仪器分析光谱法总结

合集下载

仪器分析3—红外吸收光谱法

仪器分析3—红外吸收光谱法

傅立叶变换红外光谱仪
样品池
红外光源
摆动的 凹面镜
迈克尔逊 干扰仪
参比池
摆动的 凹面镜
检测器 干涉图谱 计算机 解析 还原
M1 II
同步摆动
I M2
红外谱图
BS
D
仪器组成
第五节 红外光谱法应用
红外光谱法由于操作简单,分析速度 快,样品用量少,不破坏样品,特征性 强等优点,在有机定性分析中应用广泛。 利用红外光谱可对化合物进行鉴定或结 构测定。 但由于吸收较复杂,在定量分析方面 应用受到一定限制。
第四章 红外吸收光谱分析法(IR)
Infrared Absorption Spectrometry
第一节
红外光谱基本知识
1、红外线波长范围: 光学光谱区域:10nm ~1000μm; 其中:10nm ~400nm为紫外光区 400nm ~760nm为可见光区, 760nm ~ 1000μm为红外光区。 为表示方便,红外光不用nm(纳米) 而用微米( μm)表示其波长。
由原理图可见,红外分光光度计也主要 由光源、样品吸收池、单色器、检测器、 记录仪等部件构成。 1、光源:能斯特灯或硅碳棒
红外光谱仪中所用的光源通常是一种惰性固体,用 电加热使之发射高强度的连续红外辐射。 常用的是Nernst灯或硅碳棒。 Nernst灯是用氧化锆、氧化钇和氧化钍烧结而成的 中空棒和实心棒。工作温度约为1700℃,在此高温下导 电并发射红外线。但在室温下是非导体,因此,在工作 之前要预热。它的特点是发射强度高,使用寿命长,稳 定性较好。 硅碳棒是由碳化硅烧结而成,工作温度在1200-1500℃ 左右。
ε>100 非常强峰(vs) 20<ε<100 强 峰(s) 10<ε<20 中强峰(m) 1<ε<10 弱 峰(w)

现代仪器分析期末总结

现代仪器分析期末总结

现代仪器分析期末总结一、概述现代仪器分析是化学专业的一门重要课程,主要研究化学分析中所采用的现代仪器的原理、操作和应用等方面的知识。

通过该课程的学习,我对现代仪器分析技术有了更深入的了解和认识。

二、仪器分析的基本原理仪器分析是应用现代仪器技术和计算机技术来对样品进行分析和检测的方法。

其核心原理是利用仪器的某一特定性质来对样品进行定性和定量分析。

常用的仪器分析技术有光谱分析、色谱分析、电化学分析、质谱分析等。

光谱分析是利用物质与辐射相互作用时的一系列现象来进行分析的方法。

其中,紫外可见吸收光谱、红外光谱、拉曼光谱等是常用的光谱分析方法。

色谱分析是利用物质在载气或液相流动中的迁移速度差异来分离和测定成分的方法。

其中,气相色谱、液相色谱是常用的色谱分析技术。

电化学分析是利用电化学电流和电势的变化来测量物质浓度的一种方法。

常见的电化学分析技术有电位滴定法、电流计时法、伏安法等。

质谱分析是利用粒子质量分选特性来对样品进行检测的方法。

常见的质谱分析技术有质子质谱、电喷雾质谱、飞行时间质谱等。

三、常用的仪器分析技术1. 紫外可见吸收光谱紫外可见吸收光谱是利用物质对紫外可见光的吸收特性进行分析的方法。

它有很多应用领域,如药物分析、环境监测、食品检测等。

通过紫外光谱的测定,可以得出物质的吸收峰位、吸光度、摩尔吸光系数等重要信息。

2. 气相色谱-质谱联用技术气相色谱-质谱联用技术是将气相色谱和质谱两种分析技术结合起来,既可以进行物质的分离,又可以进行物质的鉴定。

该技术在环境、食品、生物、药物等领域有广泛的应用。

3. 电化学分析技术电化学分析技术是利用物质在电化学条件下的电流和电势的变化来分析物质的浓度、速度等性质的方法。

电化学分析技术广泛应用于电解质分析、电化学传感器、电池和电解等领域。

四、现代仪器分析的应用现代仪器分析技术在科学研究、工业生产和环境监测等方面有着广泛的应用。

在科学研究方面,现代仪器分析成为了研究领域的重要工具。

仪器分析-红外吸收光谱法

仪器分析-红外吸收光谱法

第 6 章红外吸收光谱法6.1 内容提要6.1.1 基本概念红外吸收光谱——当用红外光照射物质时,物质分子的偶极矩发生变化而吸收红外光光能,有振动能级基态跃迁到激发态(同时伴随着转动能级跃迁),产生的透射率随着波长而变化的曲线。

