高中数学必修五人教版a版教材课后习题答案及解析

合集下载

人教版高中数学必修5教科书课后习题答案

人教版高中数学必修5教科书课后习题答案

人民教育出版社 高中数学必修五第一章 解三角形1.1两角和与差的正弦、余弦和正切公式 练习(P4) 1、(1)14a ≈,19b ≈,105B =︒; (2)18a ≈cm ,15b ≈cm ,75C =︒. 2、(1)65A ≈︒,85C ≈︒,22c ≈;或115A ≈︒,35C ≈︒,13c ≈; (2)41B ≈︒,24A ≈︒,24a ≈. 练习(P8) 1、(1)39.6,58.2, 4.2 cm A B c ≈︒≈︒≈; (2)55.8,81.9,10.5 cm B C a ≈︒≈︒≈. 2、(1)43.5,100.3,36.2A B C ≈︒≈︒≈︒; (2)24.7,44.9,110.4A B C ≈︒≈︒≈︒. 习题1.1 A 组(P10) 1、(1)38,39,80a cm b cm B ≈≈≈︒; (2)38,56,90a cm b cm C ≈≈=︒ 2、(1)114,43,35;20,137,13A B a cm A B a cm ≈︒≈︒≈≈︒≈︒≈ (2)35,85,17B C c cm ≈︒≈︒≈;(3)97,58,47;33,122,26A B a cm A B a cm ≈︒≈︒≈≈︒≈︒≈; 3、(1)49,24,62A B c cm ≈︒≈︒≈; (2)59,55,62A C b cm ≈︒≈︒≈; (3)36,38,62B C a cm ≈︒≈︒≈; 4、(1)36,40,104A B C ≈︒≈︒≈︒; (2)48,93,39A B C ≈︒≈︒≈︒;习题1.1 A 组(P10)1、证明:如图1,设ABC ∆的外接圆的半径是R ,①当ABC ∆时直角三角形时,90C ∠=︒时,ABC ∆的外接圆的圆心O 在Rt ABC ∆的斜边AB 上.在Rt ABC ∆中,sin BC A AB=,sin ACB AB = 即sin 2a A R =,sin 2b B R = 所以2sin a R A =,2sin b R B = 又22sin902sin c R R RC ==⋅︒= 所以2sin , 2sin , 2sin a R A b R B c R C ===②当ABC ∆时锐角三角形时,它的外接圆的圆心O 在三角形内(图2),作过O B 、的直径1A B ,连接1A C ,则1A BC ∆直角三角形,190ACB ∠=︒,1BAC BAC ∠=∠. 在1Rt A BC ∆中,11sin BCBAC A B=∠, 即1sin sin 2aBAC A R=∠=, 所以2sin a R A =,同理:2sin b R B =,2sin c R C =③当ABC ∆时钝角三角形时,不妨假设A ∠为钝角, 它的外接圆的圆心O 在ABC ∆外(图3)(第1题图1) (第1题图2)作过O B 、的直径1A B ,连接1A C .则1A BC ∆直角三角形,且190ACB ∠=︒,1180BAC∠=︒-∠在1Rt A BC ∆中,12sin BC R BAC =∠,即2sin(180)a R BAC =︒-∠即2sin a R A =同理:2sin b R B =,2sin c R C =综上,对任意三角形ABC ∆,如果它的外接圆半径等于则2sin , 2sin , 2sin a R A b R B c R C ===2、因为cos cos a A b B =,所以sin cos sin cos A A B B =,即sin2sin2A B = 因为02,22A B π<<,所以22A B =,或22A B π=-,或222A B ππ-=-. 即A B =或2A B π+=.所以,三角形是等腰三角形,或是直角三角形.在得到sin2sin2A B =后,也可以化为sin2sin20A B -= 所以cos()sin()0A B A B +-= 2A B π+=,或0A B -=即2A B π+=,或A B =,得到问题的结论.1.2应用举例 练习(P13)1、在ABS ∆中,32.20.516.1AB =⨯= n mile ,115ABS ∠=︒,根据正弦定理,sin sin(6520)AS ABABS =∠︒-︒得sin 16.1sin115sin(6520)AS AB ABS ==⨯∠=⨯︒-︒∴S 到直线AB 的距离是sin 2016.1sin115sin 207.06d AS =⨯︒=⨯︒≈(cm ). ∴这艘船可以继续沿正北方向航行. 2、顶杆约长1.89 m. 练习(P15)1、在ABP ∆中,180ABP γβ∠=︒-+,180()180()(180)BPA ABP αβαβγβγα∠=︒---∠=︒---︒-+=-在ABP ∆中,根据正弦定理,sin sin AP ABABP APB=∠∠ sin(180)sin()AP aγβγα=︒-+-sin()sin()a AP γβγα⨯-=-(第1题图3)所以,山高为sin sin()sin sin()a h AP αγβαγα-==-2、在ABC ∆中,65.3AC =m ,25251738747BAC αβ'''∠=-=︒-︒=︒909025256435ABC α''∠=︒-=︒-︒=︒ 根据正弦定理,sin sin AC BCABC BAC=∠∠ sin 65.3sin7479.8sin sin6435AC BAC BC ABC '⨯∠⨯︒==≈'∠︒m井架的高约9.8m.3、山的高度为200sin38sin 29382sin9⨯︒︒≈︒m练习(P16) 1、约63.77︒. 练习(P18) 1、(1)约2168.52 cm ; (2)约2121.75 cm ; (3)约2425.39 cm . 2、约24476.40 m3、右边222222cos cos 22a b c a c b b C c B b c ab ac+-+-=+=⨯+⨯22222222222a b c a c b a a a a a+-+-=+===左边 【类似可以证明另外两个等式】习题1.2 A 组(P19)1、在ABC ∆中,350.517.5BC =⨯= n mile ,14812622ABC ∠=︒-︒=︒78(180148)110ACB ∠=︒+︒-︒=︒,1801102248BAC ∠=︒-︒-︒=︒根据正弦定理,sin sin AC BCABC BAC=∠∠ sin 17.5sin 228.82sin sin 48BC ABC AC BAC ⨯∠⨯︒==≈∠︒n mile货轮到达C 点时与灯塔的距离是约8.82 n mile. 2、70 n mile.3、在BCD ∆中,301040BCD ∠=︒+︒=︒,1801804510125BDC ADB ∠=︒-∠=︒-︒-︒=︒130103CD =⨯= n mile根据正弦定理,sin sin CD BDCBD BCD=∠∠ 10sin (18040125)sin 40BD=∠︒-︒-︒︒10sin 40sin15BD ⨯︒=︒在ABD ∆中,451055ADB ∠=︒+︒=︒,1806010110BAD ∠=︒-︒-︒=︒1801105515ABD ∠=︒-︒-︒=︒根据正弦定理,sin sin sin AD BD AB ABD BAD ADB ==∠∠∠,即sin15sin110sin55AD BD AB==︒︒︒10sin 40sin15sin1510sin 40sin15 6.84sin110sin110sin 70BD AD ⨯︒⨯︒⨯︒⨯︒︒===≈︒︒︒n mile sin5510sin 40sin5521.65sin110sin15sin70BD AB ⨯︒⨯︒⨯︒==≈︒︒⨯︒n mile如果一切正常,此船从C 开始到B 所需要的时间为:6.8421.65206010306086.983030AD AB +++⨯+≈+⨯≈ min即约1小时26分59秒. 所以此船约在11时27分到达B 岛. 4、约5821.71 m5、在ABD ∆中,700 km AB =,1802135124ACB ∠=︒-︒-︒=︒根据正弦定理,700sin124sin35sin 21AC BC==︒︒︒700sin35sin124AC ⨯︒=︒,700sin 21sin124BC ⨯︒=︒700sin35700sin 21786.89 km sin124sin124AC BC ⨯︒⨯︒+=+≈︒︒所以路程比原来远了约86.89 km.6、飞机离A 处探照灯的距离是4801.53 m ,飞机离B 处探照灯的距离是4704.21 m ,飞机的高度是约4574.23 m.7、飞机在150秒内飞行的距离是15010001000 m 3600d =⨯⨯根据正弦定理,sin(8118.5)sin18.5d x=︒-︒︒这里x 是飞机看到山顶的俯角为81︒时飞机与山顶的距离.飞机与山顶的海拔的差是:sin18.5tan81tan8114721.64 m sin(8118.5)d x ⨯︒⨯︒=⨯︒≈︒-︒ 山顶的海拔是2025014721.645528 m -≈8、在ABT ∆中,21.418.6 2.8ATB ∠=︒-︒=︒,9018.6ABT ∠=︒+︒,15 m AB =根据正弦定理,sin 2.8cos18.6AB AT =︒︒,即15cos18.6sin 2.8AT ⨯︒=︒塔的高度为15cos18.6sin 21.4sin 21.4106.19 m sin 2.8AT ⨯︒⨯︒=⨯︒≈︒9、3261897.8 km 60AE ⨯== 在ACD ∆中,根据余弦定理:AC =101.235== 根据正弦定理,sin sin AD ACACD ADC=∠∠ sin 57sin66sin 0.5144101.235AD ADC ACD AC ⨯∠⨯︒∠==≈30.96ACD ∠≈︒13330.96102.04ACB ∠≈︒-︒=︒(第9题)在ABC ∆中,根据余弦定理:AB =245.93=≈222222245.93101.235204cos 0.584722245.93101.235AB AC BC BAC AB AC +-+-∠==≈⨯⨯⨯⨯54.21BAC ∠=︒在ACE ∆中,根据余弦定理:CE =90.75=≈22222297.890.75101.235cos 0.42542297.890.75AE EC AC AEC AE EC +-+-∠=≈≈⨯⨯⨯⨯64.82AEC ∠=︒180(18075)7564.8210.18AEC ︒-∠-︒-︒=︒-︒=︒所以,飞机应该以南偏西10.18︒的方向飞行,飞行距离约90.75 km . 10、如图,在ABC ∆AC ==37515.44 km ==222222640037515.44422000.692422640037515.44AB AC BC BAC AB AC +-+-∠=≈≈-⨯⨯⨯⨯133.82BAC ∠≈︒, 9043.82BAC ∠-︒≈︒ 所以,仰角为43.82︒11、(1)211sin 2833sin 45326.68 cm 22S ac B ==⨯⨯⨯︒≈(2)根据正弦定理:sin sin a c A C =,36sin sin66.5sin sin32.8a c C A =⨯=⨯︒︒2211sin66.5sin 36sin(32.866.5)1082.58 cm 22sin32.8S ac B ︒==⨯⨯⨯︒+︒≈︒(3)约为1597.94 2cm12、212sin 2nR nπ.13、根据余弦定理:222cos 2a c b B ac +-= 所以222()2cos 22a a a m c c B =+-⨯⨯⨯B22222()22a a c b c a c ac +-=+-⨯⨯222222222211()[42()]()[2()]22a c a c b b c a =+-+-=+-所以a m =b m =,c m =14、根据余弦定理的推论,222cos 2b c a A bc +-=,222cos 2c a b B ca+-=所以,左边(cos cos )c a B b A =-222222()22c a b b c a c a b ca bc +-+-=⨯-⨯222222221()(22)222c a b b c a c a b c c +-+-=-=-=右边习题1.2 B 组(P20)1、根据正弦定理:sin sin a b A B =,所以sin sin a Bb A= 代入三角形面积公式得211sin 1sin sin sin sin 22sin 2sin a B B CS ab C a C a A A==⨯⨯= 2、(1)根据余弦定理的推论:222cos 2a b c C ab +-=由同角三角函数之间的关系,sin C == 代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p == (3)根据三角形面积公式12a S a h =⨯⨯所以,22()()()a S h p p a p a p a a a ==---,即2()()()a h p p a p a p a a =--- 同理2()()()b h p p a p a p a b =---,2()()()c h p p a p a p a c=---第一章 复习参考题A 组(P24)1、(1)219,3851,8.69 cm B C c ''≈︒≈︒≈; (2)4149,10811,11.4 cm B C c ''≈︒≈︒≈;或13811,1149, 2.46 cm B C c ''≈︒≈︒≈ (3)112,3858,28.02 cm A B c ''≈︒≈︒≈; (4)2030,1430,22.92 cm B C a ''≈︒≈︒≈; (5)1620,1140,53.41 cm A C b ''≈︒≈︒≈; (6)2857,4634,10429A B C '''=︒=︒=︒; 2、解法1:设海轮在B 处望见小岛在北偏东75︒,在C 处望见小岛在北偏东60︒,从小岛A 向海轮的航线BD 作垂线,垂线段AD 的长度为x n mile ,CD 为y n mile.