弹塑性力学习题题库加答案
弹塑性理论考试题及答案
弹塑性理论考试题及答案一、单项选择题(每题2分,共10分)1. 弹塑性理论中,材料的屈服准则通常用以下哪个参数表示?A. 应力B. 应变C. 弹性模量D. 屈服应力答案:D2. 弹塑性材料在循环加载下,其行为主要受哪个参数的影响?A. 最大应力B. 最大应变C. 应力幅值D. 应变幅值答案:C3. 根据弹塑性理论,材料的硬化指数n通常用来描述什么?A. 材料的弹性B. 材料的塑性C. 材料的断裂特性D. 材料的疲劳特性答案:B4. 在弹塑性理论中,哪个参数用来描述材料在塑性变形后能否恢复原状?A. 弹性模量B. 屈服应力C. 塑性应变D. 弹性应变答案:D5. 弹塑性材料在受到拉伸应力作用时,其应力-应变曲线通常呈现哪种形状?A. 线性B. 非线性C. 抛物线D. 指数曲线答案:B二、多项选择题(每题3分,共15分)6. 弹塑性理论中,材料的屈服准则可以由以下哪些因素确定?A. 应力状态B. 应变状态C. 温度D. 材料的微观结构答案:A|B|C|D7. 弹塑性材料在循环加载下,其疲劳寿命主要受哪些因素的影响?A. 应力幅值B. 材料的屈服应力C. 循环加载频率D. 材料的微观缺陷答案:A|B|C|D8. 在弹塑性理论中,材料的硬化行为可以通过以下哪些方式来描述?A. 硬化指数B. 硬化模量C. 应力-应变曲线D. 屈服应力答案:A|B|C9. 弹塑性材料在受到压缩应力作用时,其应力-应变曲线通常呈现以下哪些特点?A. 初始阶段为弹性B. 达到屈服点后进入塑性变形C. 塑性变形后材料体积不变D. 卸载后材料能够完全恢复原状答案:A|B|C10. 弹塑性理论中,材料的断裂特性可以通过以下哪些参数来描述?A. 断裂韧性B. 应力集中系数C. 材料的硬度D. 材料的塑性应变答案:A|B|C|D三、简答题(每题5分,共20分)11. 简述弹塑性理论中材料的屈服现象。
答:在弹塑性理论中,材料的屈服现象是指材料在受到一定的应力作用后,从弹性变形转变为塑性变形的过程。
弹塑性力学部分习题及答案
1 εij = (ui, j +uj,i ) 2
σji, j
(i, j =12,3) ,
E 1 ν = 2(uj,ij +ui, jj ) +1−2νuk,kjδij (1+ν)
5Байду номын сангаас
20112011-2-17
题1-3
E 1 ν (uj,ij +ui,jj ) + σji, j = uk,ki 2 (1+ν) 1−2ν
3
2c
l
y
解: 1、将 Φ 代入
∇ 4Φ =0 满足, 为应力函数。 满足, Φ 为应力函数。
2、求应力(无体力) 求应力(无体力)
20112011-2-17 20
题1-13 3 3F xy q 2 Φ= xy− 2 + y 4c 3 2 c
2
o
x
2c
l
y
2
∂φ 3F xy ∂φ σx = 2 = − 3 +q, σy = 2 =0, ∂y 2c ∂x y2 ∂φ 3F τxy =− = − 1− 2 ∂x∂y 4c c
z l y
F = −ρg bz
x
x
20112011-2-17
8
题1-5 等截面直杆(无体力作用),杆轴 等截面直杆(无体力作用),杆轴 ), 方向为 z 轴,已知直杆的位移解为
u =−kyz v =kxz
w=k ( x, y) ψ
为待定常数, 其中 k 为待定常数,ψ(x‚y)为待定函数, 为待定函数 试写出应力分量的表达式和位移法方程。 试写出应力分量的表达式和位移法方程。
2
工程弹塑性力学题库及答案(修订)
,再求应力偏张量
,
,
,
,
,
。
由此求得:
然后求得:
,
,解出
然后按大小次序排列得到
,
,
1.9 已知应力分量中
,求三个主应力
,以及每个
主应力所对应的方向余弦
。
解:特征方程为
记, , 应满足下列关系
由(a),(b)式,·11得
(a) (b) (c)
, ,由此求得
,代入(c)式,得
解:的定义、物理意义:
;
1) 表征 Sij 的形式;2) 相等,应力莫尔圆相似,Sij 形式相同;3) 由可确定 S1:S2:S3。
1.4设某点应力张量 的分量值已知,求作用在过此点平面
力矢量
,并求该应力矢量的法向分量 。
解:该平面的法线方向的方向余弦为
上的应
而应力矢量的三个分量满足关系
曲线基本上和简单拉伸时的
曲线一样。
7.4 比较两种塑性本构理论的特点: 解:增量理论和全量理论。增量理论将整个加载历史看成是一系列的微小增量加 载过程所组成,研究每个微小增量加载过程中应变增量与应力增量之间的关系, 再沿加载路径依次积分应变增量得最终的应变。全量理论不去考虑应力路径的影 响,直接建立应变全量与应力全量直接的关系。
z
且 利用平衡方程
当
时, 为(e)式。
(3)塑性阶段 平衡方程和几何方程同上。
本构方程 与(2)弹塑性阶段同样步骤:可得
(e) (f) (g)
5.9 如图所示等截面直杆,截面积为 ,且 。在 处作用一个逐渐增加 的力 。该杆材料为理想弹塑性,拉伸和压缩时性能相同。按加载过程分析