红外吸收光谱法——利用红外分光光度计测量物质对红外光的吸收及所产生的红外光谱对物质的组成和结构进行分析测定的方法,称为红外吸收光谱法。

振动跃迁——分子中原子的位置发生相对运动的现象叫做分子振动。

不对称分子振动会引起分子偶极矩的变化,形成量子化的振动能级。

分子吸收红外光从振动能级基态到激发态的变化叫做振动跃迁。

转动跃迁——不对称的极性分子围绕其质量中心转动时,引起周期性的偶极矩变化,形成量子化的转动能级。

分子吸收辐射能(远红外光)从转动能级基态到激发态的变化叫做转动跃迁。

伸缩振动——原子沿化学键的轴线方向的伸展和收缩的振动。

弯曲振动——原子沿化学键轴线的垂直方向的振动,又称变形振动,这是键长不变,键角发生变化的振动。

红外活性振动——凡能产生红外吸收的振动,称为红外活性振动,不能产生红外吸收的振动则称为红外非活性振动。

诱导效应——当基团旁边连有电负性不同的原子或基团时,通过静电诱导作用会引起分子中电子云密度变化,从而引起键的力常熟的变化,使基团频率产生位移的现象。

共轭效应——分子中形成大键使共轭体系中的电子云密度平均化,双键力常数减小,使基团的吸收频率向低波数方向移动的现象。

氢键效应——氢键使参与形成氢键的原化学键力常数降低,吸收频率将向低波数方向移动的现象。

溶剂效应——由于溶剂(极性)影响,使得吸收频率产生位移现象。

基团频率——通常将基团由振动基态跃迁到第一振动激发态所产生的红外吸收频率称为基团频率,光谱上出现的相应的吸收峰称为基频吸收峰,简称基频峰。

振动偶合一一两个相邻基团的振动之间的相互作用称为振动偶合。

基团频率区一一红外吸收光谱中能反映和表征官能团(基团)存在的区域。

仪器分析知识点总结大全

仪器分析知识点总结大全

仪器分析知识点总结大全仪器分析是化学分析的重要分支,它利用特殊的仪器对物质进行定性、定量和结构分析。

以下是对常见仪器分析方法的知识点总结。

一、光学分析法(一)原子吸收光谱法(AAS)原子吸收光谱法是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量的一种方法。

其原理是:当光源发射的某一特征波长的辐射通过原子蒸气时,被原子中的外层电子选择性地吸收,使透过原子蒸气的入射辐射强度减弱,其减弱程度与蒸气相中该元素的原子浓度成正比。

原子吸收光谱仪主要由光源、原子化器、分光系统和检测系统组成。

优点:选择性好、灵敏度高、分析范围广、精密度好。

局限性:多元素同时测定有困难、对复杂样品分析干扰较严重。

(二)原子发射光谱法(AES)原子发射光谱法是依据原子或离子在一定条件下受激而发射出特征光谱来进行元素定性和定量分析的方法。

原理是:当原子或离子受到热能或电能激发时,核外电子会从基态跃迁到激发态,处于激发态的电子不稳定,会迅速返回基态,并以光的形式释放出能量,产生发射光谱。

其仪器包括激发光源、分光系统和检测系统。

优点:可同时测定多种元素、分析速度快、选择性好。

缺点:精密度较差、检测限较高。

(三)紫外可见分光光度法(UVVis)该方法是基于分子的紫外可见吸收光谱进行分析的。

原理是:分子中的价电子在不同能级之间跃迁,吸收特定波长的光,从而产生吸收光谱。

仪器主要由光源、单色器、吸收池、检测器和信号显示系统组成。

应用广泛,可用于定量分析、定性分析以及化合物结构研究。

(四)红外吸收光谱法(IR)红外吸收光谱法是利用物质对红外光区电磁辐射的选择性吸收来进行结构分析和定量分析的一种方法。

原理是:分子的振动和转动能级跃迁产生红外吸收。

仪器包括红外光源、样品室、单色器、检测器和记录仪。

常用于有机化合物的结构鉴定。

二、电化学分析法(一)电位分析法通过测量电极电位来确定物质浓度的方法。

包括直接电位法和电位滴定法。

仪器分析的心得体会(模板23篇)

仪器分析的心得体会(模板23篇)

