反激式开关电源设计
反激式开关电源(flyback)环路设计基础
反激式开关电源(flyback)是一种常见的电源结构,广泛应用于电子设备中。
它具有结构简单、成本低廉、效率高等优点,在消费电子、工业控制和通信设备等领域被广泛应用。
本文旨在介绍反激式开关电源环路设计的基础知识,包括工作原理、设计步骤和注意事项。
一、反激式开关电源的工作原理1.1 反激式开关电源的基本结构反激式开关电源由输入滤波器、整流桥、高频变压器、功率开关器件、输出整流滤波器、控制电路等组成。
其中,高频变压器是反激式开关电源的关键部件,通过变压器实现输入电压的隔离和变换,功率开关器件则控制变压器的工作状态,实现电源的调节和稳定输出。
1.2 反激式开关电源的工作原理反激式开关电源通过功率开关器件周期性地将输入电压斩波,将输入电能存储在变压器的磁场中,然后再将其转换为输出电压。
在工作周期的后半段,存储的能量释放到输出负载上,从而实现对输出电压的调节。
通过控制功率开关器件的导通时间和断态时间,可以实现对输出电压的调节和稳定。
二、反激式开关电源环路设计的基础知识2.1 反激式开关电源的设计步骤(1)确定电源的输入输出参数:包括输入电压范围、输出电压、输出电流、负载调整范围等;(2)选择功率开关器件和高频变压器:根据电源的输入输出参数和工作频率选择合适的功率开关器件和高频变压器;(3)设计反激式开关电源的控制电路:根据所选的功率开关器件和高频变压器设计相应的控制电路,包括PWM控制电路、电源启动电路等;(4)设计输入输出滤波器和保护电路:设计输入输出滤波器,保证电源的输入输出稳定和干净,设计过压、过流、过温等保护电路,保证电源的安全稳定工作。
2.2 反激式开关电源环路设计的注意事项(1)磁性元件的设计:高频变压器和输出感应元件的设计是整个反激式开关电源设计的关键,应合理设计磁芯、线圈匝数等参数,保证磁性元件承载功率、效率和体积的平衡;(2)功率开关器件的选择和驱动:应选择合适的功率开关器件,并设计合理的驱动电路,保证功率开关器件的可靠工作和转换效率;(3)控制电路的设计:应根据功率开关器件的工作特性和工作频率设计合适的PWM控制电路和反馈控制电路,保证电源的稳定可调;(4)输入输出滤波器和保护电路的设计:应合理设计输入输出滤波器和保护电路,保证电源的输入输出稳定和安全可靠。
反激式开关电源的电路设计与参数计算_陈建林
反激式开关电源的电路设计与参数计算_陈建林
一、反激式开关电源的电路设计
据报道,反激式开关电源可以提供高效率、小型体积和低成本的解决方案,它在电脑、消费电子产品以及数字电路系统中应用较为广泛。
反激式开关电源是指在典型的AC/DC转换过程中,通过开关电路,从交流电源抽取能量进行直流转换的电路。
下面将详细介绍反激式开关电源的电路设计。
(1)反激式开关电源电路的主要组件
交流输入电路:交流输入电路是反激式开关电源电路的起始模块,它的功能是把电源电压提供给其他组件。
开关功率电路:开关功率电路的最重要的组件是开关元件,它们是把AC输入电压装入到电源系统中的基础,通常可以使用MOSFET、差动管、晶闸管等。
控制电路:控制电路是反激式开关电源电路的关键组件,它的功能是控制开关管的开合以实现输入电压的正常转换。
一般来说,控制电路通过一系列的电路元件,如比较器、占空比调节器、稳压器、脉冲发生器和定时器等实现诸如占空比调节,稳压、启动和保护等功能。
反激式开关电源设计波形分析应力计算回路布局
反激式开关电源设计波形分析应力计算回路布局
一、反激式开关电源设计波形分析
1.开关信号波形:
反激式开关电源的主要工作是利用开关控制器的输出,控制MOSFET 的开启和关闭,从而实现交流波的改变。
MOSFET的开启和关闭状态,只受开关控制器输出信号的影响。
因此,开关控制器输出的波形是反激开关电源设计的重要参数。
一般情况下,开关控制器输出的波形有脉冲宽度调制波形(PWM)和恒定周期调制波形(FPWM)两种。
PWM波形由正弦波组成,经过两个对称的截止点,形成周期性正方形波,控制MOSFET的端极变化产生脉冲宽度调制波形,以控制交流波形。
而FPWM波形,在它的正弦波上增加了一个脉冲,形成了一个在宽度上恒定的正弦波,控制MOSFET的端极变化产生恒定周期调制波形,来控制交流波形。
2.交流波形:
当MOSFET开启和关闭时,变压器的交流波形会随之发生变化,其形式可以用下式表示:
Vac(t)=Vm*sin(ωt+θm)
其中Vm为交流波形的最大电压,ω为开关控制器输出信号的频率,θm为交流相位角。
反激式开关电源变压器设计说明
2.6 计算一次绕组最大匝数Npri
Lpri 452*10-6
Npri = =
= 61.4匝 取Npri=62匝
AL 120*10-9
2.7 计算二次主绕组匝数NS1〔NS1为DC+5V绕组
Npri<V01+VD><1-Dmax> 62*<5+0.7>*<1-0.5>
Ns1=
=
= 2.78匝
Vin<min>Dmax
技术部培训教材
反激式开关电源变压器设计(2)
表二 变压器窗口利用因数
变压器情况
窗口