结构所处不同状态,并求力 作用截面的位移 与 的关系。 解:基本方程为
弹塑性力学习题及答案
.本教材习题和参考答案及部分习题解答第二章2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。
答案 (1)pi iq qj jkpk δδδδδ=;答案 (2)pqi ijk jk pq qp e e A A A =-;解:(3)()ijp klp ki ljik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。
2.2证明:若ijji a a =,则0ijk jk e a =。
(需证明)2.3设a 、b 和c 是三个矢量,试证明:2[,,]⋅⋅⋅⋅⋅⋅=⋅⋅⋅a a a b a cb a b b bc a b c c a c b c c证:因为123111123222123333i i i i i i i i i i i i i ii i i i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以123111123222123333123111123222123333det det()i ii i i i i ii i i i i ii ii i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即得 1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。
(完整版)弹塑性力学习题题库加答案
第二章应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy ,τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x=γ1y ;T y =0 则σx =-γ1y ;τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0得:b=-γ1;a=0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0cossinx xy yxy………………………………(a )将己知条件:σx=-γ1y ;τxy =-dx ;σy =cx+dy-γy代入(a )式得:1cossin 0cossin0y dx bdx cxdyy cL L L L L L L L L L L L L L L L L L化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1ctg 3β2—17.己知一点处的应力张量为312606100100Pa试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103σy =10×103 τxy =6×103,且该点的主应力可由下式求得:222231.2333312101210610222217.0831011371011 6.0828104.9172410xyxyxyPa则显然:3312317.08310 4.917100Pa Paσ1 与x 轴正向的夹角为:(按材力公式计算)22612sin 22612102cos2xy xytg 显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°δy题图1-3τxyx 30°10n24xO10yTτ30°δ30°xO γyβBA n βγ1y则:θ=+40.2688B 40°16'或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
弹塑性力学部分习题及答案
e kk
2019/8/31
4
题1-3
e kk
ij (1 E )( ij 1 2 e ij) (i,j 1 ,2 ,3 )
j,i j (1 E )( j,i j 1 2 k,jk ij ) (i,j 1 ,2 ,3 )
i1 2ui,j
j
Guj,jiGi,ju j
代入 j,ij F b i0 (i,j 1 ,2 ,3 )
得
G 2 u i G u j,j iF b i0在 V 上
2019/8/31
7
题1-4 等截面柱体在自重作用下,应力解为
x=y=xy=yz=zx=0 , z=gz,试求位移。
,且设 ur 表达式为
ur C1rC r2(18 E 2)2r3
b
ra
x
试由边界条件确定 C1 和 C2 。
y
解: 边界条件为: (r)r=a=0, (r)r=b=0
应力r(平面
应力问题):
r 1E2(ddrururr)
2019/8/31
32
题1-16 由边界条件确定 C1 和 C2 :
v g l x y E
y
l
式中 E、 为弹性模量和泊松系数。
试(1)求应力分量和体积力分量;
hh
(2)确定各边界上的面力。
x
解: 1、求应变
x u x E g l x , y y v E g (l x )