仪器分析的心得体会(模板23篇)心得体会是我们在学习、工作、生活中的一个宝贵财富,它帮助我们不断进步和成长。

请大家阅读以下这些心得体会范文,相信会对大家的写作提供一些参考和帮助。

仪器分析检测心得体会仪器分析检测是现代科学技术中不可或缺的一环,正是通过精密的仪器设备,才能实现对物质性质和组分的分析检测。

在实践中,我有幸参与了仪器分析检测的研究和应用工作。

在这个过程中,我深切感受到了仪器分析检测的重要性,并积累了一些心得体会。

以下将从仪器的选择、操作技巧、数据分析、问题解决以及专业素养等方面进行总结和分享。

首先,仪器的选择至关重要。

在进行分析检测时,我们需要根据不同的样品性质和分析要求选择合适的仪器。

在工作中,我发现不同的仪器在分析结果和分辨率上存在着差异。

因此,在选择仪器时,我们要考虑到分析项目的特点和研究需求,同时还要对仪器的性能、精度、稳定性和维护难易程度有一定了解,以便更好地进行有效的分析检测。

其次,操作技巧至关重要。

一台优秀的仪器并不能保证结果的准确性,操作者的经验和技巧同样不可忽视。

在使用仪器时,我们需要熟悉其使用方法和步骤,并注意操作细节。

比如,对于分散液的选择和制备,我们要尽量避免气泡的产生,以免影响实验结果。

此外,仪器的校准、清洗和维护也十分重要,只有做到这些方面,我们才能保证仪器的正常运行和结果的准确可靠。

第三,数据分析是仪器分析检测中不可或缺的一步。

在实验过程中,我们通常会产生大量的数据,这些数据需要进行处理和分析,以获得有意义的结果。

无论是使用统计分析方法还是利用专业的软件进行数据处理,我们都需要仔细研究数据的分布和规律,并进行准确的统计判断。

同时,我们需要保证数据的可重复性,即在不同条件下重复实验,以便得出更加可靠的结论。

第四,问题解决是仪器分析检测中常常遇到的挑战。

在仪器操作过程中,难免会遇到意想不到的问题,如仪器故障、实验失误等。

在我亲身经历的一次实验中,仪器突然出现故障,导致实验中断。

仪器分析第十五章红外吸收光谱法

仪器分析第十五章红外吸收光谱法
单 核 芳 烃 的 C = C 伸 缩 振 动 出 现 在 1600 - 1500cm-1附近,有2-4个峰,这是芳环的骨架振动, 用于确定有无芳核的存在。
苯的衍生物在2000-1650cm-1区域出现C-H面外弯曲变 形振动的倍频或者组合频吸收,但因为强度较弱,只有在加 大样品浓度时才呈现出来。可以根据该区的吸收情况,判断 苯环的取代情况。
影响基团频率位移的因素-外部因素和内部因素
(1)电子效应-包括诱导效应、共轭效应和中介 效应,是由于化学键的电子分布不均匀引起的。
诱导效应(I效应)-由于取代基的不同的电负性, 通过静电诱导作用,引起分子中的电子分布的变化, 改变了键的力常数,使特征频率发生位移。例如有 电负性较强的元素如Cl与羰基相连时,由于诱导效 应,发生氧上电子转移,使C=O的力常数变大,吸 收向高波数移动。元素电负性越强,移动越厉害。
组频——如果分子吸收一个红外光子,同时激 发了基频分别为v1和v2的两种跃迁,此时所产 生的吸收频率应该等于上述两种跃迁的吸收频 率之和,故称组频。
对谐振子,倍频、组频均为禁阻跃迁。
但由于真实分子的非谐性,倍频、组频跃迁几 率并不为零。但强度都很弱。
分子的振动自由度
每个原子在空间的位置必须有三个坐标来确定, 则由N个原子组成的分子就有了3N个坐标,或称为 有3N个运动自由度。分子本身作为一个整体,有三 个平动自由度和三个转动自由度。
线性分子只有两个转动自由度,因为总有一个 轴心于双原子分子的键轴重合,原子在空间的 坐标并不改变。线性分子的振动自由度为3N-5, 非线性为3N-6。
例如苯分子的振动自由度为3×12-6=30,即30 种简正振动。任何一个分子的振动,都可看成 3N-6或者3N-5个简正振动的叠加而成。

2024年仪器分析总结范本(2篇)

2024年仪器分析总结范本(2篇)

2024年仪器分析总结范本这是____年,回顾过去一年的仪器分析领域,我们见证了科技的进步和创新的成果。

仪器分析作为科学研究和工业生产过程中不可或缺的一部分,发挥着重要的作用。

下面将对____年仪器分析的发展和成果进行总结。

一、仪器分析技术的创新突破随着科技的进步,仪器分析技术也在不断创新和突破。

____年,我们见证了许多新技术的应用和发展。

例如,纳米级分析技术在材料、生物和环境领域得到了广泛的应用。

纳米级分析技术能够实现对纳米级物质的分析和检测,对于研究材料的性质和生物分子的功能具有重要意义。

另外,互联网和人工智能技术的发展也为仪器分析提供了新的思路和方法。

通过互联网和人工智能技术,研究者可以实现对大数据的处理和分析,快速获取所需的信息和结果。

二、仪器分析在科学研究中的应用____年,仪器分析在科学研究中发挥了重要的作用。

在物理学领域,高能粒子加速器和核磁共振仪的应用使得科学家能够更深入地研究粒子的性质和材料的结构。

在化学领域,质谱仪和光谱仪的应用使得科学家能够更准确地确定化学物质的组成和结构。

在生物学领域,基因测序仪和流式细胞仪的应用使得科学家能够更加全面地研究生物体的遗传信息和细胞的功能。

仪器分析的应用不仅提高了科学研究的效率和精度,还为科学家们提供了更多的研究方向和研究方法。

三、仪器分析在工业生产中的应用仪器分析在工业生产中也发挥了重要的作用。

____年,随着工业生产的不断发展,对产品质量和安全性的要求越来越高,仪器分析成为工业生产过程中不可或缺的一部分。

通过仪器分析,工业生产者可以对产品进行成分分析、性能测试和质量监控,确保产品的质量和安全性。

例如,在食品工业中,通过仪器分析,可以对食品中的添加剂、重金属和微生物进行追踪和检测,保障食品的安全和健康。

在药品工业中,通过仪器分析,可以对药品的成分和含量进行检测,确保药物的质量和疗效。

仪器分析的应用使得工业生产更加科学、高效和可靠,为广大消费者提供了更好的产品和服务。

仪器分析实训总结心得

仪器分析实训总结心得

仪器分析实训总结心得本学期的仪器分析实训已经结束了,通过这门实训课程,我对仪器分析的基本原理、操作技术和实际应用有了更加深入的了解,也提高了自己的实验操作能力和问题解决能力。

在这门课程中,我收获了很多,以下是我的心得体会。

首先,在实训课程中,我学习了很多基本仪器的使用和操作。

例如,气相色谱仪、液相色谱仪、质谱仪、红外光谱仪等。

通过理论课的学习和实验操作的实践,我对这些仪器的工作原理、操作步骤和操作注意事项都有了比较深入的了解。

同时,我也掌握了一些常用仪器的数据处理方法和结果分析技巧。

这些实际操作让我对仪器分析的内容有了更加具体和实践性的认识。

其次,实训课程中的实验操作锻炼了我的实验技能。

在每次实验中,我们通常需要进行样品制备、仪器操作、数据采集、结果分析等一系列实验过程。

这些操作对我来说是一次次的挑战和锻炼机会。

通过不断重复实验和进行实践,我逐渐掌握了各种实验操作的技巧,并且在操作中提高了我的仪器调试、样品预处理和数据处理能力。

这些实验操作的练习不仅提高了我的实验技能,还培养了我的耐心和细致入微的工作态度。

第三,实训课程中的实验设计让我体会到了科学研究的思维方式和实践能力的重要性。

在一次次的实验操作中,我们通常需要根据实验目的和要求进行实验设计和数据处理。

在一开始,我对于实验设计的重要性和方法并不了解,常常盲目地进行实验操作。

但是,通过老师的指导和实验实践的经验积累,我逐渐懂得了科学实验的要点:合理设计实验方案、准确选择实验条件和指标、严格控制实验误差等。

这些实验设计的理念让我在实验中更加注重实验数据的准确性和可靠性,同时培养了我的科学研究思维和实践能力。

最后,在实训课程中,我也体会到了团队合作的重要性。

在实验操作中,我们通常需要分组进行,每个人负责其中的一部分工作。

通过与同学的合作,我学到了与人合作的技巧和方法,比如与队友沟通配合、分享经验和资源、共同解决问题等。

这些合作经验让我在团队中更加积极主动,学会了倾听和尊重他人的意见,培养了我的团队意识和协作能力。

仪器分析 第四章--红外吸收光谱法

仪器分析  第四章--红外吸收光谱法

章节重点:
分子振动基本形式及自由度计算;
红外吸收的产生2个条件;
各类基团特征红外振动频率;
影响红外吸收峰位变化的因素。
第八章 红外吸收光谱分 析法
第三节 红外分光光度计
1. 仪器类型与结构
2. 制样方法
3. 联用技术
1. 仪器类型与结构
两种类型:色散型 干涉型(傅立叶变换红外光谱仪)
弯曲振动:
1.4 振动自由度
多原子分子振动形式的多少用振动自由度标示。

