工程弹塑性力学题库及答案
弹塑性理论考试题及答案

弹塑性理论考试题及答案一、单项选择题(每题2分,共10分)1. 弹塑性理论中,材料的屈服准则通常用以下哪个参数表示?A. 应力B. 应变C. 弹性模量D. 屈服应力答案:D2. 弹塑性材料在循环加载下,其行为主要受哪个参数的影响?A. 最大应力B. 最大应变C. 应力幅值D. 应变幅值答案:C3. 根据弹塑性理论,材料的硬化指数n通常用来描述什么?A. 材料的弹性B. 材料的塑性C. 材料的断裂特性D. 材料的疲劳特性答案:B4. 在弹塑性理论中,哪个参数用来描述材料在塑性变形后能否恢复原状?A. 弹性模量B. 屈服应力C. 塑性应变D. 弹性应变答案:D5. 弹塑性材料在受到拉伸应力作用时,其应力-应变曲线通常呈现哪种形状?A. 线性B. 非线性C. 抛物线D. 指数曲线答案:B二、多项选择题(每题3分,共15分)6. 弹塑性理论中,材料的屈服准则可以由以下哪些因素确定?A. 应力状态B. 应变状态C. 温度D. 材料的微观结构答案:A|B|C|D7. 弹塑性材料在循环加载下,其疲劳寿命主要受哪些因素的影响?A. 应力幅值B. 材料的屈服应力C. 循环加载频率D. 材料的微观缺陷答案:A|B|C|D8. 在弹塑性理论中,材料的硬化行为可以通过以下哪些方式来描述?A. 硬化指数B. 硬化模量C. 应力-应变曲线D. 屈服应力答案:A|B|C9. 弹塑性材料在受到压缩应力作用时,其应力-应变曲线通常呈现以下哪些特点?A. 初始阶段为弹性B. 达到屈服点后进入塑性变形C. 塑性变形后材料体积不变D. 卸载后材料能够完全恢复原状答案:A|B|C10. 弹塑性理论中,材料的断裂特性可以通过以下哪些参数来描述?A. 断裂韧性B. 应力集中系数C. 材料的硬度D. 材料的塑性应变答案:A|B|C|D三、简答题(每题5分,共20分)11. 简述弹塑性理论中材料的屈服现象。
答:在弹塑性理论中,材料的屈服现象是指材料在受到一定的应力作用后,从弹性变形转变为塑性变形的过程。
弹塑性力学部分习题及答案

1 εij = (ui, j +uj,i ) 2
σji, j
(i, j =12,3) ,
E 1 ν = 2(uj,ij +ui, jj ) +1−2νuk,kjδij (1+ν)
5Байду номын сангаас
20112011-2-17
题1-3
E 1 ν (uj,ij +ui,jj ) + σji, j = uk,ki 2 (1+ν) 1−2ν
3
2c
l
y
解: 1、将 Φ 代入
∇ 4Φ =0 满足, 为应力函数。 满足, Φ 为应力函数。
2、求应力(无体力) 求应力(无体力)
20112011-2-17 20
题1-13 3 3F xy q 2 Φ= xy− 2 + y 4c 3 2 c
2
o
x
2c
l
y
2
∂φ 3F xy ∂φ σx = 2 = − 3 +q, σy = 2 =0, ∂y 2c ∂x y2 ∂φ 3F τxy =− = − 1− 2 ∂x∂y 4c c
z l y
F = −ρg bz
x
x
20112011-2-17
8
题1-5 等截面直杆(无体力作用),杆轴 等截面直杆(无体力作用),杆轴 ), 方向为 z 轴,已知直杆的位移解为
u =−kyz v =kxz
w=k ( x, y) ψ
为待定常数, 其中 k 为待定常数,ψ(x‚y)为待定函数, 为待定函数 试写出应力分量的表达式和位移法方程。 试写出应力分量的表达式和位移法方程。
2
塑性力学考试题及答案

塑性力学考试题及答案一、选择题(每题2分,共20分)1. 塑性变形与弹性变形的主要区别是()。
A. 塑性变形是可逆的B. 弹性变形是可逆的C. 塑性变形是不可逆的D. 弹性变形是不可逆的2. 材料在塑性变形过程中,其应力-应变曲线上的哪一点标志着材料的屈服点?A. 最大应力点B. 最大应变点C. 应力-应变曲线上的转折点D. 应力-应变曲线的起始点3. 下列哪项不是塑性变形的特征?A. 材料形状的改变B. 材料体积的不变C. 材料内部结构的不可逆变化D. 材料的弹性恢复4. 塑性变形的三个基本假设中,不包括以下哪一项?A. 材料是连续的B. 材料是各向同性的C. 材料是不可压缩的D. 材料是完全弹性的5. 塑性变形的流动法则通常采用哪种形式来描述?A. 线性形式B. 非线性形式C. 指数形式D. 对数形式二、简答题(每题10分,共30分)6. 简述塑性变形的三个基本假设及其物理意义。
7. 解释什么是塑性屈服准则,并举例说明常用的屈服准则。
8. 描述塑性变形过程中的加载和卸载路径,并解释它们的区别。
三、计算题(每题25分,共50分)9. 给定一个材料的应力-应变曲线,如果材料在达到屈服点后继续加载,求出在某一特定应变下的材料应力。
10. 假设一个材料在单轴拉伸条件下发生塑性变形,已知材料的屈服应力和弹性模量,求出在塑性变形阶段的应变率。
答案一、选择题1. 答案:C2. 答案:C3. 答案:D4. 答案:D5. 答案:B二、简答题6. 塑性变形的三个基本假设包括:- 材料是连续的:假设材料没有空隙和裂缝,是连续的均匀介质。
- 材料是各向同性的:假设材料在所有方向上具有相同的物理性质。
- 材料是不可压缩的:假设在塑性变形过程中材料的体积保持不变。
7. 塑性屈服准则是判断材料是否开始发生塑性变形的条件。
常用的屈服准则包括:- Von Mises准则:适用于各向同性材料,当材料的等效应力达到某一临界值时,材料开始发生塑性变形。
弹塑性力学习题集_很全有答案_