则 tan 30tan 308tan 30tan15tan1588tan15x x y y x x x x y y ⎧⎧=︒=⎪⎪⎪⎪︒⇒⇒=-⎨⎨︒︒⎪⎪=︒=+⎪⎪+︒⎩⎩8tan15tan304tan30tan15x ︒︒==︒-︒所以,这艘海轮不改变航向继续前进没有触礁的危险. 3、根据余弦定理:2222cos AB a b ab α=+-所以 222cos AB a b ab α=+-222cos 2a AB b B a AB+-=⨯⨯2222222cos 22cos a a b ab b a a b ab αα++--=⨯⨯+-22cos 2cos a b a b ab αα-=+-从B ∠的余弦值可以确定它的大小.类似地,可以得到下面的值,从而确定A ∠的大小. 22cos cos 2cos b a A a b ab αα-=+-4、如图,,C D 是两个观测点,C 到D 的距离是d ,航船在时刻1t 在A 处,以从A 到B 的航向航行,在此时测出ACD ∠和CDA ∠. 在时刻2t ,航船航行到B 处,此时,测出CDB ∠和BCD ∠. 根据正弦定理,在BCD ∆中,可以计算出BC 的长,在ACD ∆中,可以计算出AC 的长. 在ACB ∆中,AC 、BC 已经算出,ACB ACD BCD ∠=∠-∠,解ACD ∆, 求出AB 的长,即航船航行的距离,算出CAB ∠,这样就可以算出航船的航向和速度.(第2题)dCBA(第4题)5、河流宽度是sin()sin sin h αβαβ-. 6、47.7 m.7、如图,,A B 是已知的两个小岛,航船在时刻1t 在C 处,以从C 到D 的航向航行,测出ACD ∠和BCD ∠. 在时刻2t ,航船航行到D 处,根据时间和航船的速度,可以计算出C 到D 的距离是d ,在D 处测出CDB ∠和 CDA ∠. 根据正弦定理,在BCD ∆中,可以计算出BD 的长,在ACD ∆中,可以计算出AD 的长. 在ABD ∆中,AD 、BD 已经算出,ADB CDB CDA ∠=∠-∠,根据余弦定理,就可 以求出AB 的长,即两个海岛,A B 的距离.第一章 复习参考题B 组(P25)1、如图,,A B 是两个底部不可到达的建筑物的尖顶,在地面某点处,测出图中AEF ∠,AFE ∠的大小,以及EF 的距离. 定理,解AEF ∆,算出AE . 在BEF ∆中,测出BEF ∠和BFE ∠, 利用正弦定理,算出BE . 在AEB ∆中,测出AEB ∠,利用余弦定 理,算出AB 的长. 本题有其他的测量方法.2、关于三角形的面积公式,有以下的一些公式:(1)已知一边和这边上的高:111,,222a b c S ah S bh S ch ===;(2)已知两边及其夹角:111sin ,sin ,sin 222S ab C S bc A S ca B===;(3)已知三边:S =,这里2a b cp ++=;(4)已知两角及两角的共同边:222sin sin sin sin sin sin ,,2sin()2sin()2sin()b C Ac A B a B CS S S C A A B B C ===+++;(5)已知三边和外接圆半径R :4abc S R=. 3、设三角形三边长分别是1,,1n n n -+,三个角分别是,3,2απαα-.由正弦定理,11sin sin 2n n αα-+=,所以1cos 2(1)n n α+=-. 由余弦定理,222(1)(1)2(1)cos n n n n n α-=++-⨯+⨯⨯.即2221(1)(1)2(1)2(1)n n n n n n n +-=++-⨯+⨯⨯-,化简,得250n n -=所以,0n =或5n =. 0n =不合题意,舍去. 故5n =所以,三角形的三边分别是4,5,6. 可以验证此三角形的最大角是最小角的2倍. 另解:先考虑三角形所具有的第一个性质:三边是连续的三个自然数.(1)三边的长不可能是1,2,3. 这是因为123+=,而三角形任何两边之和大于第三边. (2)如果三边分别是2,3,4a b c ===.因为 2222223427cos 22348b c a A bc +-+-===⨯⨯22717cos22cos 12()1832A A =-=⨯-=2222222341cos 22234a b c C ab +-+-===-⨯⨯在此三角形中,A 是最小角,C 是最大角,但是cos2cos A C ≠, 所以2A C ≠,边长为2,3,4的三角形不满足条件.(3)如果三边分别是3,4,5a b c ===,此三角形是直角三角形,最大角是90︒,最小角不等于45︒. 此三角形不满足条件. (4)如果三边分别是4,5,6a b c ===.此时,2222225643cos 22564b c a A bc +-+-===⨯⨯2231cos22cos 12()148A A =-=⨯-=2222224561cos 22458a b c C ab +-+-===⨯⨯此时,cos2cos A C =,而02,A C π<<,所以2A C = 所以,边长为4,5,6的三角形满足条件.(5)当4n >,三角形的三边是,1,2a n b n c n ==+=+时,三角形的最小角是A ,最大角是C . 222cos 2b c a A bc +-=222(1)(2)2(1)(2)n n n n n +++-=++2652(1)(2)n n n n ++=++52(2)n n +=+1322(2)n =++222cos 2a b c C ab +-=222(1)(2)2(1)n n n n n ++-+=+2232(1)n n n n --=+32n n -=1322n=-cos A 随n 的增大而减小,A 随之增大,cos C 随n 的增大而增大,C 随之变小. 由于4n =时有2C A =,所以,4n >,不可能2C A =. 综上可知,只有边长分别是4,5,6的三角形满足条件.第二章 数列2.1数列的概念与简单表示法 练习(P31) 1、2、前5项分别是:1,0,1,0,1--.3、例1(1)1(2,)1(21,)n n m m N na n m m N n⎧-=∈⎪⎪=⎨⎪=-∈⎪⎩**; (2)2(2,)0(21,)n n m m N a n m m N ⎧=∈⎪=⎨=-∈⎪⎩**说明:此题是通项公式不唯一的题目,鼓励学生说出各种可能的表达形式,并举出其他可能的通项公式表达形式不唯一的例子.4、(1)1()21n a n Z n +=∈-; (2)(1)()2n n a n Z n +-=∈; (3)121()2n n a n Z +-=∈ 习题2.1 A 组(P33) 1、(1)2,3,5,7,11,13,17,19;(2) (3)1,1.7,1.73,1.732,…1.732050; 2,1.8,1.74,1.733,…,1.732051.2、(1)11111,,,,491625; (2)2,5,10,17,26--.3、(1)(1),4-,9,(16-),25,(36-),49; 12(1)n n a n +=-; (2)1,(,2;n a =4、(1)1,3,13,53,2132; (2)141,5,,,5454--.5、对应的答案分别是:(1)16,21;54n a n =-;(2)10,13;32n a n =-;(3)24,35;22n a n n =+.6、15,21,28; 1n n a a n -=+. 习题2.1 B 组(P34)1、前5项是1,9,73,585,4681.该数列的递推公式是:1118,1n n a a a +=+=.通项公式是:817n n a -=.2、110(10.72)10.072a =⨯+=﹪; 2210(10.72)10.144518a =⨯+=﹪; 3310(10.72)10.217559a =⨯+=﹪; 10(10.72)n n a =⨯+﹪. 3、(1)1,2,3,5,8; (2)358132,,,,2358.2.2等差数列练习(P39)1、表格第一行依次应填:0.5,15.5,3.75;表格第二行依次应填:15,11-,24-.2、152(1)213n a n n =+-=+,1033a =.3、4n c n =4、(1)是,首项是11m a a md +=+,公差不变,仍为d ;(2)是,首项是1a ,公差2d ;(3)仍然是等差数列;首项是716a a d =+;公差为7d . 5、(1)因为5375a a a a -=-,所以5372a a a =+. 同理有5192a a a =+也成立; (2)112(1)n n n a a a n -+=+>成立;2(0)n n k n k a a a n k -+=+>>也成立. 习题2.2 A 组(P40)1、(1)29n a =; (2)10n =; (3)3d =; (4)110a =.2、略.3、60︒.4、2℃;11-℃;37-℃.5、(1)9.8s t =; (2)588 cm ,5 s. 习题2.2 B 组(P40)1、(1)从表中的数据看,基本上是一个等差数列,公差约为2000,52010200280.2610a a d =+=⨯ 再加上原有的沙化面积5910⨯,答案为59.2610⨯;(2)2021年底,沙化面积开始小于52810 hm ⨯. 2、略. 2.3等差数列的前n 项和 练习(P45) 1、(1)88-; (2)604.5.2、59,11265,112n n a n n ⎧=⎪⎪=⎨+⎪>⎪⎩ 3、元素个数是30,元素和为900.习题2.3 A 组(P46)1、(1)(1)n n +; (2)2n ; (3)180个,和为98550; (4)900个,和为494550.2、(1)将120,54,999n n a a S ===代入1()2n n n a a S +=,并解得27n =; 将120,54,27n a a n ===代入1(1)n a a n d =+-,并解得1713d =.(2)将1,37,6293n d n S ===代入1(1)n a a n d =+-,1()2n n n a a S +=,得111237()6292n n a a a a =+⎧⎪⎨+=⎪⎩;解这个方程组,得111,23n a a ==.(3)将151,,566n a d S ==-=-代入1(1)2n n n S na d -=+,并解得15n =;将151,,1566a d n ==-=代入1(1)n a a n d =+-,得32n a =-.(4)将2,15,10n d n a ===-代入1(1)n a a n d =+-,并解得138a =-;将138,10,15n a a n =-=-=代入1()2n n n a a S +=,得360n S =-. 3、44.5510⨯m. 4、4.5、这些数的通项公式:7(1)2n -+,项数是14,和为665.6、1472.习题2.3 B 组(P46)1、每个月的维修费实际上是呈等差数列的. 代入等差数列前n 项和公式,求出5年内的总共的维修费,即再加上购买费,除以天数即可. 答案:292元.2、本题的解法有很多,可以直接代入公式化简,但是这种比较繁琐. 现提供2个证明方法供参考. (1)由 61615S a d =+,1211266S a d =+,18118153S a d =+ 可得61812126()2()S S S S S +-=-. (2)1261212126()()S S a a a a a a -=+++-+++7812a a a =+++126(6)(6)(6)a d a d a d =++++++126()36a a a d =++++636S d =+同样可得:1812672S S S d -=+,因此61812126()2()S S S S S +-=-.3、(1)首先求出最后一辆车出发的时间4时20分;所以到下午6时,最后一辆车行驶了1小时40分.