物理学界最NB的十大方程
几个经典的大智慧公式
几个经典的大智慧公式1. E=mc²(爱因斯坦的质能方程)这是相对论中最经典的方程之一,由物理学家爱因斯坦提出。
它描述了质量和能量之间的等价性。
在这个公式中,E代表能量,m代表物体的质量,c为光速。
2. F=ma(牛顿第二定律)牛顿第二定律是经典力学的基础之一,由物理学家牛顿提出。
根据这个公式,力F等于物体的质量m乘以加速度a。
这个公式说明了力、质量和加速度之间的关系。
3.PV=nRT(理想气体状态方程)理想气体状态方程是气体物理学中经典的方程之一,由理查德·詹姆士·瓦尔德·克劳修斯纳推导出来。
公式中,P代表气体的压强,V代表气体的体积,n为气体的摩尔数,R为气体常数,T代表气体的温度。
这个公式描述了理想气体的状态与其压强、体积、温度之间的关系。
4.F=GMm/r²(牛顿引力定律)牛顿引力定律是描述物体之间相互作用力的定律,由牛顿提出。
公式中,F代表物体间的引力,G为万有引力常数,M和m分别代表两个物体的质量,r为它们之间的距离。
这个公式解释了质量之间的相互吸引力与质量、距离之间的关系。
5. E=hf(普朗克关系)普朗克关系是量子力学中的一个基本公式,由德国物理学家普朗克提出。
公式中,E为光子的能量,h为普朗克常数,f代表光子的频率。
这个公式说明了光的能量是跟其频率成正比的。
6. S=k ln W(玻尔兹曼熵公式)熵是热力学中一个重要的物理量,用于描述系统的无序程度。
玻尔兹曼熵公式由奥地利物理学家玻尔兹曼提出。
公式中,S为熵,k为玻尔兹曼常数,W代表系统可能的微观状态数。
这个公式解释了熵与系统的微观状态数之间的关系。
7.c=λf(光速公式)这个公式描述了光的传播速度与光波长和频率之间的关系。
c代表光的速度,λ为光波长,f为光的频率。
这个公式是基于电磁波的理论得出的。
以上是一些经典的大智慧公式,它们在不同领域的物理学和科学中起着重要的作用。
通过这些公式,科学家们能够推导出物质世界的复杂现象,揭示出自然界的规律,为我们提供了深刻的启示和研究方向。
影响世界的十大方程式
数学方程式不仅能够帮助人们解决知识上的问题,同时,从某种角度来看,它们本身也是非常美丽的。
许多科学家都曾坦承,自己非常喜欢某些方程式,并不仅仅因其功能,更在于它们所表现出的那种简约而不简单、形式如诗句般优雅的美感。
以下,便是由LiveScience 网站刊登出的世界各国科学家们鼎力推荐的美丽方程:一、广义相对论该方程式由20世纪最伟大的物理学家爱因斯坦于1915年提出,是开创性理论——广义相对论的组成部分。
它颠覆了科学家们此前对于引力的定义,将其描述为时空扭曲的结果。
“直到现在,我依然为单独一个数字方程就可以完整覆盖时空的定义而感到震惊。
”美国空间望远镜研究所天体物理学家马里奥·利维奥表达了自己对该方程的推崇,“这个方程式堪为爱因斯坦天才智慧的结晶。
”利维奥解释道:“该方程式的右边部分,代表着我们所在宇宙,包括推动宇宙膨胀的暗物质在内的总能量。
左边则表述了时空的几何形式。
左右两边合起来描述了爱因斯坦广义相对论的实质,即质量和能量决定了时空的几何形式以及曲率,表现为我们俗称的引力。
”“这是个优雅的方程。
”纽约大学的物理学者凯尔·克兰默尔对利维奥的意见表示赞同。
同时,他还指出该方程式展示了时空、质量与能量之间的关系。
“这个方程式告诉人们三者之间的相互关联,比如太阳的存在是如何扭曲了时空,导致地球围绕它进行轨道运动。
它还解释了宇宙自大爆炸之后的进化情况,以及预言了黑洞的存在。
”二、标准模型这是另外一条被物理学界奉为经典条文的方程式。
标准方程描述了那些被认为组成了当前宇宙的基本粒子。
它还能够被压缩为以18世纪法国著名数学和天文学家约瑟夫·路易斯·拉格朗日命名的简化形式。
美国加州斯坦福直线加速器中心理论物理学家兰斯·迪克森推荐了该方程式。
在他看来,它成功地描述了除重力之外,人们迄今为止在试验室中所发现的基本粒子与力,其中就包括新近被发现的被称为“上帝粒子”的希格斯玻色子,即该方程式中的希腊字母“φ”。
物理学上最伟大的十个公式
物理学上最伟大的十个公式物理学是自然科学中的一门重要学科,它研究物体的运动、能量、力和物质结构等。
作为一门基础学科,物理学对于现代科技和社会发展起到了不可估量的作用。
在物理学中,有许多重要的公式,它们不仅可以用来解决实际问题,也能简明扼要地表达物理学的基本原理和定律。
下面我们将介绍在物理学中最伟大的十个公式。
一、质能方程E=mc²这个方程被广泛认为是物理学史上最重要的公式之一,它将质量和能量联系在一起。
它表明,有多少质量就有多少能量,而且质量和能量之间的换算比率是光速的平方。
这个方程的提出彻底改变了人们对能量和质量的理解,也为原子弹的制造提供了理论基础。
二、牛顿第二定律F=ma这是牛顿三大定律之一,表明力的大小和物体的质量和加速度有关。
它是力学中最基本的公式之一,可以用来解释物体的运动规律,也是动力学的重要理论基础。