2019/8/31
15
x
x=ax、y=ax、xy= -ax
3、求应变
x=ax、y=a(2x+y-l-h)、 xy= -ax
弹塑性力学习题集_很全有答案_
题 2 —4 图
2—5* 如题 2—5 图,刚架 ABC 在拐角 B 点处受 P 力,已知刚架的 EJ,求 B、C 点的 转角和位移。 (E 为弹性模量、J 为惯性矩) 2—6 悬挂的等直杆在自重 W 的作用下如题 2—6 图所示。材料比重为 γ ,弹性模量为 E,横截面积为 A。试求离固定端 z 处一点 c 的应变 ε z 与杆的总伸长 ∆l 。 2—7* 试按材料力学方法推证各向同性材料三个弹性常数:弹性模量 E、剪切弹性模 量 G、泊松比 v 之间的关系:
1 1 1 , n y = , nz = 的微斜面上的全应力 Pα ,正 2 2 2
试求外法线 n 的方向余弦为: n x = 应力 σ α 和剪应力 τ α 。
2—10 已知物体的应力张量为: 30 − 80 50 σ ij = 0 − 30 MPa 110 (对称)
2—39* 若位移分量 u i 和 u i′ 所对应的应变相同,试说明这两组位移有何差别? 2—40* 试导出平面问题的平面应变状态( ε x = γ zx = γ zy = 0 )的应变分量的不变量及
主应变的表达式。 2—41* 已知如题 2—41 图所示的棱柱形杆在自重作用下的应变分量为: γz νγz εz = , εx =εy = − ; γ xy = γ yz = γ zx = 0; E E 试求位移分量,式中 γ 为杆件单位体积重量,E、ν 为材料的弹性常数。
试确定外法线的三个方向余弦相等时的微斜面上的总应力 Pα ,正应力 σ α 和剪应力 τ α 。 2—11 试求以主应力表示与三个应力主轴成等倾斜面(八面体截面)上的应力分量, 并证明当坐标变换时它们是不变量。 2—12 试写出下列情况的应力边界条件。
题 2—12 图
弹塑性力学试卷及弹性力学教材习题及解答
二、填空题:(每空2分,共8分)1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。
(参照oxyz直角坐标系)。
2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。
三、选择题(每小题有四个答案,请选择一个正确的结果。
每小题4分,共16分。
)1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。
裂纹展布的方向是:_________。
A、沿圆柱纵向(轴向)B、沿圆柱横向(环向)C、与纵向呈45°角D、与纵向呈30°角2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。
该板危险点的最大拉应力是无孔板最大拉应力__________倍。
A、2B、3C、4D、53、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。
)则在该点处的应变_________。
A、一定不为零B、一定为零C、可能为零D、不能确定4、以下________表示一个二阶张量。
A、B、C、D、四、试根据下标记号法和求和约定展开下列各式:(共8分)1、;(i ,j = 1,2,3 );2、;五、计算题(共计64分。
)1、试说明下列应变状态是否可能存在:;()上式中c为已知常数,且。
2、已知一受力物体中某点的应力状态为:式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量之和。
为平均应力。
并说明这样分解的物理意义。
3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑的基础上,如图所示。
若选取=ay2做应力函数。
试求该物体的应力解、应变解和位移解。
(提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。
)题五、3图4、已知一半径为R=50mm,厚度为t=3mm的薄壁圆管,承受轴向拉伸和扭转的联合作用。
弹塑性力学习题答案
第二章 习题解答2-1解:已知 0,0,===-==y x xy y xf f q τσσ1)⎪⎪⎩⎪⎪⎨⎧+∂∂+∂∂+∂∂+∂∂xy y yxx x y yx τστσ23()()⎩⎨⎧++s xy y s yx x l m m l σστστσ 有:lq t x -=代入(*4理、几何方程得:E x u x ==∂∂ε11E y v y ==∂∂ε0==∂∂+∂∂xy yux v γ ()()⇒=+∴0dyy df dx x dg 类似于教材题2-3,可求出 ()()wx v x g wy u y f +=-=00,001;1v wx qy Ev u wy qx Eu ++--=+---=∴υυ从v u ,表达式可见,位移分量是坐标的单值函数,满足位移单值条件。