(2)先求出15辆车总共的行驶时间,第一辆车共行驶4小时,以后车辆行驶时间依次递减,最后一辆行驶1小时40分. 各辆车的行驶时间呈等差数列分布,代入前n 项和公式,这个车队所有车的行驶时间为2418531522S +=⨯= h. 乘以车速60 km/h ,得行驶总路程为2550 km. 4、数列1(1)n n ⎧⎫⎨⎬+⎩⎭的通项公式为111(1)1n a n n n n ==-++ 所以111111111()()()()1122334111n nS n n n n =-+-+-++-=-=+++ 类似地,我们可以求出通项公式为1111()()n a n n k k n n k==-++的数列的前n 项和. 2.4等比数列 练习(P52)1、2、由题意可知,每一轮被感染的计算机台数构成一个首项为180a =,公比为20q =的等比数列,则第5轮被感染的计算机台数5a 为 447518020 1.2810a a q ==⨯=⨯.3、(1)将数列{}n a 中的前k 项去掉,剩余的数列为12,,k k a a ++. 令,1,2,k i b a i +==,则数列12,,k k a a ++可视为12,,b b .因为11(1)i k i i k ib a q i b a ++++==≥,所以,{}n b 是等比数列,即12,,k k a a ++是等比数列.(2){}n a 中的所有奇数列是135,,,a a a ,则235211321(1)k k a a a q k a a a +-=====≥.所以,数列135,,,a a a 是以1a 为首项,2q 为公比的等比数列.(3){}n a 中每隔10项取出一项组成的数列是11223,,,a a a ,则1112231111121110(1)k k a a a q k a a a +-=====≥所以,数列11223,,,a a a 是以1a 为首项,11q 为公比的等比数列.猜想:在数列{}n a 中每隔m (m 是一个正整数)取出一项,组成一个新的数列,这个数列是以1a 为首项,1m q +为公比的等比数列.4、(1)设{}n a 的公比为q ,则24228511()a a q a q ==,而262837111a a a q a q a q ⋅=⋅= 所以2537a a a =⋅,同理2519a a a =⋅ (2)用上面的方法不难证明211(1)nn n a a a n -+=⋅>. 由此得出,n a 是1n a -和1n a +的等比中项. 同理:可证明,2(0)nn k n k a a a n k -+=⋅>>. 由此得出,n a 是n k a -和n k a +的等比中项(0)n k >>. 5、(1)设n 年后这辆车的价值为n a ,则13.5(110)n n a =-﹪. (2)4413.5(110)88573a =-≈﹪(元). 用满4年后卖掉这辆车,能得到约88573元.习题2.4 A 组(P53)1、(1)可由341a a q =,得11a =-,6671(1)(3)729a a q ==-⨯-=-. 也可由671a a q =,341a a q =,得337427(3)729a a q ==⨯-=-(2)由131188a q a q =⎧⎪⎨=⎪⎩,解得12723a q =⎧⎪⎨=⎪⎩,或12723a q =-⎧⎪⎨=-⎪⎩(3)由416146a q a q ⎧=⎪⎨=⎪⎩,解得232q =,862291173692a a q a q q a q ==⋅==⨯=还可由579,,a a a 也成等比数列,即2759a a a =,得22795694a a a ===.(4)由411311156a q a a q a q ⎧-=⎪⎨-=⎪⎩①②①的两边分别除以②的两边,得2152q q +=,由此解得12q =或2q =. 当12q =时,116a =-. 此时2314a a q ==-. 当2q =时,11a =. 此时2314a a q ==. 2、设n 年后,需退耕n a ,则{}n a 是一个等比数列,其中18(110),0.1a q =+=﹪.那么2005年需退耕5551(1)8(110)13a a q =+=+≈﹪(万公顷) 3、若{}n a 是各项均为正数的等比数列,则首项1a 和公比q 都是正数. 由11n n a a q-=11(1)22)n n qq --===.那么数列{}n a为首项,12q 为公比的等比数列.4、这张报纸的厚度为0.05 mm ,对折一次后厚度为0.05×2 mm ,再对折后厚度为0.05×22 mm ,再对折后厚度为0.05×32 mm. 设00.05a =,对折n 次后报纸的厚度为n a ,则{}n a 是一个等比数列,公比2q =. 对折50次后,报纸的厚度为505050131000.052 5.6310 mm 5.6310 m a a q ==⨯≈⨯=⨯这时报纸的厚度已经超出了地球和月球的平均距离(约83.8410 m ⨯),所以能够在地球和月球之间建一座桥.5、设年平均增长率为1,105q a =,n 年后空气质量为良的天数为n a ,则{}n a 是一个等比数列.由3240a =,得2231(1)105(1)240a a q q =+=+=,解得10.51q =≈ 6、由已知条件知,,2a bA G +==,且02a b A G +-== 所以有A G ≥,等号成立的条件是a b =. 而,a b 是互异正数,所以一定有A G >.7、(1)2±; (2)22()ab a b ±+. 8、(1)27,81; (2)80,40,20,10. 习题2.4 B 组(P54)1、证明:由等比数列通项公式,得11m m a a q -=,11n n a a q -=,其中1,0a q ≠所以 1111m m n m n n a a q q a a q---== 2、(1)设生物体死亡时,体内每克组织中的碳14的原子核数为1个单位,年衰变率为q ,n 年后的残留量为n a ,则{}n a 是一个等比数列. 由碳14的半衰期为5730则 57305730112n a a qq===,解得157301()0.9998792q =≈ (2)设动物约在距今n 年前死亡,由0.6n a =,得10.9998790.6n n a a q ===. 解得 4221n ≈,所以动物约在距今42213、在等差数列1,2,3,…中,有7108917a a a a +==+,1040203050a a a a +==+ 由此可以猜想,在等差数列{}n a 中若*(,,,)k s p q k s p q N +=+∈,则k s p q a a a a +=+. 从等差数列与函数之间的联系的角度来分析这个问题:由等差数列{}n a 的图象,可以看出k p a k a p =,s q a sa q=根据等式的性质,有k s p q a a k sa a p q++=++,所以k s p q a a a a +=+. 猜想对于等比数列{}n a ,类似的性质为:若*(,,,)k s p q k s p q N +=+∈,则k s p q a a a a ⋅=⋅. 2.5等比数列的前n 项和 练习(P58) 1、(1)6616(1)3(12)189112a q S q --===--. (2)1112.7()9190311451()3n n a a q S q----===----. 2、设这个等比数列的公比为q(第3题)所以 101256710()()S a a a a a a =+++++++555S q S =+55(1)q S =+50=同理 1015105S S q S =+.因为 510S =,所以由①得 5101051416S q q S =-=⇒= 代入②,得1015105501610210S S q S =+=+⨯=.3、该市近10年每年的国内生产总值构成一个等比数列,首项12000a =,公比 1.1q =设近10年的国内生产总值是10S ,则10102000(1 1.1)31874.81 1.1S -=≈-(亿元)习题2.5 A 组(P61)1、(1)由34164641a q a ===--,解得4q =-,所以144164(4)5111(4)a a q S q ---⨯-===---. (2)因为2131233(1)S a a a a q q --=++=++,所以2113q q --++=,即2210q q --=解这个方程,得1q =或12q =-. 当1q =时,132a =;当12q =-时,16a =.2、这5年的产值是一个以1138 1.1151.8a =⨯=为首项, 1.1q =为公比的等比数列所以5515(1)151.8(1 1.1)926.75411 1.1a q S q -⨯-==≈--(万元) 3、(1)第1个正方形的面积为42cm ,第2个正方形的面积为22cm ,…,这是一个以14a =为首项,12q =为公比的等比数列所以第10个正方形的面积为99710114()22a a q -==⨯=(2cm )(2)这10个正方形的面积和为77110101422821112a a qS q---⨯-===---(2cm )4、(1)当1a =时,2(1)(1)(2)()12(1)2n n na a a n n --+-++-=-----=-当1a ≠时,22(1)(2)()()(12)n n a a a n a a a n -+-++-=+++-+++(1)(1)12n a a n n a -+=-- (2)1212(235)(435)(35)2(12)3(555)n n n n -------⨯+-⨯+-⨯=+++-+++11(1)5(15)323(1)(15)2154n n n n n n ----+-⨯-⨯=+--- (3)设21123n n S x x nx -=++++……①则 212(1)n n n xS x x n x nx -=+++-+……②①-②得,21(1)1n n n x S x x x nx --=++++-……③当1x =时,(1)1232n n n S n +=++++=;当1x ≠时,由③得,21(1)1n n n x nx S x x -=--- 5、(1)第10次着地时,经过的路程为91002(50251002)-++++⨯1291911002100(222)2(12)100200299.61 (m)12------=+⨯+++-=+⨯≈- (2)设第n 次着地时,经过的路程为293.75 m ,则1(1)12(1)12(12)1002100(222)100200293.7512n n ---------+⨯+++=+⨯=-所以130********.75n --⨯=,解得120.03125n -=,所以15n -=-,则6n = 6、证明:因为396,,S S S 成等差数列,所以公比1q ≠,且9362S S S =+即,936111(1)(1)(1)2111a q a q a q q q q---⨯=+--- 于是,9362q q q =+,即6321q q =+ 上式两边同乘以1a q ,得741112a q a q a q =+ 即,8252a a a =+,故285,,a a a 成等差数列 习题2.5 B 组(P62) 1、证明:11111()(1())1n n n n n n n n n b bb a b a a a b b a a b aa ab a+++---+++=+++==--2、证明:因为7714789141277()S S a a a q a a a q S -=+++=+++= 141421141516211277()S S a a a q a a a q S -=+++=+++=所以71472114,,S S S --成等比数列3、(1)环保部门每年对废旧物资的回收量构成一个等比数列,首项为1100a =,公比为 1.2q =. 所以,2010年能回收的废旧物资为89100 1.2430a =⨯≈(t )(2)从2002年到2010年底,能回收的废旧物资为9919(1)100(1 1.2)208011 1.2a q S q --==≈--(t )可节约的土地为165048320⨯=(2m ) 4、(1)依教育储蓄的方式,应按照整存争取定期储蓄存款利率计息,免征利息税,且若每月固定存入a 元,连续存n 个月,计算利息的公式为()2a na n+⨯月利率.因为整存整取定期储蓄存款年利率为2.52﹪,月利率为0.21﹪故到期3年时一次可支取本息共(505036)360.2118001869.932+⨯⨯⨯+=﹪(元)若连续存6年,应按五年期整存整取定期储蓄存款利率计息,具体计算略. (2)略.(3)每月存50元,连续存3年按照“零存整取”的方式,年利率为1.89﹪,且需支付20﹪的利息税所以到期3年时一次可支取本息共1841.96元,比教育储蓄的方式少收益27.97元.(4)设每月应存入x 元,由教育储蓄的计算公式得36(36)0.2136100002x x x +⨯+=﹪解得267.39x ≈(元),即每月应存入267.39(元) (5)(6)(7)(8)略5、设每年应存入x 万元,则2004年初存入的钱到2010年底利和为7(12)x +﹪,2005年初存入的钱到2010年底利和为6(12)x +﹪,……,2010年初存入的钱到2010年底利和为(12)x +﹪. 