ε x = a 0 + a1 ( x 2 + y 2 ) + x 4 + y 4 , ε y = b0 + b1 ( x 2 + y 2 ) + x 4 + y 4 , γ xy = c 0 + c1 xy ( x 2 + y 2 + c 2 ), ε z = γ zx = γ yz = 0.
试求式中各系数之间应满足的关系式。 2—38* 试求对应于零应变状态( ε ij = 0 )的位移分量。
(2) J 3 = I 3 + (4) J 2 = (6)
1 2 3 I1 I 2 + I1 ; 3 27
1 S ij S ij ; 2
∂J 2 = S ij . ∂σ ij
1 S ik S km S mi 。 3 2—22* 试证在坐标变换时, I 1 为一个不变量。要求:(a) 以普通展开式证明; (b) 用 张量计算证明。 5 3 8 2—23 已知下列应力状态: σ ij = 3 0 3 MPa ,试求八面体单元的正应力 σ 8 与剪 8 3 11
题 2—41 图
题 2—42 图
第三章 弹性变形·塑性变形·本构方程
试证明在弹性变形时,关于一点的应力状态,下式成立。 1 (1) γ 8 = τ 8 ; (2) σ = kε (设ν = 0.5 ) G 3—2* 试以等值拉压应力状态与纯剪切应力状态的关系, 由应变能公式证明 G、 E、 ν之 间的关系为: 1 G= 2(1 + ν ) 1 1 3—3* 证明:如泊松比ν = ,则 G = E , λ → ∞ , k → ∞ , e = 0 ,并说明此时上述 2 3 各弹性常数的物理意义。 3—4* 如设材料屈服的原因是形状改变比能(畸形能)达到某一极值时发生,试根据 单向拉伸应力状态和纯剪切应力状态确定屈服极限 σ s 与 τ s 的关系。 3—5 试依据物体单向拉伸侧向不会膨胀,三向受拉体积不会缩小的体积应变规律来 1 证明泊松比ν 的上下限为: 0 < ν < 。 2 2 3—6* 试由物体三向等值压缩的应力状态来推证:K = λ + G 的关系, 并验证是否与 3 E K= 符合。 3(1 − 2v) 3—7 已知钢材弹性常数 E1 = 210Gpa,v1 = 0.3, 橡皮的弹性常数 E 2 =5MPa,v 2 = 0.47, 试比较它们的体积弹性常数(设 K1 为钢材,K2 为橡皮的体积弹性模量) 。 3—8 有一处于二向拉伸应力状态下的微分体( σ 1 ≠ 0, σ 2 ≠ 0, σ 3 = 0 ) ,其主应变
(完整版)弹塑性力学习题题库加答案

第二章应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy ,τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x=γ1y ;T y =0 则σx =-γ1y ;τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0得:b=-γ1;a=0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0cossinx xy yxy………………………………(a )将己知条件:σx=-γ1y ;τxy =-dx ;σy =cx+dy-γy代入(a )式得:1cossin 0cossin0y dx bdx cxdyy cL L L L L L L L L L L L L L L L L L化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1ctg 3β2—17.己知一点处的应力张量为312606100100Pa试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103σy =10×103 τxy =6×103,且该点的主应力可由下式求得:222231.2333312101210610222217.0831011371011 6.0828104.9172410xyxyxyPa则显然:3312317.08310 4.917100Pa Paσ1 与x 轴正向的夹角为:(按材力公式计算)22612sin 22612102cos2xy xytg 显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°δy题图1-3τxyx 30°10n24xO10yTτ30°δ30°xO γyβBA n βγ1y则:θ=+40.2688B 40°16'或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
弹塑性力学试卷及弹性力学教材习题及解答

二、填空题:(每空2分,共8分)1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。
(参照oxyz直角坐标系)。
2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。
三、选择题(每小题有四个答案,请选择一个正确的结果。
每小题4分,共16分。
)1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。
裂纹展布的方向是:_________。
A、沿圆柱纵向(轴向)B、沿圆柱横向(环向)C、与纵向呈45°角D、与纵向呈30°角2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。
该板危险点的最大拉应力是无孔板最大拉应力__________倍。
A、2B、3C、4D、53、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。
)则在该点处的应变_________。
A、一定不为零B、一定为零C、可能为零D、不能确定4、以下________表示一个二阶张量。
A、B、C、D、四、试根据下标记号法和求和约定展开下列各式:(共8分)1、;(i ,j = 1,2,3 );2、;五、计算题(共计64分。
)1、试说明下列应变状态是否可能存在:;()上式中c为已知常数,且。
2、已知一受力物体中某点的应力状态为:式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量之和。
为平均应力。
并说明这样分解的物理意义。
3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑的基础上,如图所示。
若选取=ay2做应力函数。
试求该物体的应力解、应变解和位移解。
(提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。
)题五、3图4、已知一半径为R=50mm,厚度为t=3mm的薄壁圆管,承受轴向拉伸和扭转的联合作用。
弹塑性力学习题答案