反激式变压器 一个二次绕组 两个或多个二次绕组 相互隔离的二次绕组 满足UL或CSA标准 满足IEC标准 法拉第屏屏蔽
1.1 1.2
1.3 1.4 1.1 1.2 1.1
用下式按变压器情况将各窗口利用因数综合起来 Knet=Ka.Kb…
技术部培训教材
反激式开关电源变压器设计(2)
变压器绕制结构如下:
0.06/3层 0.06/3层 0.06/3层 0.06/3层
偏置绕组 ½一次绕组 二次绕组 ½一次绕组
3mm
3mm 技术部培训教材
反激式开关电源变压器设计(2)
2.11 计算变压器损耗
1铜损:Pcun = NnV* MLT*Rn>In2 MLT = 2E+2C=2*25.27+2*9.35=69.24mm
5+0.7
取13匝
技术部培训教材
反激式开关电源变压器设计(2)
2.9 检查相应输出端电压误差 Vsn
δVsn%=<< = *Ns’n-Vsn>/Vsn>*100% Nsn
反激式开关电源设计方法
反激式开关电源设计方法1.工作原理反激式开关电源是一种将线性变压器替换为变压器型电感器的开关电源。
它的工作原理是通过开关管周期性的打开和关闭,将直流电源的电能经过变压器转化为需要的输出电压。
当开关管打开时,电流从电源流入变压器进行储能;当开关管关闭时,储存在变压器中的电能会通过二次侧电容器得以释放,并输出到负载上。
2.主要组成部分(1)输入滤波电路:用来消除电源输入端的干扰信号,保证稳定的输入电压。
(2)整流电路:将交流输入电压转化为直流电压,常采用整流桥整流。
(3)激励电路:用来控制开关管的导通和关闭,以实现变压器的能量转移。
(4)变压器:用来完成电能的变换和隔离,将输入端的电能转换为所需的输出电能。
(5)输出电路:包括输出电容和输出滤波电路,用来滤除开关产生的高频脉冲,以得到稳定的输出电压。
3.设计要点在进行反激式开关电源设计时(1)确定输出电压和电流需求:根据实际应用需求,确定所需的输出电压和电流,并根据负载特性选择合适的功率等级。
(2)选择合适的开关管和变压器:根据负载需求和电路参数,选择合适的开关管和变压器,以保证输出电压和效率的要求。
(3)控制开关频率和占空比:根据负载要求和电路特性,选择合适的开关频率和占空比,以保证输出电压的稳定性和整体效果。
(4)进行热设计和保护措施:由于开关管会产生较高的温度,需要进行合理的热设计,同时添加保护电路,如过流保护、过温保护等,以保证电路的安全性和可靠性。
(5)进行EMC设计和测试:由于开关电源会产生较大的电磁干扰,需要进行EMC设计和测试,以满足相关的国际标准要求。
总结:反激式开关电源是一种常用的电源设计方案,其设计方法包括确定输出需求、选择合适的器件、控制开关频率和占空比、进行热设计和保护措施,以及进行EMC设计和测试。
通过合理的设计和选择,可以实现高效率、小型化的电源方案,满足各种电子设备的需求。
反激式开关电源的设计计算
反激式开关电源的设计计算首先,需要明确设计参数:1. 输入电压(Vin):反激式开关电源的输入电压一般为交流电网的标称电压,如220V或110V。
2. 输出电压(Vout):反激式开关电源的输出电压需要满足目标设备的需求,例如5V、12V等。
3. 输出功率(Pout):反激式开关电源的输出功率是根据目标设备的功率需求确定的,一般以瓦(W)为单位。
4. 开关频率(fsw):反激式开关电源的开关频率一般在10kHz到100kHz之间,根据具体需求和性能要求确定。
设计步骤如下:1.计算电流和电压波形:根据输出功率和输出电压,可以计算出输出电流:Iout = Pout / Vout。
同时,可以根据输入和输出的电压波形关系,使用变压器的变比关系计算输入电流波形。
2.选择开关元件:根据开关频率和输出功率,可以选择合适的功率场效应管(MOSFET)作为开关元件。
选择时需要考虑开关速度、导通和截止损耗等因素。
3.选择变压器:根据输入和输出电压的变比,可以选择合适的变压器。
变压器的选择需要考虑输入输出功率、开关频率、能量传输效率等因素。
4.计算电感和电容:通过计算电流波形和电压波形的变化率,可以确定所需的输入和输出电感。
同时,通过计算输出电压的纹波和电流的纹波,可以选择合适的输出电容。
5.设计控制电路:根据输入和输出电压、开关频率以及开关元件的特性,设计合适的控制电路。
常见的控制方案有可变频率、可变占空比等,需要根据具体需求确定。
6.完善保护电路:7.电路仿真和优化:通过电路仿真软件可以对设计的开关电源进行仿真,并对效果进行优化,如进一步降低纹波、提高效率等。
以上是基于反激式开关电源的设计计算的基本步骤,实际设计中还需要考虑其他因素,如电源的稳定性、EMI(电磁干扰)等。
设计计算的具体细节和参数计算可以根据具体的需求和设备要求进行调整和优化。
反激式开关电源电路设计
反激式开关电源电路设计首先,反激式开关电源的基本原理是利用开关管来开闭电源电流,从而实现电流的快速切换。
这样可以有效地提高电源的转换效率。
设计反激式开关电源的步骤如下:1.确定输出电压和电流要求:首先需要确定电源的输出电压和电流要求,这对于选取合适的电源电路和元器件非常重要。