根据题意,76(12)(12)(12)40x x x ++++++=﹪﹪﹪根据等比数列前n 项和公式,得7(12)(1 1.02)401 1.02x +-=-﹪,解得52498x ≈(元)故,每年大约应存入52498元第二章 复习参考题A 组(P67)1、(1)B ; (2)B ; (3)B ; (4)A .2、(1)212n n n a -=; (2)12(1)(21)1(2)n n n a n +--=+; (3)7(101)9n n a =-; (4)1(1)n n a =+-或1cos n a n π=+.3、4、如果,,a b c 成等差数列,则5b =;如果,,a b c 成等比数列,则1b =,或1-.5、n a 按顺序输出的值为:12,36,108,324,972. 86093436sum =.6、81381.9(10.13)1396.3⨯+≈﹪(万) 7、从12月20日到次年的1月1日,共13天. 每天领取的奖品价值呈等差数列分布.110,100d a ==. 由1(1)2n n n S a n d -=+得:1313121001310208020002S ⨯=⨯+⨯=>. 所以第二种领奖方式获奖者受益更多.8、因为28374652a a a a a a a +=+=+=所以34567285450()2a a a a a a a +++++==+,则28180a a +=.9、容易得到101010,1012002n n na n S +==⨯=,得15n =.10、212212()()()n n n n S a a a a nd a nd a nd ++=+++=++++++2121()n a a a n nd S n d =++++⨯=+32122312(2)(2)(2)n n n n S a a a a nd a nd a nd ++=+++=++++++2121()22n a a a n nd S n d =++++⨯=+容易验证2132S S S =+. 所以,123,,S S S 也是等差数列,公差为2n d . 11、221(1)(1)4(1)221a f x x x x x =+=+-++=-- 223(1)(1)4(1)267a f x x x x x =-=---+=-+ 因为{}n a 是等差数列,所以123,,a a a 也是等差数列. 所以,2132a a a =+. 即,20286x x =-+. 解得1x =或3x =. 当1x =时,1232,0,2a a a =-==. 由此可求出24n a n =-. 当3x =时,1232,0,2a a a ===-. 由此可求出42n a n =-.第二章 复习参考题B 组(P68)1、(1)B ; (2)D .2、(1)不成等差数列. 可以从图象上解释. ,,a b c 成等差,则通项公式为y pn q =+的形式,且,,a b c 位于同一直线上,而111,,a b c 的通项公式却是1y pn q =+的形式,111,,a b c不可能在同一直线上,因此肯定不是等差数列.(2)成等比数列. 因为,,a b c 成等比,有2b ac =. 又由于,,a b c 非零,两边同时取倒数,则有21111b ac a c==⨯. 所以,111,,a b c也成等比数列.3、体积分数:60.033(125)0.126⨯+≈﹪,质量分数:60.05(125)0.191⨯+≈﹪.4、设工作时间为n ,三种付费方式的前n 项和分别为,,n n n A B C . 第一种付费方式为常数列;第二种付费方式为首项是4,公差也为4的等差数列;第三种付费方式为首项是0.4,公比为2的等比数列. 则38n A n =,2(1)44222n n n B n n n -=+⨯=+, 0.4(12)0.4(21)12n n n C -==--. 下面考察,,n n n A B C 看出10n <时,380.4(21)n n >-. 因此,当工作时间小于10天时,选用第一种付费方式. 10n ≥时,,n n n n A C B C ≤≤因此,当工作时间大于10天时,选用第三种付费方式.5、第一星期选择A 种菜的人数为n ,即1a n =,选择B 种菜的人数为500a -. 所以有以下关系式:2118030a a b =⨯+⨯﹪﹪3228030a a b =⨯+⨯﹪﹪……118030n n b a a b --=⨯+⨯﹪﹪500n n a b +=所以111502n n a a -=+,115003502n n n b a a -=-=-如果1300a =,则2300a =,3300a =,…,10300a = 6、解:由1223n n n a a a --=+得 1123()n n n n a a a a ---+=+以及1123(3)n n n n a a a a ----=--所以221213()37n n n n a a a a ---+=+=⨯,221213(1)(3)(1)13n n n n a a a a ----=--=-⨯. 由以上两式得,11437(1)13n n n a --=⨯+-⨯所以,数列的通项公式是11137(1)134n n n a --⎡⎤=⨯+-⨯⎣⎦ 7、设这家牛奶厂每年应扣除x 万元消费基金2002年底剩余资金是1000(150)x +-﹪2003年底剩余资金是2[1000(150)](150)1000(150)(150)x x x x +-+-=+-+-﹪﹪﹪﹪ ……5年后达到资金 54321000(150)(150)(150)(150)(150)2000x x x x +-+-+-+-+=﹪﹪﹪﹪﹪ 解得 459x ≈(万元)第三章 不等式3.1不等关系与不等式 练习(P74)1、(1)0a b +≥; (2)4h ≤; (3)(10)(10)3504L W L W ++=⎧⎨>⎩.2、这给两位数是57.3、(1)>; (2)<; (3)>; (4)<;习题3.1 A 组(P75)1、略.2、(1)24<; (2>3、证明:因为20,04x x >>,所以21104x x x ++>+>因为22(1)02x +>>,所以12x+>4、设A 型号帐篷有x 个,则B 型号帐篷有(5)x +个,050448054853(5)484(4)48x x x x x x >⎧⎪+>⎪⎪<⎪⎨<-<⎪⎪+<⎪+⎪⎩≥5、设方案的期限为n 年时,方案B 的投入不少于方案A 的投入.所以,(1)5105002n n n -+⨯≥ 即,2100n ≥.习题3.1 B 组(P75)1、(1)因为222259(56)30x x x x x ++-++=+>,所以2225956x x x x ++>++ (2)因为222(3)(2)(4)(69)(68)10x x x x x x x ----=-+--+=>所以2(3)(2)(4)x x x ->--(3)因为322(1)(1)(1)0x x x x x --+=-+>,所以321x x x >-+(4)因为22222212(1)1222(1)(1)10x y x y x y x y x y ++-+-=++-+-=-+-+> 所以2212(1)x y x y ++>+-2、证明:因为0,0a b c d >>>>,所以0ac bd >>又因为0cd >,所以10cd >于是0a bd c>>>3、设安排甲种货箱x 节,乙种货箱y 节,总运费为z .所以 352515301535115050x y x y x y +⎧⎪+⎨⎪+=⎩≥≥ 所以28x ≥,且30x ≤所以 2822x y =⎧⎨=⎩,或2921x y =⎧⎨=⎩,或3020x y =⎧⎨=⎩所以共有三种方案,方案一安排甲种货箱28节,乙种货箱22节;方案二安排甲种货箱29节,乙种货箱21节;方案三安排甲种货箱30节,乙种货箱20节. 当3020x y =⎧⎨=⎩时,总运费0.5300.82031z =⨯+⨯=(万元),此时运费较少. 3.2一元二次不等式及其解法 练习(P80) 1、(1)1013x x ⎧⎫-⎨⎬⎩⎭≤≤; (2)R ; (3){}2x x ≠; (4)12x x ⎧⎫≠⎨⎬⎩⎭; (5)31,2x x x ⎧⎫<->⎨⎬⎩⎭或; (6)54,43x x x ⎧⎫<>⎨⎬⎩⎭或; (7)503x x ⎧⎫-<<⎨⎬⎩⎭.2、(1)使2362y x x =-+的值等于0的x的集合是1⎧⎪⎨⎪⎪⎩⎭;使2362y x x =-+的值大于0的x的集合为11x x x ⎧⎪<>+⎨⎪⎪⎩⎭或; 使2362y x x =-+的值小于0的x的集合是11x x ⎧⎪<<⎨⎪⎪⎩⎭. (2)使225y x =-的值等于0的x 的集合{}5,5-; 使225y x =-的值大于0的x 的集合为{}55x x -<<; 使225y x =-的值小于0的x 的集合是{}5,5x x x <->或. (3)因为抛物线2+610y x x =+的开口方向向上,且与x 轴无交点 所以使2+610y x x =+的等于0的集合为∅; 使2+610y x x =+的小于0的集合为∅; 使2+610y x x =+的大于0的集合为R. (4)使231212y x x =-+-的值等于0的x 的集合为{}2; 使231212y x x =-+-的值大于0的x 的集合为∅;使231212y x x =-+-的值小于0的x 的集合为{}2x x ≠. 习题3.2 A 组(P80)1、(1)35,22x x x ⎧⎫<->⎨⎬⎩⎭或; (2)x x ⎧⎪<<⎨⎪⎪⎩⎭;(3){}2,5x x x <->或; (4){}09x x <<.2、(1)解2490x x -+≥,因为200∆=-<,方程2490x x -+=无实数根所以不等式的解集是R ,所以y R. (2)解2212180x x -+-≥,即2(3)0x -≤,所以3x =所以y {}3x x =3、{33m m m <-->-+或;4、R.5、设能够在抛出点2 m 以上的位置最多停留t 秒. 依题意,20122v t gt ->,即212 4.92t t ->. 这里0t >. 所以t 最大为2(精确到秒)答:能够在抛出点2 m 以上的位置最多停留2秒. 6、设每盏台灯售价x 元,则15[302(15)]400x x x ⎧⎨-->⎩≥. 即1520x <≤.所以售价{}1520x x x ∈<≤习题3.2 B 组(P81)1、(1)x ⎧⎪<<⎨⎪⎪⎩⎭; (2){}37x x <<; (3)∅; (4)113x x ⎧⎫<<⎨⎬⎩⎭. 2、由22(1)40m m ∆=--<,整理,得23210m m +->,因为方程23210m m +-=有两个实数根1-和13,所以11m <-,或213m >,m 的取值范围是11,3m m m ⎧⎫<->⎨⎬⎩⎭或.3、使函数213()324f x x x =--的值大于0的解集为33x x x ⎧⎪<<+⎨⎪⎪⎩⎭或.4、设风暴中心坐标为(,)a b ,则a =22450b +<,即150150b -<<151)13.72=≈(h ),3001520=. 所以,经过约13.7小时码头将受到风暴的影响,影响时间为15小时.3.3二元一次不等式(组)与简单的线性规划问题 练习(P86) 1、B . 2、D . 3、B .4解:设家具厂每天生产A 类桌子x 张,B 类桌子y 张.对于A 类桌子,x 张桌子需要打磨10x min ,着色6x min ,上漆6x min 对于B 类桌子,y 张桌子需要打磨5y min ,着色12y min ,上漆9y min 而打磨工人每天最长工作时间是450min ,所以有105450x y +≤. 类似地,612480x y +≤,69450x y +≤ 在实际问题中,0,0x y ≥≥;所以,题目中包含的限制条件为 1054506124806945000x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩≤≤≤≥≥练习(P91)1、(1)目标函数为2z x y =+,可行域如图所示,作出直线2y x z =-+,可知z 要取最大值,即直线经过点C 时,解方程组11x y y +=⎧⎨=-⎩得(2,1)C -,所以,max 222(1)3z x y =+=⨯+-=.(2)目标函数为35z x y =+,可行域如图所示,作出直线35z x y =+ 可知,直线经过点B 时,Z 取得最大值. 直线经过点A 时,Z 取得最小值. 解方程组 153y x x y =+⎧⎨-=⎩,和15315y x x y =+⎧⎨+=⎩(第1题)可得点(2,1)A --和点(1.5,2.5)B .