高中数学必修4课后习题答案
高中数学必修4习题和复习参考题对应答案
高中数学必修4习题和复习参考题及对应答案A 组1、在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是哪个象限的角: (1)-265°;(2)-1000°;(3)-843°10′;(4)3900°. 答案:(1)95°,第二象限; (2)80°,第一象限; (3)236°50′,第三象限; (4)300°,第四象限.说明:能在给定范围内找出与指定的角终边相同的角,并判定是第几象限角.2、写出终边在x 轴上的角的集合. 答案:S={α|α=k ·180°,k ∈Z }.说明:将终边相同的角用集合表示.3、写出与下列各角终边相同的角的集合,并把集合中适合不等式-360°≤β<360°的元素β写出来:(1)60°;(2)-75°;(3)-824°30′;(4)475°;(5)90°;(6)270°;(7)180°;(8)0°.答案:(1){β|β=60°+k ·360°,k ∈Z },-300°,60°; (2){β|β=-75°+k ·360°,k ∈Z },-75°,285°; (3){β|β=-824°30′+k ·360°,k ∈Z },-104°30′,255°30′; (4){β|β=475°+k ·360°,k ∈Z },-245°,115°; (5){β|β=90°+k ·360°,k ∈Z },-270°,90°; (6){β|β=270°+k ·360°,k ∈Z },-90°,270°; (7){β|β=180°+k ·360°,k ∈Z },-180°,180°; (8){β|β=k ·360°,k ∈Z },-360°,0°. 说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.4、分别用角度和弧度写出第一、二、三、四象限角的集合. 答案: 象限 角度制弧度制一 {β|k ·360°<β<90°+k ·360°,k ∈Z } {|22,}2k k k πβπβπ<<+∈Z二 {β|90°+k ·360°<β<180°+k ·360°,k ∈Z }{|22,}2k k k πβπβππ+<<+∈Z三 {β|180°+k ·360°<β<270°+k ·360°,k ∈Z }3{|22,}2k k k πβππβπ+<<+∈Z 四{β|270°+k ·360°<β<360°+k ·360°,k ∈Z }3{|222,}2k k k πβπβππ+<<+∈Z 说明:用角度制和弧度制写出各象限角的集合.5、选择题:(1)已知α是锐角,那么2α是( ) A .第一象限角 B .第二象限角 C .小于180°的正角 D .第一或第二象限角 (2)已知α是第一象限角,那么2α是( )、 A .第一象限角 B .第二象限角C .第一或第二象限角D .第一或第三象限角 答案:(1)C 说明:因为0°<α<90°,所以0°<2α<180°. (2)D说明:因为k ·360°<α<90°+k ·360°,k ∈Z ,所以180451802k k α︒<<︒+︒,k ∈Z .当k 为奇数时,2α是第三象限角;当k 为偶数时,2α是第一象限角.6、一条弦的长等于半径,这条弦所对的圆心角等于1弧度吗?为什么?答案:不等于1弧度.这是因为等于半径长的弧所对的圆心角为1弧度,而等于半径长的弦所对的弧比半径长.说明:了解弧度的概念.7、把下列各角度化成弧度: (1)36°;(2)-150°;(3)1095°;(4)1440°.答案:(1)5π;(2)56π;(3)7312π-;(4)8π.说明:能进行度与弧度的换算.8、把下列各弧度化成度: (1)76π-;(2)103π-;(3)1.4;(4)23. 答案:(1)-210°;(2)-600°;(3)80.21°;(4)38.2°.说明:能进行弧度与度的换算.9、要在半径OA=100cm 的圆形金属板上截取一块扇形板,使其弧AB 的长为112cm ,求圆心角∠AOB 是多少度(可用计算器,精确到1°).答案:64°说明:可以先运用弧度制下的弧长公式求出圆心角的弧度数,再将弧度换算为度,也可以直接运用角度制下的弧长公式.10、已知弧长50cm 的弧所对圆心角为200°,求这条弧所在的圆的半径(可用计算器,精确到1cm ).答案:14cm .说明:可以先将度换算为弧度,再运用弧度制下的弧长公式,也可以直接运用角度制下的弧长公式.B 组1、每人准备一把扇子,然后与本小组其他同学的对比,从中选出一把展开后看上去形状较为美观的扇子,并用计算器算出它的面积S 1.(1)假设这把扇子是从一个圆面中剪下的,而剩余部分的面积为S 2,求S 1与S 2的比值; (2)要使S 1与S 2的比值为0.618,则扇子的圆心角应为几度(精确到10°)? 答案:(1)(略)(2)设扇子的圆心角为θ,由2122120.6181(2)2r S S r θπθ==-,可得θ=0.618(2π-θ),则θ=0.764π≈140°.说明:本题是一个数学实践活动.题目对“美观的扇子”并没有给出标准,目的是让学生先去体验,然后再运用所学知识发现,大多数扇子之所以“美观”是因为基本都满足:120.618S S =(黄金分割比)的道理.2、(1)时间经过4 h (时),时针、分针各转了多少度?各等于多少弧度?(2)有人说,钟的时针和分针一天内会重合24次、你认为这种说法是否正确?请说明理由.(提示:从午夜零时算起,假设分针走了t min 会与时针重合,一天内分针和时针会重合n 次,建立t 关于n 的函数关系式,并画出其图象,然后求出每次重合的时间.)答案:(1)时针转了-120°,等于23π-弧度;分针转了-1440°,等于-8π弧度 (2)设经过t min 分针就与时针重合,n 为两针重合的次数. 因为分针旋转的角速度为2(rad /min)6030ππ=, 时针旋转的角速度为2(rad/min)1260360ππ=⨯,所以()230360t n πππ-=,即72011t n =.用计算机或计算器作出函数72011t n =的图象(如下页图)或表格,从中可清楚地看到时针与分针每次重合所需的时间.n u1 15. 981.82 16. 1047.3 17. 1112.7 18. 1178.2 19. 1243.6 20. 1309.1 21. 1374.5 22.1440.因为时针旋转一天所需的时间为24×60=1440(min ),所以720144011n ≤,于是n ≤22.故时针与分针一天内只会重合22次.说明:通过时针与分针的旋转问题进一步地认识弧度的概念,并将问题引向深入,用函数思想进行分析.在研究时针与分针一天的重合次数时,可利用计算器或计算机,从模拟的图形、表格中的数据、函数的解析式或图象等角度,不难得到正确的结论.3、已知相互啮合的两个齿轮,大轮有48齿,小轮有20齿,当大轮转动一周时,小轮转动的角是__________度,即__________rad .如果大轮的转速为180r/min (转/分),小轮的半径为10.5cm ,那么小轮周上一点每1s 转过的弧长是__________.答案:864°,245π,151.2π cm . 说明:通过齿轮的转动问题进一步地认识弧度的概念和弧长公式.当大齿轮转动一周时,小齿轮转动的角是4824360864rad.205π⨯︒=︒= 由于大齿轮的转速为3r/s ,所以小齿轮周上一点每1s 转过的弧长是483210.5151.2(cm)20ππ⨯⨯⨯=. P20习题1.2A 组1、用定义法、公式一以及计算器求下列角的三个三角函数值:(1)173π-;(2)214π;(3)236π-;(4)1500°. 答案:(1)31sin ,cos ,tan 322ααα===; (2)22sin ,cos ,tan 122ααα=-=-=; (3)133sin ,cos ,tan 223ααα===; (4)31sin ,cos ,tan 322ααα===. 说明:先利用公式一变形,再根据定义求值,非特殊角的三角函数值用计算器求.2、已知角α的终边上有一点的坐标是P (3a ,4a ),其中a ≠0,求sin α,cos α,tan α的三角函数值.答案:当a >0时,434s i n ,c o s,t a n 553ααα===;当a <0时,434s i n ,c o s ,t a n 553ααα=-=-=-. 说明:根据定义求三角函数值.3、计算:(1)6sin (-90°)+3sin0°-8sin270°+12cos180°; (2)10cos270°+4sin0°+9tan0°+15cos360°;(3)22322costantan sin cos sin2446663ππππππ-+-++; (4)2423sin cos tan 323πππ+-.答案:(1)-10;(2)15;(3)32-;(4)94-.说明:求特殊角的三角函数值.4、化简:(1)asin0°+bcos90°+ctan180°;(2)-p 2cos180°+q 2sin90°-2pqcos0°;(3)223cos 2sincos sin 22a b ab ab ππππ-+-; (4)13tan 0cos sin cos sin 222m n p q r ππππ+---.答案:(1)0;(2)(p -q )2;(3)(a -b )2;(4)0.说明:利用特殊角的三角函数值化简.5、根据下列条件求函数3()sin()2sin()4cos 23cos()444f x x x x x πππ=++--++的值.(1)4x π=;(2)34x π=. 答案:(1)-2;(2)2.说明:转化为特殊角的三角函数的求值问题.6、确定下列三角函数值的符号: (1)sin186°; (2)tan505°; (3)sin7.6π; (4)23tan()4π-; (5)cos940°;(6)59cos()17π-. 答案:(1)负;(2)负;(3)负;(4)正;(5)负;(6)负. 说明:认识不同位置的角对应的三角函数值的符号.7、确定下列式子的符号: (1)tan125°·sin273°;(2)tan108cos305︒︒;(3)5411sin cos tan 456πππ;(4)511cos tan 662sin 3πππ. 答案:(1)正;(2)负;(3)负;(4)正.说明:认识不同位置的角对应的三角函数值的符号.8、求下列三角函数值(可用计算器):(1)67sin()12π-; (2)15tan()4π-;(3)cos398°13′; (4)tan766°15′. 答案:(1)0.9659;(2)1;(3)0.7857;(4)1.045.说明:可先运用公式一转化成锐角三角函数,然后再求出三角函数值.9、求证:(1)角θ为第二或第三象限角当且仅当sin θ·tan θ<0; (2)角θ为第三或第四象限角当且仅当cos θ·tan θ<0; (3)角θ为第一或第四象限角当且仅当sin 0tan θθ>;(4)角θ为第一或第三象限角当且仅当sinθ·cosθ>0.答案:(1)先证如果角θ为第二或第三象限角,那么sinθ·tanθ<0.当角θ为第二象限角时,sinθ>0,tanθ<0,则sinθ·tanθ<0;当角θ为第三象限角时,sinθ<0,tanθ>0,则sinθ·tanθ<0,所以如果角θ为第二或第三象限角,那么sinθ·tanθ<0.再证如果sinθ·tanθ<0,那么角θ为第二或第三象限角.因为sinθ·tanθ<0,即sinθ>0且tanθ<0,或sinθ<0且tanθ>0,当sinθ>0且tanθ<0时,角θ为第二象限角;当sinθ<0且tanθ>0时,角θ为第三象限角,所以如果sinθ·tanθ<0,那么角θ为第二或第三象限角.综上所述,原命题成立.(其他小题略)说明:以证明命题的形式,认识位于不同象限的角对应的三角函数值的符号.10、(1)已知3sin2α=-,且α为第四象限角,求cosα,tanα的值;(2)已知5cos13α=-,且α为第二象限角,求sinα,tanα的值;(3)已知3tan4α=-,求sinα,cosα的值;(4)已知cosα=0.68,求sinα,tanα的值(计算结果保留两个有效数字).答案:(1)1,3 2-;(2)1212,135-;(3)当α为第二象限角时,34 sin,cos55αα==-,当α为第四象限角时,34 sin,cos55αα=-=;(4)当α为第一象限角时,sinα=0.73,tanα=1.1,当α为第四象限角时,sinα=-0.73,tanα=-1.1.说明:要注意角α是第几象限角.11、已知1sin3x=-,求cosx,tanx的值.答案:当x为第三象限角时,222 cos,tan34x x=-=;当x为第四象限角时,222 cos,tan34x x==-.说明:要分别对x是第三象限角和第四象限角进行讨论.12、已知3tan 3,2απαπ=<<,求cos α-sin α的值. 答案:1(31)2- 说明:角α是特殊角.13、求证: (1)2212sin cos 1tan 1tan cos sin x x xxx x--=+-;(2)tan 2α-sin 2α=tan 2α·sin 2α;(3)(cos β-1)2+sin 2β=2-2cos β;(4)sin 4x +cos 4x=1-2sin 2xcos 2x .