三维空间中,每个原子都能沿x、y、z三个坐标方向独 立运动,n个原子组成的分子则有3n个独立运动,再除 掉三个坐标轴方向的分子平移及整体分子转动。

非线性分子振动自由度为3n-6,如H2O有3个自由度。 线性分子振动自由度为3n-5,如CO2有4个自由度。
某些键的伸缩力常数:
键类型: 力常数: 峰位:源自-CC15 2062 cm-1
-C=C10 1683 cm-1
-C-C5 1190 cm-1
-C-H5.1 2920 cm-1
化学键键强越强(即键的力常数K越大),原子折合 质量越小,化学键振动频率越大,吸收峰在高波数区。
1.2 非谐振子
实际上双原子分子并非理想的谐振子!随着振动量子 数的增加,上下振动能级间的间隔逐渐减小!
(1)-O-H,37003100 cm-1,确定醇、酚、酸 在非极性溶剂中,浓度较小(稀溶液)时,峰形尖锐 ,强吸收;当浓度较大时,发生缔合作用,峰形较宽。
注意区分: -NH伸缩振动:3500 3300 cm-1 峰型尖锐
(2)饱和碳原子上的-C-H -CH3 2960 cm-1 2870 cm-1 反对称伸缩振动 对称伸缩振动

仪器分析教程知识点总结

仪器分析教程知识点总结

仪器分析教程知识点总结一、光谱分析1. 原子吸收光谱法原子吸收光谱法是一种常用的分析技术,主要用于测定金属元素的含量。

其原理是通过测量金属元素的特征吸收线强度来定量分析样品中金属元素的含量。

在进行原子吸收光谱法实验时,需要掌握标准曲线法、内标法等定量分析方法,以及样品的预处理和稀释方法。

2. 紫外-可见吸收光谱法紫外-可见吸收光谱法是用于测定有机化合物和无机化合物的含量和结构的方法。

通过测量样品在紫外-可见光区域的吸收强度,可以获得样品的吸收光谱图,从而分析样品的成分和结构。

在进行紫外-可见吸收光谱法实验时,需要掌握分光光度计的操作方法、样品的制备和处理方法,以及吸收峰的解释和定量分析方法。

3. 红外光谱法红外光谱法是用于测定有机化合物和无机化合物的结构和功能基团的方法。

通过测量样品在红外光区域的吸收强度,可以获得样品的红外光谱图,从而分析样品的结构和功能基团。

在进行红外光谱法实验时,需要掌握红外光谱仪的操作方法、样品的制备和处理方法,以及吸收峰的解释和定量分析方法。

二、色谱分析1. 气相色谱法气相色谱法是用于分离和检测样品中有机化合物的方法。

通过样品分子在固定相和流动相之间的分配行为,可以实现样品分离和检测。

在进行气相色谱法实验时,需要掌握气相色谱仪的操作方法、固定相和流动相的选择和配制方法,以及色谱柱的使用和维护方法。

2. 液相色谱法液相色谱法是用于分离和检测样品中有机化合物和无机化合物的方法。

通过样品分子在固定相和流动相之间的分配行为,可以实现样品分离和检测。

在进行液相色谱法实验时,需要掌握液相色谱仪的操作方法、固定相和流动相的选择和配制方法,以及色谱柱的使用和维护方法。

三、质谱分析质谱分析是用于确定样品中有机分子和核素的相对分子质量和结构的方法。

通过测量样品离子的质荷比,可以获得样品的质谱图,从而确认样品的分子质量和结构。

在进行质谱分析实验时,需要掌握质谱仪的操作方法、样品的离子化和碎裂方法,以及质谱图的解释和质谱定性分析方法。

仪器分析原子吸收光谱法

仪器分析原子吸收光谱法

仪器分析原子吸收光谱法原子吸收光谱法是一种常用的仪器分析技术,用于测定物质中特定金属元素的含量。

该方法基于原子在特定波长的光下吸收特定能量的现象,通过测量所吸收的光的强度,可以确定样品中目标金属元素的浓度。

原子吸收光谱法主要包括石墨炉原子吸收光谱法(Graphite Furnace Atomic Absorption Spectroscopy, GF-AAS)和火焰原子吸收光谱法(Flame Atomic Absorption Spectroscopy, FAAS)。