三、热力学第一定律Q=ΔU+W热力学是研究能量传递和转化的一门学科,而热力学第一定律则是热力学中最重要的方程之一。
它表明,系统内部能量的变化等于吸收的热量和做功的和。
这个方程对于研究热机、制冷技术等领域非常重要。
四、万有引力定律F=G(m₁m₂/r²)万有引力定律是物理学中最重要的定律之一,它描述了物体之间的引力作用,可以解释星球运动的规律。
这个定律的提出使得人们对于宇宙的认识更加深刻、准确,也为人类探索太空和研究宇宙提供了重要的基础。
五、电磁感应定律E=-dΦ/dt这是电磁学中的重要定律之一,表明一个电场的变化会产生感应电场,从而在电路中产生感应电动势。
这个定律为发电技术和电子信息技术提供了理论基础,也是电力工程和通信工程中必须掌握的重要知识。
六、布朗运动公式R²=6DΔt布朗运动是微观粒子的无规则运动,它对于研究分子、原子等微观粒子的运动行为具有重要意义。
布朗运动公式描述了粒子随时间扩散的规律,是物理学中最有意义的公式之一。
七、热力学第二定律S≥0热力学第二定律是热力学中最重要的定律之一,它表明熵的增加速度不小于零,即热力学过程具有不可逆性。
物理数学中10个最伟大公式
10个最伟大公式10 Greatest Formulae英国科学期刊《物理世界》曾让读者投票评选了“最伟大的公式”,最终榜上有名的十个公式既有无人不知的1+1=2,又有著名的E=mc2;既有简单的圆周公式,又有复杂的欧拉公式……这些公式美丽而精妙,这个地球上有多少伟大的智慧曾耗尽一生,才最终写下一个等号。
每当你解不开方程的时候,不妨换一个角度想,你正在见证的,是科学的美丽与人类的尊严。
让我们一起来看看这十个公式,你认识几个呢?No.10 圆的周长公式The Length of the Circumference of a CircleCπ=2r这个公式虽然简单,但却蕴含着深刻的智慧。
任何圆——不论大小——用它的周长比上直径,一定得到一个常数π。
你别小看圆周率π。
众所π是一个无限不循环小数,也是数学中最重要的常数周知,...=1415926.3之一。
许多数学家终其一生, 才能将圆周率计算到小数点后几十位. 而目前人类制造的超级计算机已经能得到圆周率的30万亿位,却仍然没有找到任何循环的迹象。
No.9 傅立叶变换The Fourier Transform[]dte tf t f F F t i ωω-∞∞-⎰== )()()(傅里叶变换是一种特殊的积分变换。
虽然这个公式复杂难懂,但是它在物理学、电子类科学、信号处理、统计学、密码学、声学、光学、海洋学等领域都有着广泛的应用。
另外,没有这个公式,就没有今天的电子计算机。
因此,你今天能够享受网上冲浪带来的乐趣,除了要感谢党和政府, 还要感谢傅里叶。
No.8德布罗意方程组The de Broglie Relationsp=ħk=h/λE=ħw=hv'这个方程组不仅指出了微观粒子波长和动量的关系,频率和能量的关系,还表明了粒子具有“波粒二象性”,彻底颠覆了牛顿的光粒子说,还否定了光的波动说。
德布罗意凭借这一发现荣获了1929年诺贝尔物理学奖。
No.71+1=2是不是感觉这个公式很简单? 然而,这个式子也有着深刻的含义。
世界史上10个最伟大的公式,没有它们就没有现在的世界
世界史上10个最伟大的公式,没有它们就没有现在的世界1、麦克斯韦方程组:将电场和磁场有机地统一成完整的电磁场。
并创立了电磁场理论,而没有电磁学理论,就不会有现在的社会文明。
不管是对于我们对宇宙的理解,还是对于现代科技的发展,这一方程组都意义重大。
微观麦克斯韦方程组宏观麦克斯韦方程组2、薛定谔方程:薛定谔方程的解完备地描述物理系统里,微观尺寸粒子的量子行为;这包括分子系统、原子系统、亚原子系统;另外,薛定谔方程的解还可完备地描述宏观系统,可能乃至整个宇宙。
薛定谔方程3、圆周长公式:精确计算圆周长、圆面积、球体积等几何形状的关键值。
也可应用于工程师或物理学家要进行较精密的计算圆周长公式4、欧拉公式:欧拉公式也被称为世界上最完美的公式,在数学历史上有很多公式都是欧拉发现的,它们都叫做欧拉公式,它们分散在各个数学分支之中。
如:分式里的、复变函数论里的、三角形中的、拓扑学里的、初等数论里的欧拉公式等等。
欧拉公式5、牛顿第二定律:牛顿第二定律证明物体加速度的大小跟作用力成正比,跟物体的质量成反比,且与物体质量的倒数成正比;加速度的方向跟作用力的方向相同。
牛顿第二定律6、1+1=2:这个公式不需要名称,不需要解释,大家不要强行给它加戏码了。
1+1=27、勾股定理/毕达哥拉斯定理:勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。
也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。
勾股定理/毕达哥拉斯定理8、傅里叶变换:如果没有它,就没有今天的电子计算机,我们除了要感谢国家给我们上网以外,还得感谢它,另外虽然看上去是中文名,但他是法国人。