2.确定输入电压范围:根据使用环境和应用需求,确定电源的输入电压范围。
通常情况下,反激式开关电源的输入电压范围为100V至240V。
3.选择开关管和变压器:选择合适的开关管和变压器是设计过程中的关键步骤。
开关管需要具有高效率和可靠性,变压器需要满足电源的输入输出要求。
4.设计开关电路:设计开关电路是反激式开关电源设计的核心部分。
开关电路的设计需要根据输入输出电压和电流的要求,选择合适的电感和电容元件,以及适当的反馈电路。
5.设计保护电路:设计反激式开关电源的过程中,需要考虑各种保护电路,以确保电源的安全和稳定性。
常见的保护电路包括过温保护、过压保护、过流保护等。
6.PCB布局和元件选型:进行PCB布局和元件选型是设计的最后一步。
在PCB布局中,需要考虑电源电路的稳定性和EMC(电磁兼容)的问题。
在元件选型过程中,需要考虑电压和电流的要求,以及元件的可靠性和成本。
设计完成后,需要对反激式开关电源进行测试和验证。
测试过程可以包括输入输出电压波形、效率和稳定性等方面的测试。
总之,反激式开关电源的设计需要考虑多个因素,包括输出电压和电流要求、输入电压范围、开关管和变压器的选择、开关电路和保护电路的设计、PCB布局和元件选型等。
只有综合考虑这些因素,并进行有效的测试和验证,才能设计出稳定、高效的反激式开关电源。
反激式开关电源设计详解
反激式开关电源设计详解
一、反激式开关电源的结构与工作原理
反激式开关电源(也称为反激变换器)是一种半桥变换器,它由开关
电源的基本组成部件组成,其中包括变压器、控制器IC、开关电源模块、电容器等部件。
反激式开关电源的工作原理是利用反馈信号(也称为反激
信号)来实现开关控制,它可以检测输出电压(也称为反馈电压),并将
其与预设的电压比较,然后根据比较结果改变开合时间,使输出电压保持
稳定,这就是其原理。
另外,反激式开关电源还具有以下特点:
(1)反激式开关电源的效率比直流-直流变换器的效率要高得多,可
以达到90%以上。
(2)反激式开关电源的输入电压范围宽,适用于家用电器的输入,
其输入电压范围可以达到85V~265V,可以兼容不同的地区的电压范围。
(3)反激式开关电源的输出电流调节范围较宽,可以调节电流的幅
度达到一定范围内,以满足家用电器对电流稳定性的要求。
单端反激式开关电源设计及电磁兼容仿真
目录一、单端反激式开关电源设计 (3)1.电路参数设计及元器件选取 (3)2.电路拓扑结构 (5)3.负载输出波形 (5)二、部分单端反激式开关电源EMI产生原因及现象 (5)1.MOS管动作时产生的EMI (6)2.二级管动作时产生的EMI (8)三、部分单端反激式开关电源EMI抑制措施分析 (9)1.减缓开关管动作(上升沿、下降沿) (9)2.减小干扰源的大小(对变压器的漏感Le的处理) (13)3.开关管加RCD缓冲吸收电路 (14)4.二级管加RC吸收电路 (18)5.整体效果比较 (21)6.抖频消除Mos管两端电压尖峰 (22)四、EMI电源滤波器的设计 (24)1.电源设备中EMI滤波器的作用 (24)2.EMI干扰类型 (26)3.EMI滤波器的基本结构 (26)4.EMI滤波器的设计原则 (27)5.EMI滤波器结构设计 (28)6.共模和差模扼流圈磁芯和电感参数设计 (28)7.X、Y电容的选取 (29)8.EMI滤波器的正确安装 (30)五、EMI电源滤波器插入损耗测试 (30)1.T型低通滤波器 (30)2.π型低通滤波器 (32)3.实际电容滤波器 (34)4.实际电感滤波器 (35)5.三端电容器 (36)6.大容量电容与小容量电容并联对EMI插入损耗波形分析 (39)六、设计过程中遇到的问题及解决方案 (40)七、设计过程的收获与心得体会 (40)八、参考资料 (41)一、单端反激式开关电源设计1.电路参数设计及元器件选取:36V(1)输入直流电压Vin:12V(2)输出直流电压Vo(3)输出电流I:1.2A(4)电容C:300uF(5)电阻R:10Ω(6)PMOS管:图1.PMOS管参数(7)开关管频率f:50khz(8)占空比D=0.4PMOS管驱动电压参数图2.PMOS管驱动电压参数(9)变压器参数设计(漏感系数K=0.98)由V o V in =N PN S·D1−D得N PN S=2由U P=NU SN=N P N SU P=L P d ip d tU S=M d ip d tM2=L p L s 得L P L S =N P2N S2=4图3.线性变压器参数设计(10)二极管:ues7042.电路拓扑结构图4.单端反激电路拓扑图3.负载输出波形图5.单端反激电路负载输出波形二、部分单端反激式开关电源EMI产生原因及现象功率器件高频开通和关断的操作导致电压和电流快速的变化是产生EMI的主要原因。
反激式开关电源设计
Star
D
D
D
IC1 C5
1
S
2
Vcc
3
Fb
Ipk
D6 N2
L2
D7
R14
4
C7
R5
R6
R9
R11
IC2 R10
C13
3
1 IC3
2
R13
R12
第二章、变压器设计