答案:(1)2(cos sin )cos sin 1tan (cos sin )(cos sin )cos sin 1tan x x x x xx x x x x x x---===+-++左边; (2)222222222211cos sin sin (1)sin sin sin tan cos cos cos x x x xxx x xxx-=-===左边;(3)左边=1-2cos β+cos 2β+sin 2β=2-2cos β;(4)左边=(sin 2x +cos 2x )2-2sin 2x ·cos 2x=1-2sin 2x ·cos 2x .说明:还可以从右边变为左边,或对左右同时变形.可提倡一题多解,然后逐渐学会选择较为简单的方法.B 组1、化简(1+tan 2α)cos 2α. 答案:1说明:根据同角三角函数的基本关系,将原三角函数式转化为正余弦函数式.2、化简1sin 1sin 1sin 1sin αααα+---+,其中α为第二象限角.答案:-2tan α说明:先变形,再根据同角三角函数的基本关系进行化简.3、已知tan α=2,求sin cos sin cos αααα+-的值.答案:3说明:先转化为正切函数式.4、从本节的例7可以看出,cos 1sin 1sin cos x x x x+=-就是sin 2x +cos 2x=1的一个变形.你能利用同角三角函数的基本关系推导出更多的关系式吗?答案:又如sin 4x +cos 4x=1-2sin 2x ·cos 2x 也是sin 2x +cos 2x=1的一个变形;2211tan cos x x=+是sin 2x +cos 2x=1和sin tan cos xx x=的变形;等等. 说明:本题要求学生至少能写出每个同角关系式的一个变形.P29习题1.3A 组1、将下列三角函数转化为锐角三角函数,并填在题中横线上: (1)cos210°=__________; (2)sin263°42′=__________; (3)cos()6π-=__________;(4)5sin()3π-=__________;(5)11cos()9π-=__________;(6)cos (-104°26′)=__________; (7)tan632°24′=__________; (8)17tan6π=__________. 答案:(1)-cos30°; (2)-sin83°42′ (3)cos 6π; (4)sin3π;(5)2cos9π-; (6)-cos75°34′; (7)-tan87°36′; (8)tan6π-.说明:利用诱导公式转化为锐角三角函数.2、用诱导公式求下列三角函数值: (1)17cos()4π-; (2)sin (-1574°); (3)sin (-2160°52′); (4)cos (-1751°36′); (5)cos1615°8′;(6)26sin()3π-.答案:(1)22;(2)-0.7193;(3)-0.0151;(4)0.6639;(5)-0.9964;(6)32 -说明:先利用诱导公式转化为锐角三角函数,再求值.3、化简:(1)sin(-1071°)·sin99°+sin(-171°)·sin(-261°);(2)1+sin(α-2π)·sin(π+α)-2cos2(-α).答案:(1)0;(2)-cos2α说明:先利用诱导公式转化为角α的三角函数,再进一步化简.4、求证:(1)sin(360°-α)=-sinα;(2)cos(360°-α)=cosα;(3)tan(360°-α)=-tanα.答案:(1)sin(360°-α)=sin(-α)=-sinα;(2)略;(3)略.说明:有的书也将这组恒等式列入诱导公式,但根据公式一可知,它和公式三等价,所以本教科书未将其列入诱导公式.B组1、计算:(1)sin420°·cos750°+sin(-330°)·cos(-660°);(2)tan675°+tan765°-tan(-330°)+tan(-690°);(3)252525sin cos tan() 634πππ++-.答案:(1)1;(2)0;(3)0.说明:先利用诱导公式转化为锐角三角函数,再求值.2、已知1sin()2πα+=-,计算:(1)sin(5π-α);(2)sin()2πα+; (3)3cos()2πα-; (4)tan()2πα-.答案:(1)12; (2)3,,23,;2αα⎧⎪⎪⎨⎪-⎪⎩当为第一象限角当为第二象限角(3)12-; (4)3,,3,αα⎧⎪⎨-⎪⎩当为第一象限角当为第二象限角.说明:先用诱导公式将已知式和待求式都转化为角α的三角函数,然后再根据同角三角函数的基本关系得解. P46习题1.4A 组1、画出下列函数的简图:(1)y=1-sinx ,x ∈[0,2π]; (2)y=3cosx +1,x ∈[0,2π]. 答案:(1)(2)说明:可以直接用“五点法”作出两个函数的图象;也可以先用“五点法”作出正弦、余弦函数的图象,再通过变换得到这两个函数的图象.2、求使下列函数取得最大值、最小值的自变量x 的集合,并分别写出最大值、最小值是什么.(1)11cos ,23y x x π=-∈R ; (2)3sin(2),4y x x π=+∈R ;(3)31cos(),226y x x π=--∈R ; (4)11sin(),223y x x π=+∈R .答案:(1)使y 取得最大值的集合是{x|x=6k +3,k ∈Z },最大值是32; 使y 取得最小值的集合是{x|x=6k ,k ∈Z },最大值是12; (2)使y 取得最大值的集合是{|,}8x x k k ππ=+∈Z ,最大值是3;使y 取得最小值的集合是3{|,}8x x k k ππ=-+∈Z ,最小值是-3; (3)使y 取得最大值的集合是{|2(21),}3x x k k ππ=++∈Z ,最大值是32;使y 取得最小值的集合是{|4,}3x x k k ππ=+∈Z ,最小值是32-;(4)使y 取得最大值的集合是{|4,}3x x k k ππ=+∈Z ,最大值是12;使y 取得最小值的集合是5{|4,}3x x k k ππ=-+∈Z ,最小值是12-. 说明:利用正弦、余弦函数的最大值、最小值性质,研究所给函数的最大值、最小值性质.3、求下列函数的周期:(1)2sin 3y x =,x ∈R ; (2)1cos 42y x =,x ∈R . 答案:(1)3π;(2)2π说明:可直接由函数y=Asin (ωx +φ)和函数y=Acos (ωx +φ)的周期2T πω=得解.4、利用函数的单调性比较下列各组中两个三角函数值的大小: (1)sin103°15′与sin164°30′; (2)4744cos()cos()109ππ--与; (3)sin508°与sin144°;(4)cos760°与cos (-770°). 答案:(1)sin103°15′>sin164°130′; (2)4744cos()cos()109ππ->-; (3)sin508°<sin144°;(4)cos760°>cos (-770°).说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.5、求下列函数的单调区间: (1)y=1+sinx ,x ∈R ; (2)y=-cosx ,x ∈R . 答案:(1)当[2,2]22x k k ππππ∈-++,k ∈Z 时,y=1+sinx 是增函数;当3[2,2]22x k k ππππ∈++,k ∈Z 时,y=1+sinx 是减函数. (2)当x ∈[(2k -1)π,2k π],k ∈Z 时,y=-cosx 是减函数; 当x ∈[2k π,(2k +1)π],k ∈Z 时,y=-cosx 是增函数. 说明:利用正弦、余弦函数的单调性研究所给函数的单调性.6、求函数tan()26y x π=-++的定义域.答案:{|,}3x x k k ππ≠+∈Z .说明:可用换元法.7、求函数5tan(2),()3122k y x x k πππ=-≠+∈Z 的周期.答案:2π. 说明:可直接由函数y=Atan (ωx +φ)的周期T πω=得解.8、利用正切函数的单调性比较下列各组中两个函数值的大小: (1)13tan()tan()57ππ--与; (2)tan1519°与tan1493°;(3)93tan 6tan(5)1111ππ-与; (4)7tan tan 86ππ与.答案:(1)13tan()tan()57ππ->-;(2)tan1519°>tan1493°;(3)93tan 6tan(5)1111ππ>-;(4)7tan tan 86ππ<.说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.9、根据正切函数的图象,写出使下列不等式成立的x 的集合: (1)1+tanx ≥0;(2)tan 30x -≥. 答案:(1){|,}42x k x k k ππππ-+<+∈Z ≤;(2){|,}32x k x k k ππππ+<+∈Z ≤.说明:只需根据正切曲线写出结果,并不要求解三角方程或三角不等式.10、设函数f (x )(x ∈R )是以 2为最小正周期的周期函数,且x ∈[0,2]时f (x )=(x -1)2.求f (3),7()2f 的值.答案:由于f (x )以2为最小正周期,所以对任意x ∈R ,有f (x +2)=f (x ).于是:f (3)=f (1+2)=f (1)=(1-1)2=0;273331()(2)()(1)22224f f f =+==-=. 说明:利用周期函数的性质,将其他区间上的求值问题转化到区间[0,2]上的求值问题.11、容易知道,正弦函数y=sinx 是奇函数,正弦曲线关于原点对称,即原点是正弦曲线的对称中心.除原点外,正弦曲线还有其他对称中心吗?如果有,对称中心的坐标是什么?另外,正弦曲线是轴对称图形吗?如果是,对称轴的方程是什么?你能用已经学过的正弦函数性质解释上述现象吗? 对余弦函数和正切函数,讨论上述同样的问题.答案:由正弦函数的周期性可知,除原点外,正弦曲线还有其他对称中心,其对称中心坐标为(k π,0),k ∈Z .正弦曲线是轴对称图形,其对称轴的方程是,2x k k ππ=+∈Z .由余弦函数和正切的周期性可知,余弦曲线的对称中心坐标为(,0)2k ππ+,k ∈Z ,对称轴的方程是x=k π,k ∈Z ;正切曲线的对称中心坐标为(,0)2k π,k ∈Z ,正切曲线不是轴对称图形.说明:利用三角函数的图象和周期性研究其对称性.B 组1、根据正弦函数、余弦函数的图象,写出使下列不等式成立的x 的取值集合:(1)3sin ()2x x ∈R ≥; (2)22cos 0()x x +∈R ≥. 答案:(1)2{|22,}33x k x k k ππππ++∈Z ≤≤; (2)33{|22,}44x k x k k ππππ-++∈Z ≤≤. 说明:变形后直接根据正弦函数、余弦函数的图象写出结果,并不要求解三角方程或三角不等式.2、求函数3tan(2)4y x π=--的单调区间. 答案:单调递减区间5(,),2828k k k ππππ++∈Z .说明:利用正切函数的单调区间求所给函数的单调区间.3、已知函数y=f (x )的图象如图所示,试回答下列问题:(1)求函数的周期;(2)画出函数y=f (x +1)的图象;(3)你能写出函数y=f (x )的解析式吗?答案:(1)2;(2)y=f (x +1)的图象如下;(3)y=|x -2k|,x ∈[2k -1,2k +1],k ∈Z .说明:可直接由函数y=f (x )的图象得到其周期.将函数y=f (x )的图象向左平行移动1个单位长度,就得到函数y=f (x +1)的图象.求函数y=f (x )的解析式难度较高,需要较强的抽象思维能力.可先求出定义域为一个周期的函数y=f (x ),x ∈[-1,1]的解析式为y=|x|,x ∈[-1,1],再根据函数y=f (x )的图象和周期性,得到函数y=f (x )的解析式为y=|x -2k|,x ∈[2k -1,2k +1],k ∈Z . P57习题1.5A 组1、选择题:(1)为了得到函数1cos()3y x =+,x ∈R 的图象,只需把余弦曲线上所有的点( )A .向左平行移动3π个单位长度 B .向右平行移动3π个单位长度C .向左平行移动13个单位长度D .向右平行移动13个单位长度(2)为了得到函数cos 5xy =,x ∈R 的图象,只需把余弦曲线上所有的点的( )、A .横坐标伸长到原来的5倍,纵坐标不变B .横坐标缩短到原来的15倍,纵坐标不变 C .纵坐标伸长到原来的5倍,横坐标不变D .纵坐标缩短到原来的15倍,横坐标不变 (3)为了得到函数1cos 4y x =,x ∈R 的图象,只需把余弦曲线上所有的点的( ).A .横坐标伸长到原来的4倍,纵坐标不变B .横坐标缩短到原来的14倍,纵坐标不变 C .纵坐标伸长到原来的4倍,横坐标不变 D .纵坐标缩短到原来的14倍,横坐标不变 答案:(1)C ;(2)A ;(3)D .2、画出下列函数在长度为一个周期的闭区间上的简图(有条件的可用计算器或计算机作图检验):(1)14sin 2y x =,x ∈R ; (2)1cos32y x =,x ∈R ; (3)3sin(2)6y x π=+,x ∈R ; (4)112cos()24y x π=-,x ∈R .