所以max 3 1.55 2.517z =⨯+⨯=,min 3(2)5(1)11z =⨯-+⨯-=-2、设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,目标函数为30002000z x y =+,需要满足的条件是 2400250000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,作直线30002000z x y =+当直线经过点A 时,z 取得最大值. 解方程组 24002500x y x y +=⎧⎨+=⎩可得点(200,100)A ,z 的最大值为800000元. 习题3.3 A 组(P93)1、画图求解二元一次不等式:(1)2x y +≤; (2)22x y ->; (3)2y -≤; (4)3x ≥2、3(第2题)解:设每周播放连续剧甲x 次,播放连续剧乙y目标函数为6020z x y =+,所以,题目中包含的限制条件为8040320600x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≥≥≥可行域如图. 解方程组80403206x y x y +⎧⎨+⎩==得点M 的坐标为(2,4),所以max 6020200z x y =+= 答:电视台每周应播放连续剧甲2次,播放连续剧乙4次,才能获得最高的收视率. 4、设每周生产空调器x 台,彩电y 台,则生产冰箱120x y --台,产值为z . 则,目标函数为432(120)2240z x y x y x y =++--=++ 所以,题目中包含的限制条件为111(120)402341202000x y x y x y x y ⎧++--⎪⎪⎪--⎨⎪⎪⎪⎩≤≥≥≥即,312010000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥ 可行域如图,解方程组3120100x y x y +⎧⎨+⎩==得点M 的坐标为(10,90),所以max 2240350z x y =++=(千元)答:每周应生产空调器10台,彩电90台,冰箱20台,才能使产值最高,最高产值是350千元.习题3.3 B 组(P93)1、画出二元一次不等式组 231223600x y x y x y +⎧⎪+>-⎪⎨⎪⎪⎩≤≥≥,所表示的区域如右图2、画出(21)(3)0x y x y +--+>表示的区域.3、设甲粮库要向A 镇运送大米x 吨、向B 镇运送大米y 吨,总运费为z . 则乙粮库要向A 镇运送大米(70)x -吨、向B 镇运送大米(110)y -吨,目标函数(总运费)为 122025101512(70)208(110)609030200z x y x y x y =⨯⨯+⨯⨯+⨯⨯-+⨯⨯-=++.所以,题目中包含的限制条件为 100(70)(110)800700x y x y x y +⎧⎪-+-⎪⎨⎪⎪⎩≤≤≤≤≥.所以当70,30x y ==时,总运费最省 min 37100z =(元) 所以当0,100x y ==时,总运费最不合理 max 39200z =(元)使国家造成不该有的损失2100元.答:甲粮库要向A 镇运送大米70吨,向B 镇运送大米30吨,乙粮库要向A 镇运送大米0吨,向B 镇运送大米80吨,此时总运费最省,为37100元. 最不合理的调运方案是要向A 镇运送大米0吨,向B 镇运送大米100吨,乙粮库要向A 镇运送大米70吨,向B 镇运送大米10吨,此时总运费为39200元,使国家造成损失2100元.3.42a b+练习(P100)(第2题)1、因为0x >,所以12x x +≥当且仅当1x x =时,即1x =时取等号,所以当1x =时,即1x x+的值最小,最小值是2. 2、设两条直角边的长分别为,a b ,0,a >且0b >,因为直角三角形的面积等于50.即 1502ab =,所以 20a b +==≥,当且仅当10a b ==时取等号.答:当两条直角边的长均为10时,两条直角边的和最小,最小值是20. 3、设矩形的长与宽分别为a cm ,b cm. 0a >,0b > 因为周长等于20,所以10a b +=所以 2210()()2522a b S ab +===≤,当且仅当5a b ==时取等号.答:当矩形的长与宽均为5时,面积最大.4、设底面的长与宽分别为a m ,b m. 0a >,0b >因为体积等于323m ,高2m ,所以底面积为162m ,即16ab =所以用纸面积是 222324()32323264S ab bc ac a b =++=+++=+=≥ 当且仅当4a b ==时取等号答:当底面的长与宽均为4米时,用纸最少. 习题3.4 A 组(P100) 1、(1)设两个正数为,a b ,则0,0a b >>,且36ab =所以 12a b +==≥,当且仅当6a b ==时取等号. 答:当这两个正数均为6时,它们的和最小.(2)设两个正数为,a b ,依题意0,0a b >>,且18a b +=所以2218()()8122a b ab +==≤,当且仅当9a b ==时取等号.答:当这两个正数均为9时,它们的积最大. 2、设矩形的长为x m ,宽为y m ,菜园的面积为S 2m . 则230x y +=,S x y =⨯由基本不等式与不等式的性质,可得211219002252()222242x y S x y +=⨯⨯=⨯=≤. 当2x y =,即1515,2x y ==时,菜园的面积最大,最大面积是22522m .3、设矩形的长和宽分别为x 和y ,圆柱的侧面积为z ,因为2()36x y +=,即18x y +=. 所以222()1622x y z x y πππ+=⨯⨯⨯=≤, 当x y =时,即长和宽均为9时,圆柱的侧面积最大.4、设房屋底面长为x m ,宽为y m ,总造价为z 元,则12xy =,12y x=。

高中数学人教版必修5课后习题答案[电子档]

高中数学人教版必修5课后习题答案[电子档]

高中数学必修5课后习题答案[人教版]高中数学必修5课后习题答案第1页共34页第二章数列2.1数列的概念与简单表示法练习(P31)1、2、前5项分别是:1,0,1,0,1--.3、例1(1)1(2,)1(21,)n n m m N na n m m N n⎧-=∈⎪⎪=⎨⎪=-∈⎪⎩**;(2)2(2,)0(21,)n n m m N a n m m N ⎧=∈⎪=⎨=-∈⎪⎩**说明:此题是通项公式不唯一的题目,鼓励学生说出各种可能的表达形式,并举出其他可能的通项公式表达形式不唯一的例子.4、(1)1()21n a n Z n +=∈-;(2)(1)()2n n a n Z n+-=∈;(3)121()2n n a n Z +-=∈习题2.1A 组(P33)1、(1)2,3,5,7,11,13,17,19;(2);(3)1,1.7,1.73,1.732,…1.732050;2,1.8,1.74,1.733,…,1.732051.2、(1)11111,,,,491625;(2)2,5,10,17,26--.3、(1)(1),4-,9,(16-),25,(36-),49;12(1)n n a n +=-;(2)1,),2,;n a =.4、(1)1,3,13,53,2132;(2)141,5,,,5454--.5、对应的答案分别是:(1)16,21;54n a n =-;(2)10,13;32n a n =-;(3)24,35;22n a n n =+.6、15,21,28;1n n a a n -=+.习题2.1B 组(P34)1、前5项是1,9,73,585,4681.n12…5…12…n na 2133…69…153…3(34)n +该数列的递推公式是:1118,1n n a a a +=+=.通项公式是:817n n a -=.2、110(10.72)10.072a =⨯+=﹪;2210(10.72)10.144518a =⨯+=﹪;3310(10.72)10.217559a =⨯+=﹪;10(10.72)n n a =⨯+﹪.3、(1)1,2,3,5,8;(2)358132,,,,2358.2.2等差数列练习(P39)1、表格第一行依次应填:0.5,15.5,3.75;表格第二行依次应填:15,11-,24-.2、152(1)213n a n n =+-=+,1033a =.3、4n c n=4、(1)是,首项是11m a a md +=+,公差不变,仍为d ;(2)是,首项是1a ,公差2d ;(3)仍然是等差数列;首项是716a a d =+;公差为7d .5、(1)因为5375a a a a -=-,所以5372a a a =+.同理有5192a a a =+也成立;(2)112(1)n n n a a a n -+=+>成立;2(0)n n k n k a a a n k -+=+>>也成立.习题2.2A 组(P40)1、(1)29n a =;(2)10n =;(3)3d =;(4)110a =.2、略.3、60︒.4、2℃;11-℃;37-℃.5、(1)9.8s t =;(2)588cm ,5s.习题2.2B 组(P40)1、(1)从表中的数据看,基本上是一个等差数列,公差约为2000,52010200280.2610a a d =+=⨯再加上原有的沙化面积5910⨯,答案为59.2610⨯;(2)2021年底,沙化面积开始小于52810 hm ⨯.2、略.2.3等差数列的前n 项和练习(P45)1、(1)88-;(2)604.5.2、59,11265,112n n a n n ⎧=⎪⎪=⎨+⎪>⎪⎩3、元素个数是30,元素和为900.习题2.3A 组(P46)1、(1)(1)n n +;(2)2n ;(3)180个,和为98550;(4)900个,和为494550.2、(1)将120,54,999n n a a S ===代入1()2n n n a a S +=,并解得27n =;将120,54,27n a a n ===代入1(1)n a a n d =+-,并解得1713d =.(2)将1,37,6293n d n S ===代入1(1)n a a n d =+-,1()2n n n a a S +=,得111237()6292n n a a a a =+⎧⎪⎨+=⎪⎩;解这个方程组,得111,23n a a ==.(3)将151,,566n a d S ==-=-代入1(1)2n n n S na d -=+,并解得15n =;将151,,1566a d n ==-=代入1(1)n a a n d =+-,得32n a =-.(4)将2,15,10n d n a ===-代入1(1)n a a n d =+-,并解得138a =-;将138,10,15n a a n =-=-=代入1()2n n n a a S +=,得360n S =-.3、44.5510⨯m.4、4.5、这些数的通项公式:7(1)2n -+,项数是14,和为665.6、1472.习题2.3B 组(P46)1、每个月的维修费实际上是呈等差数列的.代入等差数列前n 项和公式,求出5年内的总共的维修费,即再加上购买费,除以天数即可.答案:292元.2、本题的解法有很多,可以直接代入公式化简,但是这种比较繁琐.现提供2个证明方法供参考.(1)由61615S a d =+,1211266S a d =+,18118153S a d=+可得61812126()2()S S S S S +-=-.(2)1261212126()()S S a a a a a a -=+++-+++ 7812a a a =+++ 126(6)(6)(6)a d a d a d =++++++ 126()36a a a d=++++636S d=+同样可得:1812672S S S d -=+,因此61812126()2()S S S S S +-=-.3、(1)首先求出最后一辆车出发的时间4时20分;所以到下午6时,最后一辆车行驶了1小时40分.(2)先求出15辆车总共的行驶时间,第一辆车共行驶4小时,以后车辆行驶时间依次递减,最后一辆行驶1小时40分.各辆车的行驶时间呈等差数列分布,代入前n 项和公式,这个车队所有车的行驶时间为2418531522S +=⨯=h.乘以车速60km/h ,得行驶总路程为2550km.4、数列1(1)n n ⎧⎫⎨⎬+⎩⎭的通项公式为111(1)1na n n n n ==-++所以111111111(()()()1122334111n nS n n n n =-+-+-++-=-=+++ 类似地,我们可以求出通项公式为1111()()n a n n k k n n k==-++的数列的前n 项和.2.4等比数列练习(P52)1、2、由题意可知,每一轮被感染的计算机台数构成一个首项为180a =,公比为20q =的等比数列,则第5轮被感染的计算机台数5a 为447518020 1.2810a a q ==⨯=⨯.3、(1)将数列{}n a 中的前k 项去掉,剩余的数列为12,,k k a a ++ .令,1,2,k i b a i +== ,则数列12,,k k a a ++ 可视为12,,b b .