综合1)~4),。
q xy y x 为问题的正确解答0,=-==τσσ2-2x =σxy τ注意:y x ,代入均满足。
2)验证相容方程:0)(2=+∇y x σσ 亦满足。
3)验证应力边界条件: i) 主要边界:()0,2=±=h y yx yτσ满足ii) 次要边界:()()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰-=-=-=222222320)1(0h h lx xy h h l x x h h l x x Pdy ydy dy τσσ (1)、(2)满足,(3)式左=⎰-===⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-223332212*41*618218hh P h I P h h I P dy y h I P 右 结论:所列xy y x τσσ,,满足平衡方程、相容方程;在主要边界上严格满足应力边界条件,次要边界近似满足应力边界条件,又为单连体,故在圣维南原理的前提下为问题的正确解。
2-3、证明:1)由,,yVf xV fy x∂∂-=∂∂-=则平衡微分方程为: ()()⎪⎪⎩⎪⎪⎨⎧=∂τ∂+∂-σ∂=∂τ∂+∂-σ∂⇒⎪⎪⎩⎪⎪⎨⎧=∂∂-∂τ∂+∂σ∂=∂∂-∂τ∂+∂σ∂0x y V 0yx V 0y V x y 0x V y x yx y xyx yx y xy x (*) 类似于题2-10的推证过程,(*)式的通解为:y x x V yV 2xy 22y 22x ∂∂ϕ∂-=τ∂ϕ∂=-σ∂ϕ∂=-σ;;即: yx V xV y2xy 22y 22x ∂∂ϕ∂-=τ+∂ϕ∂=σ+∂ϕ∂=σ;;2) 对于平面应力问题,相容方程为:()()⎪⎪⎭⎫⎝⎛∂∂+∂∂+-=+∇y f x f y x y xυσσ12即:2222 2-4、x, y n l σσ2==2l 应力主向成∴l σn3-3、解: 1由x=0得: 2由 得: Fx Ex Cx Bx Ax y ++++=∴注:公式中已略去ϕ中与应力分量无关的一次项和常数项。
(完整版)弹塑性力学习题题库加答案
第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
武汉大学弹塑性力学课程习题集+答案
应力解平衡方程:0F z y x x =+∂∂+∂∂+∂∂zx yx x ττσ,几何方程:xux ∂∂=x ε,x u y u y x xy ∂∂+∂∂=γ, 物理方程:v x λεεσ+=2G x ,xy γτG xy =,边界条件x zx yx x T n m l =++ττσ 1、如图所示的楔形体受水压力作用,水的容重为γ,试写出边界条件解:在x =0上,l = -1,m =0, (σx )x=0⋅ (-1) +(τyx )x =0⋅0 = γy (τxy )x =0⋅ (-1) +(σy )x =0⋅0 = 0 (σx )x =0=-γy (τxy )x =0⋅在斜边上 l = cos α,m = -sin ασx cos α - τyx sin α = 0 τxy cos α -σy sin α = 02、半无限空间体受均布荷载作用根据问题的对称性,位移应只是z 的函数 u z =w (z ) 体积应变是dzdwz u y u x u z y x v =∂∂+∂∂+∂∂=ε 代入平衡微分方程()0222=++g dzwd G ρλ,()()()()B A z g E w ++--+-=212211ρννν应力是()A z G vvy x +--==ρσσ1,()A z G z +-=ρσ,0===zx yz xy τττ 应用边界条件求待定常数:l =m =0,n =1,0==y x T T ,q T z =边界条件是:σz ⎪z =0=q 得A =q /ρg ,B 代表刚度位移,应由位移边界条件确定3、用应力函数ϕ=dxy 3+bxy 求解悬臂梁一端受集中力作用下问题的应力解(不考虑体积力)。
解:(1)显然满足变形协调方程(2)满足静力边界条件 由应力函数求应力分量dx y 6y 22=∂∂=ϕσx ,0x22=∂∂=ϕσy ,b dy 3y x 22--=∂∂∂-=ϕτxy (a )边界条件:在2hy ±=处,()02=±=h y y σ,()02=±=h y xy τ (b ) (a )代入(b )得: 0)2(32=--b hd (c )在x =0的边界(l = -1,m = 0)上,力边界条件要求0dxy 61m l X 0=-=⋅-=+==x x yx x στσ,b dy 31m l Y 2+=⋅-=+=xy y xy τστO α1yx应用圣维南原理近似满足:bh dh 41bydy 1dy Y P 3223+=+=⋅=-⎰h h (d ) 联立(c )和(d )得,h P 23b =,3hP2d -= (e ) 将(e )代入(a )并由12I 3h =,28S 22y h -=,Px -=M 得 y I M =x σ,σy = 0 ,IPS -=xy τ4、简支梁收均匀分布荷载作用,梁高度h ,跨度2L ,试求应力分量和跨中挠度设σy 仅是y 的函数,σy =f(y),即()y f x y =∂∂=22ϕσ,得()()()y f y xf y f x 21221++=ϕ 代入协调方程022=∇∇ϕ得,022122424414442=+++dyfd dy f d dy f d x dy f d x 对于-L ≤x ≤L ,上面方程都成立,所以44dy fd =0,414dy f d =0,224242dy f d dy f d +=0 积分得: f(y)=A y 3+B y 2+C y +D , f 1(y)=E y 3+F y 2+G y +R ,()M Ly Ky Hy y B y A y f ++++--=23452610 因此 ()()⎪⎭⎫⎝⎛++--+++++++=23452323261021Ky Hy y B y A Gy Fy Ey x D Cy By Ay x ϕ 得:()()K Hy By Ay F Ey x B Ay x yx 262226323222++--+++=∂∂=ϕσ DCy By Ay xy +++=∂∂=2322ϕσ()()G Fy Ey C By Ay x yx xy++-++-=∂∂∂-=2323222ϕτ由σx ,σy ,是x 的偶函数,τxy 是x 的奇函数得:E=F=G=0 上下边界条件:()q h y y -=-=2σ,()02==h y y σ,()02=-=h y xy τ,()02==h y xy τ将σx ,σy ,τxy 代入得A=-2q/h 3 ,B=0,C=3q/2h ,D=-q/2由对称性,两端边界条件:()01=*=+==L x x yx x x m l T στσ,()⎪⎭⎫ ⎝⎛+--=*=+==h q y hqL m l T L x xy y xy y 236123τστ,由圣维南原理,()0222===--⎰⎰dy dy T Lx h h x h h x σ,()qL dy dy T Lx h h xyh h y -===--⎰⎰2222τ,()022===--⎰⎰ydy dy y T Lx h h x h h x σ 将σx ,σy ,τxy 代入得h q hqL H 1032-= ,K=0,将以上常数代入σx ,σy ,τxy 得出应力解为⎪⎪⎭⎫ ⎝⎛-+=53422h y h y q y I M x σ,22112⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+-=h y h y q y σ,I QSxy =τ 其中,()222x L q M -=,qx Q -= RITZ 法1.假定矩形板支承与承受荷载如图所示, 试写出挠度表示的各边边界条件: 解:简支边OC 的边界条件是:()00==y ω()0022220)(M xy D M y y y -=∂∂+∂∂-===ωνω自由边AB 的边界条件是:()0)(2222=∂∂+∂∂===b x by y x y M ωνω,()()q y x y D V by b y y -=⎪⎪⎭⎫ ⎝⎛∂∂∂-+∂∂-===23332ωνω 两自由边的交点B :()0,===b y a x ω()B by a x xy R M ===,2是B 点支座的被动反力。
弹塑性力学习题集 很全有答案
图中有虚线所示的剪应力τ ′ 时,能否应用平面应力圆求解。
题 2—26 图
2—27* 试求:如(a) 图所示,ABC 微截面与 x、y、z 轴等倾斜,但τ xy ≠ 0, τ yz ≠ 0, τ zx ≠ 0, 试问该截面是否为八面体截面?如图(b) 所示,八面体各截面上的τ 8 指向是否垂直棱边?
2—21*
证明等式:
J3
=
1 3
S ik
S km S mi
。
2—22* 试证在坐标变换时, I1 为一个不变量。要求:(a) 以普通展开式证明; (b) 用
张量计算证明。
5 3 8 2—23 已知下列应力状态: σ ij = 3 0 3 MPa ,试求八面体单元的正应力 σ 8 与剪
8 3 11
应力τ 8 。 2—24* 一点的主应力为: σ1 = 75a, σ 2 = 50a, σ 3 = −50a ,试求八面体面上的全应力
题 2—27 图
2—28 设一物体的各点发生如下的位移:
u = a0 + a1x + a2 y + a3 z v = b0 + b1x + b2 y + b3 z w = c0 + c1x + c2 y + c3 z 式中 a0 L, a1 L, a2 L 为常数,试证各点的应变分量为常数。 2—29 设已知下列位移,试求指定点的应变状态。
ε x = a0 + a1 (x 2 + y 2 ) + x 4 + y 4 , ε y = b0 + b1 (x 2 + y 2 ) + x 4 + y 4 , γ xy = c0 + c1 xy(x 2 + y 2 + c2 ), ε z = γ zx = γ yz = 0.