答案:(1)(2)(3)(4)说明:研究了参数A、ω、φ对函数图象的影响.3、不画图,直接写出下列函数的振幅、周期与初相,并说明这些函数的图象可由正弦曲线经过怎样的变化得到(注意定义域):(1)8sin()48x y π=-,x ∈[0,+∞); (2)1sin(3)37y x π=+,x ∈[0,+∞). 答案:(1)振幅是8,周期是8π,初相是8π-. 先把正弦曲线向右平行移动8π个单位长度,得到函数1sin()8y x π=-,x ∈R 的图象;再把函数y 1的图象上所有点的横坐标伸长到原来的4倍(纵坐标不变),得到函数2sin()48x y π=-,x ∈R 的图象;再把函数y 2的图象上所有点的纵坐标伸长到原来的8倍(横坐标不变),得到函数38sin()48x y π=-,x ∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数8sin()48x y π=-,x ∈[0,+∞)的图象.(2)振幅是13,周期是23π,初相是7π.先把正弦曲线向左平行移动7π个单位长度,得到函数1sin()7y x π=+,x ∈R 的图象;再把函数y 1的图象上所有点的横坐标缩短到原来的13倍(纵坐标不变),得到函数2sin(3)7y x π=+,x ∈R 的图象;再把函数y 2的图象上所有点的纵坐标缩短到原来的13倍(横坐标不变),得到函数31sin(3)37y x π=+,x ∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数1sin(3)37y x π=+,x ∈[0,+∞)的图象.说明:了解简谐振动的物理量与函数解析式的关系,并认识函数y=Asin (ωx +φ)的图象与正弦曲线的关系.4、图 1.5-1的电流i (单位:A )随时间t (单位:s )变化的函数关系是5sin(100),[0,)3i t t ππ=+∈+∞.(1)求电流i 变化的周期、频率、振幅及其初相; (2)当t=0,1171,,,(:s)60015060060单位时,求电流i . 答案:(1)周期为150,频率为50,振幅为5,初相为3π.(2)t=0时,532i =;1600t =时,i=5;1150t =时,i=0;7600t =时,i=-5;160t =时,i=0.说明:了解简谐振动的物理量与函数解析式的关系,并求函数值.5、一根长为l cm 的线,一端固定,另一端悬挂一个小球.小球摆动时,离开平衡位置的位移s (单位:cm )与时间t (单位:s )的函数关系是3cos(),[0,)3g s t t l π=+∈+∞. (1)求小球摆动的周期;(2)已知g ≈980cm/s 2,要使小球摆动的周期是1s ,线的长度l 应当是多少?(精确到0.1cm )答案:(1)2lgπ;(2)约24.8cm . 说明:了解简谐振的周期.B 组1、弹簧振子的振动是简谐运动.下表给出了振子在完成一次全振动的过程中的时间t 与位移s 之间的对应数据,根据这些数据求出这个振子的振动函数解析式.t 0 t 0 2t 0 3t 04t 05t 0 6t 0 7t 0 8t 0 9t 010t 0 11t 0 12t 0s-20.0-17.8-10.10.110.317.720.017.710.30.1 -10.1-17.8-20.0答案:根据已知数据作出散点图(如图).由散点图可知,振子的振动函数解析式为020sin()62x y t ππ=-,x ∈[0,+∞).说明:作出已知数据的散点图,然后选择一个函数模型来描述,并根据已知数据求出该函数模型.2、弹簧挂着的小球作上下运动,它在t 秒时相对于平衡位置的高度h 厘米由下列关系式确定:2sin()4h t π=+.以t 为横坐标,h 为纵坐标,作出这个函数在一个剧期的闭区间上的图象,并回答下列问题:(1)小球在开始振动时(即t=0)的位置在哪里?(2)小球的最高点和最低点与平衡位置的距离分别是多少? (3)经过多少时问小球往复运动一次? (4)每秒钟小球能往复振动多少次?答案:函数2sin()4h t π=+在[0,2π]上的图象为(1)小球在开始振动时的位置在(0,2); (2)最高点和最低点与平衡位置的距离都是2; (3)经过2π秒小球往复运动一次; (4)每秒钟小球能往复振动12π次. 说明:结合具体问题,了解解析式中各常数的实际意义.3、如图,点P 是半径为r cm 的砂轮边缘上的一个质点,它从初始位置P 0开始,按逆时针方向以角速度ω rad/s 做圆周运动.求点P 的纵坐标y 关于时间t 的函数关系,并求点P 的运动周期和频率.答案:点P的纵坐标关于时间t的函数关系式为y=rsin(ωt+φ),t∈[0,+∞);点P的运动周期和频率分别为2πω和2ωπ.说明:应用函数模型y=rsin(ωt+φ)解决实际问题.P65习题1.61、根据下列条件,求△ABC的内角A:(1)1sin2A=;(2)2cos2A=-;(3)tanA=1;(4)3 tan3A=-.答案:(1)30°或150°;(2)135°;(3)45°;(4)150°.说明:由角A是△ABC的内角,可知A∈(0°,180°).2、根据下列条件,求(0,2π)内的角x:(1)3sin2x=-;(2)sinx=-1;(3)cosx=0;(4)tanx=1.答案:(1)4533ππ或;(2)32π;(3)322ππ或;(4)544ππ或.说明:可让学生再变换角x的取值范围求解.3、天上有些恒星的亮度是会变化的.其中一种称为造父(型)变星,本身体积会膨胀收缩造成亮度周期性的变化、下图为一造父变星的亮度随时间的周期变化图、此变星的亮度变化的周期为多少天?最亮时是几等星?最暗时是几等星?答案:5.5天;约3.7等星;约4.4等星.说明:每个周期的图象不一定完全相同,表示视星等的坐标是由大到小.4、夏天是用电的高峰时期,特别是在晚上.为保证居民空调制冷用电,电力部门不得不对企事业拉闸限电,而到了0时以后,又出现电力过剩的情况.因此每天的用电也出现周期性的变化.为保证居民用电,电力部门提出了“消峰平谷”的想法,即提高晚上高峰时期的电价,同时降低后半夜低峰时期的电价,鼓励各单位在低峰时用电.请你调查你们地区每天的用电情况,制定一项“消峰平谷”的电价方案.答案:先收集每天的用电数据,然后作出用电量随时间变化的图象,根据图象制定“消峰平谷”的电价方案.说明:建立周期变化的模型解决实际问题.B组1、北京天安门广场的国旗每天是在日出时随太阳升起,在日落时降旗、请根据年鉴或其他的参考资料,统计过去一年不同时期的日出和日落时间.(1)在同一坐标系中,以日期为横轴,画出散点图,并用曲线去拟合这些数据,同时找到函数模型;(2)某同学准备在五一长假时去看升旗,他应当几点到达天安门广场?答案:略.说明:建立周期变化的函数模型,根据模型解决实际问题.2、一个城市所在的经度和纬度是如何影响日出和日落的时间的?收集其他有关的数据并提供理论证据支持你的结论.答案:略.说明:收集数据,建立周期变化的函数模型,根据模型提出个人意见.然后采取上网、查阅资料或走访专业人士的形式,获取这方面的信息,以此来说明自己的结论.P69复习参考题A 组1、写出与下列各角终边相同的角的集合S ,并且把S 中适合不等式-2π≤β≤4π的元素β写出来:(1)4π; (2)23π-;(3)125π;(4)0.答案:(1)79{|2,},,,4444k k ππππββπ=+∈-Z ; (2)22410{|2,},,,3333k k ββπππππ=-+∈-Z ;(3)128212{|2,},,,5555k k ββπππππ=+∈-Z ;(4){β|β=2k π,k ∈Z },-2π,0,2π. 说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.2、在半径为15cm 的圆中,一扇形的弧含有54°,求这个扇形的周长与面积(π取3.14,计算结果保留两个有效数字).答案:周长约44cm ,面积约1.1×102cm 2.说明:可先将角度转化为弧度,再利用弧度制下的弧长和面积公式求解.3、确定下列三角函数值的符号:(1)sin4; (2)cos5; (3)tan8; (4)tan (-3). 答案:(1)负;(2)正;(3)负;(4)正.说明:将角的弧度数转化为含π的形式或度,再进行判断.4、已知1cos 4ϕ=,求sin φ,tan φ. 答案:当φ为第一象限角时,15sin ,tan 154ϕϕ==; 当φ为第四象限角时,15sin ,tan 154ϕϕ=-=-. 说明:先求sin φ的值,再求tan φ的值.5、已知sinx=2cosx ,求角x 的三个三角函数值. 答案:当x 为第一象限角时,tanx=2,525cos ,sin 55x x ==;当x 为第三象限角时,tanx=2,525cos ,sin 55x x =-=-. 说明:先求tanx 的值,再求另外两个函数的值.6、用cos α表示sin 4α-sin 2α+cos 2α.答案:cos 4α.说明:先将原式变形为sin 2α(sin 2α-1)+cos 2α,再用同角三角函数的基本关系变形.7、求证:(1)2(1-sin α)(1+cos α)=(1-sin α+cos α)2;(2)sin 2α+sin 2β-sin 2α·sin 2β+cos 2α·cos 2β=1. 答案:(1)左边=2-2sin α+2cos α-2sin αcos α=1+sin 2α+cos 2α-2sin α+2cos α-2sin αcos α =右边. (2)左边=sin 2α(1-sin 2β)+sin 2β+cos 2αcos 2β=cos 2β(sin 2α+cos 2α)+sin 2β =1=右边.说明:第(1)题可先将左右两边展开,再用同角三角函数的基本关系变形.8、已知tan α=3,计算: (1)4sin 2cos 5cos 3sin αααα-+;(2)sin αcos α;(3)(sin α+cos α)2. 答案:(1)57;(2)310;(3)85. 说明:第(2)题可由222sin tan 9cos ααα==,得21c o s 10α=,所以23sin cos tan cos 10αααα==.或222s incs i n c10sin cos tan 131αααααααα====+++.9、先估计结果的符号,再进行计算. (1)252525sincos tan()634πππ++-; (2)sin2+cos3+tan4(可用计算器).答案:(1)0;(2)1.0771.说明:先根据各个角的位置比较它们的三角函数值的大小,再估计结果的符号.10、已知1sin()2πα+=-,计算:(1)cos(2π-α);(2)tan(α-7π).答案:(1)当α为第一象限角时,3 cos(2)2πα-=,当α为第二象限角时,3 cos(2)2πα-=-;(2)当α为第一象限角时,3 tan(7)3απ-=,当α为第二象限角时,3 tan(7)3απ-=-.说明:先用诱导公式转化为α的三角函数,再用同角三角函数的基本关系计算.11、先比较大小,再用计算器求值:(1)sin378°21′,tan1111°,cos642.5°;(2)sin(-879°),313t a n(),c o s()810ππ--;(3)sin3,cos(sin2).答案:(1)tan1111°=0.601,sin378°21′=0.315,cos642.5°=0.216;(2)sin(-879°)=-0.358,3313tan()0.414,cos()0.588 810ππ-=--=-;(3)sin3=0.141,cos(sin2)=0.614.说明:本题的要求是先估计各三角函数值的大小,再求值验证.12、设π<x<2π,填表:x 76π74πsinx -1cosx22-32tanx 3答案:x 76π54π43π32π74π116πsinx12-22-32--122-12-cosx32-22-12- 02232tanx3313不存在-133-说明:熟悉各特殊角的三角函数值.13、下列各式能否成立,说明理由: (1)cos 2x=1.5;(2)3sin 4x π=-.答案:(1)因为cos 1.5x =,或cos 1.5x =-,而 1.51, 1.51>-<-,所以原式不能成立;(2)因为3sin 4x π=-,而3||14π-<,所以原式有可能成立.说明:利用正弦和余弦函数的最大值和最小值性质进行判断.14、求下列函数的最大值、最小值,并且求使函数取得最大、最小值的x 的集合: (1)sin 2xy π=+,x ∈R ;(2)y=3-2cosx ,x ∈R . 答案:(1)最大值为12π+,此时x 的集合为{|2,}2x x k k ππ=+∈Z ;最小值为12π-,此时x 的集合为{|2,}2x x k k ππ=-+∈Z ;(2)最大值为5,此时x 的集合为{x|x=(2k +1)π,k ∈Z }; 最小值为1,此时x 的集合为{x|x=2k π,k ∈Z }.说明:利用正弦、余弦函数的最大值和最小值性质,研究所给函数的最大值和最小值性质.15、已知0≤x ≤2π,求适合下列条件的角x 的集合: (1)y=sinx 和y=cosx 都是增函数; (2)y=sinx 和y=cosx 都是减函数;(3)y=sinx 是增函数,而y=cosx 是减函数; (4)y=sinx 是减函数,而y=cosx 是增函数.