因为11(1)i k i i k ib a q i b a ++++==≥,所以,{}n b 是等比数列,即12,,k k a a ++ 是等比数列.(2){}n a 中的所有奇数列是135,,,a a a ,则235211321(1)k k a a aq k a a a +-===== ≥.所以,数列135,,,a a a 是以1a 为首项,2q 为公比的等比数列.(3){}n a 中每隔10项取出一项组成的数列是11223,,,a a a ,则1112231111121110(1)k k a a a q k a a a +-===== ≥所以,数列11223,,,a a a 是以1a 为首项,11q 为公比的等比数列.猜想:在数列{}n a 中每隔m (m 是一个正整数)取出一项,组成一个新的数列,这个数列是以1a 为首项,1m q +为公比的等比数列.4、(1)设{}n a 的公比为q ,则24228511()a a q a q ==,而262837111a a a q a q a q ⋅=⋅=所以2537a a a =⋅,同理2519a a a =⋅(2)用上面的方法不难证明211(1)n n n a a a n -+=⋅>.由此得出,n a 是1n a -和1n a +的等比中项.同理:可证明,2(0)n n k n k a a a n k -+=⋅>>.由此得出,n a 是n k a -和n k a +的等比中项(0)n k >>.5、(1)设n 年后这辆车的价值为n a ,则13.5(110)n n a =-﹪.(2)4413.5(110)88573a =-≈﹪(元).用满4年后卖掉这辆车,能得到约88573元.习题2.4A 组(P53)1、(1)可由341a a q =,得11a =-,6671(1)(3)729a a q ==-⨯-=-.也可由671a a q =,341a a q =,得337427(3)729a a q ==⨯-=-(2)由131188a q a q =⎧⎪⎨=⎪⎩,解得12723a q =⎧⎪⎨=⎪⎩,或12723a q =-⎧⎪⎨=-⎪⎩(3)由416146a q a q ⎧=⎪⎨=⎪⎩,解得232q =,862291173692a a q a q q a q ==⋅==⨯=还可由579,,a a a 也成等比数列,即2759a a a =,得22795694a a a ===.(4)由411311156a q a a q a q ⎧-=⎪⎨-=⎪⎩ ①②①的两边分别除以②的两边,得2152q q +=,由此解得12q =或2q =.当12q =时,116a =-.此时2314a a q ==-.当2q =时,11a =.此时2314a a q ==.2、设n 年后,需退耕n a ,则{}n a 是一个等比数列,其中18(110),0.1a q =+=﹪.那么2005年需退耕5551(1)8(110)13a a q =+=+≈﹪(万公顷)3、若{}n a 是各项均为正数的等比数列,则首项1a 和公比q 都是正数.由11n n a a q-=11(1)22)n n qq --===.那么数列{}n a为首项,12q 为公比的等比数列.4、这张报纸的厚度为0.05mm ,对折一次后厚度为0.05×2mm ,再对折后厚度为0.05×22mm ,再对折后厚度为0.05×32mm.设00.05a =,对折n 次后报纸的厚度为n a ,则{}n a 是一个等比数列,公比2q =.对折50次后,报纸的厚度为505050131000.052 5.6310 mm 5.6310 ma a q ==⨯≈⨯=⨯这时报纸的厚度已经超出了地球和月球的平均距离(约83.8410 m ⨯),所以能够在地球和月球之间建一座桥.5、设年平均增长率为1,105q a =,n 年后空气质量为良的天数为n a ,则{}n a 是一个等比数列.由3240a =,得2231(1)105(1)240a a q q =+=+=,解得10.51q =≈6、由已知条件知,,2a b A G +==,且2222a b a b A G ++--===≥所以有A G ≥,等号成立的条件是a b =.而,a b 是互异正数,所以一定有A G >.7、(1)2±;(2)22()ab a b ±+.8、(1)27,81;(2)80,40,20,10.习题2.4B 组(P54)1、证明:由等比数列通项公式,得11m m a a q -=,11n n a a q -=,其中1,0a q ≠所以1111m m nm n n a a q q a a q---==2、(1)设生物体死亡时,体内每克组织中的碳14的原子核数为1个单位,年衰变率为q ,n 年后的残留量为n a ,则{}n a 是一个等比数列.由碳14的半衰期为5730则57305730112n a a qq===,解得157301()0.9998792q =≈(2)设动物约在距今n 年前死亡,由0.6n a =,得10.9998790.6n n a a q ===.解得4221n ≈,所以动物约在距今42213、在等差数列1,2,3,…中,有7108917a a a a +==+,1040203050a a a a +==+由此可以猜想,在等差数列{}n a 中若*(,,,)k s p q k s p q N +=+∈,则k s p q a a a a +=+.从等差数列与函数之间的联系的角度来分析这个问题:由等差数列{}n a 的图象,可以看出k p a k a p =,s q a sa q=根据等式的性质,有k s p q a a k sa a p q++=++,所以k s p q a a a a +=+.猜想对于等比数列{}n a ,类似的性质为:若*(,,,)k s p q k s p q N +=+∈,则k s p q a a a a ⋅=⋅.2.5等比数列的前n 项和练习(P58)1、(1)6616(1)3(12)189112a q S q --===--.(2)1112.7()9190311451()3n n a a qS q----===----.2、设这个等比数列的公比为q所以101256710()()S a a a a a a =+++++++ 555S q S =+55(1)q S =+50=同理1015105S S q S =+.因为510S =,所以由①得5101051416S q q S =-=⇒=代入②,得1015105501610210S S q S =+=+⨯=.3、该市近10年每年的国内生产总值构成一个等比数列,首项12000a =,公比 1.1q =设近10年的国内生产总值是10S ,则10102000(1 1.1)31874.81 1.1S -=≈-(亿元)习题2.5A 组(P61)(第3题)1、(1)由34164641a q a ===--,解得4q =-,所以144164(4)5111(4)a a q S q ---⨯-===---.(2)因为2131233(1)S a a a a q q --=++=++,所以2113q q --++=,即2210q q --=解这个方程,得1q =或12q =-.当1q =时,132a =;当12q =-时,16a =.2、这5年的产值是一个以1138 1.1151.8a =⨯=为首项, 1.1q =为公比的等比数列所以5515(1)151.8(1 1.1)926.75411 1.1a q S q -⨯-==≈--(万元)3、(1)第1个正方形的面积为42cm ,第2个正方形的面积为22cm ,…,这是一个以14a =为首项,12q =为公比的等比数列所以第10个正方形的面积为99710114()22a a q -==⨯=(2cm )(2)这10个正方形的面积和为77110101422821112a a qS q---⨯-===---(2cm )4、(1)当1a =时,2(1)(1)(2)()12(1)2n n na a a n n --+-++-=-----=-当1a ≠时,22(1)(2)()()(12)n n a a a n a a a n -+-++-=+++-+++ (1)(1)12n a a n n a -+=--(2)1212(235)(435)(35)2(12)3(555)n n n n -------⨯+-⨯+-⨯=+++-+++ 11(1)5(15)323(1)(15)2154n n n n n n ----+-⨯-⨯=+---(3)设21123n n S x x nx -=++++ ……①则212(1)n n n xS x x n x nx -=+++-+ ……②①-②得,21(1)1n n n x S x x x nx --=++++- ……③当1x =时,(1)1232n n n S n +=++++= ;当1x ≠时,由③得,21(1)1n nn x nx S x x-=---5、(1)第10次着地时,经过的路程为91002(50251002)-++++⨯ 1291911002100(222)2(12)100200299.61 (m)12------=+⨯+++-=+⨯≈-(2)设第n 次着地时,经过的路程为293.75m ,则1(1)12(1)12(12)1002100(222)100200293.7512n n ---------+⨯+++=+⨯=- 所以130********.75n --⨯=,解得120.03125n -=,所以15n -=-,则6n =6、证明:因为396,,S S S 成等差数列,所以公比1q ≠,且9362S S S =+即,936111(1)(1)(1)2111a q a q a q q q q---⨯=+---于是,9362q q q =+,即6321q q =+上式两边同乘以1a q ,得741112a q a q a q =+即,8252a a a =+,故285,,a a a 成等差数列习题2.5B 组(P62)1、证明:11111()(1())1n n n n n n n n n bb b a b a a a b b a a b a a a b a+++---+++=+++==-- 2、证明:因为7714789141277()S S a a a q a a a q S -=+++=+++= 141421141516211277()S S a a a q a a a q S -=+++=+++= 所以71472114,,S S S --成等比数列3、(1)环保部门每年对废旧物资的回收量构成一个等比数列,首项为1100a =,公比为 1.2q =.所以,2010年能回收的废旧物资为89100 1.2430a =⨯≈(t )(2)从2002年到2010年底,能回收的废旧物资为9919(1)100(1 1.2)208011 1.2a q S q --==≈--(t )可节约的土地为165048320⨯=(2m )4、(1)依教育储蓄的方式,应按照整存争取定期储蓄存款利率计息,免征利息税,且若每月固定存入a 元,连续存n 个月,计算利息的公式为()2a na n+⨯月利率.因为整存整取定期储蓄存款年利率为2.52﹪,月利率为0.21﹪故到期3年时一次可支取本息共(505036)360.2118001869.932+⨯⨯⨯+=﹪(元)若连续存6年,应按五年期整存整取定期储蓄存款利率计息,具体计算略.(2)略.(3)每月存50元,连续存3年按照“零存整取”的方式,年利率为1.89﹪,且需支付20﹪的利息税所以到期3年时一次可支取本息共1841.96元,比教育储蓄的方式少收益27.97元.(4)设每月应存入x 元,由教育储蓄的计算公式得36(36)0.2136100002x x x +⨯+=﹪解得267.39x ≈(元),即每月应存入267.39(元)(5)(6)(7)(8)略5、设每年应存入x 万元,则2004年初存入的钱到2010年底利和为7(12)x +﹪,2005年初存入的钱到2010年底利和为6(12)x +﹪,……,2010年初存入的钱到2010年底利和为(12)x +﹪.根据题意,76(12)(12)(12)40x x x ++++++= ﹪﹪﹪根据等比数列前n 项和公式,得7(12)(1 1.02)401 1.02x +-=-﹪,解得52498x ≈(元)故,每年大约应存入52498元第二章复习参考题A 组(P67)1、(1)B ;(2)B ;(3)B ;(4)A .2、(1)212n n n a -=;(2)12(1)(21)1(2)n n n a n +--=+;(3)7(101)9n n a =-;(4)n a =n a =.3、4、如果,,a b c 成等差数列,则5b =;如果,,a b c 成等比数列,则1b =,或1-.5、n a 按顺序输出的值为:12,36,108,324,972.86093436sum =.6、81381.9(10.13)1396.3⨯+≈﹪(万)7、从12月20日到次年的1月1日,共13天.每天领取的奖品价值呈等差数列分布.110,100d a ==.由1(1)2n n n S a n d -=+得:1313121001310208020002S ⨯=⨯+⨯=>.