第二章 习题解答2-1解:已知 0,0,===-==y x xy y xf f q τσσ1)⎪⎪⎩⎪⎪⎨⎧+∂∂+∂∂+∂∂+∂∂xy y yxx x y yx τστσ23()()⎩⎨⎧++s xy y s yx x l m m l σστστσ 有:lq t x -=代入(*4理、几何方程得:E x u x ==∂∂ε11E y v y ==∂∂ε0==∂∂+∂∂xy yux v γ ()()⇒=+∴0dyy df dx x dg 类似于教材题2-3,可求出 ()()wx v x g wy u y f +=-=00,001;1v wx qy Ev u wy qx Eu ++--=+---=∴υυ从v u ,表达式可见,位移分量是坐标的单值函数,满足位移单值条件。
综合1)~4),。
q xy y x 为问题的正确解答0,=-==τσσ2-2x =σxy τ注意:y x ,代入均满足。
2)验证相容方程:0)(2=+∇y x σσ 亦满足。
3)验证应力边界条件: i) 主要边界:()0,2=±=h y yx yτσ满足ii) 次要边界:()()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰-=-=-=222222320)1(0h h lx xy h h l x x h h l x x Pdy ydy dy τσσ (1)、(2)满足,(3)式左=⎰-===⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-223332212*41*618218hh P h I P h h I P dy y h I P 右 结论:所列xy y x τσσ,,满足平衡方程、相容方程;在主要边界上严格满足应力边界条件,次要边界近似满足应力边界条件,又为单连体,故在圣维南原理的前提下为问题的正确解。
2-3、证明:1)由,,yVf xV fy x∂∂-=∂∂-=则平衡微分方程为: ()()⎪⎪⎩⎪⎪⎨⎧=∂τ∂+∂-σ∂=∂τ∂+∂-σ∂⇒⎪⎪⎩⎪⎪⎨⎧=∂∂-∂τ∂+∂σ∂=∂∂-∂τ∂+∂σ∂0x y V 0yx V 0y V x y 0x V y x yx y xyx yx y xy x (*) 类似于题2-10的推证过程,(*)式的通解为:y x x V yV 2xy 22y 22x ∂∂ϕ∂-=τ∂ϕ∂=-σ∂ϕ∂=-σ;;即: yx V xV y2xy 22y 22x ∂∂ϕ∂-=τ+∂ϕ∂=σ+∂ϕ∂=σ;;2) 对于平面应力问题,相容方程为:()()⎪⎪⎭⎫⎝⎛∂∂+∂∂+-=+∇y f x f y x y xυσσ12即:2222 2-4、x, y n l σσ2==2l 应力主向成∴l σn3-3、解: 1由x=0得: 2由 得: Fx Ex Cx Bx Ax y ++++=∴注:公式中已略去ϕ中与应力分量无关的一次项和常数项。
弹塑性力学课程作业 参考答案

弹塑性力学课程作业1 参考答案一.问答题1. 答:请参见教材第一章。
2. 答:弹塑性力学的研究对象比材料力学的研究对象更为广泛,是几何尺寸和形态都不受任何 限制的物体。
导致这一结果的主要原因是两者研究问题的基本方法的不同。
3. 答:弹塑性力学与材料力学、结构力学是否同属固体力学的范畴,它们各自求解的主要问题都是变形问题,求解主要问题的基本思路也是相同的。
这一基本思路的主线是:(1)静 力平衡的受力分析;(2)几何变形协调条件的分析;(3)受力与变形间的物理关系分析; 4. 答:“假设固体材料是连续介质”是固体力学的一条最基本假设,提出这一基本假设得意义是为利用数学中的单值连续函数描述力学量(应力、应变和位移)提供理论依据。
5. 答:请参见本章教材。
6. 答:略(参见本章教材)7. 答:因为物体内一点某微截面上的正应力分量 σ 和剪应力分量τ 同材料的强度分析 问题直接相关,该点微截面上的全应力则不然。
8. 答:参照坐标系围绕一点截取单元体表明一点的应力状态,对单元体的几何形状并不做 特定的限制。
根据单元体所受力系的平衡的原理研究一点的应力状态。
研究它的目的是: 首先是了解一点的应力状态任意斜截面上的应力,进一步了解该点的主应力、主方向、 最大(最小)剪应力及其作用截面的方位,最终目的是为了分析解决材料的强度问题。
9.答:略(请参见教材和本章重难点剖析。
) 10. 答:略(请参见教材和本章重难点剖析。
)11. 答:略(请参见教材和本章重难点剖析。
) 这样分解的力学意义是更有利于研究材料的塑性变形行为。
12. 答:略(请参见教材和本章重难点剖析。
)纳唯叶 (Navier) 平衡微分方程的力学意义是:只有满足该方程的应力解和体力才是客观上可能存在的。
13. 答:弹塑性力学关于应力分量和体力分量、面力分量的符号规则是不一样的。
它们的区别请参见教材。
14、答:弹塑性力学的应力解在物体内部应满足平衡微分方程和相容方程(关于相容方程详见第3、5、6章),在物体的边界上应满足应力边界条件。
弹塑性力学试题答案完整版