答案:(1)3{|2}2x x ππ≤≤; (2){|}2x x ππ≤≤;(3){|0}2x x π≤≤;(4)3{|}2x x ππ≤≤. 说明:利用函数图象分析.16、画出下列函数在长度为一个周期的闭区间上的简图: (1)1sin(3),;23y x x π=-∈R (2)2sin(),;4y x x π=-+∈R (3)1sin(2),;5y x x π=--∈R(4)3sin(),.63xy x π=-∈R 答案:(1)(2)(3)(4)说明:可要求学生在作出图象后,用计算机或计算器验证.17、(1)用描点法画出函数y=sinx ,[0,]2x π∈的图象.(2)如何根据第(1)小题并运用正弦函数的性质,得出函数y=sinx ,x ∈[0,2π]的图象?(3)如何根据第(2)小题并通过平行移动坐标轴,得出函数y=sin (x +φ)+k ,x ∈[0,2π]的图象?(其中φ,k 都是常数)答案:(1)x 0 18π9π 6π 29π 518π 3π 718π 49π 2π sinx0.17 0.34 0.50 0.64 0.77 0.87 0.94 0.981(2)由sin (π-x )=sinx ,可知函数y=sinx ,x ∈[0,π]的图象关于直线2x π=对称,据此可得函数y=sinx ,[,]2x ππ∈的图象;又由sin (2π-x )=-sinx ,可知函数y=sinx ,x ∈[0,2π]的图象关于点(π,0)对称,据此可得出函数y=sinx ,x ∈[π,2π]的图象.(3)先把y 轴向右(当φ>0时)或向左(当φ<0时)平行移动|φ|个单位长度,再把x 轴向下(当k >0时)或向上(当k <0时)平行移动|k|个单位长度,最后将图象向左或向右平行移动2π个单位长度,并擦去[0,2π]之外的部分,便得出函数y=sin (x +φ)+k ,x ∈[0,2π]的图象.说明:学会用不同的方法作函数图象.18、不通过画图,写出下列函数的振幅、周期、初相,并说明如何由正弦曲线得出它们的图象:(1)sin(5),;6y x x π=+∈R(2)12sin,.6y x x =∈R 答案:(1)振幅是1,周期是25π,初相是6π. 把正弦曲线向左平行移动6π个单位长度,可以得函数sin()6y x π=+,x ∈R 的图象;再把所得图象上所有点的横坐标缩短到原来的15倍(纵坐标不变),就可得出函数sin(5)6y x π=+,x ∈R 的图象.(2)振幅是2,周期是2π,初相是0.把正弦曲线上所有点的横坐标伸长到原来的6倍(纵坐标不变),得到函数1sin6y x =,x ∈R 的图象;再把所得图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),就可得到函数12sin()6y x =,x ∈R 的图象.说明:会根据解析式求各物理量,并理解如何由正弦曲线通过变换得到正弦函数的图象.。
高中数学必修4全套学案含答案
第一章三角函数1.1 任意角和弧度制►1.1.1 任意角课前自主学习 KEQIANZIZHUXUEXI[基础自学]一、角的概念1.角的概念(1)角可以看成是一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形.(2)角的表示顶点:用O表示;始边:用OA表示,用语言可表示为角的始边;终边:用OB表示,用语言可表示为角的终边.2.角的分类按旋转方向可将角分为如下三类:类型定义图示正角按照逆时针旋转而成的角负角按照顺时针旋转而成的角零角当射线没有旋转时,我们也把它看成一个角,叫做零角1.象限角:若角的顶点在原点,角的始边与x轴非负半轴重合,则角的终边在第几象限,就称这个角是第几象限角.2.轴线角:若角的终边在坐标轴上,则这个角不属于任何象限.三、终边相同的角设α表示任意角,所有与角α终边相同的角,包括α本身构成一个集合,这个集合可记为{β|β=α+k·360°,k∈Z}.[自我小测]1.判断(正确的打“√”,错误的打“×”)(1)研究终边相同的角的前提条件是角的顶点在坐标原点.( )(2)锐角是第一象限的角,但第一象限的角不一定是锐角.( )(3)象限角与终边落在坐标轴上的角表示形式是唯一的.( )提示:(1)×(2)√(3)×2.做一做(1)下列各组角中,终边不相同的是( )A.60°与-300° B.230°与950°C.1050°与-300° D.-1000°与80°答案 C(2)将-885°化为α+k·360°(0°≤α<360°,k∈Z)的形式是________.答案195°+(-3)×360°课堂合作探究 KETANGHEZUOTANJIU1终边相同的角之间有什么关系?提示:与α终边相同的角,可表示为β=k·360°+α(k∈Z),即两角相差360°的整数倍.2如何表示终边在坐标轴上的角和象限角?提示:终边在x轴非负半轴上的角:α=k·360°(k∈Z);终边在y轴上的角:α=90°+k·180°(k∈Z);第二象限角:90°+k·360°<α<180°+k·360°(k∈Z).题型一正确理解角的概念例1 下列结论:①锐角都是第一象限角;②第一象限角一定不是负角;③第二象限角是钝角;④小于180°的角是钝角、直角或锐角.其中正确的序号为________(把正确结论的序号都写上).[解析] ①锐角是大于0°且小于90°的角,终边落在第一象限,故是第一象限角,所以①正确;②-330°角是第一象限角,但它是负角,所以②不正确;③480°角是第二象限角,但它不是钝角,所以③不正确;④0°角小于180°,但它既不是钝角,也不是直角或锐角,故④不正确.[答案] ①角的概念的理解正确解答角的概念问题,关键在于正确理解象限角与锐角、直角、钝角、平角、周角等概念,另外需要掌握判断结论正确与否的技巧,判断结论正确需要证明,而判断结论不正确只需举一个反例即可.【跟踪训练1】(1)经过2个小时,钟表上的时针旋转了( )A.60° B.-60°C.30° D.-30°(2)如图∠α=__________,∠β=__________. 答案 (1)B (2)-150° 210°解析 (1)钟表的时针旋转一周是-360°,其中每小时旋转-360°12=-30°,所以经过2个小时应旋转-60°.题型二 终边相同的角的表示及象限角 例2 已知α=-1910°.(1)把α写成β+k ·360°(k ∈Z,0°≤β<360°)的形式,指出它是第几象限的角; (2)求θ,使θ与α的终边相同,且-720°<θ≤0°. [解] (1)∵-1910°÷360°=-6余250°, ∴-1910°=-6×360°+250°.相应β=250°,从而α=-6×360°+250°是第三象限的角. (2)令θ=250°+k ·360°(k ∈Z ),取k =-1,-2就得到适合-720°<θ≤0°的角: 250°-360°=-110°,250°-720°=-470°. ∴θ=-110°或θ=-470°.[变式探究] 与-1560°角终边相同的角的集合中,最小正角是________,最大负角是________.答案 240° -120°解析 与-1560°角终边相同的角的集合为{α|α=k ·360°+240°,k ∈Z },所以最小正角为240°,最大负角为-120°.怎样表示终边相同的角及象限角(1)已知终边所处的位置,写角的集合时,可先写出0°~360°范围内的角,然后再加k ·360°(k ∈Z )组成集合即可.(2)象限角的判定有两种方法:一是根据图形判定,在直角坐标系中作出角,角的终边落在第几象限,此角就是第几象限角.二是根据终边相同的角的概念.把角转化到0°~360°范围内,转化后的角在第几象限,此角就是第几象限角.【跟踪训练2】 在0°到360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限的角.(1)-120°;(2)640°;(3)-950°12′.解(1)-120°=-360°+240°,∴在0°到360°范围内,与-120°终边相同的角是240°角,它是第三象限的角.(2)640°=360°+280°,∴在0°到360°范围内与640°终边相同的角是280°角,它是第四象限的角.(3)-950°12′=-3×360°+129°48′,∴在0°到360°范围内与-950°12′终边相同的角是129°48′,它是第二象限的角.题型三区域角的表示例3 写出终边落在阴影部分的角的集合.[解] 设终边落在阴影部分的角为α,角α的集合由两部分组成.①{α|k·360°+30°≤α<k·360°+105°,k∈Z}.②{α|k·360°+210°≤α<k·360°+285°,k∈Z}.∴角α的集合应当是集合①与②的并集:{α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°或(2k+1)·180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|k·180°+30°≤α<k·180°+105°,k∈Z}.[变式探究] 将例3改为下图,写出角的终边在图中阴影区域的角的集合(包括边界).解(1){α|45°+k·180°≤α≤90°+k·180°,k∈Z}.(2){α|-150°+k·360°≤α≤150°+k·360°,k∈Z}.表示区间角的三个步骤(1)先按逆时针方向找到区域的起始和终止边界.(2)由小到大分别标出起始、终止边界对应的一个角α,β,写出所有与α,β终边相同的角.(3)用不等式表示区域内的角,组成集合.【跟踪训练3】写出终边在如下图所示阴影部分内的角α的取值范围.解(1)与45°角终边相同的角的集合为{α|α=45°+k·360°,k∈Z},与30°-180°=-150°角终边相同的角的集合为{α|α=-150°+k·360°,k∈Z},因此终边在阴影部分内的角α的取值范围为{α|-150°+k·360°<α≤45°+k·360°,k∈Z}.(2)方法同(1),可得终边在阴影部分内的角α的取值范围为{α|45°+k·360°≤α≤300°+k·360°,k∈Z}.[规律小结]1.角的概念的理解(1)弄清角的始边与终边.(2)结合图形明确这个角从始边到终边转过了多少度.(3)注意逆时针旋转与顺时针旋转的区别.2.研究象限角时应注意的问题(1)前提条件:角的顶点与原点重合,角的始边与x轴的非负半轴重合;(2)并不是任何角都是象限角,如终边落在坐标轴上的角叫轴线角,轴线角的表示如下表:终边所在的位置角的集合x轴非负半轴{α|α=k·360°,k∈Z}x轴非正半轴{α|α=k·360°+180°,k∈Z}y轴非负半轴{α|α=k·360°+90°,k∈Z}y轴非正半轴{α|α=k·360°+270°,k∈Z}3.表示与α终边相同的角时应注意的问题(1)k是整数,这个条件不能漏掉;(2)α是任意角;(3)k ·360°与α之间是“+”号,如k ·360°-30°应看成k ·360°+(-30°)(k ∈Z );(4)终边相同的角不一定相等,但相等的角终边一定相同. [走出误区]易错点⊳分角所在象限及范围的确定的误区 [典例] 若α是第三象限的角,则α3是( )A.第一象限的角B.第三象限的角C.第四象限的角D.第一象限或第三象限或第四象限的角[错解档案] 因为α是第三象限的角,所以取α=210°,得到α3=70°,是第一象限的角,故选A.[误区警示] 第三象限的角α有无数个,用α=210°得到α3=70°而选择答案A ,犯了以偏概全的错误.[规范解答] 因为α是第三象限的角,所以k ·360°+180°<α<k ·360°+270°(k ∈Z ),则k ·120°+60°<α3<k ·120°+90°(k ∈Z ),取k =0,得到α3可在第一象限;取k =1,得到α3可在第三象限;取k =2,得到α3可在第四象限.故选D.矫正训练 若α为第二象限的角,则α2为第几象限角?解 若α为第二象限角,则有随堂消化吸收 SUITANGXIAOHUAXISHOU1.[2016·吉林实验高一期中]下列叙述正确的是( ) A .三角形的内角是第一象限角或第二象限角 B .钝角是第二象限角 C .第二象限角比第一象限角大 D .不相等的角终边一定不同 答案 B解析 三角形的内角是第一象限角、第二象限角或在y 轴非负半轴上的角,故A 错误;钝角是第二象限角,B 正确;象限角不能比较大小,故C 错误;不相等的角终边也可能相同,如40°和400°,故D 错误.2.[2016·山东枣庄模拟]若α是第四象限角,则180°+α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角答案 B解析 因为α与180°+α的终边关于点(0,0)对称,所以角180°+α的终边在第二象限.3.如果将钟表拨快10分钟,则时针所转成的角度是________度,分针所转成的角度是________度.答案 -5 -60解析 将钟表拨快10分钟,则时针按顺时针方向转了10×360°12×60=5°,所转成的角度是-5°;分针按顺时针方向转了10×360°60=60°,所转成的角度是-60°.4.若α为锐角,则-α+k ·360°(k ∈Z )在第________象限. 