但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多新生上来就懵圈并从此对它深恶痛绝。
傅里叶变换傅里叶变换9、德布罗意方程组:德布罗意认为电子不仅是一个粒子,也是一种波,它还有“波长”。
人类史上最伟大的10个方程式
人类史上最伟大的10个方程式从什么时候起,我们开始对数学心生厌倦?又是哪一刻,物理成了我们难以跨过的沟坎?这些东西原本如此的精妙而美丽,有多少人为了他们而耗尽毕生心血?当你遇到“难解难分”的方程的时候,何不换一个角度想想,放下对理科的厌恶和对考试的痛恨?你所在见证的,是科学的美丽与人类的尊严。
No.10 The Length of the Circumference of a Circle圆的周长公式这公式估计大家从小学用到现在。
它表述了最完美的图形的一个最明显的特征。
而且,里面还有一个奇妙的因子:圆周率π。
目前,人类已经能得到圆周率的上千亿位精度。
不过现代科技领域使用的圆周率值,有十几位已经足够了(和物理研究的空间尺度下线接近)。
如果用40位精度的圆周率值来计算一个太阳系行星轨道的话,误差还不到质子直径的百万分之一。
因此现在的人计算圆周率,多数是为了验证计算机的计算能力,还有就是为了兴趣。
No.9 The Fourier Transform傅里叶变换这个挺专业的,一般人完全不明白。
甚至用数学很多的物理类普通物理也不会涉及多一点,所以就不作解释了。
简要地说,没有这个式子就不会有设计精良的镜头。
哦,不,我说的太狭隘了,主要是没有它就不会有现代信息技术和产品。
所以你能在这里看见我讲这个,除了感谢电脑公司、ISP,还要感谢这个完全看不懂的式子。
No.8 The de Broglie Relations德布罗意方程(组)上面是这个方程的基础表达。
高中物理的波粒二象性会对此作过简单介绍。
简要地说德布罗意类比光子,认为电子不仅表现粒子态,也表现波的性质,它可以用波长和频率等波的物理量描述。
于是就在博士论文里写了这个物质波方程,表达了波长、能量等等之间的关系。
论文曾被导师寄给爱因斯坦,获得了高度评价。
薛定谔也受此启发写下了后来那以他自己名字命名的方程式。
因为这些研究,德布罗意获得了1929年诺贝尔物理学奖。
这个方程的通常形式列在下面:No.7 Dirac Equation狄拉克方程这是开创现代物理学的最重要的方程式之一,它将我们带入了量子场论的世代,又避开了昔日克莱因-戈尔登方程的种种困难。
世界上最伟大的十大公式
世界上最伟大的十大公式1. 欧拉公式(Euler's formula):e^(iπ) + 1 = 0。
2. 相对论的质能方程(E=mc^2):能量和质量间的等价关系。
阐述了质量和能量之间的相互转化关系,揭示了相对论中的重要概念,改变了人们对能量和物质本质的理解。
3. 波尔兹曼熵公式(Boltzmann's entropy formula):S = k *ln(W)。
描述了热力学中的熵(entropy)概念,将微观粒子的状态数与系统的熵关联起来,阐明了熵作为热力学量的重要性。
4. 麦克斯韦方程组(Maxwell's equations):电磁场理论的基础。
5. 傅里叶变换(Fourier transform):信号处理和频谱分析的基础。
将时间域的信号转换为频域表示,使得我们可以更好地理解和处理各种周期性和非周期性信号。
6. 黑-斯科尔定律(Black-Scholes formula):金融选项定价模型。
这个公式描述了金融市场中期权(options)的评估和定价,为金融学和投资领域提供了重要的工具和理论基础。
7. 广义相对论场方程(Einstein field equations):描述引力场的方程。
描述了引力场的形成和演化,揭示了时空的弯曲和质量-能量分布之间的关系,极大地推动了现代宇宙学和天体物理学的发展。
8. 热力学第二定律(Second law of thermodynamics):熵的增加性原理。
说明了自然系统总是趋向于熵增加的状态,解释了各种热力学现象和自然过程中的方向性和不可逆性。
9. 斯特克斯-爱尔德方程(Navier-Stokes equations):流体力学的基本方程。
描述了流体的运动和流动规律,为理解和研究气体和液体的流动性质提供了关键的工具和方程。
10. 黄金分割(Golden Ratio):数学中的神秘与美感。
这个公式描述了两个分割比例之间的关系,被广泛应用于艺术、建筑、设计和自然界中,赋予各种事物以和谐和美感。
世界十大著名方程
世界十大著名方程
以下是世界十大著名方程:
1. 欧拉公式:e^ix = cos(x) + i*sin(x)
这是一个重要的数学公式,将指数函数、三角函数和虚数单位i联系在一起。
2. 相对论的质能方程:E = mc^2
由爱因斯坦提出的公式,描述了物质和能量之间的等效关系。