单端反激开关电源的变压器实质上是一个耦合电感,它要承担着储能、变压、 传递能量等工作。下面对工作于连续模式和断续模式的单端反激变换器的变压 器设计进行总结。
反激式(回扫式)开关电源设计
第一章、 电路结构 第二章、 变压器设计 第三章、 关键元件选择 第四章、 传导和辐射噪音的抑制
第一章、电路结构
1、 单管反激电路基本结构
DC IN
C1 R1
D1 T2
D1
N1
N2
R2
Q1
Drive
CS
R3
GND
DC OUT C2
GND
பைடு நூலகம்
2、 双管反激电路基本结构
DC IN T1 R1 N2
(Vo+Vf)×(T-Ton)
Np=
Vi×Ton
Vi×Ton Lp= (1-K)×I
为了避免磁芯饱和,我们应该在磁回路中加入一个适当的气隙,气隙一般大于 0.1mm,功率大,则气隙要大, 由以上可得磁芯参数:
Lg×Lp×10 8 Ae= 0.4π×Np 2
根据求得的 Ae 值选择合适的磁芯,一般尽量选择窗口长宽之比比较大的磁芯, 这样磁芯的窗口有效使用系数较高,同时可以减小漏感。 有了磁芯需再较正原边的匝数。根据下式:
反激式开关电源辅助电路设计
反激式开关电源辅助电路设计反激式开关电源是一种常见的电源设计,常用于电子设备中。
为了提高开关电源的性能和稳定性,通常需要设计一些辅助电路来实现。
本文将介绍反激式开关电源辅助电路的设计原理和实施方法。
我们来了解一下反激式开关电源的工作原理。
反激式开关电源由输入电源、变压器、整流电路、滤波电路、开关管和控制电路等组成。
其中,开关管通过开关动作来控制输入电源与变压器的耦合,从而实现输入电源能量的传递。
为了提高开关电源的效率和稳定性,需要设计一些辅助电路来辅助实现开关管的控制和滤波。
一、过压保护电路过压保护电路是反激式开关电源中重要的辅助电路之一。
其作用是在输出电压超过设定值时,通过控制开关管的导通和断开来保护负载和开关管。
过压保护电路通常由比较器、参考电压源和控制电路等组成。
当输出电压超过设定值时,比较器会检测到这一变化,并通过控制电路来控制开关管的动作,从而实现过压保护的功能。
二、过流保护电路过流保护电路也是反激式开关电源中常用的辅助电路之一。
其作用是在输出电流超过设定值时,通过控制开关管的导通和断开来保护负载和开关管。
过流保护电路通常由电流传感器、比较器和控制电路等组成。
当输出电流超过设定值时,电流传感器会检测到这一变化,并通过控制电路来控制开关管的动作,从而实现过流保护的功能。
三、温度保护电路温度保护电路是为了防止开关电源因过热而损坏而设计的辅助电路。
温度保护电路通常由温度传感器、比较器和控制电路等组成。
当温度传感器检测到开关电源的温度超过设定值时,比较器会发出信号,并通过控制电路来控制开关管的动作,从而实现温度保护的功能。
四、软起动电路软起动电路是为了减小开关电源启动时的冲击电流而设计的辅助电路。
软起动电路通常由电容器、电阻器和继电器等组成。
在开关电源启动时,软起动电路会通过控制继电器的动作来实现对电源的逐渐接入,从而减小冲击电流的影响。
以上是反激式开关电源辅助电路的一些常见设计。
在实际应用中,根据具体的需求和要求,可能还需要设计其他辅助电路来满足特定的功能和性能要求。
反激式开关电源变压器的设计
反激式开关电源变压器的设计反激式开关电源变压器是一种常见的变压器类型,广泛应用于电子设备和通信设备中。
它具有体积小、效率高以及输出电压稳定等优点。
本文将分别从设计原理、工作方式和设计步骤等方面对反激式开关电源变压器的设计进行详细介绍。
一、设计原理二、工作方式反激式开关电源变压器的工作方式可以分为两个阶段:储能和传输。
在储能阶段,开关管打开,电流通过变压器一侧的绕组进行储能;在传输阶段,开关管关闭,储存的能量被转移到变压器另一侧的绕组上,最后输出所需的电压。
三、设计步骤1.确定输入电压和输出电压的需求。
根据实际应用需求确定输入电压和输出电压的范围。
2.计算变压器的变比。
根据输入电压和输出电压的比例计算变压器的变比N。
3.计算变压器的功率。
根据输出电压和输出电流计算变压器的功率,确保变压器能够承受所需的功率。
4.确定变压器的工作频率。
根据实际应用需求选择合适的工作频率,通常在20kHz到200kHz之间。
5.计算变压器的参数。
根据变压器的变比、工作频率和功率计算变压器的参数,包括绕组的匝数、铁芯的尺寸等。
6.选择合适的磁性材料。
根据变压器的参数选择适合的磁性材料,常用的材料有软磁合金和磁性氧化铁等。
7.进行原型设计和测试。
根据上述设计参数制作变压器的原型,并进行测试以验证设计结果的准确性。
8.进行参数调整和优化。
根据原型测试结果进行参数调整和优化,以实现更好的性能和效果。
9.进行批量生产。
当设计满足要求时,可以进行批量生产并进行产品验证和测试。
总结:。
反激式开关电源变压器设计说明
反激式开关电源变压器设计说明反激式开关电源变压器是一种常见的电源变压器,能够将输入电压通过开关转换和变换输出为所需的电压。
它具有多种应用领域,如电子设备、通信设备、医疗设备等。