两种方法的原理基本相同,只是在光源和样品的处理上有所不同。

在GF-AAS中,样品首先转化为气态原子,并通过石墨炉中的加热将其浓缩。

然后,通过光源产生的特定波长的光照射样品,在特定波长的光作用下,样品中的目标金属元素发生原子态到激发态的跃迁,吸收特定的能量。

通过测量光源透射光的强度变化,可以得到样品中目标金属元素的浓度。

在FAAS中,样品通过喷射到火焰中所产生的高温环境下转化为气态原子。

然后,通过特定波长的光照射样品,样品中的目标金属元素吸收特定能量,发生原子态到激发态的跃迁。

同样,通过测量光源透射光的强度变化,可以测定样品中目标金属元素的浓度。

原子吸收光谱法具有以下优点:1. 灵敏度高:原子吸收光谱法可以测定微量金属元素的含量,其灵敏度在ppb(亿分之一)到ppm(百万分之一)的水平上。

2.选择性好:由于每种金属元素吸收特定波长的光,因此不同金属元素之间相互干扰较小。

通过选择不同的光源波长,可以测定多种金属元素的含量。

3.准确性高:原子吸收光谱法经过多年的发展,仪器的准确性和重复性得到大幅提高。

同时,该方法具有较低的标准偏差和高的精密度。

4.快速分析:原子吸收光谱法具有快速分析的特点,一个样品一般只需几分钟即可完成分析,适用于大批量样品的分析。

除了优点之外1.需要样品前处理:样品的前处理会影响到分析结果的准确性和检测灵敏度。

例如,在GF-AAS中,样品需要进行湿氧化处理,其中可能会引入外源性污染物。

《仪器分析》第十二章_原子吸收光谱法

《仪器分析》第十二章_原子吸收光谱法

当采用锐线光源时,测量是在原子吸收线附近一定频 率范围内进行,即
I 0 I d
0

I I 0e
K l
I e
0

K l
d
锐线光源的很小,可以近似用峰值吸收系数K0 来表 示原子对辐射的吸收,因此有吸光度A为:
I0 A lg lg I


质的强谱线。
空心阴极灯光的强度与灯的工作电流有很大关系。增
大灯电流,可以增加发射强度。但是,灯电流过大,会导 致一些不良现象,如阴极溅射增强,产生密度较大的电子 云,灯本身发生自蚀现象;加快内充气体的“消耗”而缩 短寿命;阴极温度过高,使阴极物质熔化;放电不正常,
灯光强度不稳定灯。灯电流太小,灯光强低,稳定性和信
(2)峰值吸收 1955年Walsh提出,在温度不太高的稳定火焰情况下,
峰值吸收系数与被测元素的原子浓度也成正比。通常情况下,
吸收轮廓决定于多普勒变宽,吸收系数为
2 ( 0 ) ln 2 D 2
K K 0e
K0 2 D
D 是多普勒 半宽度
K d mc N
于分析化学的原因。
e 2
0
f
m 是电子质量,f是振子强度,即能被入射 辐射激发的每个原子的平均电子数,正比 于原子对特定波长光的吸收概率。
若能测定积分吸收,则可以求出原子浓度。但是,测定谱 线宽度仅仅10-3nm的积分吸收,需要分辨率很高的色散仪器,
难以做到,这也是100多年前发现原子吸收现象却一直未能用
空心阴极灯工作原理:
当正、负两电极间施加适当的直流电压(300V—500V)
时,便开始放电,阴极发射的电子在电场作用下,高速射

仪器分析:紫外-可见光谱法3

仪器分析:紫外-可见光谱法3

药物测定中常用方法:
测标准品A标,求
(
E1% 1cm
)
(或查文献);
标准品
测样品A样, 求(E11c%m )样品 得:
被测组分%
(
E1% 1cm
)样品
(
E1% 1cm
)标准品
100
(E11c%m )样品按样品配制浓度算出的E值(非
物质特性常数)
(
E1% 1cm
)标准品
按纯品浓度算出的E值(是物质
特性常数)
A样
(2)、直线方程求解法
求 A = a + bC
C样 C
计算样品含量 (方程求解参看P31~P32)
若仪器单色光谱带宽S较大,单色光不 纯,就不能用吸光系数法定量。因这时E 值随所用仪器的不同而变化。
但若固定仪器、固定工作状态和测量 条件,C和A在很多情况下(尤其较低浓 度时)仍成线性关系:A=KC。
第四节 紫外-可见吸收光谱常规分析
方法 一、定性鉴别:
1、依据:多数有机化合物具有紫外吸收光
谱特征。
① 特征值:
max , min , sh , E11c%m或 ,
A1 A2
② 吸收光谱形状
同一化合物,在相同条件下应具有相
同的吸收光谱(即吸收曲线)
2、定性鉴别方法:
对比法:
(1)对比吸收光谱特征数据是否一致
,求样品含维生素B12的重量百分含量。
(已知维生素B12 的
E1% 1cm (361nm)
207 )
方法一解:样品配制浓度 C = 25.0 mg / 1000ml
= 0.00250g / 100ml
(
E1% 1cm
)样品

26种仪器分析的原理及谱图方法大全

26种仪器分析的原理及谱图方法大全

26种仪器分析的原理及谱图方法大全1.紫外吸收光谱 UV分析原理:吸收紫外光能量,引起分子中电子能级的跃迁谱图的表示方法:相对吸收光能量随吸收光波长的变化提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息2.荧光光谱法 FS分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光谱图的表示方法:发射的荧光能量随光波长的变化提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息3.红外吸收光谱法 IR分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁谱图的表示方法:相对透射光能量随透射光频率变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率4.拉曼光谱法 Ram分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射谱图的表示方法:散射光能量随拉曼位移的变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率5.核磁共振波谱法 NMR分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁谱图的表示方法:吸收光能量随化学位移的变化提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息6.电子顺磁共振波谱法 ESR分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁谱图的表示方法:吸收光能量或微分能量随磁场强度变化提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息7.质谱分析法 MS分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息8.气相色谱法 GC分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关9.反气相色谱法 IGC分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数10.裂解气相色谱法 PGC分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型11.凝胶色谱法 GPC分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:高聚物的平均分子量及其分布12.热重法 TG分析原理:在控温环境中,样品重量随温度或时间变化谱图的表示方法:样品的重量分数随温度或时间的变化曲线提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区13.热差分析 DTA分析原理:在控温环境中,样品重量随温度或时间变化谱图的表示方法:样品的重量分数随温度或时间的变化曲线提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区14.示差扫描量热分析 DSC分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息15.静态热―力分析 TMA分析原理:样品在恒力作用下产生的形变随温度或时间变化谱图的表示方法:样品形变值随温度或时间变化曲线提供的信息:热转变温度和力学状态16.动态热―力分析 DMA分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化谱图的表示方法:模量或tgδ随温度变化曲线提供的信息:热转变温度模量和tgδ17.透射电子显微术 TEM分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等18.扫描电子显微术 SEM分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等19.原子吸收AAS原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。