3. 热力学第二定律:ΔS ≥ 0
描述了热力学系统中熵的增加性质,表明自然界中的熵总是增加或保持不变。
4. 麦克斯韦方程组:
这是一组描述电磁场行为的方程,包括麦克斯韦方程的四个基本方程:
a) 电场的高斯定律
b) 磁场的高斯定律
c) 电场的法拉第电磁感应定律
d) 磁场的安培定律
5. 波动方程:∂^2u/∂t^2 = c^2∇^2u
描述了波动传播的方程,出现在许多物理学和工程学领域中。
6. 黎曼猜想:ζ(s) = Σ(n=1至∞) 1/n^s = 0
这是一项尚未解决的数学猜想,涉及到复数域中的黎曼ζ函数。
7. 汉密尔顿-雅可比方程:∂S/∂t + H(q, ∂S/∂q) = 0
描述了在哈密顿力学中质点系统的运动的方程。
8. 流体力学的纳维-斯托克斯方程:∂v/∂t + (v·∇)v = -∇p/ρ + ν∇^2v
描述了不可压缩流体中速度场和压力的运动方程。
9. 黑洞的爱因斯坦场方程:
这是描述引力场和时空弯曲的爱因斯坦广义相对论方程。
10. 薛定谔方程:iħ∂ψ/∂t = Hψ
描述了量子力学中粒子波函数随时间演化的方程。
世界上伟大的十大公式
世界上伟大的十大公式:1.文明的基础:勾股定理直角三角形斜边长度c的平方等于另两边a、b长度的平方和。
C2=A2+B2勾股定理独立的被古中国、古印度、古希腊所发现,自发现便广泛应用于工程建筑、天文、航海等领域。
对于定理的论证方法层不不穷,至今估计至少有400余种方法。
2.牛顿第二定律牛顿第二定律是经典力学的灵魂,定律指出:运动的变化与施加的力成正比,并且变化的方向沿着所施加力的方向。
F=ma这个简单的公式,将物体所受力与质量、以及描述其运动的加速度完美的统一到一起,深刻的影响了力学的发展。
牛顿否定了前人运动变化要从内部解释的观念,而是从外部施加的力考虑。
3.万有引力定律万有引力在所有物体之间普遍存在。
两个物体之间万有引力的大小与两物体的质量成正比,与两个物体距离的平方成反比。
F g=Gm1m2/r2从苹果落地到万有引力,这可能是人类历史上最伟大的类比联想和归纳。
万有引力定律不仅被用于解释天体行星的运动,其影响力扩展到了哲学、神学等领域。
4.欧拉公式一个将自然对数的底、圆周率、虚数i、1和0这5个数学上的基本概念,联系在一起的神秘公式。
e iπ+1=0这个简单、完美的方程被称为上帝的方程,可以看成下面方程的特例:e iπ=cosx+isinx当取x=π时,即可得到欧拉公式。
欧拉之后,印度的天才数学家拉马努金曾独立地发现该方程,但当他知道自己不是最先发现而倍感沮丧。
5.热力学第二定律世界的能量总量是恒定的,其熵值向着达到最大值的方向变化。
S,-S≥06.麦克斯韦方程组19世纪最重要的事件,一定是麦克斯韦发现了电动力学定律。
它完整地描述了包括电磁学在内的物理现象,说明了变化的磁场如何产生变换的电场,强调磁单极是不存在的,描述了电流和变化的电场如何产生磁场以及电场是如何产生。
麦克斯韦方程组描述的电磁场开创了一个全新的领域,超出了牛顿力学的范畴,并预测了不可思议的穿越时空的电磁波。
麦克斯韦的工作指向了:电磁波的产生和探测问题;以太的漂移的测量问题;使用更简洁的方式对方称进行重写,以方便实际应用。
世界上最伟大的10个公式
世界上最伟大的10个公式以下是我认为世界上最伟大的10个公式,它们在不同的领域发挥了巨大的作用。
1. 相对论的质能方程(E=mc²):由爱因斯坦提出的这个方程揭示了质量和能量之间的等价关系。
它改变了人们对物质本质的认识,为原子能和核能的发展奠定了基础。
2.万有引力定律(F=G*(m₁*m₂/r²)):由牛顿提出的这个公式表达了物体之间引力的关系。
它在天体力学中被广泛应用,解释了行星围绕太阳的运动、恒星的引力塌缩等现象。
3.麦克斯韦方程组:麦克斯韦方程组描述了电磁场的生成和传播规律。
这套方程组统一了电场和磁场的描述,揭示了电磁波的存在,并打开了电磁学、光学和通信技术的大门。
6.波尔定律(∆p*∆x≥h/4π):波尔提出的波尔定律描述了粒子的动量和位置测量的不确定性。
这个公式在量子力学中起到了重要作用,揭示了微观世界的本质。
7.热膨胀系数公式(ΔL=L₀*α*ΔT):热膨胀系数公式描述了物体在温度变化时的尺寸变化情况。
它在工程学领域广泛应用,为工业生产提供了重要参考。
8. 欧拉-拉格朗日方程(d/dt(∂L/∂v) - ∂L/∂q = 0):欧拉-拉格朗日方程描述了力学系统的运动方程,通过极值原理推导得到。
它是经典力学中最重要的公式之一,为力学问题的求解提供了通用的方法。
9.黎曼猜想:黎曼猜想是数论中的一个假设,它探讨了素数分布的规律。
虽然尚未得到证明,但黎曼猜想在数学界引起了巨大的关注,涉及到了复变函数、调和级数等多个数学领域。
10.博尔兹曼分布(P(E)=(1/Z)*e^(-E/kT)):博尔兹曼分布描述了粒子在不同能量状态下的概率分布。
它为热力学系统的平衡态提供了基础,也为化学、物理和统计学研究提供了重要工具。