本文将详细介绍反激式开关电源变压器的设计原理、设计步骤以及注意事项。
一、设计原理开关管是控制开关电路导通和断开的关键元件。
当开关导通时,输入电压通过变压器传递到输出端,当开关断开时,输出端与输入端相隔离。
变压器用于变换电压。
它通常由两个或多个线圈绕制而成,主要包括输入线圈和输出线圈。
输入线圈与开关管相连接,负责将输入电压传递到输出线圈。
输出线圈则负责变换电压。
滤波电路用于对输出信号进行滤波,减小波动和噪音。
二、设计步骤1.确定输入电压和输出电压:首先需要明确所需的输入电压和输出电压。
这将决定变压器的变比。
2.选择合适的变压器:根据所需的变比,选择合适的变压器。
变压器的选取应基于电流容量和功率需求等因素。
3.计算变压器的线圈数:根据变压器的变比和输入输出电压,计算输入线圈和输出线圈的匝数。
同时,考虑变压器的耦合系数和数量线圈相对位置等因素。
4.确定开关管和开关频率:根据输入电压、输出电压和功率需求,确定合适的开关管。
同时,选择合适的开关频率,以避免电磁干扰。
5.设计滤波电路:根据输出电压的要求,设计合适的滤波电路。
滤波电路可以使用电容、电感和抗干扰电路等组成。
6.确定电源保护电路:为了保证电源的稳定性和可靠性,设计合适的保护电路,如过流保护、过压保护、短路保护等。
7.进行仿真分析:使用电路仿真工具,对设计的电源变压器进行仿真分析,检查电源变压器的性能和特性。
8.制作和测试:按照设计的电路图,制作电源变压器,并进行测试。
测试包括输出电压稳定性、效率和波动等。
三、注意事项1.选择适当的变压器:变压器应能满足所需的电流容量和功率需求。
同时,应注意变压器的质量和耐用性。
2.稳定性和可靠性:电源变压器应具有良好的输出电压稳定性和可靠性。
反激式开关电源变压器设计
反激式开关电源变压器设计一、设计原理反激式开关电源变压器基于开关电源的工作原理,利用开关元件(开关管或者MOS管)、变压器、滤波电容和反激电容等组成。
其基本原理为:输入交流电经过整流滤波得到直流电压,然后由开关元件进行开关控制,将直流电压通过变压器变换为所需的输出直流电压,最后通过滤波电容输出稳定的直流电压。
二、关键技术1.变压器设计:反激式开关电源变压器的设计是整个电源设计中最为关键的部分。
在设计变压器时,要考虑输出功率、输入电压范围、输出电压等参数。
通常采用环型铁芯、锥形铁芯或者斜式铁芯,以减小漏电感和磁性损耗,提高效率。
同时,在设计过程中还要考虑绕组的匝数、电流和绝缘等级等方面的因素。
2.开关元件选择:开关元件是实现能量转换和控制的关键部分。
常用的开关元件有开关管、MOS管等。
选择合适的开关元件需要综合考虑电源输出功率、开关频率、开关速度、导通压降以及温升等因素。
3.控制电路设计:控制电路主要负责控制开关元件的导通和关断。
常见的控制电路有单片机控制和集成电路控制两种。
单片机控制的优点是灵活性高、可编程性强,但需要额外增加单片机等硬件,造成成本增加;集成电路控制则更简单,但灵活性较差。
三、注意事项1.确保变压器设计合理:变压器设计要保证核心材料的选取合理,应该选择磁性能好、耐高温的材料。
此外,变压器的绕组要均匀绝缘,并合理设计匝数,以减小漏电感和损耗。
2.开关元件的选择要合适:开关元件选择要根据实际工作条件来确定,如输出功率、输入电压范围、输入电流等。
3.控制电路设计要稳定可靠:控制电路要设计稳定可靠,能够保证开关元件的正常工作。
如果选用单片机控制,还需考虑保护电路的设计,以避免过电流和过压等问题。
4.散热设计要合理:反激式开关电源在工作过程中会产生较多的热量,因此散热设计要合理。
可以采用散热片、散热风扇等降低温度。
总结:反激式开关电源变压器的设计涉及变压器设计、开关元件选择和控制电路设计等多个方面。
反激式开关电源的设计
反激式开关电源的设计1.反激式开关电源的基本原理与拓扑结构2.反激式开关电源的设计步骤(1)选择合适的开关器件:根据设计需求确定开关器件的额定电流和电压。
应选择满足设计需求的高效开关器件,以确保电源的稳定性和可靠性。
(2)设计变压器:变压器是反激式开关电源中非常重要的组成部分,其设计影响着整个电源的性能。
变压器的设计应根据输入电压、输出电压及负载电流等确定变比。
(3)设计输入滤波器:输入滤波器主要用于去除输入电源的高频噪声和电磁干扰。
应根据设计要求选择合适的滤波器元件。
(4)选择输出滤波器:输出滤波器用于去除输出电压中的高频噪声和波动。
应选择满足设计要求的输出滤波器元件。
(5)选择控制器和反馈电路:反激式开关电源需要一个控制器来控制开关器件的开关频率和占空比。
应根据具体设计需求选择合适的控制器和反馈电路。
(6)设计保护电路:反激式开关电源应设计有相应的保护电路,以防止过流、过压和过温等情况的发生,保证电源的安全可靠运行。
(7)进行电路仿真和调试:应使用电子设计自动化工具进行电路仿真和调试,以验证电源设计的正确性和稳定性。
3.注意事项和常见问题(1)电源设计应考虑效率和性能的平衡,既要保持高效率,又要满足设计要求。
(2)电源设计时要合理布局电路板,降低电磁干扰和噪声。