所以第二种领奖方式获奖者受益更多.8、因为28374652a a a a a a a +=+=+=所以34567285450()2a a a a a a a +++++==+,则28180a a +=.9、容易得到101010,1012002n n na n S +==⨯=,得15n =.10、212212()()()n n n n S a a a a nd a nd a nd ++=+++=++++++2121()n a a a n nd S n d=++++⨯=+ 32122312(2)(2)(2)n n n n S a a a a nd a nd a nd ++=+++=++++++ 2121()22n a a a n nd S n d=++++⨯=+ 容易验证2132S S S =+.所以,123,,S S S 也是等差数列,公差为2n d .11、221(1)(1)4(1)221a f x x x x x =+=+-++=--223(1)(1)4(1)267a f x x x x x =-=---+=-+因为{}n a 是等差数列,所以123,,a a a 也是等差数列.所以,2132a a a =+.即,20286x x =-+.解得1x =或3x =.当1x =时,1232,0,2a a a =-==.由此可求出24n a n =-.当3x =时,1232,0,2a a a ===-.由此可求出42n a n =-.第二章复习参考题B 组(P68)1、(1)B ;(2)D .2、(1)不成等差数列.可以从图象上解释.,,a b c 成等差,则通项公式为y pn q =+的形式,且,,a b c 位于同一直线上,而111,,a b c 的通项公式却是1y pn q=+的形式,111,,a b c 不可能在同一直线上,因此肯定不是等差数列.(2)成等比数列.因为,,a b c 成等比,有2b ac =.又由于,,a b c 非零,两边同时取倒数,则有21111b ac a c==⨯.所以,111,,a b c也成等比数列.3、体积分数:60.033(125)0.126⨯+≈﹪,质量分数:60.05(125)0.191⨯+≈﹪.4、设工作时间为n ,三种付费方式的前n 项和分别为,,n n n A B C .第一种付费方式为常数列;第二种付费方式为首项是4,公差也为4的等差数列;第三种付费方式为首项是0.4,公比为2的等比数列.则38n A n =,2(1)44222n n n B n n n -=+⨯=+,0.4(12)0.4(21)12n n n C -==--.下面考察,,n n n A B C 看出10n <时,380.4(21)n n >-.因此,当工作时间小于10天时,选用第一种付费方式.10n ≥时,,n n n nA CBC ≤≤因此,当工作时间大于10天时,选用第三种付费方式.5、第一星期选择A 种菜的人数为n ,即1a n =,选择B 种菜的人数为500a -.所以有以下关系式:2118030a a b =⨯+⨯﹪﹪3228030a a b =⨯+⨯﹪﹪……118030n n b a a b --=⨯+⨯﹪﹪500n n a b +=所以111502n n a a -=+,115003502n n n b a a -=-=-如果1300a =,则2300a =,3300a =,…,10300a =6、解:由1223n n n a a a --=+得1123()n n n n a a a a ---+=+以及1123(3)n n n n a a a a ----=--所以221213()37n n n n a a a a ---+=+=⨯,221213(1)(3)(1)13n n n n a a a a ----=--=-⨯.由以上两式得,11437(1)13n n n a --=⨯+-⨯所以,数列的通项公式是11137(1)134n n n a --⎡⎤=⨯+-⨯⎣⎦7、设这家牛奶厂每年应扣除x 万元消费基金2002年底剩余资金是1000(150)x+-﹪2003年底剩余资金是2[1000(150)](150)1000(150)(150)x x x x+-+-=+-+-﹪﹪﹪﹪……5年后达到资金54321000(150)(150)(150)(150)(150)2000x x x x +-+-+-+-+=﹪﹪﹪﹪﹪解得459x ≈(万元)第三章不等式3.1不等关系与不等式练习(P74)1、(1)0a b +≥;(2)4h ≤;(3)(10)(10)3504L W L W ++=⎧⎨>⎩.2、这给两位数是57.3、(1)>;(2)<;(3)>;(4)<;习题3.1A 组(P75)1、略.2、(1)24<;(2>3、证明:因为20,04x x >>,所以21104x x x ++>+>因为22(102x +>>,所以12x+>4、设A 型号帐篷有x 个,则B 型号帐篷有(5)x +个,050448054853(5)484(4)48x x x x x x >⎧⎪+>⎪⎪<⎪⎨<-<⎪⎪+<⎪+⎪⎩≥5、设方案的期限为n 年时,方案B 的投入不少于方案A 的投入.所以,(1)5105002n n n -+⨯≥即,2100n ≥.习题3.1B 组(P75)1、(1)因为222259(56)30x x x x x ++-++=+>,所以2225956x x x x ++>++(2)因为222(3)(2)(4)(69)(68)10x x x x x x x ----=-+--+=>所以2(3)(2)(4)x x x ->--(3)因为322(1)(1)(1)0x x x x x --+=-+>,所以321x x x >-+(4)因为22222212(1)1222(1)(1)10x y x y x y x y x y ++-+-=++-+-=-+-+>所以2212(1)x y x y ++>+-2、证明:因为0,0a b c d >>>>,所以0ac bd >>又因为0cd >,所以10cd>于是0a b d c >>>3、设安排甲种货箱x 节,乙种货箱y 节,总运费为z .所以352515301535115050x y x y x y +⎧⎪+⎨⎪+=⎩≥≥所以28x ≥,且30x ≤所以2822x y =⎧⎨=⎩,或2921x y =⎧⎨=⎩,或3020x y =⎧⎨=⎩所以共有三种方案,方案一安排甲种货箱28节,乙种货箱22节;方案二安排甲种货箱29节,乙种货箱21节;方案三安排甲种货箱30节,乙种货箱20节.当3020x y =⎧⎨=⎩时,总运费0.5300.82031z =⨯+⨯=(万元),此时运费较少.3.2一元二次不等式及其解法练习(P80)1、(1)1013x x ⎧⎫-⎨⎬⎩⎭≤≤;(2)R ;(3){}2x x ≠;(4)12x x ⎧⎫≠⎨⎬⎩⎭;(5)31,2x x x ⎧⎫<->⎨⎬⎩⎭或;(6)54,43x x x ⎧⎫<>⎨⎬⎩⎭或;(7)503x x ⎧⎫-<<⎨⎬⎩⎭.2、(1)使2362y x x =-+的值等于0的x的集合是1⎧⎪⎨⎪⎪⎩⎭;使2362y x x =-+的值大于0的x的集合为1,133x x x ⎧⎪<->+⎨⎪⎪⎩⎭或;使2362y x x =-+的值小于0的x的集合是11x x ⎧⎪<<+⎨⎪⎪⎩⎭.(2)使225y x =-的值等于0的x 的集合{}5,5-;使225y x =-的值大于0的x 的集合为{}55x x -<<;使225y x =-的值小于0的x 的集合是{}5,5x x x <->或.(3)因为抛物线2+610y x x =+的开口方向向上,且与x 轴无交点所以使2+610y x x =+的等于0的集合为∅;使2+610y x x =+的小于0的集合为∅;使2+610y x x =+的大于0的集合为R.(4)使231212y x x =-+-的值等于0的x 的集合为{}2;使231212y x x =-+-的值大于0的x 的集合为∅;使231212y x x =-+-的值小于0的x 的集合为{}2x x ≠.习题3.2A 组(P80)1、(1)35,22x x x ⎧⎫<->⎨⎬⎩⎭或;(2)x x ⎧⎪<<⎨⎪⎪⎩⎭;(3){}2,5x x x <->或;(4){}09x x <<.2、(1)解2490x x -+≥,因为200∆=-<,方程2490x x -+=无实数根所以不等式的解集是R ,所以y =的定义域是R.(2)解2212180x x -+-≥,即2(3)0x -≤,所以3x =所以y ={}3x x =3、{33m m m <-->-+或;4、R.5、设能够在抛出点2m 以上的位置最多停留t 秒.依题意,20122v t gt ->,即212 4.92t t ->.这里0t >.所以t 最大为2(精确到秒)答:能够在抛出点2m 以上的位置最多停留2秒.6、设每盏台灯售价x 元,则15[302(15)]400x x x ⎧⎨-->⎩≥.即1520x <≤.所以售价{}1520x x x ∈<≤习题3.2B 组(P81)1、(1)52x ⎧+⎪<<⎨⎪⎪⎩⎭;(2){}37x x <<;(3)∅;(4)113x x ⎧⎫<<⎨⎬⎩⎭.2、由22(1)40m m ∆=--<,整理,得23210m m +->,因为方程23210m m +-=有两个实数根1-和13,所以11m <-,或213m >,m 的取值范围是11,3m m m ⎧⎫<->⎨⎬⎩⎭或.3、使函数213()324f x x x =--的值大于0的解集为3322x x x ⎧⎪<-<+⎨⎪⎪⎩⎭或.4、设风暴中心坐标为(,)a b,则a =22450b +<,即150150b -<<151)13.72=≈(h ),3001520=.所以,经过约13.7小时码头将受到风暴的影响,影响时间为15小时.3.3二元一次不等式(组)与简单的线性规划问题练习(P86)1、B .2、D .3、B .4、分析:把已知条件用下表表示:工序所需时间/分钟收益/元打磨着色上漆桌子A 106640桌子B 512930工作最长时间450480450解:设家具厂每天生产A 类桌子x 张,B 类桌子y 张.对于A 类桌子,x 张桌子需要打磨10x min ,着色6x min ,上漆6x min 对于B 类桌子,y 张桌子需要打磨5y min ,着色12y min ,上漆9y min 而打磨工人每天最长工作时间是450min ,所以有105450x y +≤.类似地,612480x y +≤,69450x y +≤在实际问题中,0,0x y ≥≥;所以,题目中包含的限制条件为1054506124806945000x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩≤≤≤≥≥练习(P91)1、(1)目标函数为2z x y =+,可行域如图所示,作出直线2y x z =-+,可知z 要取最大值,即直线经过点C 时,解方程组11x y y +=⎧⎨=-⎩得(2,1)C -,所以,max 222(1)3z x y =+=⨯+-=.(2)目标函数为35z x y=+,可行域如图所示,作出直线35z x y=+可知,直线经过点B时,Z取得最大值.直线经过点A时,Z取得最小值.解方程组153y xx y=+⎧⎨-=⎩,和15315y xx y=+⎧⎨+=⎩可得点(2,1)A--和点(1.5,2.5)B.所以max3 1.55 2.517z=⨯+⨯=,min3(2)5(1)11z=⨯-+⨯-=-2、设每月生产甲产品x件,生产乙产品y件,每月收入为z元,目标函数为30002000z x y=+,需要满足的条件是24002500x yx yxy+⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,作直线30002000z x y=+当直线经过点A时,z取得最大值.解方程组24002500x yx y+=⎧⎨+=⎩可得点(200,100)A,z的最大值为800000元.习题3.3A组(P93)1、画图求解二元一次不等式:(1)2x y+≤;(2)22x y->;(3)2y-≤;(4)3x≥(第1题)2、3、分析:将所给信息下表表示:每次播放时间/分广告时间/分收视观众/万连续剧甲80160连续剧乙40120播放最长时间320最少广告时间6解:设每周播放连续剧甲x 次,播放连续剧乙y目标函数为6020z x y =+,所以,题目中包含的限制条件为8040320600x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≥≥≥可行域如图.解方程组80403206x y xy +⎧⎨+⎩==得点M 的坐标为(2,4),所以max 6020200z x y =+=答:电视台每周应播放连续剧甲2次,播放连续剧乙4次,才能获得最高的收视率.4、设每周生产空调器x 台,彩电y 台,则生产冰箱120x y --台,产值为z .