这些公式无论是在科学研究、工程应用还是哲学思考中都具有重要的地位。
它们的提出和应用推动了人类对自然界的理解和技术进步。
史上最伟大的十个公式
矣s B·dA=0
{ 矣坠sE·dl=-
坠ΦB,S 坠t
矣坠s H·dl=If,s+
坠ΦD,S 坠t
微分形式:
{荦·D=ρf 荦·B=0
荦×E=-
坠B 坠t
荦×H=Jf+
坠D 坠t
任何一个能把这组公式看 懂的人,一定会感到背脊发 凉— ——如果没有上帝,怎么解 释如此完美的方程?这组公式 融合了电的高斯定律、磁的高 斯定律、法拉第定律以及安培 定律,对它比较保守的评价是: “一般地,宇宙间任何电磁现 象,皆可由此方程组解释。”依 据这组公式,麦克斯韦仅凭纸 笔演算就预言了电磁波的存 在。我们不是总喜欢编一些故 事,比如爱因斯坦小时候因为 受到某种刺激而走上了发奋学 习以图报效祖国的道路么?事 实上,这个刺激就是你现在看 到的这个方程组。也正因为这 个方程组完美统一了整个电磁 场,所以成年后的爱因斯坦始 终想要以同样的方式统一引力 场,并将宏观与微观的两种力 放在同一组式子中 (即著名的 “大一统理论”)。爱因斯坦直到 去 世 都 没 有 走 出 这 个 隧 道 ,一 旦走出去,他将会在隧道另一 头看到上帝本人。
No.9 傅立叶变换公式:
乙∞
(ξ):= (f x)e-2πixξdx
-∞
这个挺专业的,一般人 完全看不明白。有关它的价 值,简要地说,没有这个式 子,就没有今天的电子计算 机。因此,你能上网,除了感 谢党感谢政府,还要感谢这 个完全看不懂的式子。另外, 傅 立 叶 虽 姓“ 傅 ”,但 其 实 是
影响世界的17个方程
影响世界的17个方程在科学和数学的领域中,存在着一些被认为是极其重要和有影响力的方程。
这些方程对于我们理解自然界和人类世界的运作方式起到了至关重要的作用。
在本文中,我们将介绍一些被认为是影响世界的17个方程。
1. 波尔兹曼方程(Boltzmann Equation):它描述了气体分子运动与温度、压力和密度之间的关系。
这个方程是统计力学的基础,对于理解气体的宏观性质起到了重要作用。
2. 爱因斯坦场方程(Einstein Field Equations):这是相对论物理学的核心方程,描述了引力如何与时空的几何结构相互关联。
它对于我们理解宇宙的演化和黑洞的存在和行为起到了关键作用。
3. 斯托克斯方程(Stokes Equations):它描述了流体的运动,包括流体的速度、压力和粘性之间的关系。
它对于理解气象学、海洋学和工程领域中的流体力学问题非常重要。
4. 黎曼猜想(Riemann Hypothesis):这是数论中最重要和最著名的猜想之一、它关于黎曼ζ函数的非平凡零点的分布方式,解决这个问题将对整个数论领域产生重大影响。
5. 密度矩阵方程(Density Matrix Equation):它用于描述量子力学中的混合态和纯态的演化。
这个方程对于量子计算和量子信息领域非常重要。
6. 麦克斯韦方程组(Maxwell's Equations):这是描述电磁场的基本方程,涉及了电场、磁场和电荷之间的相互作用。
这个方程组对于电磁学、电子学和通信技术起到了至关重要的作用。
7. 薛定谔方程(Schrödinger Equation):它描述了量子力学中粒子的运动和波函数的演化。
这个方程对于理解微观世界中的粒子行为和量子力学中的基本原理至关重要。
8. 热传导方程(Heat Conduction Equation):它描述了热量如何通过导热材料传导,并且与温度分布和导热系数有关。
这个方程在材料科学、工程领域以及能源研究中有广泛的应用。
最著名的十大公式
最著名的十大公式No.10 圆的周长公式(The Length of the Circumference of a Circle)No.9 傅立叶变换(The Fourier Transform)No.8 德布罗意方程组(The de Broglie Relations)No.7 1+1=2No.6 薛定谔方程(The Schrödinger Equation)薛定谔方程是世界原子物理学文献中应用最广泛、影响最大的公式。
No.5 质能方程(Mass–energy Equivalence)No.4 毕达哥拉斯定理(Pythagorean Theorem)No.3 牛顿第二定律(Newton's Second Law of Motion)有史以来最伟大的没有之一的科学家在有史以来最伟大的没有之一的科学巨作《自然哲学的数学原理》当中的被认为是经典物理学中最伟大的没有之一的核心定律。
动力的所有基本方程都可由它通过微积分推导出来。
No.2 欧拉公式(Euler's Identity)到了最后几名,创造者个个神人。
欧拉是历史上最多产的数学家,也是各领域(包含数学的所有分支及力学、光学、音响学、水利、天文、化学、医药等)最多著作的学者。
数学史上称十八世纪为“欧拉时代”。