答案 四解析 由于0°<α<90°,所以-90°<-α<0°,所以-α是第四象限角,从而-α+k ·360°(k ∈Z )在第四象限.5.[2016·大连高一检测]写出与下列各角终边相同的角的集合S ,并把S 中适合不等式-360°≤α≤720°的元素α写出来:(1)60°;(2)-21°.解 第一步:利用终边相同的角的集合公式写出: (1)S ={α|α=60°+k ·360°,k ∈Z }; (2)S ={α|α=-21°+k ·360°,k ∈Z }.第二步:在第一步的基础上,利用约束条件对其中的k 值分别采用赋值法求出元素α; (1)-300°,60°,420°;(2)-21°,339°,699°.课后课时精练 KEHOUKESHIJINGLIAN 时间:25分钟满分:60分一、选择题(每小题5分,共25分)1.已知α=-130°,则α的终边落在( )A.第一象限B.第二象限C.第三象限D.第四象限答案 C解析∵-130°=-360°+230°,而230°是第三象限角,∴α的终边落在第三象限.2.已知角α的终边落在直线y=x上,则角α的集合S=( )A.{α|α=k·360°+45°,k∈Z}B.{α|α=k·90°+45°,k∈Z}C.{α|α=k·360°+225°,k∈Z}D.{α|α=k·180°+45°,k∈Z}答案 D解析本题考查终边在特殊直线上的角以及分类讨论的数学思想.由于角α的终边落在直线y=x上,故角α在0°~360°内所对应的两个角分别为45°及225°,从而角α的集合S={α|α=k·360°+45°或α=k·360°+225°,k∈Z}={α|α=k·180°+45°,k∈Z},故选D.3.若α是钝角,则θ=k·180°+α,k∈Z是( )A.第二象限角B.第三象限角C.第二象限角或第三象限角D.第二象限角或第四象限角答案 D解析当k为偶数时,θ=k·180°+α,k∈Z是第二象限角,当k为奇数时,θ=k·180°+α,k∈Z是第四象限角.4.已知角α、β的终边互为反向延长线,则α-β的终边在( )A.x轴的非负半轴上B.y轴的非负半轴上C.x轴的非正半轴上D.y轴的非正半轴上答案 C解析由题意知β+180°应与α终边相同,即α=β+180°+k·360°(k∈Z),∴α-β=180°+k·360°.故选C.5.已知角2α的终边在x轴上方,那么α是( )A.第一象限角B.第一或第二象限角C.第一或第三象限角D.第一或第四象限角答案 C解析由条件知k·360°<2α<k·360°+180°,(k∈Z),∴k·180°<α<k·180°+90°(k∈Z),当k为偶数时,α在第一象限,当k为奇数时,α在第三象限.二、填空题(每小题5分,共15分)6.[2016·广东佛山一中期中]终边在x轴上的角β的集合是________.答案{β|β=180°·k,k∈Z}解析 本题考查终边相同的角的概念.终边在x 轴正半轴上的角的集合为{β|β=360°·k ,k ∈Z },终边在x 轴负半轴上的角的集合为{β|β=180°·(2k +1),k ∈Z },所以终边在x 轴上的角β的集合为{β|β=180°·k ,k ∈Z }.7.时钟的时针走过了1小时20分钟,则分针转过的角为________. 答案 -480°解析 时针走过了1小时20分钟,则分针转了43圈,又因顺时针旋转的角为负角,∴分针转过的角为-43×360°=-480°.8.若集合M ={x |x =k ·90°+45°,k ∈Z },N ={x |x =k ·45°+90°,k ∈Z },则M ________N .(填“”“”)答案解析 M ={x |x =k ·90°+45°,k ∈Z } ={x |x =45°·(2k +1),k ∈Z },N ={x |x =k ·45°+90°,k ∈Z }={x |x =45°·(k +2),k ∈Z },∵k ∈Z ,∴k +2∈Z ,且2k +1为奇数,∴M N . 三、解答题(每小题10分,共20分)9.如图所示,试写出终边落在阴影区域内的角的集合S (包括边界),并指出-950°12′是否是该集合中的角.解 由题图可知,终边落在阴影区域内的角的集合S ={β|120°+k ·360°≤β≤250°+k ·360°,k ∈Z }.∵-950°12′=-3×360°+129°48′,且120°<129°48′<250°,∴-950°12′是该集合中的角. 10.已知α为第二象限角,问2α,α2分别是第几象限角?解 ∵α是第二象限角,∴90°+k ·360°<α<180°+k ·360°,k ∈Z , ∴180°+2k ·360°<2α<360°+2k ·360°,k ∈Z .∴2α是第三或第四象限角,或是终边落在y 轴的非正半轴上的角.同理45°+k2·360°<α2<90°+k2·360°. 当k 为偶数时,不妨令k =2n ,n ∈Z ,则45°+n ·360°<α2<90°+n ·360°,此时,α2为第一象限角;当k 为奇数时,令k =2n +1,n ∈Z ,则225°+n ·360°<α2<270°+n ·360°,此时,α2为第三象限角.∴α2为第一或第三象限角. ►1.1.2 弧度制课前自主学习 KEQIANZIZHUXUEXI[基础自学]一、弧度的概念设扇形的半径为r ,弧长为l ,α为其圆心角,则度量单位类别α为角度制 α为弧度制 扇形的弧长 l =πr ·⎪⎪⎪⎪⎪⎪α180l =r |α| 扇形的面积S =πr 2⎪⎪⎪⎪⎪⎪α360S =12r 2|α|=12rl1.判断(正确的打“√”,错误的打“×”)(1)“度”与“弧度”是相同的,都是用来度量角的单位.( )(2)终边落在x 轴非正半轴上的角可表示为α=k ·360°+π(k ∈Z ).( ) (3)1 rad 的角和1°的角大小一样.( )(4)用圆心角所对的弧长与半径的比来度量圆心角是合理的.( ) 提示:(1)× (2)× (3)× (4)√2.做一做(1)半径为2,圆心角为π3的扇形的面积是( )A.4π3 B .π C.2π3D.π3答案 C解析 由扇形面积公式S =12r 2·|α|可得S =12×4×π3=2π3,故选C. (2)角度与弧度互化: ①7π6=________;②-75°=________. 答案 ①210° ②-5π12课堂合作探究 KETANGHEZUOTANJIU1角度制与弧度制如何换算?提示:360°=2π rad,180°=π rad,1°=π180rad ,1 rad =⎝⎛⎭⎪⎫180π°≈57.30°.2扇形的弧长与面积的计算公式是什么? 提示:l =|α|·r ,S =12l ·r =12|α|·r 2.题型一 弧度制的概念例1 下列命题中,假命题是( )A .“度”与“弧度”是度量角的两种不同的度量单位B .一度的角是周角的1360,一弧度的角是周角的12πC .1弧度是长度等于半径长的弧所对的圆心角,它是角的一种度量单位.D .不论是用角度制还是用弧度制度量角,它们均与圆的半径长短有关[解析] 根据角度和弧度的定义,可知无论是角度制还是弧度制,角的大小与圆的半径长短无关,而是与弧长与半径的比值有关,所以D 是假命题.选项A 、B 、C 均为真命题.[答案] D“度”与“弧度”的区别和联系(1)弧度制是以“弧度”为单位来度量角的单位制,角度制是以“度”为单位来度量角的单位制.(2)1弧度是长度等于半径长的弧所对的圆心角(或这条弧)的大小,而1°的角是周角的1360. (3)无论是以“弧度”还是以“度”为单位,角的大小都是一个与半径大小无关的值.【跟踪训练1】 下列命题中,真命题是( ) A .一弧度是一度的圆心角所对的弧B .一弧度是长度为半径的弧C .一弧度是一度的弧与一度的角之和D .一弧度是长度等于半径长的弧所对的圆心角的大小,它是角的一种度量单位 答案 D解析 根据一弧度的定义:我们把长度等于半径长的弧所对的圆心角叫做一弧度的角.对照各选项,可知D 为真命题.故选D.题型二 弧度和角度的换算 例2 将下列角度与弧度进行互化. (1)20°;(2)-15°;(3)7π12;(4)-115π.[解] (1)20°=20×π180=π9.(2)-15°=-15×π180=-π12.(3)712π=712π×⎝ ⎛⎭⎪⎫180π°=105°.(4)-115π=-115π×⎝ ⎛⎭⎪⎫180π°=-396°.角度制与弧度制互化的注意事项(1)用“弧度”为单位度量角时,“弧度”二字或“rad”可以省略不写.(2)用“弧度”为单位度量角时,常常把弧度数写成多少π的形式,如无特别要求,不必把π写成小数.(3)度化弧度时,应先将分、秒化成度,再化成弧度.【跟踪训练2】 (1)-450°化成弧度是________. (2)75π化成角度是________. 答案 (1)-52π (2)252°解析 (1)-450°=-450×π180=-52π.(2)75π=75π×⎝ ⎛⎭⎪⎫180π°=252°.题型三 用弧度表示角例3 (1)把下列角化为2k π+α(0≤α<2π,k ∈Z )的形式:①16π3;②-315°. (2)用弧度表示顶点在原点,终边落在阴影部分内的角的集合(不包括边界,如图所示). [解] (1)①16π3=4π+4π3.∵0≤4π3<2π,∴16π3=4π+4π3.②-315°=-315×π180=-7π4=-2π+π4.∵0≤π4<2π,∴-315°=-2π+π4.(2)330°=360°-30°=2π-π6,而60°=π3,它所表示的区域位于-π6与π3之间且跨越x 轴的正半轴.所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪2k π-π6<θ<2k π+π3,k ∈Z.弧度制表示角的注意事项(1)用弧度表示区域角,实质是角度表示区域角在弧度制下的应用,必要时,需进行角度与弧度的换算.注意单位要统一.可以先写(-π,π)或(0,2π)内的角,再加上2k π,k ∈Z .(2)终边在同一直线上的角可以合并为{x |x =α+k π,k ∈Z };终边在相互垂直的两直线上的角可以合并为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =α+k ·π2,k ∈Z.【跟踪训练3】 (1)把-1480°写成α+2k π(k ∈Z )的形式,其中0≤α<2π; (2)若β∈[-4π,0],且β与(1)中α终边相同,求β. 解 (1)∵-1480°=-1480π180=-74π9=-10π+16π9,又0≤16π9<2π,∴-1480°=16π9-2×5π=16π9+2×(-5)π.(2)由(1)可知α=16π9.∵β与α终边相同,∴β=2k π+16π9,k ∈Z .又∵β∈[-4π,0],令k =-1,则β=-2π9.令k =-2, 则β=-20π9,∴β的值是-2π9,-20π9.题型四 扇形的弧长与面积 例4 扇形AOB 的周长为8 cm.(1)若这个扇形的面积为3 cm 2,求圆心角的大小; (2)求该扇形的面积取得最大值时圆心角的大小和弦长AB . [解] 设这个扇形的半径为R ,弧长为l ,圆心角为α(α>0). (1)由已知,得⎩⎪⎨⎪⎧2R +l =8,12lR =3,解得⎩⎪⎨⎪⎧R =3,l =2.或⎩⎪⎨⎪⎧R =1,l =6.由|α|=l R 可得:α=23或α=6.(2)扇形的面积 S =12lR =12(8-2R )R =-(R -2)2+4(0<R <4),所以,当且仅当R =2时,S 取得最大值4. 这时,l =8-2R =4,可求出:α=lR=2. 又∵0<2<π,∴|AB |=2R ·sin α2=4sin1.[变式探究] 将例4中扇形周长改为6 cm ,面积改为2 cm 2,求圆心角的大小. 解 设扇形的半径为R ,弧长为l ,圆心角为α(α>0),则有⎩⎪⎨⎪⎧2R +l =612lR =2解得⎩⎪⎨⎪⎧R =1l =4或⎩⎪⎨⎪⎧R =2l =2,由|α|=lR得α=4或α=1.扇形周长及面积的最值(1)当扇形周长一定时,扇形的面积有最大值.其求法是把面积S 转化为关于r 的二次函数,但要注意r 的取值范围.特别注意一个扇形的弧长必须满足0<l <2πr .(2)当扇形面积一定时,扇形的周长有最小值.其求法是把扇形周长L 转化为关于r 的函数,但要注意r 的取值范围.【跟踪训练4】 已知扇形AOB 的圆心角为120°,半径长为6,求: (1) AB ︵的长; (2)弓形AOB 的面积.解 (1)∵120°=120180π=23π,∴l =6×23π=4π,∴AB ︵的长为4π.(2)∵S 扇形OAB =12lr =12×4π×6=12π,如图所示.又S △OAB =12×AB ×OD (D 为AB 中点)=12×2×6cos30°×6×sin30°=9 3. ∴S 弓形OAB =S 扇形OAB -S △OAB =12π-9 3.[规律小结]1.弧度制与角度制的区别与联系 (1)区别①单位不同.弧度制以“弧度”为度量单位,角度制以“度”为度量单位; ②定义不同. (2)联系不管以“弧度”还是以“度”为单位的角的大小都是一个与圆的半径大小无关的定值. 2.