值,即:Vrest+ Δ Vpp。
C的作用则是将该部分的能量吸收掉,其容量由下式决定: C=(Le×Isc2)/( Vrest+ Δ Vpp )2- Vrest2
定的冲击电流波形和规定的冲击电流次数而言,压敏电压的变化不超 过± 10%时的最大脉冲电流值。
选取压敏电阻的方法
• 结合前面所述,来看一下本电路中压敏电 阻的型号所对应的相关参数。
EMI电路

反激开关电源简介及基本设计方法2010022

反激开关电源简介及基本设计方法2010022
取值办法一般使用先确定电容,再确定电阻。
在不同输入电压下,再验证参数是否合理,最终 选取合适的参数。
反馈环路设计
对以电流型开关电源设计反馈环路相对简单。因为电流型 为双环,内环抵消了变压器的电感效应,对系统传输函数 降阶,相移余量加大。
常用反馈有三种,其特点各有不同,我们一般用第二种和 第三种。
一般都不计算磁芯,而是直接选择磁芯,然后整体计算完 成,核对窗口面积。
反激变压器设计
计算初级峰值电流:根据能量守恒 :Ip=2*Po/(Dmax*Umin) 计算初级匝数:Np=Lp*Ip/(Ae*Bm) 其中Ae为磁芯截面积,Bm为最大磁摆幅。 计算次级和辅助绕组的变比。下式给出初级(Np)和次级
整流二极管选择
整流二极管选择:耐压值值要大(Vo+Uinmax*Ns/Np) /0.8,电流值要大于次级电流有效值,但是为了减小节压
降,一般取两倍额定电流。
二极管损耗有开关损耗和导通损耗,所以尽量选择导通压 降小,开关速度快的二极管。(EMI/EMC例外)
整流管反向恢复只会 出现在连续工作模式 中,断续工作模式不 会存在整流管的反向 恢复问题。
PFM为准谐振反激电源,其通过调节开关 频率来调节输出。
准谐振反激电源效率一般比pwm模式效率 高,EMI/EMC处理的比较好。但是PFM在 于高输入电压轻载时开关频率飘高,稳定 性差,损耗加大。
PFM与PWM反激电源
PWM模式,变压器可连续可断续,而PFM 模式变压器工作在临界连续模式。
反激变压器设计
另外多层绕组还有临近效应等,由于我们公司设计的比较 简单,可以不考虑。如果需要精确计算可以使Magnetics designer,可以精确计算交流电阻直流电阻及损耗。

工程师分享反激式开关电源的零电压开关设计

工程师分享反激式开关电源的零电压开关设计

工程师分享反激式开关电源的零电压开关设计
反激式开关电源以电路简单电磁干扰相对小而得到广泛应用,对开关电源的输出电压尖峰和EMI 也提出了更高的要求,通常减小EMI 的方法主要是采
用自激型反激式开关电源,用开关速度相对慢的双极晶体管作为主开关;加大缓冲电路电容量来降低关断过程的dz/dt,di/dt 产生的EMI 用减缓导通过程减小开通EMI,付出的代价是电源效率下降,发热量大,可靠性下降。

因而需要一种低EMI,高效的反激式开关电源,软开关反激式开关电源,便是比较理想的解决方案。

零电压开关
零电压开关反激式开关电源主电路如图1
主要波形如图2,电路工作过程分为四个阶段:开关管关断及缓冲电路作用阶段,变压器释放储能阶段,缓冲电路复位阶段,开关管导通阶段。

1、开关管关断及缓冲电路作用阶段
图2 波形中,t。

一t。

期间为开关管关断及缓冲电路作用阶段,等效电路如图3,在t。

时刻控制电路将开关管关断,变压器初级电流由开关管向缓冲电容器转移,开关管电流下降,缓冲电容器电流上升,开关管电流下降,直到零变压器初级电流全部转移到缓冲电容器,等效电路如图3,开关管的关断过程结束开关管关断过程的长短取决于开关管自身特性和控制电路,一般为开关周期的1/100 - 1/201〕或百纳秒左右。

由于缓冲电容器上的电压不能跃变,使开关管关断过程中漏、源电压很低接近于零,实现了“零电压。

关断。

为确保“零
电压”关断,缓冲电容器应取较大值,这样开关管在关断过程结束时缓冲电容
器电压仍为很小值,变压器初级电压极性没有改变,输出整流二极管阳极反向电压不能导通,变压器初级电流仍需流过缓冲电容器,直到缓冲过程结束。

缓。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程师分享反激式开关电源的零电压开关设计
反激式开关电源以电路简单电磁干扰相对小而得到广泛应用,对开关电源的输出电压尖峰和EMI也提出了更高的要求,通常减小EMI的方法主要是采用自激型反激式开关电源,用开关速度相对慢的双极晶体管作为主开关;加大缓冲电路电容量来降低关断过程的dz/dt,di/dt产生的EMI用减缓导通过程减小开通EMI,付出的代价是电源效率下降,发热量大,可靠性下降。

因而需要一种低EMI,高效的反激式开关电源,软开关反激式开关电源,便是比较理想的解决方案。

 零电压开关
 零电压开关反激式开关电源主电路如图1
 主要波形如图2,电路工作过程分为四个阶段:开关管关断及缓冲电路作用阶段,变压器释放储能阶段,缓冲电路复位阶段,开关管导通阶段。

 1、开关管关断及缓冲电路作用阶段
 图2波形中,t。

一t。

期间为开关管关断及缓冲电路作用阶段,等效电路如图3,在t。

时刻控制电路将开关管关断,变压器初级电流由开关管向缓冲电容器转移,开关管电流下降,缓冲电容器电流上升,开关管电流下降,直到零变压器初级电流全部转移到缓冲电容器,等效电路如图3,开关管的关断过程结束开关管关断过程的长短取决于开关管自身特性和控制电路,一。

相关文档
最新文档