欧拉出生于瑞士,31岁丧失了右眼的视力,59岁双眼失明,但他性格乐观,有惊人的记忆力及集中力。
他一生谦逊,很少用自己的名字给他发现的东西命名。
不过还是命名了一个最重要的一个常数——e。
这个公式的巧妙之处在于:它没有任何多余的内容,将数学中最基本的e、i、pie放在了同一个式子中,同时加入了数学也是哲学中最重要的0和1,再以简单的加号相连。
No.1 麦克斯韦方程组(The Maxwell's Equations)积分形式:微分形式:。
世上最伟大的十个公式
世上最伟大的十个公式英国科学期刊《物理世界》曾让读者投票评选了“最伟大的公式”,最终榜上有名的十个公式既有无人不知的1+1=2,又有著名的E=mc2;既有简单的-圆周公式,又有复杂的欧拉公式……从什么时候起我们开始厌恶数学?这些东西原本如此美丽,如此精妙。
这个地球上有多少伟大的智慧曾耗尽一生,才最终写下一个等号。
每当你解不开方程的时候,不妨换一个角度想,暂且放下对理科的厌恶和对考试的痛恨。
因为你正在见证的,是科学的美丽与人类的尊严。
No.10 圆的周长公式(The Length of the Circumferenceof a Circle)这公式贼牛逼了,初中学到现在。
目前,人类已经能得到圆周率的2061亿位精度。
还是挺无聊的。
现代科技领域使用的-圆周率值,有十几位已经足够了。
如果用35位精度的-圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。
现在的人计算圆周率,多数是为了验证计算机的计算能力,还有就是为了兴趣。
No.9 傅立叶变换(The Fourier Transform)这个挺专业的,一般人完全不明白。
不多作解释。
简要地说没有这个式子没有今天的电子计算机,所以你能在这里上网除了感谢党感谢政府还要感谢这个完全看不懂的式子。
另外傅立叶虽然姓傅,但是法国人。
No.8 德布罗意方程组(The de Broglie Relations)这个东西也挺牛逼的,高中物理学到光学的话很多概念跟它是远亲。
简要地说德布罗意这人觉得电子不仅是一个粒子,也是一种波,它还有“波长”。
于是搞啊搞就有了这个物质波方程,表达了波长、能量等等之间的关系。
同时他获得了1929年诺贝尔物理学奖。
No.7 1+1=2这个公式不需要名称,不需要翻译,不需要解释。
No.6 薛定谔方程(The Schrödinger Equation)也是一般人完全不明白的。
因此我摘录官方评价:“薛定谔方程是世界原子物理学文献中应用最广泛、影响最大的公式。
世上最伟大的十个公式,薛定谔方程排名第六,质能方程排名第五
既有无人不知的1+1=2,又有著名的E=mc2;既有简单的-圆周公式,又有复杂的欧拉公式……从什么时候起我们开始厌恶数学?这些东西原本如此美丽,如此精妙。
这个地球上有多少伟大的智慧曾耗尽一生,才最终写下一个等号。
每当你解不开方程的时候,不妨换一个角度想,暂且放下对理科的厌恶和对考试的痛恨。
因为你正在见证的,是科学的美丽与人类的尊严。
No.10 圆的周长公式(The Length of the Circumference of a Circle)这公式贼牛逼了,初中学到现在。
目前,人类已经能得到圆周率的2061亿位精度。
还是挺无聊的。
现代科技领域使用的-圆周率值,有十几位已经足够了。
如果用35位精度的-圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。
现在的人计算圆周率,多数是为了验证计算机的计算能力,还有就是为了兴趣。
No.9 傅立叶变换(The Fourier Transform)这个挺专业的,一般人完全不明白。
不多作解释。
简要地说没有这个式子没有今天的电子计算机,所以你能在这里上网除了感谢党感谢政府还要感谢这个完全看不懂的式子。
另外傅立叶虽然姓傅,但是法国人。
No.8 德布罗意方程组(The de Broglie Relations)这个东西也挺牛逼的,高中物理学到光学的话很多概念跟它是远亲。
简要地说德布罗意这人觉得电子不仅是一个粒子,也是一种波,它还有“波长”。
于是搞啊搞就有了这个物质波方程,表达了波长、能量等等之间的关系。
同时他获得了1929年诺贝尔物理学奖。
No.7 1+1=2这个公式不需要名称,不需要翻译,不需要解释。
No.6 薛定谔方程(The Schrödinger Equation)也是一般人完全不明白的。
因此我摘录官方评价:“薛定谔方程是世界原子物理学文献中应用最广泛、影响最大的公式。
”由于对量子力学的杰出贡献,薛定谔获得1933年诺贝尔物理奖。
麦克斯韦方程组--世上最伟大的公式 没有之一
麦克斯韦方程组--世上最伟大的公式没有之一英国科学期刊《物理世界》曾让读者投票评选了“最伟大的公式”,最终榜上有名的十个公式既有无人不知的1+1=2,又有著名的E=mc2;既有简单的-圆周公式,又有复杂的欧拉公式……从什么时候起我们开始厌恶数学,这些东西原本如此美丽,如此精妙。