仪器分析原子发射光谱法

仪器分析原子发射光谱法

△E = E2-E1 = hυ= hc/λ Na (1s)2 (2s)2 (2p)6 (3s)1, 3p1、3d1、4s1、4p1、4d1、4f1、 ……
每一条发射谱线的波长取决于跃迁前后两个能级(E2, E1)的差。由于各种元素的原子具有不同的核外电子结构, 根据光谱选律,特定元素的原子可产生一系列不同波长的特 征光谱(组)。原子的能级是量子化的,原子光谱是线状光 谱。通过光谱的辨认和谱线强度的测量可进行元素的定性、 定量分析,这就是原子发射光谱法(AES)。
原子光谱是原子外层电子在不同能级间跃迁的结果。在量 子力学中,电子的运动状态可用四个量子数, 即主量子数n、 角量子数l、磁量子数ml和自旋量子数ms来描述。
主量子数n表示核外电子离核的远近,n值越大,电子的能 量越高,电子离核越远。n值取为1,2,3,…任意正整数。
角量子数l 表示电子在空间不同角度出现的几率,即电子云 的形状,也代表电子绕核运动的角动量。 l 取小于n的整数, 0,1,2,…,n-1。相对应的符号是什么?
在n、L、S、J四个量子数中,n、L、S 确定后,原子 的能级也就基本确定了,所以根据n、L、S 三个量子数 就可以得出描述原子能级的光谱项:
n2S+1L
式中2S+1叫做谱项的多重性。在L≥S 时,2S+1就是内 量子数J可取值的数目,也就是同一光谱项中包含的J 值相同、能量相近的能量状态数。习惯上将多重性为1、 2、3的光谱项分别称作单重态、双重态和三重态。把J 值不同的光谱项称为光谱支项。用下式表示:
1、光源 将试样中的元素转变为原子(或离子) 的过程称为原子化。原子化、激发和发射是在 光源中进行的。
原子发射光谱分析使用的仪器设备主要包括 激发光源和光谱仪两个部分。

仪器分析-光谱法总结

仪器分析-光谱法总结

AES 原子发射光谱:原子的外层由高层能及向底层能级,能量以电磁辐射的形式发射出去,这样就得到了发射光谱。

原子发射一般是线状光谱。

原理:原子处于基态,通过电至激发,热至激发或者,光至激发等激发作用下,原子获得能量,外层电子从基态跃迁到较高能态变成激发态,经过10-8s ,外层电子就从高能级向较低能级或基态跃迁,多余能量的发射可得到一条光谱线。

光谱选择定律:①主量子数的变化△n 为包括零的整数,②△L=±1,即跃迁只能在S 项与P项间,P 与S 或者D 间,D 到P 和F 。

③△S=0,即不同多重性状间的迁移是不可能的。

③△J=0,±1。

但在J=0时,J=0的跃迁是允许的。

N 2S+1L J影响谱线强度的主要因素:1激发电位2跃迁概率3 统计权重4激发温度(激发温度↑离子↑原子光谱↓离子光谱↑)5原子密度原子发射光谱仪组成:激发光源,色散系统,检测系统,激发光源:①火焰:2000到3000K ,只能激发激发电位低的原子:如碱性金属和碱土金属。

② 直流电弧:4000到7000K ,优点:分析的灵敏度高,背景小,适合定量分析和低含量的测定。

缺点:不宜用于定量分析及低熔点元素的分析。

③交流电弧:温度比直流高,离子线相对多,稳定性比直流高,操作安全,但灵敏度差④火花:一万K ,稳定性好,定量分析以及难测元素。

每次放电时间间隔长,电极头温度低。

适合分析熔点低。

缺点:灵敏度较差,背景大,不宜做痕量元素分析(金属,合金等组成均匀的试样)⑤辉光 激发能力强,可以激发很难激发的元素,(非金属,卤素,一些气体)谱线强度大,背景小,检出限低,稳定性好,准确度高(设备复杂,进样不方便)⑥电感耦合等离子体10000K 基体效应小,检出限低,限行范围宽⑦激光 一万K ,适合珍贵样品分光系统:单色器:入射狭缝,准直装置,色散装置,聚焦透镜,出射狭缝。

棱镜:分光原理:光的折射,由于不同的光有不同的折射率,所以分开。

《仪器分析》原子发射光谱法

《仪器分析》原子发射光谱法

ms =±1/2,±3/2,∙∙∙,±S (当S为半整数时)
共有2S+1个值。
总角动量量子数(也称总内量子数)J等于L和S的矢量和, 即J=L+S。J的取值为: J=L+S,L+S-1,L+S-2,∙∙∙,| L-S | 若L≥S ,数值从J=L+S到L-S,共有(2S+1)个; 若L<S,数值从J=L+S到S-L,共有(2L+1)个。 例如,L=2,S=1,即2S+1=3, 则J=3,2,1,有 3个J值。
n是主量子数。 L是原子总角量子数,用大写英文字母S,P,D,F ∙∙∙ 表示。 L = 0 , 1 , 2 , 3 , ∙∙∙ ,( 2S + 1 )的数值写在 L 符号的左上角, (2S+1)为光谱项的多项性,也可以用符号M表示。 因每一个光谱项有(2S+1)个不同的J值,把J值注在L的右 下角表示光谱支项,每一个光谱项有(2S+1)个光谱支项。 由于 L 与 S 的相互作用,光谱支项的能级略有不同,这( 2S +1)个略有不同的能级在光谱中形成(2S+1)条距离很短的 线,称为多重线。若2S+1等于2或者3,分别称为二重线和三重 线。 当 L<S 时,每一个光谱支项只有( 2L + 1 )个支项,但( 2S +1)还称为多重性,所以“多重性”的定义是(2S+1),不 一定代表光谱支项的数目。
原子发射光谱法(AES)
原子发射光谱是基于当原子或离子受激发的外 层电子从较高的激发态跃迁到较低的能级或者基态 能级,多余的能量以光的形式辐射出来,从而产生 发射光谱。这样产生的光谱是线光谱。
原子的线光谱是元素的特征,不同的元素具有 不同的特征光谱,是定性定量分析的基础。原子发 射光谱法是元素分析的重要方法之一。
跃迁的谱线称为第一共振线或主共振线。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AES原子发射光谱:原子的外层由高层能及向底层能级,能量以电磁辐射的形式发射出去,这样就得到了发射光谱。