欧拉描述便于对固定空间区域特别是包含流动、大变形和物质混合问题的建模。 5)转动张量:表示刚体位移部分,即
0
Wij
=
1
2
v x
−
u y
1 2
w x
−
u z
1 2
u y
−
v x
0
1 2
w y
−
v z
1 2
u z
−
w x
1 2
v z
−
w y
0
6)应变张量:表示纯变形部分,即
22)小应变张量:(P33) 23)弹性模量:E 的数值随材料而异,是通过实验测定的,其值表征材料抵抗弹性变形的能力,其量纲
为 ML-1T-2 ,其单位为 Pa。
E 是度量物体受力时形变大小的物理量。指在弹性限度内,应力与应变的比值。 弹性模量又分纵向弹性模量(杨氏模量)和剪切弹性模量。杨氏模量为正应力与线应变之比值;剪切弹 性模量为剪应力与剪应变之比值。对同一种材料,在弹性极限内,弹性模量是一常数。 24)相容方程(P38): 25)变分原理:
弹塑性力学 2008、2009 级试题
一、简述题 1)弹性与塑性
弹性:物体在引起形变的外力被除去以后能恢复原形的这一性质。 塑性:物体在引起形变的外力被除去以后有部分变形不能恢复残留下来的这一性质。 2)应力和应力状态 应力:受力物体某一截面上一点处的内力集度。
应力状态:某点处的 9 个应力分量组成的新的二阶张量 。
( ) ( ) 个独立的应力分量的函数,即为 f = 0 , f ij 即为屈服函数。
10)不可压缩:对金属材料而言,在塑性状态,物体体积变形为零。
11)稳定性假设(P56):即德鲁克公社,包括:1.在加载过程中,应力增量所做的功 dWD 恒为正;2.在
(完整版)弹塑性力学习题题库加答案

第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
工程弹塑性力学题库及答案

(2)如将该曲线表示成
解:(1)由 在
处连续,有
形式,试给出 的表达式。
(a)
由在
处连续,有
(a)、(b)两式相除,有
由(a)式,有
(2)取
形式时,
当
:
即
当
:应力相等,有
解出得,
(代入 值)
(b) (c) (d)
(代入 值) 5.6已知简单拉伸时的应力-应变曲线
如图5-1所示,并表示如下:
问当采用刚塑性模型是,应力-应变曲线应如何表 示?
解:1) OD 边:
GD 边:
沿
线,
,
2)
沿 OB 线,
,
8.7 Mises 线性等强化材料,在平面应变( 试导出用表示的强化规律和本构关系。
解:当 时,在弹性阶段有
)和泊松比 条件下,
得
平均应力 因此在弹性阶段有
,进入塑性后有
对平均应变
刚进入塑性时
。由上式导出
。因此进入塑性
后还满足
(2)当 = 时,继续加载,使 解:1)开始屈服时
,求此时的 、 、 。 ,代入 Mises 屈服准则
得
;
2)屈服后对应的塑性应变增量为
由 及屈服条件的微分形式
, 式子得到答案结果。
7.9 在如下两种情况下,试求塑性应变增量的比。
(1)单向拉伸应力状态,
;
,联列可得 ,代入
(2)纯剪力状态,
。
解:(1)单向拉伸应力状态
在
中:
沿
线,
中: ,
中:
,
,
,
, 情况二见图(1),与①一样
所以
8.6 已知具有尖角为 的楔体,在外力 P 的作用下,插入具有相同角度的 V 形缺口 内,试分别按如下两中情况画出滑移线场并求出两种情况的极限荷载。 1)、楔体与 V 形缺口之间完全光滑;2)、楔体与 V 形缺口接触处因摩擦作用其剪应 力为 k。
弹塑性力学试题集锦(很全,有答案)

1 / 218弹塑性力学2008级试题一 简述题(60分) 1)弹性与塑性弹性:物体在引起形变的外力被除去以后能恢复原形的这一性质。
塑性:物体在引起形变的外力被除去以后有部分变形不能恢复残留下来的这一性质。
2)应力和应力状态应力:受力物体某一截面上一点处的内力集度。
应力状态:某点处的9个应力分量组成的新的二阶张量∑。
3)球张量和偏量球张量:球形应力张量,即σ=000000m m m σσσ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,其中()13m x y z σσσσ=++ 偏量:偏斜应力张量,即x m xy xz ij yx y m yz zx zy z m S σστττσστττσσ⎡⎤-⎢⎥=-⎢⎥⎢⎥-⎣⎦,其中2 / 218()13m x y z σσσσ=++5)转动张量:表示刚体位移部分,即110221102211022u v u w y x z x v u v w ij x y z y w u w v x z y z W ⎡⎤⎛⎫⎛⎫∂∂∂∂--⎢⎥ ⎪ ⎪ ⎪∂∂∂∂⎢⎥⎝⎭⎝⎭⎢⎥⎛⎫⎛⎫∂∂∂∂⎢⎥=-- ⎪⎪⎢⎥ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎢⎥⎢⎥⎛⎫⎛⎫∂∂∂∂⎢⎥-- ⎪ ⎪ ⎪⎢⎥∂∂∂∂⎝⎭⎝⎭⎣⎦6)应变张量:表示纯变形部分,即112211221122uu v u w x y x z x v u vv w ij x y yz y w u w v wx z y z zε⎡⎤⎛⎫⎛⎫∂∂∂∂∂++⎢⎥ ⎪ ⎪ ⎪∂∂∂∂∂⎢⎥⎝⎭⎝⎭⎢⎥⎛⎫⎛⎫∂∂∂∂∂⎢⎥=++ ⎪⎪⎢⎥ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭⎢⎥⎢⎥⎛⎫⎛⎫∂∂∂∂∂⎢⎥++ ⎪ ⎪ ⎪⎢⎥∂∂∂∂∂⎝⎭⎝⎭⎣⎦7)应变协调条件:物体变形后必须仍保持其整体性和连续性,因此各应变分量之间,必须要有一定得关3 / 218系,即应变协调条件。
22222y xyx y x x yεγε∂∂∂+=∂∂∂∂。
8)圣维南原理:如作用在弹性体表面上某一不大的局部面积上的力系,为作用在同一局部面积上的另一静力等效力所代替,则荷载的这种重新分布,只造离荷载作用处很近的地方,才使应力的分布发生显著变化,在离荷载较远处只有极小的影响。
弹塑性力学试题集锦(很全,有答案)