这个地球上有多少伟大的智慧曾耗尽一生,才最终写下一个等号。
每当你解不开方程的时候,不妨换一个角度想,暂且放下对理科的厌恶和对考试的痛恨。
因为你正在见证的,是科学的美丽与人类的尊严。
No.10 圆的周长公式(The Length of the Circumference of a Circle) 这公式贼牛逼了,初中学到现在。
目前,人类已经能得到圆周率的2061亿位精度。
还是挺无聊的。
现代科技领域使用的-圆周率值,有十几位已经足够了。
如果用 35位精度的-圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。
现在的人计算圆周率,多数是为了验证计算机的计算能力,还有就是为了兴趣。
No.9 傅立叶变换(The Fourier Transform)这个挺专业的,一般人完全不明白。
不多作解释。
简要地说没有这个式子没有今天的电子计算机,另外傅立叶虽然姓傅,但是法国人。
No.8 德布罗意方程组(The de Broglie Relations)这个东西也挺牛逼的,高中物理学到光学的话很多概念跟它是远亲。
简要地说德布罗意这人觉得电子不仅是一个粒子,也是一种波,它还有“波长”。
于是搞啊搞就有了这个物质波方程,表达了波长、能量等等之间的关系。
同时他获得了1929年诺贝尔物理学奖。
No.7 1+1=2这个公式不需要名称,不需要翻译,不需要解释。
No.6 薛定谔方程(The Schrödinger Equation)也是一般人完全不明白的。
因此我摘录官方评价:“薛定谔方程是世界原子物理学文献中应用最广泛、影响最大的公式。
物理学界最NB的十大方程
英国科学期刊《物理世界》曾让读者投票评选了“最伟大的公式”,最终榜上有名的十个公式既有无人不知的1+1=2,又有著名的E=mc2;既有简单的-圆周公式,又有复杂的欧拉公式……从什么时候起我们开始厌恶数学?这些东西原本如此美丽,如此精妙。
这个地球上有多少伟大的智慧曾耗尽一生,才最终写下一个等号。
每当你解不开方程的时候,不妨换一个角度想,暂且放下对理科的厌恶和对考试的痛恨。
因为你正在见证的,是科学的美丽与人类的尊严。
No.10 圆的周长公式(The Length of the Circumference of a Circle)圆的周长公式(The Length of the Circumference of a Circle).png这公式贼牛逼了,初中学到现在。
目前,人类已经能得到圆周率的2061亿位精度。
还是挺无聊的。
现代科技领域使用的-圆周率值,有十几位已经足够了。
如果用35位精度的-圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。
现在的人计算圆周率,多数是为了验证计算机的计算能力,还有就是为了兴趣。
No.9 傅立叶变换(The Fourier Transform)傅立叶变换(The Fourier Transform).png这个挺专业的,一般人完全不明白。
不多作解释。
简要地说没有这个式子没有今天的电子计算机(这个说法有待大家证实),所以你能在这里上网除了感谢党感谢政府还要感谢这个完全看不懂的式子。
另外傅立叶虽然姓傅,但是法国人。
No.8 德布罗意方程组(The de Broglie Relations)这个东西也挺牛逼的,高中物理学到光学的话很多概念跟它是远亲。
简要地说德布罗意这人觉得电子不仅是一个粒子,也是一种波,它还有“波长”。
于是搞啊搞就有了这个物质波方程,表达了波长、能量等等之间的关系。
同时他获得了1929年诺贝尔物理学奖。
No.7 1+1=2这个公式不需要名称,不需要翻译,不需要解释。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
英国科学期刊《物理世界》曾让读者投票评选了“最伟大的公式”,最终榜上有名的十个公式既有无人不知的1+1=2,又有著名的E=mc2;既有简单的-圆周公式,又有复杂的欧拉公式……
从什么时候起我们开始厌恶数学?这些东西原本如此美丽,如此精妙。
这个地球上有多少伟大的智慧曾耗尽一生,才最终写下一个等号。
每当你解不开方程的时候,不妨换一个角度想,暂且放下对理科的厌恶和对考试的痛恨。
因为你正在见证的,是科学的美丽与人类的尊严。
No.10 圆的周长公式(The Length of the Circumference of a Circle)
圆的周长公式(The Length of the Circumference of a Circle).png
这公式贼牛逼了,初中学到现在。
目前,人类已经能得到圆周率的2061亿位精度。
还是挺无聊的。
现代科技领域使用的-圆周率值,有十几位已经足够了。