角度制与弧度制换算时应注意的问题(1)弧度制与角度制的互化是一种比例关系的变形,具体变化时,可牢记以下公式:π180=弧度角度,只要将已知数值填入相应的位置,解出未知的数值,再添上相应的单位即可; (2)如无特别要求,不必把π写成小数;(3)度化为弧度时,应先将分、秒化为度,再化为弧度; (4)同一个式子中角度和弧度不能混用. [走出误区]易错点⊳角度制与弧度制的应用误区[典例] 将-1485°化成2k π+α(0≤α<2π,k ∈Z )的形式为________. [错解档案] 因为-1485°=-4×360°-45°=-4×360°+(-360°+315°)=-5×360°+315°, 所以-1485°化为2k π+α形式应为-10π+315°.[误区警示] 只考虑了将-1485°写成了“2k π”的组合形式,而忽视了对α的要求,忽视了角度和弧度的统一,这是初学者极易犯的一个错误.[规范解答] 由-1485°=-5×360°+315°, 所以-1485°可以表示为-10π+74π.矫正训练 将17π4化成k ·360°+α(0°≤α<360°,k ∈Z )的形式为________.答案 2·360°+45° 解析 17π4=765°=720°+45°=2×360°+45°, 故17π4=2·360°+45°.随堂消化吸收 SUITANGXIAOHUAXISHOU1.1920°转化为弧度数为( ) A.163 B.323 C.16π3D.32π3答案 D解析 ∵1°=π180弧度,∴1920°=1920×π180=323π.2.若α=-3,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 C解析 ∵-3≈-171.9°,∴α=-3表示的角的终边在第三象限.3.[2016·南昌市高一月考]已知扇形的半径为R ,面积为R 2,那么这个扇形中心角的弧度数是________.答案 2解析 由l =|α|·R 及S =12lR ,得S =12|α|R 2.∴|α|=2S R 2=2R2R2=2.4.用弧度制表示终边落在第二象限的角的集合为________.答案 ⎩⎨⎧α⎪⎪⎪⎭⎬⎫2k π+π2<α<2k π+π,k ∈Z解析 若角α的终边落在第二象限,则 2k π+π2<α<2k π+π,k ∈Z .5.将下列各角转化成2k π+α(k ∈Z ),且0≤α<2π的形式,并指出它们是第几象限角:(1)-1725°;(2)64π3.解 (1)∵-1725°=-5×360°+75°=-10π+5π12,∴-1725°角与角5π12的终边相同.又∵5π12是第一象限角,∴-1725°是第一象限角. (2)∵64π3=20π+4π3,∴角64π3与角4π3的终边相同.又∵4π3是第三象限角,∴64π3是第三象限角. ,课后课时精练 KEHOUKESHIJINGLIAN时间:25分钟满分:60分一、选择题(每小题5分,共25分) 1.-300°化为弧度是( ) A .-4π3B .-5π3C .-7π4D .-7π6答案 B解析 ∵1°=π180 rad ,∴-300°=-5π3 rad.2.8π5弧度化为角度是( ) A .278° B .280° C .288° D .318°答案 C 解析 ∵1 rad =⎝⎛⎭⎪⎫180π°,∴8π5=8π5×⎝ ⎛⎭⎪⎫180π°=288°.3.[2016·清华附中月考]若角α,β的终边关于y 轴对称,则α,β的关系一定是( ) A .α+β=π B .α-β=π2C .α-β=(2k +1)π(k ∈Z )D .α+β=(2k +1)π(k ∈Z ) 答案 D解析 本题考查关于y 轴对称的两个角之间的关系.角α,β的终边关于y 轴对称,则画图可知α+β=(2k +1)π(k ∈Z ),D 选项正确;也可以用特殊值方法,例如取α=π4,β=3π4或α=-π4,β=-3π4,结合选项可知D 正确.故选D. 4.[2016·兰州一中高一期末]已知扇形的圆心角的弧度数为2,扇形的弧长为4,则扇形的面积为( )A .2B .4C .8D .16答案 B解析 由S =12lR 及|α|=l R ,得S =12l 2|α|=12·422=4.5.[2016·浙江永嘉高一月考]集合⎩⎪⎨⎪⎧α⎪⎪⎪ k π+π4≤α≤k π+π2,} k ∈Z 中的角所表示的范围(阴影部分)是()答案 C解析 当k =2m ,m ∈Z 时,2m π+π4≤α≤2m π+π2,m ∈Z ;当k =2m +1,m ∈Z 时,2m π+5π4≤α≤2m π+3π2,m ∈Z ,所以选C.二、填空题(每小题5分,共15分) 6.角度制与弧度制间的互化:(1)1095°=__________rad ;(2)-94π=__________.答案 (1)7312π (2)-405°解析 (1)1095°=1095×π180=73π12.(2)-94π=-94π×⎝ ⎛⎭⎪⎫180π°=-405°. 7.若圆的半径为6 cm ,则15°的圆心角所对的弧长为________,扇形面积为________.(用π表示)答案π2 cm 32π cm 2解析 15°=15×π180=π12,l =|α|·r =π12×6=π2cm , S =12l ·r =12×π2×6=32π cm 2.8.圆的半径变为原来的3倍,而所对弧长不变,则该弧所对圆心角是原来圆弧所对圆心角的________.答案 13解析 本题考查弧长公式的应用.设原来圆的半径为r ,弧长为l ,圆心角为α,则l =αr ,设将圆的半径变为原来的3倍后圆心角为α1,则α1=l 3r =αr 3r =α3,故α1α=13.三、解答题(每小题10分,共20分) 9.已知α=-800°.(1)把α改写成β+2k π(k ∈Z,0≤β<2π)的形式,并指出α是第几象限角; (2)求角γ,使γ与角α的终边相同,且γ∈⎝⎛⎭⎪⎫-π2,π2. 解 (1)∵-800°=-3×360°+280°,280°=149π,∴α=-800°=149π+(-3)×2π.∵角α与14π9终边相同,∴角α是第四象限角.(2)∵与角α终边相同的角可写为2k π+14π9,k ∈Z 的形式,而γ与α终边相同,∴γ=2k π+14π9,k ∈Z .又γ∈⎝ ⎛⎭⎪⎫-π2,π2,∴-π2<2k π+14π9<π2,k ∈Z , 解得k =-1,∴γ=-2π+14π9=-4π9.10.已知扇形的周长为20 cm ,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?解 设扇形的圆心角为α,半径为R cm ,面积为S cm 2,弧长为l cm ,则有l +2R =20,∴l =20-2R ,∴S =12lR =12(20-2R )R =-R 2+10R =-(R -5)2+25.故当半径R =5时,扇形的面积有最大值25 cm 2.此时扇形的圆心角为α=l R =20-2×55=2.[基础自学]一、三角函数的定义 1.单位圆中三角函数的定义设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么: ①y 叫做α的正弦,记作sin α,即sin α=y ; ②x 叫做α的余弦,记作cos α,即cos α=x ; ③yx 叫做α的正切,记作tan α,即tan α=y x(x ≠0). 2.任意角的三角函数的定义直角坐标系中任意大小的角α终边上一点P 的坐标(x ,y ),它到原点的距离是r (r >0),r =x 2+y 2,那么任意角的三角函数的定义:tanαyxtanα=yx⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪α≠kπ+π2,k∈Z记忆口诀:“一全正、二正弦、三正切、四余弦”.三、诱导公式(一)名称符号语言文字语言诱导公式(一)sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)终边相同的角的同名三角函数值相等1.判一判(正确的打“√”,错误的打“×”)(1)sinα,cosα,tanα中可以将“α”与“sin”“cos”“tan”分开.( )(2)同一个三角函数值能找到无数个角与之对应.( )(3)sin253π=sin⎝⎛⎭⎪⎫π3+8π=sinπ3=32.( )提示:(1)×(2)√(3)√2.做一做(1)若sinα<0,且tanα<0,则角α是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角答案 D解析若sinα<0,则α为第三或第四象限角.若tanα<0,则α为第二或第四象限角,故α为第四象限角,选D.(2)计算:sin180°+2cos270°的值为________.答案0解析sin180°+2cos270°=0+2×0=0.(3)tan390°的值为________.答案33解析tan390°=tan(360°+30°)=tan30°=33.课堂合作探究 KETANGHEZUOTANJIU1三角函数值在各象限的符号有什么规律吗?提示:由三角函数的定义知sin α=y r ,cos α=x r ,tan α=y x(r >0),可知角的三角函数值的符号是由角终边上任一点P (x ,y )的坐标确定的,可简记为:一全正,二正弦,三正切,四余弦.2诱导公式一的作用是什么?提示:公式一的作用:把求任意角的三角函数值转化为求0~2π(或0°~360°)角的三角函数值.题型一 求任意角的三角函数值例1 [2015·黑龙江五校联考]已知角θ的终边上有一点P (-3,m ),且sin θ=24m ,求cos θ与tan θ 的值.[解] 由已知有24m =m3+m2, 得m =0,或m =± 5.(1)当m =0时,cos θ=-1,tan θ=0; (2)当m =5时,cos θ=-64,tan θ=-153; (3)当m =-5时,cos θ=-64,tan θ=153. [变式探究] 将例1中的P 点坐标改为(3,m )再去求解. 解 ∵24m =mm 2+3,∴m =0或m =±5, 当m =0时,cos θ=1,tan θ=0; 当m =5时,cos θ=64,tan θ=153; 当m =-5时,cos θ=64,tan θ=-153.利用三角函数的定义求值的策略(1)求一个角的三角函数值,需确定三个量:角的终边上异于原点的点的横、纵坐标及其到原点的距离.(2)若终边在直线上时,因为角的终边是射线,应分两种情况处理.(3)若已知角,则需确定出角的终边与单位圆的交点坐标.【跟踪训练1】 已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线y =2x 上,则2cos 2θ-1=( )A .-45B .-35C.35D.45答案 B解析 设P (t,2t )(t ≠0)为角θ终边上任意一点,则 cos θ=t5|t |. 当t >0时,cos θ=55;当t <0时,cos θ=-55. ∴2cos 2θ-1=25-1=-35.题型二 三角函数值的符号例2 (1)α是第四象限角,判断sin α·tan α的符号; (2)若sin α|sin α|+|cos α|cos α=0,试判断α所在象限.[解] (1)∵α是第四象限角,∴sin α<0,tan α<0,∴sin α·tan α>0. (2)由条件知,sin α与cos α异号. ∴α是第二象限角或第四象限角.[变式探究] 将例2(1)中α改为第三象限角,则sin α·tan α的符号如何? 解 ∵α是第三象限角,∴sin α<0,tan α>0,∴sin α·tan α<0.熟记各象限函数值的符号准确确定三角函数中角所在象限是基础,准确记忆三角函数在各象限的符号并牢记记忆口诀“一全正,二正弦,三正切,四余弦”是解决这类问题的关键.【跟踪训练2】 (1)若sin α=-2cos α,判断sin α·tan α的符号;(2)判断符号:sin3·cos4·tan ⎝ ⎛⎭⎪⎫-23π4.解 (1)∵sin α=-2cos α,∴sin α与cos α异号. ∴α是第二或第四象限角.当α是第二象限角时,tan α<0,sin α>0,∴sin α·tan α<0. 当α是第四象限角时,tan α<0,sin α<0,∴sin α·tan α>0.(2)∵π2<3<π,π<4<3π2,∴sin3>0,cos4<0.∵-23π4=-6π+π4,∴tan ⎝⎛⎭⎪⎫-23π4>0. ∴sin3·cos4·tan ⎝ ⎛⎭⎪⎫-234π<0.题型三 诱导公式(一)的应用 例3 计算下列各式的值:(1)sin(-1395°)cos1110°+cos(-1020°)sin750°;(2)sin ⎝⎛⎭⎪⎫-11π6+cos 12π5·tan4π. [解] (1)原式=sin(-4×360°+45°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin45°cos30°+cos60°sin30°=22×32+12×12=64+14=1+64. (2)原式=sin ⎝ ⎛⎭⎪⎫-2π+π6+cos ⎝⎛⎭⎪⎫2π+2π5·tan(4π+0)=sin π6+cos 2π5×0=12.利用诱导公式化简(1)将已知角化为k ·360°+α(k 为整数,0°≤α<360°)或2k π+β(k 为整数,0≤β<2π)的形式.(2)将原三角函数值化为角α的同名三角函数值.(3)借助特殊角的三角函数值或任意角三角函数的定义达到化简求值的目的.