(3)电源设计应注意选择合适的元件,在成本和性能之间进行权衡。
(4)在进行电路仿真和调试时,应注意保护器件和测试仪器的安全,避免电源短路和电流过大导致元器件损坏。
(5)设计完成后,应进行严格的测试和质量控制,确保电源的稳定性和可靠性。
总结:反激式开关电源是一种常见的开关电源拓扑结构,在设计中需要考虑元件选择、变压器设计、滤波器设计、控制器和反馈电路选择等多个因素。
合理的设计和调试能够确保电源的稳定性和可靠性,满足设备的电源需求。
反激式开关电源的设计方法
反激式开关电源的设计方法反激式开关电源是一种常用于电子设备中的高效率电源。
它通过将输入电源的直流电压转换为高频脉冲信号,再进行变压、整流和滤波等处理,最终得到所需要的输出电压。
本文将介绍反激式开关电源的设计方法,包括主要元件的选择、电路的设计和调试等内容。
一、元件的选择1.变压器:反激式开关电源的核心元件之一、在选择变压器时,需要根据设计好的输入和输出电压来确定变比。
同时,还需要考虑变压器的工作频率、功率损耗、功率因数等参数。
一般情况下,选择具有较高工作频率和较低损耗的变压器效果会更好。
2.开关管:开关管主要用于开关电源中的开关操作。
在选择开关管时,需要考虑电流和电压的要求,以及其承受功率和导通损耗等参数。
常见的开关管有MOSFET和IGBT等。
3.控制芯片:控制芯片用于控制开关管的导通和关闭时间,以及输入输出电压的稳定性等。
选择合适的控制芯片需要考虑芯片的工作频率、控制方式、保护功能等参数。
4.输出电容和滤波电感:输出电容和滤波电感用于平滑输出电压和滤除高频噪声。
在选择时,需要考虑电容和电感的电压和电流容量,以及使用寿命等因素。
二、电路的设计1.输入滤波电路:输入滤波电路主要用于去除输入电源中的高频噪声和波动。
常见的输入滤波电路包括滤波电容和滤波电感的串联组合,以及降压电感和降压二极管的并联组合。
2.开关电路:开关电路是反激式开关电源的核心部分,它通过开关管的导通和关闭操作,将输入电源的直流电压转换为高频脉冲信号。
开关电路一般由开关管、变压器、滤波电容和滤波电感等元件组成。
3.输出调整电路:输出调整电路用于稳定输出电压,并提供过载、过流和短路等保护功能。
常见的输出调整电路包括反馈电路、比较电路和控制芯片等。
4.反馈电路:反馈电路用于检测输出电压,并通过控制芯片对开关管的导通和关闭时间进行调节,从而稳定输出电压。
反馈电路一般由分压电阻、运放和电压比较器等组成。
三、电路的调试1.输出电压调节:利用调整反馈电路中的分压电阻,可以实现对输出电压的调节。
反激式开关电源是如何工作的-设计应用
反激式开关电源是如何工作的-设计应用反激的变压器可以看作一个带变压功能的电感,是一个buck-boost电路。
反击式开关变压器反激式开关电源是指使用反激高频变压器隔离输入输出回路的开关电源。
“反激”指的是在开关管接通的情况下,当输入为高电平时输出线路中串联的电感为放电状态;相反,在开关管断开的情况下,当输入为高电平时输出线路中的串联的电感为充电状态。
与之相对的是“正激”式开关电源,当输入为高电平时输出线路中串联的电感为充电状态,相反当输入为高电平时输出线路中的串联的电感为放电状态,以此驱动负载。
单端反激式变换由于是在开关管T关断期间变压器向输出电容器和负载提供能量,为反激变换器。
当开关晶体管Tr ton时,变压器初级Np有电流Ip,并将能量储存于其中(E = LpIp / 2)。
由于Np与Ns极性相反,此时二极管D反向偏压而截止,无能量传送到负载。
当开关Tr off 时,由楞次定律:(e = -N△Φ/△T)可知,变压器原边绕组将产生一反向电势,此时二极管D正向导通,负载有电流IL流通。
反激式转换器之稳态波形反激的原理反激的工作原理是在D的时候原边将能量存储在变压器的励磁电感里面(标准反激电路没有输出电感),1-D的时候励磁电感释放能量给负载和输出电容供电,下一个D周期时输出电容维持负载输出。
反激式开关电源原理单端反激开关电源采用的是稳定性很好的双环路反馈的控制系统,所以它可以通过开关电源的PWM迅速调整脉冲占空比,从而在每一个周期内对前一个周期的输出电压和低级线圈充磁峰值电流进行有效调节,达到稳定输出电压的目的。
这种反馈控制电路的特点是:在输进电压和负载电流变化较大时,具有更快的动态响应速度,自动限制负载电流,补偿电路简单。
反激式开关电源设计方法
反激式开关电源设计方法1.输入变压器设计:反激式开关电源的输入变压器主要用于实现能量的储存和传递。
其设计方法一般包括确定变压器的变比、计算绕线参数和计算磁芯截面积。
变比的选择要根据输入和输出电压的关系来确定,一般采用副边大于主边的变比。
绕线参数的计算要根据输入电压、输出功率和开关频率来确定。
磁芯截面积的计算要根据输入电压、输出功率和变频器频率来确定。
2.控制电路设计:反激式开关电源的控制电路主要用于实现开关管的开关和关断控制。
其设计方法一般包括选择适合的开关管和控制芯片、设计反馈电路和设计保护电路。
选择合适的开关管和控制芯片要考虑输入和输出电压、输出功率和开关频率等因素。
设计反馈电路主要是为了实现恒定的输出电压,一般采用反馈误差放大器和锁相环等。