如果用35位精度的-圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。
现在的人计算圆周率,多数是为了验证计算机的计算能力,还有就是为了兴趣。
No.9 傅立叶变换(The Fourier Transform)
傅立叶变换(The Fourier Transform).png
这个挺专业的,一般人完全不明白。
不多作解释。
简要地说没有这个式子没有今天的电子计算机(这个说法有待大家证实),所以你能在这里上网除了感谢党感谢政府还要感谢这个完全看不懂的式子。
另外傅立叶虽然姓傅,但是法国人。
No.8 德布罗意方程组(The de Broglie Relations)
这个东西也挺牛逼的,高中物理学到光学的话很多概念跟它是远亲。
简要地说德布罗意这人觉得电子不仅是一个粒子,也是一种波,它还有“波长”。
于是搞啊搞就有了这个物质波方程,表达了波长、能量等等之间的关系。
同时他获得了1929年诺贝尔物理学奖。
No.7 1+1=2
这个公式不需要名称,不需要翻译,不需要解释。
(有网友指出这个不符合公式的定义,可能有争议吧,不过不必过分苛求吧,这个等式内涵很深的)
No.6 薛定谔方程(The Schrödinger Equation)
薛定谔方程(The Schrödinger Equation).png
也是一般人完全不明白的。
因此我摘录官方评价:“薛定谔方程是世界原子物理学文献中应用最广泛、影响最大的公式。
”由于对量子力学的杰出贡献,薛定谔获得1933年诺贝尔物理奖。
另外薛定谔虽然姓薛,但是奥地利人。
No.5 质能方程(Mass–energy Equivalence)
质能方程(Mass–energy Equivalence).png
好像从来没有一个科学界的公式有如此广泛的意义。
在物理学“奇迹年”1905年,由一个叫做爱因斯坦的年轻人提出。
同年他还发表了《论动体的电动力学》——俗称狭义相对论。
这个公式告诉我们,爱因斯坦是牛逼的,能量和质量是可以互换的。
副产品:原子弹。
No.4 勾股定理/毕达哥拉斯定理(Pythagorean Theorem)
勾股定理毕达哥拉斯定理(Pythagorean Theorem).png
做数学不可能没用到过吧,不多讲了。
No.3 牛顿第二定律(Newton's Second Law of Motion)
牛顿第二定律(Newton\'s Second Law of Motion).png
有史以来最伟大的没有之一的科学家在有史以来最伟大没有之一的科学巨作《自然哲学的数学原理》当中的被认为是经典物理学中最伟大的没有之一的核心定律。
动力的所有基本方程都可由它通过微积分推导出来。
对于学过高中物理的人,没什么好多讲了。
No.2 欧拉公式(Euler's Identity)
欧拉公式(Euler\'s Identity).png
这个公式是上帝写的么?到了最后几名,创造者个个神人。
欧拉是历史上最多产的数学家,也是各领域(包含数学的所有分支及力学、光学、音响学、水利、天文、化学、医药等)最多著作的学者。
数学史上称十八世纪为“欧拉时代”。
欧拉出生于瑞士,31岁丧失了右眼的视力,59岁双眼失明,但他性格乐观,有惊人的记忆力及集中力。
他一生谦逊,很少用自己的名字给他发现的东西命名。
不过还是命名了一个最重要的一个常数——e。
关于e,以前有一个笑话说:在一家精神病院里,有个病患整天对着别人说,“我微分你、我微分你。
”也不知为什么,这些病患都有一点简单的微积分概念,总以为有一天自己会像一般多项式函数般,被微分到变成零而消失,因此对他避之不及,然而某天他却遇上了一个不为所动的人,他很意外,而这个人淡淡地对他说,“我是e的x次方。
”
这个公式的巧妙之处在于,它没有任何多余的内容,将数学中最基本的e、i、pie放在了同一个式子中,同时加入了数学也是哲学中最重要的0和1,再以简单的加号相连。
高斯曾经说:“一个人第一次看到这个公式而不感到它的魅力,他不可能成为数学家。
”
No.1 麦克斯韦方程组(The Maxwell's Equations)
麦克斯韦方程组(The Maxwell\'s Equations).jpg
任何一个能把这几个公式看懂的人,一定会感到背后有凉风——如果没有上帝,怎么解释如此完美的方程?这组公式融合了电的高斯定律、磁的高斯定律、法拉第定律以及安培定律。
比较谦虚的评价是:“一般地,宇宙间任何的电磁现象,皆可由此方程组解释。
”到后来麦克斯韦仅靠纸笔演算,就从这组公式预言了电磁波的存在。
我们不是总喜欢编一些故事,比如爱因斯坦小时候因为某一刺激从而走上了发奋学习、报效祖国的道路么?事实上,这个刺激就是你看到的这个方程组。
也正是因为这个方程组完美统一了整个电磁场,让爱因斯坦始终想要以同样的方式统一引力场,并将宏观与微观的两种力放在同一组式子中:即著名的“大一统理论”。
爱因斯坦直到去世都没有走出这个隧道,而如果一旦走出去,我们将会在隧道另一头看到上帝本人。