弹塑性力学习题集_很全有答案_
σ y = cx + dy − γy , τ xy = − dx − ay ,其它应力分量为零。试根据
直边及斜边上的边界条件,确定常数 a、b、c、d。 2—16* 已知矩形截面高为 h, 宽为 b 的梁受弯曲时的正 My 12 M 应力 σ z = = y, 试求当非纯弯时横截面上的剪应力公 J bh 3 式。 (利用弹塑性力学平衡微分方程)
题 2—15 图
12 6 0 2—17 已知一点处的应力张量为: σ ij = 6 10 0 MPa ,试求该点的最大主应力及 0 0 0 其主方向。 2—18* 在物体中某一点 σ x = σ y = σ z = τ xy = 0 ,试以 τ yz 和 τ zx 表示主应力。
3—1
为 ε 1 = 1.7 × 10 −4 , ε 2 = 0.4 × 10 −4 。已知ν = 0.3,试求主应变 ε 3 。
3—9 如题 4—9 图示尺寸为 1×1×1cm 的铝方块,无间隙地嵌入——有槽的钢块中。 设钢块不变形,试求:在压力 P = 6KN 的作用下铝块内一点应力状态的三个主应力及主应 变,铝的弹性常数 E=70Gpa,ν = 0.33。 3—10* 直径 D = 40mm 的铝圆柱体, 无间隙地放入厚度为 δ = 2mm 的钢套中, 圆柱受
v = b0 + b1 x + b2 y + b3 z w = c 0 + c1 x + c 2 y + c3 z
式中 a 0 L , a1 L , a 2 L 为常数,试证各点的应变分量为常数。 2—29 设已知下列位移,试求指定点的应变状态。
(1) u = (3x 2 + 20) × 10 −2 , v = (4 yx) × 10 −2 ,在(0,2)点处。 (2) u = (6 x 2 + 15) × 10 −2 , v = (8 zy ) × 10 −2 , w = (3z 2 − 2 xy) × 10 −2 ,在(1,3,4)点处。 2—30 试证在平面问题中下式成立: εx + εy =ε′ x + ε′ y
(完整版)弹塑性力学习题题库加答案.docx
第二章 应力理论和应变理论2— 15.如 所示三角形截面水 材料的比重 γ,水的比重 γ 1。
己求得 力解 :σ x = ax+by , σy =cx+dy- γy , τxy =-dx-ay ;根据直 及斜 上的 界条件,确定常数 a 、b 、c 、 d 。
解:首先列出OA 、 OB 两 的 力 界条件:OA :l 1=-1 ;l 2=0 ;T x= γ1 y ; T y =0σx =-γ1y ; τxy =0代入: σx =ax+by ; τxy =-dx-ay 并 注 意 此 : x =0得 : b=- γ1; a=0;OB : l 1=cos β ; l 2=-sin β, T x =T y =0:x cosxy sin0 yx cosy sin⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( a )将己知条件: σ x=1xy=-dxyγ y-γ y ; τ; σ =cx+dy-代入( a )式得:1 y cos dx sin0L L L L L L L L L bdx coscxdyy sin L L L L L L L L L化 ( b )式得: d = γ12β;ctgT4n2τ 30° δ 30°30°化 ( c )式得: c =γctg β -2γ 13y10x10Ox12 6τxy103 Pa2— 17.己知一点 的 力 量6 10 00 0δ y求 点的最大主 力及其主方向。
x题1-3 图解:由 意知 点 于平面 力状 ,且知:σx =12×O103σ y =10× 103 τ xy =6× 103,且 点的主 力可由下式求得:β212 101221.2xyxy21023n 22xy22610βγ 1y113710311 6.0828 10317.083 10 3 Paγ34.91724 10BA然:y117.083 10 3Pa2 4.917 10 3Pa30σ 1 与 x 正向的 角 : (按材力公式 算)c2 xy2 6 12 sin 2tg 2121026xycos2然 2θ 第Ⅰ象限角: 2θ=arctg ( +6) =+80.5376 °则:θ=+40.2688 B 40° 16'或(-139° 44')2— 19.己知应力分量为:σx=σy=σz=τxy=0,τzy=a,τzx=b,试计算出主应力σ1、σ2、σ3 并求出σ2 的主方向。
弹塑性力学部分习题及答案
解
根据梁的弯曲变形公式,y = Fx/L(L - x),其中y为挠度,F 为力,L为梁的长度。代入题目给定的数据,得y = (frac{300 times (4 - x)}{8})。当x = 2时,y = (frac{300 times (4 - 2)}{8}) = 75mm。
习题三答案及解析
解析
和变形情况。
04
弹塑性力学弹塑性力学的基本假设。
答案
弹塑性力学的基本假设包括连续性假设、均匀性假设、各向同性假设和非线性假设。连 续性假设认为物质是连续的,没有空隙;均匀性假设认为物质的性质在各个位置都是相 同的;各向同性假设认为物质的性质在不同方向上都是相同的;非线性假设认为弹塑性
习题二答案及解析
01 02 03 04
解析
选择题主要考察基本概念的理解,如能量守恒定律、牛顿第二定律等 。
填空题涉及简单的力学计算,如力的合成与分解、牛顿第二定律的应 用等。
计算题要求应用能量守恒定律和牛顿第二定律进行计算,需要掌握基 本的力学原理和公式。
习题三答案及解析
01
答案
02
选择题
03
1. A
2. 解