原子发射一般是线状光谱。

原理:原子处于基态,通过电至激发,热至激发或者,光至激发等激发作用下,原子获得能屋,外层电子从基态跃迁到较髙能态变成激发态,经过10%,外层电子就从髙能级向较低能级或基态跃迁,多余能量的发射可得到一条光谱线。

光谱选择定律:①主量子数的变化为包括零的整数,②1,即跃迁只能在S项与P 项间,P与S或者D间,D到P和F。

③△$=(),即不同多重性状间的迁移是不可能的。

@AJ=0, ±1。

但在J=O 时,J=0的跃迁是允许的。

N2S+1L J影响谱线强度的主要因素:1激发电位2跃迁概率3统汁权重4激发温度(激发温度f离子t原子光谱I离子光谱t )5原子密度原子发射光谱仪组成:激发光源,色散系统,检测系统,激发光源:①火焰:2000到3000K,只能激发激发电位低的原子:如碱性金属和碱上金属。

②直流电弧:4000到7000K,优点:分析的灵敏度髙,背景小,适合定量分析和低含量的测定。

缺点:不宜用于定量分析及低熔点元素的分析。

③交流电弧:温度比直流高,离子线相对多,稳左性比直流髙,操作安全,但灵敏度差④火花:一万K,稳定性好,泄量分析以及难测元素。

每次放电时间间隔长,电极头温度低。

适合分析熔点低。

缺点:灵敏度较差,背景大,不宜做痕量元素分析(金属,合金等组成均匀的试样)⑤辉光激发能力强,可以激发很难激发的元素,(非金属,卤素,一些气体)谱线强度大,背景小,检岀限低,稳左性好,准确度髙(设备复杂,进样不方便)⑥电感耦合等离子体10000K基体效应小,检岀限低,限行范用宽⑦激光一万K,适合珍贵样品分光系统:单色器:入射狭缝,准直装巻,色散装置,聚焦透镜,出射狭缝。

棱镜:分光原理:光的折射,由于不同的光有不同的折射率,所以分开。

光栅:光的折射与干涉的总效果,不同波长的光通过光栅作用各有不同的衍射角。

分辨率:原子发射检测法:①目视法,②光电法,③摄谱法:用感光板来记录光谱,感光板:载片(光学玻璃)和感光乳剂(精致卤化银精致明胶)。

曝光^H=Et E感光层接受的照度、黑度:S=lgT-*=lg io/i io为没有谱线的光强,i通过谱线的光强度i,透过率T定性分析:铁光谱比较法,标样光谱比较法,波长测定法。

龙量法:①基本原理②内标法⑴内标元素和被测元素有相近的物理化学性质,如沸点,熔点近似,在激发光源中有相近的蒸发性。

⑵内标元素和被测元素有相近的激发能,如果选用离子线组成分析线对时,则不仅要求两线对的激发电位相等,还要求内标元素的电离电位相近。

⑶内标元素是外加的,样品中不应有内标元素,⑷内标元素的含量必须适量且固泄,⑸ 汾西线和内标线无自吸或者自吸很小,且不受其他谱线干扰。

⑹如采用照相法测量谱线强度,则要求两条谱线的波长应尽量靠近。

简述内标法基本原理和为什么要使用内标法。

答:内标法是通过测量谱线相对强度进行龙量分析的方法。

通常在被测左元素的谱线中选一条灵敏线作为分析线,在基体元素(或定量加入的英它元素)的谱线中选一条谱线为比较线,又称为内标线。

分析线与内标线的绝对强度的比值称为分析线对的相对强度。

在工作条件相对变化时,分析线对两谱线的绝对强度均有变化,但对分析线对的相对强度影响不大,因此可准确地测泄元素的含量。

从光谱泄量分析公式lg/=/?lgc + lgt/,可知谱线强度I与元素的浓度有关,还受到许多因素的影响,而内标法可消除工作条件变化等大部分因素带来的影响。

激发电位:原子中某一外层电子由基态激发到髙能级所需要的能量。

共振线:由激发态像基态跃迁所发射的谱线。

(共振线具有最小电位,最容易被激发,最强谱线)火花线:火法激发产生的谱线,激发能量大,产生的谱线主要是离子线。

又称共振线。

自吸和自蚀:发光蒸汽云内,温度和原子密度不均匀,边缘温度较低,原子多处于较低能级当光源中心某元素发射岀的特征光向外辐射通过温度较低的边缘部分,就会被处于较低能级的同种原子所吸收,使谱线中心发射强度减弱,严重的自吸就是自蚀。

灵敏线:各种元素谱线中最容易激发或激发电位较低谱线,最后线:随着元素含量减少,最后消失的线,通常是第一共振线。

特征线组:某元素所特有的最容易辨认的多重线组。

分析线:用于鉴左元素存在及测定元素含量的谱线AAS原子吸收法:基于蒸汽中被测元素基态原子对其原子共振辐射的吸收强度来测怎样品物含量。

原子吸收法与原子发射的异同:原子吸收基于物质产生的蒸汽对特定谱线的吸收作用来定虽分析,原子发射光谱基于原子发射现象。

同是光学分析方法。

原子吸收法与紫外可见光光度法(Uv・vis)的异同:线状光源(空心阴极灯)一一带状光源(鸽笊灯),AAS锐线光源-…原子化器…单色器-检测器同:都是基于琅勃比尔Uv-vis光源-…单色器…-吸收池-…检测器…泄律,仪器结构也相似。

优点:①检出限低,灵敏度高②测量精度好③选择性强,方便检测,分析速度快④应用广缺点:测左某元素即要该元素的光源,测泄难溶元素灵敏度和精密度不很高谱线宽度的影响:①多普勒展宽(热展宽),分子无规则热运动产生的,温度f宽度②压力展宽:产生吸收的原子与蒸汽中原子或者分子互相碰撞引起的谱线展宽(碰撞展宽)③自吸展宽:自吸现象引起,灯电流f展宽t (发生在原子吸收分光光度计的光源上)峰值吸收代替积分吸收的两个条件:(需要准确测量吸收线的而积没有极髙分辨率的光栅)①发射线的中心频率Vo与吸收线的Vo相同②发射线的半宽度小于吸收线的半宽度原子吸收••结构:光源,原子化器(关键部分),单色器,检测器。