则,目标函数为432(120)2240z x y x y x y =++--=++所以,题目中包含的限制条件为111(120)402341202000x y x y x y x y ⎧++--⎪⎪⎪--⎨⎪⎪⎪⎩≤≥≥≥即,312010000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥可行域如图,解方程组3120100x y x y +⎧⎨+⎩==(第2题)(第3题)得点M 的坐标为(10,90),所以max 2240350z x y =++=(千元)答:每周应生产空调器10台,彩电90台,冰箱20台,才能使产值最高,最高产值是350千元.习题3.3B 组(P93)1、画出二元一次不等式组231223600x y x y x y +⎧⎪+>-⎪⎨⎪⎪⎩≤≥≥,所表示的区域如右图2、画出(21)(3)0x y x y +--+>表示的区域.3、设甲粮库要向A 镇运送大米x 吨、向B 镇运送大米y 吨,总运费为z .则乙粮库要向A 镇运送大米(70)x -吨、向B 镇运送大米(110)y -吨,目标函数(总运费)为122025101512(70)208(110)609030200z x y x y x y =⨯⨯+⨯⨯+⨯⨯-+⨯⨯-=++.所以,题目中包含的限制条件为100(70)(110)800700x y x y x y +⎧⎪-+-⎪⎨⎪⎪⎩≤≤≤≤≥.所以当70,30x y ==时,总运费最省min 37100z =(元)(第2题)所以当0,100x y ==时,总运费最不合理max 39200z =(元)使国家造成不该有的损失2100元.答:甲粮库要向A 镇运送大米70吨,向B 镇运送大米30吨,乙粮库要向A 镇运送大米0吨,向B 镇运送大米80吨,此时总运费最省,为37100元.最不合理的调运方案是要向A 镇运送大米0吨,向B 镇运送大米100吨,乙粮库要向A 镇运送大米70吨,向B 镇运送大米10吨,此时总运费为39200元,使国家造成损失2100元.3.42a b +练习(P100)1、因为0x >,所以12x x +=≥当且仅当1x x =时,即1x =时取等号,所以当1x =时,即1x x+的值最小,最小值是2.2、设两条直角边的长分别为,a b ,0,a >且0b >,因为直角三角形的面积等于50.即1502ab =,所以20a b +==≥,当且仅当10a b ==时取等号.答:当两条直角边的长均为10时,两条直角边的和最小,最小值是20.3、设矩形的长与宽分别为a cm ,b cm.0a >,0b >因为周长等于20,所以10a b +=所以2210()()2522a b S ab +===≤,当且仅当5a b ==时取等号.答:当矩形的长与宽均为5时,面积最大.4、设底面的长与宽分别为a m ,b m.0a >,0b >因为体积等于323m ,高2m ,所以底面积为162m ,即16ab =所以用纸面积是222324()32323264S ab bc ac a b =++=+++=+=≥当且仅当4a b ==时取等号答:当底面的长与宽均为4米时,用纸最少.习题3.4A 组(P100)1、(1)设两个正数为,a b ,则0,0a b >>,且36ab =所以12a b +==≥,当且仅当6a b ==时取等号.答:当这两个正数均为6时,它们的和最小.(2)设两个正数为,a b ,依题意0,0a b >>,且18a b +=所以2218()(8122a b ab +==≤,当且仅当9a b ==时取等号.答:当这两个正数均为9时,它们的积最大.2、设矩形的长为x m ,宽为y m ,菜园的面积为S 2m .则230x y +=,S x y=⨯由基本不等式与不等式的性质,可得211219002252()222242x y S x y +=⨯⨯=⨯=≤.当2x y =,即1515,2x y ==时,菜园的面积最大,最大面积是22522m .3、设矩形的长和宽分别为x 和y ,圆柱的侧面积为z ,因为2()36x y +=,即18x y +=.所以222(1622x y z x y πππ+=⨯⨯⨯=≤,当x y =时,即长和宽均为9时,圆柱的侧面积最大.4、设房屋底面长为x m ,宽为y m ,总造价为z 元,则12xy =,12y x=123600312006800580048005800580034600z y x x x⨯=⨯+⨯+=++=≥当且仅当1236004800x x⨯=时,即3x =时,z 有最小值,最低总造价为34600元.习题3.4B 组(P101)1、设矩形的长AB 为x ,由矩形()ABCD AB AD >的周长为24,可知,宽12AB x =-.设PC a =,则DP x a=-所以222(12)()x x a a -+-=,可得21272x x a x -+=,1272x DP x a x-=-=.所以ADP ∆的面积211272187272(12)66[(18]2x x x S x x x x x--+-=-=⨯=⨯-++由基本不等式与不等式的性质6[18]6(18108S ⨯-+=⨯-=-≤当72x x=,即x =m 时,ADP ∆的面积最大,最大面积是(108-2m .2、过点C 作CD AB ⊥,交AB 延长线于点D .设BCD α∠=,ACB β∠=,CD x =.在BCD ∆中,tan b cxα-=.在ACD ∆中,tan()a c xαβ-+=则tan()tan tan tan[()]1tan()tan αβαβαβααβα+-=+-=++⋅()()1a c b ca b x x a c b ca cbc x x x x----==----+⋅+=≤当且仅当()()a cbc x x--=,即x =时,tan β取得最大,从而视角也最大.第三章复习参考题A 组(P103)1<.2、化简得{}23A x x =-<<,{}4,2B x x x =<->或,所以{}23A B x x =<< 3、当0k <时,一元二次不等式23208kx kx +-<对一切实数x 都成立,即二次函数2328y kx kx =+-在x 轴下方,234(2)()08k k ∆=--<,解之得:30k -<<.当0k >时,二次函数2328y kx kx =+-开口朝上一元二次不等式23208kx kx +-<不可能对一切实数x 都成立,所以,30k -<<.4、不等式组438000x y x y ++>⎧⎪<⎨⎪<⎩表示的平面区域的整点坐标是(1,1)--.5、设每天派出A 型车x 辆,B 型车y 辆,成本为z .所以070494860360x y x y x y ⎧⎪⎪⎨+⎪⎪+⎩≤≤≤≤≤≥,目标函数为160252z x y=+把160252z x y =+变形为40163252y x z =-+,得到斜率为4063-,在y 轴上的截距为1252z ,随z 变化的一族平行直线.在可行域的整点中,点(5,2)M 使得z 取得最小值.所以每天派出A 型车5辆,B 型车2辆,成本最小,最低成本为1304元.6、设扇形的半径是x ,扇形的弧长为y ,因为12S xy =扇形的周长为2Z x y =+=≥当2x y =,即x =,y =时,Z可以取得最小值,最小值为.7、设扇形的半径是x ,扇形的弧长为y ,因为2P x y=+扇形的面积为221112(2)()244216x y P Z xy x y +===≤当2x y =,即4P x =,2P y =时,Z 可以取得最大值,半径为4P 时扇形面积最大值为216P .8、设汽车的运输成本为y ,2()s say bv a sbv v v=+⨯=+当sa sbv v=时,即v =c 时,y 有最小值.2sa y sbv v =+=≥,最小值为2c >时,由函数sa y sbv v =+的单调性可知,v c =时y 有最小值,最小值为sa sbc c+.第三章复习参考题B 组(P103)1、D2、(1)32264x x x x ⎧⎫<--<<>⎨⎬⎩⎭或或(2)⎧⎨⎩3、1m =4、设生产裤子x 条,裙子y 条,收益为z .则目标函数为2040z x y =+,所以约束条件为10210600x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩≤≤≤≥≥5、因为22x y +是区域内的点到原点的距离的平方所以,当240330x y x y -+=⎧⎨--=⎩即2,3A A x y ==时,22x y +的最大值为13.当4525x y ⎧=⎪⎪⎨⎪=⎪⎩时,22x y +最小,最小值是45.6、按第一种策略购物,设第一次购物时的价格为1p ,购n kg ,第二次购物时的价格为2p ,仍购n kg ,按这种策略购物时两次购物的平均价格为121222p n p n p p n ++=.若按第二种策略购物,第一次花m 元钱,能购1m p kg 物品,第二次仍花m 元钱,能购2m p kg 物品,两次购物的平均价格为12122211m m mp p p p =++比较两次购物的平均价格:221212121212121212121222()4()011222()2()p p p p p p p p p p p p p p p p p p p p +++---=-==++++≥所以,第一种策略的平均价格高于第二种策略的平均价格,因而,用第二种策略比较经济.一般地,如果是n 次购买同一种物品,用第二种策略购买比较经济.。

【人教A版】高中数学必修1-5教材课后习题答案全套完整WORD版

【人教A版】高中数学必修1-5教材课后习题答案全套完整WORD版
1.1.2集合间的基本关系
练习(第7页)
1.写出集合 的所有子集.
1.解:按子集元素个数来分类,不取任何元素,得 ;
取一个元素,得 ;
取两个元素,得 ;
取三个元素,得 ,
即集合 的所有子集为 .
2.用适当的符号填空:
(1) ______ ; (2) ______ ;
(3) ______ ; (4) ______ ;
1. 集合 满足 ,则 ,即集合 是集合 的子集,得 个子集.
2.在平面直角坐标系中,集合 表示直线 ,从这个角度看,
集合 表示什么?集合 之间有什么关系?
2.解:集合 表示两条直线 的交点的集合,
即 ,点 显然在直线 上,
得 .
3.设集合 , ,求 .
3.解:显然有集合 ,
当 时,集合 ,则 ;
当 时,集合 ,则 ;
则 , .
1.1集合
习题1.1 (第11页) A组
1.用符号“ ”或“ ”填空:
(1) _______ ; (2) ______ ; (3) _______ ;
(4) _______ ; (5) _______ ; (6) _______ .
1.(1) 是有理数; (2) 是个自然数;
(3) 是个无理数,不是有理数; (4) 是实数;
4.已知函数 ,求 , , , .
4.解:因为 ,所以 ,
即 ;
同理, ,
即 ;

即 ;

即 .
5.已知函数 ,
(1)点 在 的图象上吗?
(2)当 时,求 的值;
(3)当 时,求 的值.
5.解:(1)当 时, ,
即点 不在 的图象上;
(2)当 时, ,

【人教A版】高中数学必修1-5教材课后习题答案全套完整WORD版

【人教A版】高中数学必修1-5教材课后习题答案全套完整WORD版
(2) 和 .
3.解:(1)不相等,因为定义域不同,时间 ;
(2)不相等,因为定义域不同, .
1.2.2函数的表示法
练习(第23页)Biblioteka 1.如图,把截面半径为 的圆形木头锯成矩形木料,如果矩形的一边长为 ,
面积为 ,把 表示为 的函数.
1.解:显然矩形的另一边长为 ,
,且 ,
即 .
2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事.
得该函数的定义域为 ;
(2)要使原式有意义,则 ,即 ,
得该函数的定义域为 .
2.已知函数 ,
(1)求 的值;
(2)求 的值.
2.解:(1)由 ,得 ,
同理得 ,
则 ,
即 ;
(2)由 ,得 ,
同理得 ,
则 ,
即 .
3.判断下列各组中的函数是否相等,并说明理由:
(1)表示炮弹飞行高度 与时间 关系的函数 和二次函数 ;
7.设集合 , ,求 ,
, , .
7.解: ,
则 , ,
而 , ,
则 ,

8.学校里开运动会,设 ,
, ,
学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定,
并解释以下集合运算的含义:(1) ;(2) .
8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,
即为 .
3.解:(1)大于 且小于 的整数为 ,即 为所求;
(2)方程 的两个实根为 ,即 为所求;
(3)由不等式 ,得 ,且 ,即 为所求.
4.试选择适当的方法表示下列集合:
(1)二次函数 的函数值组成的集合;
(2)反比例函数 的自变量的值组成的集合;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档