1 / 218弹塑性力学2008级试题一 简述题(60分) 1)弹性与塑性弹性:物体在引起形变的外力被除去以后能恢复原形的这一性质。
塑性:物体在引起形变的外力被除去以后有部分变形不能恢复残留下来的这一性质。
2)应力和应力状态应力:受力物体某一截面上一点处的内力集度。
应力状态:某点处的9个应力分量组成的新的二阶张量∑。
3)球张量和偏量球张量:球形应力张量,即σ=000000m m m σσσ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,其中()13m x y z σσσσ=++ 偏量:偏斜应力张量,即x m xy xz ij yx y m yz zx zy z m S σστττσστττσσ⎡⎤-⎢⎥=-⎢⎥⎢⎥-⎣⎦,其中2 / 218()13m x y z σσσσ=++5)转动张量:表示刚体位移部分,即110221102211022u v u w y x z x v u v w ij x y z y w u w v x z y z W ⎡⎤⎛⎫⎛⎫∂∂∂∂--⎢⎥ ⎪ ⎪ ⎪∂∂∂∂⎢⎥⎝⎭⎝⎭⎢⎥⎛⎫⎛⎫∂∂∂∂⎢⎥=-- ⎪⎪⎢⎥ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎢⎥⎢⎥⎛⎫⎛⎫∂∂∂∂⎢⎥-- ⎪ ⎪ ⎪⎢⎥∂∂∂∂⎝⎭⎝⎭⎣⎦6)应变张量:表示纯变形部分,即112211221122uu v u w x y x z x v u vv w ij x y yz y w u w v wx z y z zε⎡⎤⎛⎫⎛⎫∂∂∂∂∂++⎢⎥ ⎪ ⎪ ⎪∂∂∂∂∂⎢⎥⎝⎭⎝⎭⎢⎥⎛⎫⎛⎫∂∂∂∂∂⎢⎥=++ ⎪⎪⎢⎥ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭⎢⎥⎢⎥⎛⎫⎛⎫∂∂∂∂∂⎢⎥++ ⎪ ⎪ ⎪⎢⎥∂∂∂∂∂⎝⎭⎝⎭⎣⎦7)应变协调条件:物体变形后必须仍保持其整体性和连续性,因此各应变分量之间,必须要有一定得关3 / 218系,即应变协调条件。
22222y xyx y x x yεγε∂∂∂+=∂∂∂∂。
8)圣维南原理:如作用在弹性体表面上某一不大的局部面积上的力系,为作用在同一局部面积上的另一静力等效力所代替,则荷载的这种重新分布,只造离荷载作用处很近的地方,才使应力的分布发生显著变化,在离荷载较远处只有极小的影响。
弹塑性力学习题集_很全有答案_

σ y = cx + dy − γy , τ xy = − dx − ay ,其它应力分量为零。试根据
直边及斜边上的边界条件,确定常数 a、b、c、d。 2—16* 已知矩形截面高为 h, 宽为 b 的梁受弯曲时的正 My 12 M 应力 σ z = = y, 试求当非纯弯时横截面上的剪应力公 J bh 3 式。 (利用弹塑性力学平衡微分方程)
题 2—15 图
12 6 0 2—17 已知一点处的应力张量为: σ ij = 6 10 0 MPa ,试求该点的最大主应力及 0 0 0 其主方向。 2—18* 在物体中某一点 σ x = σ y = σ z = τ xy = 0 ,试以 τ yz 和 τ zx 表示主应力。
3—1
为 ε 1 = 1.7 × 10 −4 , ε 2 = 0.4 × 10 −4 。已知ν = 0.3,试求主应变 ε 3 。
3—9 如题 4—9 图示尺寸为 1×1×1cm 的铝方块,无间隙地嵌入——有槽的钢块中。 设钢块不变形,试求:在压力 P = 6KN 的作用下铝块内一点应力状态的三个主应力及主应 变,铝的弹性常数 E=70Gpa,ν = 0.33。 3—10* 直径 D = 40mm 的铝圆柱体, 无间隙地放入厚度为 δ = 2mm 的钢套中, 圆柱受
v = b0 + b1 x + b2 y + b3 z w = c 0 + c1 x + c 2 y + c3 z
式中 a 0 L , a1 L , a 2 L 为常数,试证各点的应变分量为常数。 2—29 设已知下列位移,试求指定点的应变状态。
(1) u = (3x 2 + 20) × 10 −2 , v = (4 yx) × 10 −2 ,在(0,2)点处。 (2) u = (6 x 2 + 15) × 10 −2 , v = (8 zy ) × 10 −2 , w = (3z 2 − 2 xy) × 10 −2 ,在(1,3,4)点处。 2—30 试证在平面问题中下式成立: εx + εy =ε′ x + ε′ y
(完整版)弹塑性力学习题题库加答案.docx