根据牛顿第二定律,F = ma,其中F为力,m为质量,a 为加速度。代入题目给定的数据,得a = (frac{400}{5}) = 80m/s(}^{2})。再根据运动学公式s = ut + (frac{1}{2})at(}^{2}),得s = 10 × 2 + (frac{1}{2} times 80 times (2)^2) = 108m。
04
计算题要求应用胡克定律和动量守恒定律进行计算,需要掌握基本的 力学原理和公式。
习题二答案及解析
同济大学弹塑性力学试卷及习题解答(完整资料).doc
【最新整理,下载后即可编辑】弹塑性力学试卷及习题解答弹塑性力学试卷配套教材《弹性与塑性力学》陈惠发1.是非题(认为该题正确,在括号中打√;该题错误,在括号中打×。
)(每小题2分)(1)物体内某点应变为0值,则该点的位移也必为0值。
( )(2)可用矩阵描述的物理量,均可采用张量形式表述。
( )(3)因张量的分量是随坐标系的变化而变化,故张量本身也应随坐标系变化。
( )(4)弹性的应力和应变张量两者的主方向是一致性,与材料无关的。
( )(5)对于常体力平面问题,若应力函数()y x ,ϕ满足双调和方程022=∇∇ϕ,那么,由()y x ,ϕ确定的应力分量必然满足平衡微分方程。
( )(6)若某材料在弹性阶段呈各向同性,故其弹塑性状态势必也呈各向同性。
( )(7)Drucker 假设适合于任何性质的材料。
( )(8)应变协调方程的几何意义是:物体在变形前是连续的,变形后也是连续的。
( )(9)对于任何材料,塑性应变增量均沿着当前加载面的法线方向。
( ) (10)塑性应变增量的主方向与应力增量的主方向不重合。
P107;226 ( )2.填空题(在每题的横线上填写必要的词语,以使该题句意完整。
)(每小题2分)(1)设()4322241,y a y x a x a y x ++=ϕ,当321,,a a a 满足_______________________关系时()y x ,ϕ能作为应力函数。
(2)弹塑性力学是研究固体受外界因素作用而产生的______________________的一门学科。
(3)导致后继屈曲面出现平移及扩大的主要原因是材料______________________。
(4)π平面上的一点对应于应力的失量的______________________。
P65(5)随动强化后继屈服面的主要特征为:___________________________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 应力理论和应变理论2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及30301026.768 6.77()104sin 2cos 2sin 602cos 6022132 3.598 3.60()22x y xy MPa MPa σσστατα=--=----+=⋅+=⋅-=-⨯-⨯=--代入弹性力学的有关公式得: 己知 σx = -10 σy = -4 τxy = +23030()cos 2sin 2221041041cos 602sin 6073222226.768 6.77()104sin 2cos 2sin 602cos 6022132 3.598 3.60()2x yx yxy x y xy MPa MPa σσσσσατασστατα+-=++---+=++=--⨯+⨯=----+=-⋅+=-⋅+=+⨯=由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。
2—6. 悬挂的等直杆在自重W 作用下(如图所示)。
材料比重为γ弹性模量为 E ,横截面面积为A 。
试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。
解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得:题图1-3c 截面的内力:N z =γ·A ·z ; c 截面上的应力:z z N A z z A Aγσγ⋅⋅===⋅; 所以离下端为z 处的任意一点c 的线应变εz 为:zz zEEσγε==;则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为:()22zzzzz z z z y zz l d l d d zd EEEγγγε=⎰⋅∆=⎰⋅=⎰=⎰=;显然该杆件的总的伸长量为(也即下端面的位移):()2222ll A l lW ll d l EEAEAγγ⋅⋅⋅⋅⋅=⎰∆=== ;(W=γAl )2—9.己知物体内一点的应力张量为:σij =50030080030003008003001100-⎡⎤⎢⎥+-⎢⎥⎢⎥--⎣⎦应力单位为kg /cm 2 。
试确定外法线为n i (也即三个方向余弦都相等)的微分斜截面上的总应力n P 、正应力σn 及剪应力τn 。
题—图16解:首先求出该斜截面上全应力n P 在x 、y 、z 三个方向的三个分量:n '=n x =n y =n zP x =()x xy xz σττ++n '=()2538100++-⨯=⎡⎤⎣⎦P y =()yx y yz τστ++n '=()2303100++-⨯=⎡⎤⎣⎦ P z =()zx yz z ττσ++n '=()()28311100-+-+⨯=⎡⎤⎣⎦所以知,该斜截面上的全应力n P 及正应力σn 、剪应力τn 均为零,也即: P n =σn = τn = 02—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0cos sin 0x xy yx y σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β; 化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢==⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376° 则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