【跟踪训练3】 求值: (1)cos 25π3+tan ⎝ ⎛⎭⎪⎫-154π; (2)sin810°+ta n765°+tan1125°+cos360°. 解 (1)原式=cos(8π+π3)+tan ⎝ ⎛⎭⎪⎫-4π+π4=cos π3+tan π4=12+1=32.(2)原式=sin(2×360°+90°)+tan(2×360°+45°)+tan(3×360°+45°)+cos(360°+0°)=sin90°+tan45°+tan45°+cos0°=1+1+1+1=4.[规律小结]1.对三角函数定义的理解(1)三角函数也是一种函数,它满足函数的定义,可以看成是从一个角的集合(弧度制)到一个比值的集合的对应,并且对任意一个角,在比值集合中都有唯一确定的象与之对应.三角函数的自变量是角α,比值是角α的函数.(2)三角函数是用比值来定义的,所以三角函数的定义域是使比值有意义的角的范围.如在求正切时,若点P 的横坐标x 等于0,则tan α无意义.(3)三角函数值是比值,是一个实数,这个实数的大小和点P (x ,y )在终边上的位置无关,只由角α的终边位置确定.即三角函数值的大小只与角有关.2.三角函数值在各象限内的符号(1)三角函数值的符号是根据三角函数的定义,由各象限内点的坐标的符号得出的. (2)对正弦、余弦、正切函数值的符号可用下列口诀记忆:“一全正,二正弦,三正切,四余弦”,该口诀表示:第一象限全是正值,第二象限正弦是正值,第三象限正切是正值,第四象限余弦是正值.3.诱导公式一的理解及其应用(1)公式一的实质是说终边相同的角的三角函数值相等.(2)公式一的结构特征:①左、右为同一三角函数;②公式左边的角为α+k ·2π,右边的角为α.(3)公式一的作用:把求任意角的三角函数值转化为求0~2π(或0°~360°)范围内角的三角函数值.[走出误区]易错点⊳求三角函数定义域的误区[典例] 求满足y =sin x ·tan x 的x 的取值范围. [错解档案] 由题意知,只需要sin x ·tan x ≥0.即⎩⎪⎨⎪⎧sin x ≥0tan x ≥0①或⎩⎪⎨⎪⎧sin x ≤0tan x ≤0②对①可知x 为第一象限角或终边在x 轴或y 轴上的角. 对②可知x 为第四象限角或终边在x 轴或y 轴上的角. 因此x的取值范围为⎩⎪⎨⎪⎧x ⎪⎪⎪ 2k π-π2≤x <2k π或2k π<x ≤2k π+π2或x =⎭⎬⎫k π2,k ∈Z .[误区警示] 求y =sin x ·tan x 的x 取值范围时没有考虑tan x 的条件,致使思考问题不周全而出错.[规范解答] 所求x 应满足⎩⎪⎨⎪⎧sin x ·tan x ≥0,x ≠k π+π2k ∈Z ,即⎩⎪⎨⎪⎧sin x ≥0,tan x ≥0,x ≠k π+π2k ∈Z ,或⎩⎪⎨⎪⎧sin x ≤0,tan x ≤0,x ≠k π+π2k ∈Z .根据x 所在象限情况可判断x 的取值范围是⎩⎨⎧⎭⎬⎫x 2k π-π2<x <2k π或2k π<x <2k π+π2或x =k π,k ∈Z .矫正训练 求y =cos xsin x的x 的取值范围. 解 ∵cos x ≥0∴x 为第一、四象限角或x 轴非负半轴上的角或y 轴上 又∵sin x ≠0 ∴x 不能在x 轴上∴x 为第一或第四象限角或y 轴上.x 的取值范围是⎩⎪⎨⎪⎧x ⎪⎪⎪ -π2+2k π≤x <2k π或2k π<x ≤2k π+⎭⎬⎫π2,k ∈Z。
高中数学必修4(人教B版)第三章三角恒等变换3.1知识点总结含同步练习题及答案
tan 60∘ − tan 15∘ 1 + tan 60∘ ⋅ tan 15∘ = tan(60∘ − 15∘ ) = tan 45∘ = 1.
(2)根据tan α + tan β = tan(α + β)(1 − tan α tan β) ,则有 原式 = tan 120 ∘ (1 − tan 55∘ tan 65∘ ) − √3 tan 55∘ tan 65∘
π ),向左平移 m 个单位后,得到的函数为 3 π π π y = 2 sin (x + + m),若所得到的图像关于 y 轴对称,则 + m = + kπ, k ∈ Z ,所以 3 3 2 π π m = + kπ ,k ∈ Z.取 k = 0 时,m = . 6 6
高考不提分,赔付1万元,关注快乐学了解详情。
和差角公式 辅助角公式
三、知识讲解
1.和差角公式 描述: 两角差的余弦公式 对于任意角α,β 有cos(α − β) = cos α cos β + sin α sin β,称为差角的余弦公式,简记C(α−β) . 两角和的余弦公式 对于任意角α,β 有cos(α + β) = cos α cos β − sin α sin β,称为和角的余弦公式,简记C(α+β) . 两角和的正弦公式 对于任意角α,β 有sin(α + β) = sin α cos β + cos α sin β,称为和角的正弦公式,简记S (α+β) . 两角差的正弦公式 对于任意角α,β 有sin(α − β) = sin α cos β − cos α sin β,称为差角的正弦公式,简记S (α−β) . 两角和的正切公式 对于任意角α,β 有tan(α + β) = 两角差的正切公式 对于任意角α,β 有tan(α − β) =
人教版高中数学必修4课后习题答案.docx
练习(第5页)1.锐布是第象限仙.第-象限伯不一定是锐伽;K角不I4F任何-个象限.不M Fit何个象限的角不一定是I'ifd;钝伯是第二象限角.第二象限角不-定是钝角.说明认眼-锐伯二“宜漫二“钝角”和“象限角"的区别与联系.2.三.三.ft.说明本题的II的是将终边相同的角的符号表示应用到他篇期性何财匕魂11联系实际•把教科竹中的除数36<>换成每个械期的天数7.利川r •■同汆”(这里.余数是3)来确定7*犬后.7 k犬前也都/星期1.这样的练习不难.可以L1答.3.(1)第象Wff|: <2)第四象限ftl: (3)第二象限/(J. (4)第三象限角.说明俺作出给定的角.并判定以第儿象限角.图略.4.(1) 3O5F2'.第四象限/th (2) 35%'.第一象限ff|; (3) 249*30*.第•:象限角.说明能企给定范围内找出"指定的角终边相同的角・并判定是第儿象限而.5.(1) <仞夕I 30:ri8'+&・360°, A€Z), - 496—2', — 136,42*. 223*I8,|(2)伊I "= 225- I * • 360°. ACZ}. - 585°, — 225°, 135°.说明用乘。
表,K法和符时写出勺指定角终边相同的的的集合.并在给定范国内找出勺指定的角经边相同的仙.练习(第9页〉1.(1> ⑵一?: (3)亨.说明能进存度弧度的换算.2.(1> 15。
<2> 240七(3) 54*.说明fOir*度'j度的换卓.3.(I) {a| a M. A€Z};(2) ja | «=-|+*», A£z}.说明用弧度MA示绕边分别在.r轴和.V袖匕的角的集合.4.(I ) cos 0. 75'>«» 0. 75;(2> tan 1. 2*<ian I. 2.说明体会同数伉木同时位的角对成的三角函数ffi诃能不同•并进一步认识两种爪位制.注意在用计算器求-ffimSffrt之询.卷先对计算器中角的模式进行设??.如求co* 0.75°之询,要将角模式设置为I对;(伯度;M);求CON。
【精品】高中数学 必修4_三角函数的诱导公式_讲义 知识点讲解+巩固练习(含答案)提高
三角函数的诱导公式【学习目标】1.借助单位圆中的三角函数线导出诱导公式(απαπ±±,2的正弦、余弦、正切);2.掌握并运用诱导公式求三角函数值,化简或证明三角函数式. 【要点梳理】 要点一:诱导公式 诱导公式一:sin(2)sin k απα+=, cos(2)cos k απα+=,tan(2)tan k απα+=,其中k Z ∈诱导公式二:sin()sin αα-=-, cos()cos αα-=,tan()tan αα-=-,其中k Z ∈诱导公式三:sin[((21)]sin k απα++=-, cos[(21)]cos k απα++=-, tan[(21)]tan k απα++=,其中k Z ∈诱导公式四:sin cos 2παα⎛⎫+= ⎪⎝⎭, cos sin 2παα⎛⎫+=- ⎪⎝⎭.sin cos 2παα⎛⎫-= ⎪⎝⎭, cos sin 2παα⎛⎫-= ⎪⎝⎭,其中k Z ∈ 要点诠释:(1)要化的角的形式为α±⋅ο90k (k 为常整数); (2)记忆方法:“奇变偶不变,符号看象限”;(3)必须对一些特殊角的三角函数值熟记,做到“见角知值,见值知角”;(4)sin cos cos 444x x x πππ⎛⎫⎛⎫⎛⎫+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;cos sin 44x x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.要点二:诱导公式的记忆诱导公式一~三可用口诀“函数名不变,符号看象限”记忆,其中“函数名不变”是指等式两边的三角函数同名,“符号”是指等号右边是正号还是负号,“看象限”是指把α看成锐角时原三角函数值的符号.诱导公式四可用口诀“函数名改变,符号看象限”记忆,“函数名改变”是指正弦变余弦,余弦变正弦,为了记忆方便,我们称之为函数名变为原函数的余名三角函数.“符号看象限”同上.因为任意一个角都可以表示为k ·90°+α(|α|<45°)的形式,所以这六组诱导公式也可以统一用“口诀”: “奇变偶不变,符号看象限”,意思是说角90k α⋅±o(k 为常整数)的三角函数值:当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变,然后α的三角函数值前面加上当视α为锐角时原函数值的符号.要点三:三角函数的三类基本题型(1)求值题型:已知一个角的某个三角函数值,求该角的其他三角函数值. ①已知一个角的一个三角函数值及这个角所在象限,此类情况只有一组解;②已知一个角的一个三角函数值但该角所在象限没有给出,解题时首先要根据已知的三角函数值确定这个角所在的象限,然后分不同情况求解;③一个角的某一个三角函数值是用字母给出的,这时一般有两组解.求值时要注意公式的选取,一般思路是“倒、平、倒、商、倒”的顺序很容易求解,但要注意开方时符号的选取.(2)化简题型:化简三角函数式的一般要求是:能求出值的要求出值;函数种类要尽可能少;化简后的式子项数最少,次数最低,尽可能不含根号.(3)证明题型:证明三角恒等式和条件等式的实质是消除式子两端的差异,就是有目标的化简.化简、证明时要注意观察题目特征,灵活、恰当选取公式. 【典型例题】类型一:利用诱导公式求值【高清课堂:三角函数的诱导公式385952 例2】例1.求下列各三角函数的值: (1)252525sincos tan()634πππ++-; (2)()()cos 585tan 300---o o(3)2222132131sin cos 6tan 10cot 243ππππ-+-⎛⎫⎛⎫⎛⎫⎪⎪⎪⎝⎭⎝⎭⎝⎭【思路点拨】利用诱导公式把所求角化为我们熟悉的锐角去求解. 【答案】(1)0(2)2-(3)16【解析】(1)原式=sin(4)cos(8)tan(6)634ππππππ+++-+sincostan634111022πππ=+-=+-=(2)原式=cos(18045)tan(36060)++-o o o o =cos 45tan 60--o o= (3)原式=2222sin (6)cos (5)6tan 10cot (10)243πππππππ+-++-+=2222sin cos 6tan 0cot 243πππ-+-=111023-+-=16【总结升华】(1)对任意角求三角函数值,一般遵循“化负为正,化大为小”的化归方向,但是在具体的转化过程中如何选用诱导公式,方法并不唯一,这就需要同学们去认真体会,适当选择,找出最好的途径,完成求值.(2)运用诱导公式求任意三角函数值的过程的本质是化任意角的三角函数为锐角三角函数的过程,而诱导公式就是这一转化的工具. 举一反三:【变式】(1)10sin 3π⎛⎫- ⎪⎝⎭;(2)31cos 6π;(3)tan (-855°).【答案】(1)2(2)2-(3)1 【解析】(1)1010sin sin 33ππ⎛⎫-=- ⎪⎝⎭44sin 2sin 33πππ⎛⎫=-+=- ⎪⎝⎭sin sin sin 3332ππππ⎛⎫⎛⎫=-+=--==⎪ ⎪⎝⎭⎝⎭.(2)3177coscos 4cos 666ππππ⎛⎫=+= ⎪⎝⎭cos cos 662πππ⎛⎫=+=-=- ⎪⎝⎭. (3)tan(-855°)=tan(-3×360°+225°)=tan225°=tan(180°+45°)=tan45°=1. 例2.已知函数()sin()cos()f x a x b x παπβ=+++,其中a 、b 、α、β都是非零实数,又知f (2009)=-1,求f (2010).【解析】 (2009)sin(2009)cos(2009)f a b παπβ=+++sin(2008)cos(2008)a b ππαππβ=+++++sin()cos()sin cos (sin cos )a b a b a b παπβαβαβ=+++=--=-+.