第二章 应力理论和应变理论2— 15.如 所示三角形截面水 材料的比重 γ,水的比重 γ 1。
己求得 力解 :σ x = ax+by , σy =cx+dy- γy , τxy =-dx-ay ;根据直 及斜 上的 界条件,确定常数 a 、b 、c 、 d 。
解:首先列出OA 、 OB 两 的 力 界条件:OA :l 1=-1 ;l 2=0 ;T x= γ1 y ; T y =0σx =-γ1y ; τxy =0代入: σx =ax+by ; τxy =-dx-ay 并 注 意 此 : x =0得 : b=- γ1; a=0;OB : l 1=cos β ; l 2=-sin β, T x =T y =0:x cosxy sin0 yx cosy sin⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( a )将己知条件: σ x=1xy=-dxyγ y-γ y ; τ; σ =cx+dy-代入( a )式得:1 y cos dx sin0L L L L L L L L L bdx coscxdyy sin L L L L L L L L L化 ( b )式得: d = γ12β;ctgT4n2τ 30° δ 30°30°化 ( c )式得: c =γctg β -2γ 13y10x10Ox12 6τxy103 Pa2— 17.己知一点 的 力 量6 10 00 0δ y求 点的最大主 力及其主方向。
x题1-3 图解:由 意知 点 于平面 力状 ,且知:σx =12×O103σ y =10× 103 τ xy =6× 103,且 点的主 力可由下式求得:β212 101221.2xyxy21023n 22xy22610βγ 1y113710311 6.0828 10317.083 10 3 Paγ34.91724 10BA然:y117.083 10 3Pa2 4.917 10 3Pa30σ 1 与 x 正向的 角 : (按材力公式 算)c2 xy2 6 12 sin 2tg 2121026xycos2然 2θ 第Ⅰ象限角: 2θ=arctg ( +6) =+80.5376 °则:θ=+40.2688 B 40° 16'或(-139° 44')2— 19.己知应力分量为:σx=σy=σz=τxy=0,τzy=a,τzx=b,试计算出主应力σ1、σ2、σ3 并求出σ2 的主方向。
弹塑性力学部分习题及答案

解
根据梁的弯曲变形公式,y = Fx/L(L - x),其中y为挠度,F 为力,L为梁的长度。代入题目给定的数据,得y = (frac{300 times (4 - x)}{8})。当x = 2时,y = (frac{300 times (4 - 2)}{8}) = 75mm。
习题三答案及解析
解析
和变形情况。
04
弹塑性力学弹塑性力学的基本假设。
答案
弹塑性力学的基本假设包括连续性假设、均匀性假设、各向同性假设和非线性假设。连 续性假设认为物质是连续的,没有空隙;均匀性假设认为物质的性质在各个位置都是相 同的;各向同性假设认为物质的性质在不同方向上都是相同的;非线性假设认为弹塑性
习题二答案及解析
01 02 03 04
解析
选择题主要考察基本概念的理解,如能量守恒定律、牛顿第二定律等 。
填空题涉及简单的力学计算,如力的合成与分解、牛顿第二定律的应 用等。
计算题要求应用能量守恒定律和牛顿第二定律进行计算,需要掌握基 本的力学原理和公式。
习题三答案及解析
01
答案
02
选择题
03
1. A
2. 解
根据牛顿第二定律,F = ma,其中F为力,m为质量,a 为加速度。代入题目给定的数据,得a = (frac{400}{5}) = 80m/s(}^{2})。再根据运动学公式s = ut + (frac{1}{2})at(}^{2}),得s = 10 × 2 + (frac{1}{2} times 80 times (2)^2) = 108m。
04
计算题要求应用胡克定律和动量守恒定律进行计算,需要掌握基本的 力学原理和公式。
习题二答案及解析
工程弹塑性力学课后答案