设计保护电路主要是为了提高电源的可靠性和稳定性,一般包括过流保护、过压保护和过温保护等。
3.输出滤波电路设计:反激式开关电源的输出滤波电路主要用于滤除开关管开关过程中产生的高频脉冲噪声,保证输出电压的稳定性和纹波度。
其设计方法一般采用LC滤波器或电容滤波器。
LC滤波器具有较好的滤波效果,但体积较大,适用于功率较大的电源。
电容滤波器体积小,但滤波效果相对较差,适用于功率较小的电源。
4.保护电路设计:反激式开关电源的保护电路主要用于保护电源,防止出现过流、过压、过温等故障。
其设计方法一般包括选择合适的保护元件和设计合理的保护电路。
选择合适的保护元件要考虑其额定参数和动态特性,以满足电源的保护要求。
设计合理的保护电路要考虑多种故障情况,实现对电源的全方位保护。
以上是反激式开关电源设计的基本方法和步骤,设计师在实际设计过程中还需考虑电源的稳定性、可靠性、效率等因素,并根据具体的应用需求进行优化设计。
同时,还要注意电源设计中的安全性和可调度性,确保电源工作的稳定性和可靠性。
反激式开关电源设计详细流程
反激式开关电源设计详细流程1.确定需求:首先要明确设计电源的输入电压和输出电流的需求,以及设计的环境条件,如工作温度范围和工作效率等。
2.选择主要元器件:根据需求确定选择适配器的主要元器件,包括变压器、MOSFET、二极管、电感器、电容器等。
3.设计变压器:变压器是反激式开关电源中的一个重要元器件,主要功能是提供电源输出的隔离和变压功能。
根据需求设计变压器的变比和功率,确定铁芯材料和绕线参数,如线径和绕线圈数等。
4.选择MOSFET:MOSFET是电源开关的关键元器件,它需要具备低导通和开关损耗、高效率和可靠性等特点。
根据需求选择合适的MOSFET,通过计算和模拟分析确定导通和关断时的最大功率损耗。
5.设计电感器和电容器:电感器和电容器用于滤波和稳压,通过计算和模拟模拟设计电流和电压波形,选择合适的电感值和电容值,以保证输出电流和电压的稳定。
6.设计控制电路:根据反激式开关电源的工作原理,设计适当的控制电路,用于控制开关管的导通和关断。
控制电路包括脉宽调制(PWM)控制和电流/电压反馈控制,以确保输出电流和电压的稳定和可靠。
7.选择和设计保护电路:反激式开关电源需要一些保护电路,如过压保护、过流保护、短路保护等。
根据设计需求选择合适的保护元器件和电路,以防止电源和被供电设备的损坏。
8.PCB设计:根据电路设计和布局要求进行PCB设计,包括元器件的布局、走线、线宽、间距等。
同时要考虑电磁兼容性(EMC)和热管理的问题。
9.原理图和PCB布线优化:通过仿真软件对电路进行仿真和优化,优化电路的参数和特性,如输出电压波形、效率和稳定性等。
10.系统测试与调试:完成PCB的制作和组装后,进行系统测试与调试,测试电源的输出性能、稳定性和保护功能等,并进行必要的调整和优化。
11.电源性能评估:对设计的电源进行性能评估,包括效率、功率因数、纹波和噪声等,以确保其符合设计要求和行业标准。
12.生产和质量控制:根据设计要求进行电源的批量生产,并进行质量控制,包括检测和测试,以确保产品的质量和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于U C3845的反激式开关电源设计
时间:2011-10-2821:40:13来源:作者:
引言
反激式开关电源以其结构简单、元器件少等优点在自动控制及智能仪表的电源中得到广泛的应用。
开关电源的调节部分通常采用脉宽调制(PWM)技术,即在主变换器周期不变的情况下,根据输入电压或负载的变化来调节功率MOSFET管导通的占空比,从而使输出电压稳定。
脉宽调制的方法很多,本文中所介绍的是一种高性能的固定频率电流型脉宽集成控制芯片UC3845。
该芯片是专为离线的直流至直流变换器应用而设计的。
其主要特点是具有内部振荡器、高精度误差比较器、逐周电流取样比较、启动电流小、大电流图腾柱输出等,是驱动MOSFET的理想器件。
1UC3845简介
UC3845芯片为SO8或SO14管脚塑料表贴元件。
专为低压应用设计。
其欠压锁定门限为8.5v(通),7.6V(断);电流模式工作达500千赫输出开关频率;在反激式应用中最大占空比为0.5;输出静区时间从50%~70%可调;自动前馈补偿;锁存脉宽调制,用于逐周期限流;内部微调的参考源;带欠压锁定;大电流图腾柱输出;输入欠压锁定,带滞后;启动及工作电流低。
芯片管脚图及管脚功能如图1所示。
图1UC3845芯片管脚图
1脚:输出/补偿,内部误差放大器的输出端。
通常此脚与脚2之间接有反馈网络,以确定误差放大器的增益和频响。
2脚:电压反馈输入端。
此脚与内部误差放大器同向输入端的基准电压(2.5V)进行比较,调整脉宽。
3脚:电流取样输入端。
4脚:RT/CT振荡器的外接电容C和电阻R的公共端。
通过一个电阻接Vref通过一个电阻接地。
5脚:接地。
6脚:图腾柱式PWM输出,驱动能力为土1A.
7脚:正电源脚。
8脚:Vref,5V基准电压,输出电流可达50mA.