解:由2—11题计算结果知该题的三个主应力分别为:1σ=20σ=;3σ=设σ2与三个坐标轴x 、y 、z 的方向余弦为:l 21、l 22、l 23,于是将方向余弦和σ2值代入下式即可求出σ2的主方向来。
()()()()()()21222232321222232321222322122010203x yx xz xz yx y yz zy zx zy z yx zy l l l l l l l l l l l l l σσττττσσττττσσττ⎧-++==⎪⎪+-+==⎨⎪++-=+=⎪⎩以及:()22221222314l l l ++=由(1)(2)得:l 23=0 由(3)得:2122l a l b =-;2221l b l a=-; 将以上结果代入(4)式分别得:21l ===;22l ===;2122al l b =-22l ∴==同理21l = 于是主应力σ2的一组方向余弦为:(,22b a b+0);σ3的一组方向余弦为(,,2±); 2—20.证明下列等式:(1):J 2=I 2+2113I ; (3):()212ii kk ik ik I σσσσ=--; 证明(1):等式的右端为: ()()22211223311231133I I σσσσσσσσσ+=-+++++()()22212312233112233112223σσσσσσσσσσσσσσσ=+++++-++ ()()()222123122331122331246666σσσσσσσσσσσσσσσ=+++++-++22212312233126σσσσσσσσσ⎡⎤=++---⎣⎦ 22222211222233331112226σσσσσσσσσσσσ⎡⎤=-++-++-+⎣⎦()()()222122331216J σσσσσσ⎡⎤=-+-+-=⎣⎦故左端=右端 证明(3):()212ii kk ik ik I σσσσ=-- 右端=()12ii kk ik ik σσσσ- ()()()222222122x y z xy yz zx x y z x y z σσστττσσσσσσ⎡⎤=+++++-++++⎣⎦ ()()2222222221222x y z xy yz zx x y z x y y z z x σσστττσσσσσσσσσ⎡⎤=+++++----++⎣⎦ ()2222x y y z z x xy yz zx I σσσσσστττ=-++---=2—28:设一物体的各点发生如下的位移。
012301230123u a a x a y a zv b b x b y b z w c c x c y c z=+++⎧⎪=+++⎨⎪=+++⎩式中a 0、a 1………c 1、c 2均为常数,试证各点的应变分量为常数。
证明:将己知位移分量函数式分别代入几何方程得:1x u a xε∂==∂;2y v b yε∂==∂;3z w c z ε∂==∂;12xy u v b a y x γ∂∂=+=+∂∂;23yz v wc b z yγ∂∂=+=+∂∂; 31zx u w a c y x γ∂∂=+=+∂∂;2—29:设己知下列位移,试求指定点的应变状态。
(1):()()22232010410u x v yx --⎧=+⨯⎪⎨=⨯⎪⎩ 在(0,2)点处;(2):()()()22222615103210810u x w z xy v zy ---⎧=+⨯⎪⎪=-⨯⎨⎪=⨯⎪⎩在(1,3,4)点处解(1):2610x ux xε-∂==⋅∂ 2410y v x y ε-∂==⋅∂ 20410xy u v y y x γ-∂∂=+=+⋅∂∂ 在(0,2)点处,该点的应变分量为: 0x y εε==;2810xy γ-=⨯;写成张量形式则为:204040010000ij ε-⎡⎤⎢⎥=⨯⎢⎥⎢⎥⎣⎦;解(2):将己知位移分量函数式代入几何方程求出应变分量函数式,然后将己知点坐标(1,3,4)代入应变分量函数式。
求出设点的应变状态。
2212101210x ux xε--∂===⨯∂; 228103210y v z y ε--∂===⨯∂ 226102410z wz zε--∂===⨯∂; 0xy u v y x γ∂∂=+=∂∂ ()()2228210242102210yz v w y x z y γ---∂∂=+=+-=-⨯=⨯⎡⎤⎣⎦∂∂ ()222010610zx w u y x zγ--∂∂=+=-+=-⨯∂∂; 用张量形式表示则为:21203032111031124ij ε--⎡⎤⎢⎥=⨯⎢⎥⎢⎥-⎣⎦2—32:试说明下列应变状态是否可能(式中a 、b 、c 均为常数)(1):()22200000ij c x y cxy cxy cy ε⎡⎤+⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦(2): ()()()()222222222210210211022ij axy ax by ax y az by ax by az by ε⎡⎤+⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥++⎢⎥⎣⎦(3): ()22200000ij c x y z cxyz cxyz cy z ε⎡⎤+⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦解(1):由应变张量εij 知:εxz =εyz =εzx =εzy =εz =0 而εx 、εy 、εxy 及εyx 又都是x 、y坐标的函数,所以这是一个平面应变问题。