工程弹塑性力学课后答案【篇一:弹塑性力学思考题答案】一点的应力状态?答:通过一点p 的各个面上应力状况的集合⒉一点应变状态?答:[受力物体内某点处所取无限多方向上的线应变与剪应变(任意两相互垂直方向所夹直角的改变量)的总和,就表示了该点的应变状态。
]代表一点 p 的邻域内线段与线段间夹角的改变⒊应力张量?应力张量的不变量?应力球张量?体积应力?平均应力?应力偏张量?偏应力第二不变量j2的物理意义?单向应力状态、纯剪应力状态的应力张量?给出应力分分量,计算第一,第二不变量。
答:应力张量:代表一点应力状态的应力分量,当坐标变化时按一定的规律变化,其变换关系符合??x?xy?xz???????????yxyyz???zx?zy?z???。
其中:?=?,?=?,?=?。
xzzxxyyxyzzy应力张量的不变量:对于一个确定的应力状态,只有一组(三个)主应力数值,即j1,j2,j3是不变量,不随着坐标轴的变换而发生变化。
所以j1,j2,j3分别被称为应力张量的第一、第二、第三不变量。
应力张量可分解为两个分量0???x-?m?xy?xz???m0??+???ij??0?0????mymyz?,等式右端第一个张量称为应力球张量,第二个张量称为应???yx?0?m??zy?z??m??0????zx?力偏张量。
应力球张量:应力球张量,表示球应力状态(静水应力状态),只产生体积变形,不产生形状变形,任何切面上的切应力都为零,各方向都是主方向。
应力偏张量:应力偏张量,引起形状变形,不产生体积变形,切应力分量、主切应力、最大正应力11平均应力:?m?(?x??y??z)?(?1??2??3),?m为不变量,与坐标无关。
33偏应力第二不变量j2的物理意义:形状变形比能。
单向应力状态:两个主应力为零的应力状态。
纯剪应力状态的应力张量:给出应力分分量,计算第一,第二不变量。
(带公式)⒋应变张量?应变张量的不变量?应变球张量?体积应变?平均应变?应变偏张量?应变张量:几何方程给出的应变通常称为工程应变,这些应变分量的整体,构成一个二阶的对称张版权所有,翻版必究量,称为应变张量,记为:即。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,而应变
,试证明当体积不变
证毕!
5.3 对于线性弹塑性随动强化模型,若 (1)、已知给定应力路径为 (2)、已知给定应变路径为
,试求 ,求对应的应变值。 ,求对应的应力值。
(1)解:①、 , ;②、
,
③、 ,
;④、
,
⑤、 ,
(2)解:①、 , ;②、
,
③、 ,
;
④、
,
⑤、 ,
5.4 在拉伸试验中,伸长率为
Mises 屈服条件:
故有
6.5 试用 Lode 应力参数 表达 Mises 屈服条件。 解:由定义:
即 Mises 屈服条件为 将上式代入,得:
即:
6.6 物体中某点的应力状态为
,该物体在单向拉伸
时
,试用 Mises 和 Tresca 屈服条件分别判断该点是处于弹性
状态还是塑性状态,如主应力方向均作相反的改变(即同值异号),则对被 研究点所处状态的判断有无变化? 解:(1)Mises 屈服条件判断
6.8证明下列等式: (1)、 证明:(1)、右边
(2)、
=左边
证毕!
(2)、
证毕!
6.9 设 、 、 为应力偏量,试证明用应力偏量表示 Mises 屈服条件时,其形式为
,提示:
证明:Mises 屈服条件:
,
,
又 又
证毕!
第七章 塑性本构关系
7.1 塑性全量理论的成立条件: 解:(1)应力主方向与应变主方向是重合的,即应力 Mohr 圆与应变 Mohr 圆相 似,应力 Load 参数 和应变 Load 参数 相等,而且在整个加载过程中主方向
力为多大,并求此时塑性应变增量的比。
解:设扭转剪应力 入 Mises 屈服条件,得
,主应力为: 。
,
,代
7.7 证明等式:
证明:
将 对 求偏导,可得
,同理可得
,
,
,所以
;用同样的方法求得
。
7.8 一泊松比为 ,满足 Mises 屈服条件的单元体,已知其受力状态为
,
, ,x,y,z 是主方向。求: (1)当 从零增加到 时屈服,求 ;
解:刚塑性模型不考虑弹性阶段应变,因此刚塑性应力应变曲线即为
曲
线,这不难由原式推得
而在强化阶段,
,因为这时
将 都移到等式左边,整理之即得答案。
其中
5.7 已知简单拉伸时的 变的比值
曲线由(5.1)式给出,考虑横向应变与轴向应
在弹性阶段,
为材料弹性时的泊松比,但进入塑性阶段后 值开
始增大最后趋向于 。试给出 解:按题设在简单拉伸时总有
,再求应力偏张量,,来自,,,
。
由此求得:
然后求得:
,
,解出
然后按大小次序排列得到
,
,
1.9 已知应力分量中
,求三个主应力
,以及每个
主应力所对应的方向余弦
。
解:特征方程为
记
,则其解为
,
,
。对应于 的方向余弦 , , 应满足下列关系
由(a),(b)式,·11得
(a) (b) (c)
, ,由此求得
,代入(c)式,得
7.5 已知一长封闭圆筒半径为 r,壁厚为 t,受内压 p 的作用,从而产生塑性变形, 材料是各向同性的。如果忽略弹性应变,试求轴向、周向和径向应变增量的比。
解:在
方向的主应力分别为:
,则
,从而求得应力偏量 ,得最终结果为(-1):1:0
,再根据增量理论
7.6 已知薄壁圆筒受拉应力