2设计方法
如图2为基于UC3845反激式开关电源的电路图,虚线框内为UC3845内部简化方框图。
1)启动电压和电容的选择
交流电源115VAC经整流、滤波后为一个纹波非常小的直流高压Udc,该电压根据交流电源范围往往可得到一个最大Udcmax,一和最小电压Udcmin。
当直流输入电压大于144V以上时,UC3845应启动开始工作,启动电阻应由线路直流电压和启动所需电流来确定。
根据UC3845的参数分析可知,当启动电压低于8.5V时,UC3845的整个电路仅消耗lmA的电流,即UC3845的典型启动电压为8.5V,电流为1mA.加上外围电路损耗约0.5mA,即整个电路损耗约1.5mA.在输入直流电压为最小电压Ddcmmn时,启动电阻Rin的计算如下:
图2基于UC3845反激式开关电源的电路图
启动过程完成后,UC3845的消耗电流会随着MOSFET管的开通增至100mA左右。
该电流由启动电容在启动时储存的电荷量来提供。
此时,启动电容上的电压会发生跌落到7.6V以上,要使UC3845fj~
保持工作,反馈绕组L应能及时提供馈电电压。
如电压低于7.6V欠压比较器动作,PWM输出低电平。
自馈电时间由UC3845的开关周期决定,取UC3845的振荡频率54kHz.启动电容的容量可由下式计算得到:2)反馈绕组的匝数计算
Ns=Np(Vcc+0.8)(1一Dmax)/(UdcminiDmax),NP其中为变压器初级匝数。
3)滤波
为滤除供电端的高频信号,Vcc对地接一个瓷片电容,在PCB布线时要注意,不能有电感成分的介入,以免产生干扰,引成电路不稳定。
4)占空比D
UC3845会根据输入电压的变化来调整其工作的占空比。
根据UC3845的参数要求,设UC3845对应最低直流电压输入时最大占空比Dmax=0.5.
当输入直流电压在144V和177V范围内,UC3845的占空比的范围为:
5)调制频率f
振荡器OSC的频率由定时元件RT和CT选择值决定。
电容CT由参考电压Vref(=5V)通过电阻R充电,充至2.8V,再由内部电流宿放电到1.2V,形成锯齿波脉冲信号,如图3.不管在大RT小CT还是大CT小RT,振荡器充电时锁存器置位输入方波为低电平,放电时输入方波为高电平。
当锁存器置位输入方波为高电平时,或非门输出始终为低电平,封锁PWM,这段时问由内部振荡器OSC放电过程时间决定。
在锁存器置位输入方波下降沿同时,如或非门其他三个输入信号输入无效电平时,或非门输出为高电平,MOSFET管导通。
其他三个输入信号分别为:一个为电流取样比较器输出,一个为误差放大器输出,一个为输入欠压比较器输出。
为滤除参考端的高频信号,V对地接一个瓷片电容,在PCB布线时要注意,不能有电感成分的介人,以免产生干扰,引成电路振荡打隔。
OSC振荡频率f=1.8/(RtCt),当取RT=33kf2,CT=1000PF,f=-54kHz.
6)电流取样比较
在图2中,MOSFET管导通时,Udc=Ldi/dt,变压器电感电流以斜率Udc/L线性增长,L为变压器的初级电感。
在MOSFET管的源极与地间串接一个无感取样电阻Rs,将变压器的初级电流转换成取样电压Ud=RSi.在输出同样的功率下,输入直流电压越小,变压器一次电流也越大,通过MOSFET管的电流也越大。
为保护M0SFET管不致损坏,需计算电感峰值电流Ip=2P/(UdcminUmax)。
选择功率MOSFET 管的最大峰值电流Icmax应大于1.3Ip.
取样电压Ud经RC滤波后,送到UC3845的3脚。
当该电压超过lV时,比较器输出高电平,送到RS锁存器的复位端,PWM输出为低电平,使PWM的占空比减小,从而限制电感峰值电流。
无感取样电阻尺。
的电阻值为:Rs=l/Ip,功率1W.而RC滤波器的时间常数接近尖脉冲的持续时间,否则引起电源输出的不稳定。
取R=lk,C=470PF.
7)误差比较器
Vref经电阻分压为2.5V接至误差比较器的正端,而负端(2脚)接外部监测电压输入。
误差比较器(1脚)输出用于外部回路的补偿,如图2,输出电压因两个二极管压降而失调(=1.4V),并在连接到取样比较器反向输入端之前被三分。
2脚和1脚间接一个RC网络进行环路补偿。
取R11=150kQ,C11=100PF.
外部监测电压输入端(2脚)可用于对输出回路引入电压反馈环节,如对主输出回路5V的稳定度要求不高,可将馈电电压引入,以监测输出回路过电压。
Vcc经电阻分压接到UC3845~b部监测电压输入端,当由于某种原因,输出回路电压升高时,外部监测电压输入端大于2.5V,误差比较器输出小于2.5V,结合电流取样比较输入电压,PWM输出为低电平,使PWM的占空比减小,输出回路电压减小。
如果对主回
路输出5V电压的精度有要求。
应采用反馈电路由光耦PC817、TL431及与之相连的阻容网络构成。
其控制原理如下:
主回路5V输出输出电压经电阻分压后得到采样电压,此采样电压与TL43l提供的2.5V参考电压进行比较,当输出电压正常(5V)时,采样电压与TL43l提供的2.5V参考电压相等则TL431的K极电位不变,流过光耦二极管的电流不变,流过光耦的电流不变,UC3845的2脚输入电压不变,1脚电位稳定,6脚输出PWM驱动的占空比不变,输出电压稳定在设定值不变。
当输出5V电压因为某种原因偏高时,经电阻分压值就会大于2.5V,则TL431的K极电位下降,流过光耦二极管的电流增大,则流过光耦的电流增大,UC3845的2脚输入电压上升到大于2.5V,l脚电位下降,6脚输出驱动脉冲PWM的占空比下降,输出电压降低,这样就完成了主回路输出电压反馈稳压的作用。
3结束语
实践证明,基于UC3845的反激式开关电源具有输入电压范围宽、输出电压精度高、负载的调整效率高等特点。
本电源应用于网络电测仪表中,收到了良好的效果,具有一定的推广价值。