1火焰原子化器:1火焰滑雪计量焰中性2富燃焰还原性3贫燃焰氧化性。

(结构:雾化器,混室,燃烧室)火焰结构:①预热区350度②第一反应区(蒸发区)低于2300③原子化区2300度(还原性气氛),④第二反应区(电离化合区)低于2300。

优缺点:简单,稳定,重现性好,精密度髙,应用广泛。

原子化效率低,只能用液体非火焰原子化器:利用电热阴极溅射等离子体或激光使试样变成基态自由原子。

优缺点:固液都可以,利用率髙,检岀限低,灵敏度高。

基体效应,背景大。

化学干扰多,重现性差3氢化物原子化(对蹴铢,错,锡,硒,确,铅,汞),4冷原子吸收法(测量汞)。

常见干扰以及解决办法:①物理干扰由试样和标样物理性质的差别产生的「•扰成为物理干扰(标准加入法)②电离干扰很多元素在髙温火焰中产生电离,使单位体积的基态原子数减少灵敏度降低(控制火焰温度,加入消电离剂…锂钠钾盐)③化学干扰被测元素与幷他元素产生化学反应,生成一种稳宦化合物影响原子化效率。

分为阳离子干扰(A1对钙)和阴离子干扰。

(①加入释放剂-磷酸对Ca.Mg 的测量加La, Sr@加入络合保护剂,一般是配位剂,如EDTA, 8拔基唾咻及卤化物③加入助溶剂④利用适当温度消除⑤标准加入法)④光谱干扰分为光谱干扰(采用适当夹缝,降低灯电流,采用其他分析线)背景干扰包括分子吸,光散射,火焰气体对光谱吸收(背景校正技术:1临近非共振线校正2氛灯自动背景校正3塞满效应背景校4正自吸收背景校正)。

测量条件选择:①分析线选择一般选用共振线。

被测元素含量较高,可以改为灵敏度较低的吸收线,改善线性曲线的线性范围。

对于As,Sc共振线小于200nm,火焰组分有吸收于扰,不选用共振线作为分析线②空心阴极灯足够且尽虽:小的灯电流。

③火焰:分析线在200nm下氢气-空气火焰。

易电离-煤气•空气焰。

中低温乙块,氧化物熔点髙-富燃焰,不稳左氧化物贫燃焰。

原子吸收光谱定量分析:①标准曲线法A二Kc②标准加入法Ax=Kc x, Ao=K(c x+ c s)不能消除背景干扰,可以消除基体干扰分子发光:光致发光(分子荧光,分子磷光),化学发光,生物发光试从原理和仪器两方面比较荧光分析法、磷光分析法答:(1)在原理方而:荧光分析法和磷光分析法测d的荧光和磷光是光致发光,均是物质的基态分子吸收一左波长范国的光辐射激发至单重激发态,测量的是由激发态回到基态产生的二次辐射,不同的是荧光分析法测立的是从单重激发态向基态跃迁产生的辐射(短命10-8), 磷光分析法测左的是单重激发态先过渡到三重激发态(10-4到10s ),再由三重激发态向基态跃迁产生的辐射,二者所需的激发能是光辐射能°(2)在仪器方面:荧光分析和磷光分析所用仪器相似,都由光源、激发单色器、液槽、发射单色器、检测器和放大显示器组成试从原理和仪器两方面比较吸光光度法和荧光分析法的异同,说明为什么荧光法的检出能力优于吸光光度法。

答:(1)在原理方而:两者都是吸收一左的光辐射能从较低的能级跃迁到较髙的能级,不同的是,吸光光度法测疑的是物质对光的选择性吸收,而荧光分析法测量的是从较髙能级以无辐射跃迁的形式回到第一电子激发态的最低振动能级,再辐射跃迁到电子基态的任一振动能级过程中发射岀的荧光的强度。

(2)在仪器方而:仪器的基本装置相同,不同的是吸光光度法中样品池位于光源、单色器之后,只有一个单色器,且在宜线方向测量,而荧光分析法中采用两个单色器,激发单色器(在吸收池前)和发射单色器(在吸收池后),且采用垂直测量方式,即在与激发光相垂直的方向测量荧光。

(3)荧光分析法的检出能力之所以优于吸光光度法,是由于现代电子技术具有检测十分微弱光信号的能力,而且荧光强度与激发光强度成正比,提髙激发光强度也可以增大荧光强度, 使测左的灵敏度提高。

而吸光光度法测眾的是吸光度,不管是增大入射光强度还是提高检测器的灵敏度,都会使透过光信号与入射光信号以同样的比例增大,吸光度值并不会改变,因而灵敏度不能提髙,检出能力就较低。

简述影响荧光效率的主要因素。

答:(1)分子结构的影响:发荧光的物质中都含有共轲双键的强吸收基团,共辄体系越大,荧光效率越高:分子的刚性平而结构利于荧光的产生;取代基对荧光物质的荧光特征和强度有很大影响,给电子取代基可使荧光增强,吸电子取代基使荧光减弱;重原子效应使荧光减弱。

(2)环境因素的影响:溶剂的极性对荧光物质的荧光强度产生影响,溶剂的极性越强, 荧光强度越大:温度对溶液荧光强度影响明显,对于大多数荧光物质,升髙温度会使非辎射跃迁引起的荧光的效率降低;溶液pH值对含有酸性或碱性取代基团的芳香族化合物的荧光性质有影响:表面活性剂的存在会使荧光效率增强;顺磁性物质如溶液中溶解氧的存在会使荧光效率降低。

量子产率:发荧光的分字数和与总的激发态分子数之比。

荧光激发光谱:通过固立发射波长,扫描激发波长获得的荧光强度-激发波长关系荧光发射光谱:通过固立激发波长,扫描发射波长获得的荧光强度■发射波长关系振动弛豫:是在同一电子能级中,分子由较髙振动能级向该电子态的最低振动能级的非辐射跃迁。

相关文档
最新文档