的作用,若使用 Mises 屈服条件,试求屈服时扭转应
(2)当 = 时,继续加载,使 解:1)开始屈服时
,求此时的 、 、 。 ,代入 Mises 屈服准则
得
;
2)屈服后对应的塑性应变增量为
由 及屈服条件的微分形式
, 式子得到答案结果。
7.9 在如下两种情况下,试求塑性应变增量的比。
(1)单向拉伸应力状态,
;
,联列可得 ,代入
(2)纯剪力状态,
。
解:(1)单向拉伸应力状态
解:1) OD 边:
GD 边:
沿
线,
,
2)
沿 OB 线,
,
8.7 Mises 线性等强化材料,在平面应变( 试导出用表示的强化规律和本构关系。
解:当 时,在弹性阶段有
)和泊松比 条件下,
得
平均应力 因此在弹性阶段有
,进入塑性后有
对平均应变
刚进入塑性时
。由上式导出
。因此进入塑性
后还满足
进入塑性阶段,当
时,两杆为无线变形,结构已成为机构。 故,
此结构
。
第六章 屈服条件和加载条件
6.1 简述屈服面、屈服函数的概念: 解:根据不同的应力路径进行实验,可以分别从弹性阶段进入塑性阶段的各个界 限,这些界限即是屈服点。在应力空间将这些屈服应力点连接起来,就形成一个 区分弹性和塑性的分界面,成为屈服面。描述这个屈服面的数学表达式成为屈服 函数或屈服条件。
对,
,代入得
对,
,代入得
对,
,代入得
1.10当
时,证明
成立。
解: 由
,移项之得
证得
第五章 简单应力状态的弹塑性问题
5.1 简述 Bauschinger 效应: 解:拉伸塑性变形后使压缩屈服极限降低的现象
5.2 在拉杆中,如果 和 为试件的原始截面积和原长,而 和 为拉伸后的截
面积和长度。则截面收缩率为 时,有这样的关系: 证明: 体积不变,则有
z
且 利用平衡方程
当
时, 为(e)式。
(3)塑性阶段 平衡方程和几何方程同上。
本构方程 与(2)弹塑性阶段同样步骤:可得
(e) (f) (g)
5.9 如图所示等截面直杆,截面积为 ,且 。在 处作用一个逐渐增加 的力 。该杆材料为理想弹塑性,拉伸和压缩时性能相同。按加载过程分析
结构所处不同状态,并求力 作用截面的位移 与 的关系。 解:基本方程为
故该点处于弹性状态 (2)Tresca 屈服条件判断
故该点处于塑性状态 如果各应力均作为变号,则以上各式不变,所作判断没有变化。
6.7 已知薄壁圆球,其半径为 ,厚度为 ,受内压 的作用,如采用 Tresca 屈服条件,试求内壁开始屈服时的内压 值。
解:研究半球的静力平衡
内球面:
,外球面:
由 Tresca 条件,内壁先开始屈服,此时
形式,试给出 的表达式。
(a)
由在
处连续,有
(a)、(b)两式相除,有
由(a)式,有
(2)取
形式时,
当
:
即
当
:应力相等,有
解出得,
(代入 值)
(b) (c) (d)
(代入 值) 5.6已知简单拉伸时的应力-应变曲线
如图5-1所示,并表示如下:
问当采用刚塑性模型是,应力-应变曲线应如何表 示?
图5-1
解:的定义、物理意义:
;
1) 表征 Sij 的形式;2) 相等,应力莫尔圆相似,Sij 形式相同;3) 由可确定 S1:S2:S3。
1.4设某点应力张量 的分量值已知,求作用在过此点平面
力矢量
,并求该应力矢量的法向分量 。
解:该平面的法线方向的方向余弦为
上的应
而应力矢量的三个分量满足关系
而法向分量 满足关系
式中:
是三个应力不变量,并有公式
代入已知量得
为了使方程变为 关系
形式,可令
代入,正好 项被抵消,并可得
代入数据得
,
,
1.7已知应力分量中
,求三个主应力
解:在
时容易求得三个应力不变量为
,
特征方程变为
。 ,
求出三个根,如记
,则三个主应力为
记
1.8已知应力分量
, 是材料的屈服极限,求 及主应力
。
解:先求平均应力
对于平面应变(在 xoy 平面内)有:
同时: 屈服应力。
,其中 k 为纯剪
整理得:
是其中一个主应力,故其余两个主应力可以由以下公式确定:
整理得:
证毕!
8.5图示的楔体,两面受压,已知 p
,分别对 q=0.5p,q=p 两中情况,求极限荷载
解:① q=p 时,见图(1),在
沿
线,
,
② q=0.5p 时, 情况一见图(2),在
曲线基本上和简单拉伸时的
曲线一样。
7.4 比较两种塑性本构理论的特点: 解:增量理论和全量理论。增量理论将整个加载历史看成是一系列的微小增量加 载过程所组成,研究每个微小增量加载过程中应变增量与应力增量之间的关系, 再沿加载路径依次积分应变增量得最终的应变。全量理论不去考虑应力路径的影 响,直接建立应变全量与应力全量直接的关系。
并从零开始增加,求三杆内力随 的变化规律.
解:基本方程为
几何方程: 协调关系:
本构方程:
(1)弹性阶段(
)
利用(a)、(b)及(c)第一式,联立求解得
(a) (b)
即
可看出 结构弹性极限:令
有
(2)弹塑性阶段(
)
取
,结构成为静定,由平衡方程
解得
若取
,即
此时 即当
时,内力为上列
值,当
时,杆1和杆2 已
在
中:
沿
线,
中: ,
中:
,
,
,
, 情况二见图(1),与①一样
所以
8.6 已知具有尖角为 的楔体,在外力 P 的作用下,插入具有相同角度的 V 形缺口 内,试分别按如下两中情况画出滑移线场并求出两种情况的极限荷载。 1)、楔体与 V 形缺口之间完全光滑;2)、楔体与 V 形缺口接触处因摩擦作用其剪应 力为 k。