∵f (2009)=-1 ∴sin cos 1a b αβ+=. ∴(2010)sin(2010)cos(2010)f a b παπβ=+++sin cos 1a b αβ=+=.【总结升华】 求得式子sin cos 1a b αβ+=,它是联系已知和未知的纽带.解决问题的实质就是由未知向已知的转化过程,在这个转化过程中一定要抓住关键之处.举一反三:【变式1】 已知1cos(75)3α︒+=,其中α为第三象限角,求cos(105°―α)+sin(α―105°)的值.【答案】13【解析】 ∵cos(105°-α)=cos[180°-(75°+α)]=-cos(75°+α)=13-,sin(α―105°)=―sin[180°-(75°+α)]=-sin(75°+α), ∵α为第三象限角,∴75°+α为第三、四象限角或终边落在y 轴负半轴上.又cos(75°+α)=13>0,∴75°+α为第四象限,∴sin(75)3α︒+===-.∴11cos(105)sin(105)333αα︒-+-︒=-+=.【总结升华】 解答这类给值求值的问题,关键在于找到已知角与待求角之间的相互关系,从而利用诱导公式去沟通两个角之间的三角函数关系,如:75°+α=180°-(105°-α)或105°-α=180°-(75°+α)等.【变式2】已知3sin()2παπβ⎛⎫-=+ ⎪⎝⎭))απβ-=+,且0<α<π,0<β<π,求α和β的值.【解析】由已知得sin αβ=αβ=. 两式平方相加,消去β,得22sin 3cos 2αα+=, ∴21cos 2α=,而0απ<<,∴cos 2α=±,∴4πα=或34πα=.当4πα=时,cos 2β=,又0βπ<<,∴6πβ=;当34πα=时,cos 2β=-,又0βπ<<,∴56βπ=.故4πα=,6πβ=或34πα=,56βπ=. 类型二:利用诱导公式化简 例3.化简(1)sin(180)sin()tan(360)tan(180)cos()cos(180)αααααα-++--+++-+-o o o o ;(2)sin()sin()()sin()cos()n n n Z n n απαπαπαπ++-∈+-.【思路点拨】化简时,要认真观察“角”,显然利用诱导公式,但要注意公式的合理选用.【答案】(1)-1(2)略 【解析】(1)原式sin sin tan tan 1tan cos cos tan αααααααα--==-=-+-;(2)①当2,n k k Z =∈时,原式sin(2)sin(2)2sin(2)cos(2)cos k k k k απαπαπαπα++-==+-.②当21,n k k Z =+∈时,原式sin[(21)]sin[(21)]2sin[(21)]cos[(21)]cos k k k k απαπαπαπα+++-+==-++-+.【总结升华】(1)诱导公式应用的原则是:负化正,大化小,化到锐角就终了; (2)关键抓住题中的整数n 是表示π的整数倍与公式一中的整数k 有区别,所以必须把n 分成奇数和偶数两种类型,分别加以讨论.举一反三: 【变式1】化简 (1)()()()()cos cot 7tan 8sin 2-⋅--⋅--αππαπααπ;(2)()sin2n n Z π∈; (3)()222121tan tan ,22n n n Z παπα++⎛⎫⎛⎫+--∈ ⎪ ⎪⎝⎭⎝⎭(4)sin()cos[(1)]sin[(1)]cos(]k k k k παπαπαπα---+++,()k z ∈.【解析】(1)原式=[]cos()cot()tan(2)sin(2)παπαπαπα----+=cos cot (tan )(sin )αααα-⋅-=3cot α(2)1,(41)sin1,(43)20,(2)n k n n k n k π=+⎧⎪=-=+⎨⎪=⎩ (3)原式=22cot cot αα-=0(4)由(k π+α)+(k π―α)=2k π,[(k ―1)π―α]+[(k+1)π+α]=2k π,得cos[(1)]cos[(1)]cos()k k k παπαπα--=++=-+,sin[(1)]sin()k k παπα++=-+.故原式sin()[cos()]1sin()cos()k k k k παπαπαπα-+-+==--++.【总结升华】 常见的一些关于参数k 的结论: (1)sin()(1)sin ()k k k Z παα+=-∈; (2)cos()(1)cos ()k k k Z παα+=-∈; (3)1sin()(1)sin ()k k k z παα+-=-∈; (4)cos()(1)cos ()k k k Z παα-=-∈. 类型三:利用诱导公式进行证明例4.设8tan 7m πα⎛⎫+= ⎪⎝⎭,求证:1513sin 3cos 37720221sin cos 77m m ππααππαα⎛⎫⎛⎫++- ⎪ ⎪+⎝⎭⎝⎭=+⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭. 【思路点拨】证明此恒等式可采取从“繁”到“简”,从左边到右边的方法.【证明】 证法一:左边88sin 3cos 37788sin 4cos 277πππααπππαππα⎡⎤⎡⎤⎛⎫⎛⎫++++- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=⎡⎤⎡⎤⎛⎫⎛⎫-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦888sin 3cos tan 3777888sin cos tan 1777πππαααπππααα⎛⎫⎛⎫⎛⎫-+-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-⎛⎫⎛⎫⎛⎫-+-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭31m m +=+=右边. ∴等式成立.证法二:由8tan 7m πα⎛⎫+= ⎪⎝⎭,得tan 7m πα⎛⎫+= ⎪⎝⎭,∴左边sin 23cos 277sin 2cos 277πππαπαππππαππα⎡⎤⎡⎤⎛⎫⎛⎫+++++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=⎡⎤⎡⎤⎛⎫⎛⎫+-+-+++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦sin 3cos 77sin cos 77ππααπππαπα⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭=⎡⎤⎡⎤⎛⎫⎛⎫-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦sin 3cos 77sin cos 77ππααππαα⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭=⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭tan 3371tan 17m m παπα⎛⎫++ ⎪+⎝⎭==+⎛⎫++ ⎪⎝⎭=右边, ∴等式成立. 举一反三:【高清课堂:三角函数的诱导公式385952 例4 】 【变式1】设A 、B 、C 为ABC ∆的三个内角,求证: (1)()sin sin A B C +=;(2)sincos22A B C+=; (3)tan cot 22A B C+=【解析】(1)左边=sin()sin()sin A B c C π+=-==右边,等式得证. (2)左边=sin2A =()sin cos cos 2222B C B C B C ππ-+++⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭=右边,等式得证. (3)左边=tantan cot 2222A B C C π+⎛⎫=-= ⎪⎝⎭=右边,等式得证. 【变式2】求证:232sin cos 1tan(9)12212sin ()tan()1ππθθπθπθπθ⎛⎫⎛⎫-+- ⎪ ⎪++⎝⎭⎝⎭=-++-. 证明:∵左边2232sin sin 12sin (sin )12212sin 12sin πππθθθθθθ⎡⎤⎛⎫⎛⎫+----⋅-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦==-- 22222sin sin 12cos sin 1212sin cos sin 2sin πθθθθθθθθ⎛⎫--- ⎪--⎝⎭==-+-222(sin cos )sin cos sin cos sin cos θθθθθθθθ++==--,右边tan(9)1tan 1sin cos tan()1tan 1sin cos πθθθθπθθθθ++++===+---,∴左边=右边,故原式得证. 类型四:诱导公式的综合应用例5.已知3sin(3)cos(2)sin 2()cos()sin()f παππαααπαπα⎛⎫---+⎪⎝⎭=----.(1)化简()f α;(2)若α是第三象限的角,且31cos 25πα⎛⎫-= ⎪⎝⎭,求()f α的值. (3)若313πα=-,求()f α的值. 【解析】 (1)(sin )cos (cos )()cos (cos )sin f ααααααα-⋅⋅-==--.(2)∵3cos sin 2παα⎛⎫-=- ⎪⎝⎭, ∴1sin 5α=-,∴cos α==()f α=. (3)31315cos cos 62333f ππππ⎛⎫⎛⎫⎛⎫-=--=--⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭51cos cos 332ππ=-=-=-. 【总结升华】这是一个与函数相结合的问题,解决此类问题时,可先用诱导公式化简变形,将三角函数的角度统一后再用同角三角函数关系式,这样可避免公式交错使用时导致的混乱.举一反三: 【变式1】已知α、β均为锐角,cos()sin()αβαβ+=-,若()sin cos 44f ππααα⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,求2f πα⎛⎫- ⎪⎝⎭的值. 【解析】由cos()sin()αβαβ+=-得cos()cos ()2παβαβ⎡⎤+=--⎢⎥⎣⎦,又α、β均为锐角.则()2παβαβ+=--,即4πα=.于是,sin cos 0222f ππα⎛⎫-=+= ⎪⎝⎭.【巩固练习】1.sin585°的值为( )A.2-B.2 C.2- D.2A .13 B . 13- C. D3.已知(cos )cos3f x x =,则(sin 30)f ︒的值等于( )A .―1B .1C .12D .0)A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos25.若sin cos 2sin cos αααα+=-,则3sin(5)sin 2παπα⎛⎫-⋅-⎪⎝⎭等于( ) A .34 B .310 C .310± D .310-6.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是( )A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角形7.已知3sin()cos(2)tan 2()cos()f ππαπαααπα⎛⎫---+ ⎪⎝⎭=--,则313f π⎛⎫-⎪⎝⎭的值为( ) A .12 B .12- C.2 D.2-8.已知cos 63πα⎛⎫-= ⎪⎝⎭,则25sin cos 66ππαα⎛⎫⎛⎫--+ ⎪⎪⎝⎭⎝⎭的值是( )A .23+B .23+-C .23- D.23-+9.计算:)425tan(325cos 625sinπππ-++= .10.若()θ+ο75cos 31=,θ为第三象限角,则()()θθ++--οο435sin 255cos 的值是 . 11.已知1sin()43πα-=,则cos()4πα+=__________. 12.(1)cos1°+cos2°+cos3°+…+cos180°的值为________;(2)cos 21°+cos 22°+cos 23°+…+cos 289°的值为________。
高中数学第二章平面向量2.2.3向量数乘运算及其几何意义课后习题新人教A版必修4
高中数学第二章平面向量223向量数乘运算及其几何意义课后习题新人教A 版必修4一、A 组1.已知非零向量 a, b 满足a +4b =0,则( )C a 与b 的方向相同D. a 与b 的方向相反解析:T a +4b =0,二 a =-4b, | a |= 4| b | ,且 a 与 b 的方向相反.答案:D1妙 4- BCA.1 -BA-BCB. Z:BA - BCC.--D.--I 1 IICD = -(CA + CB 解析:T 点D 是边AB 的中点,二).I~~TV 1I r^(CA + CB -BA + BC.•卫dg )=上.故选D .答案:D3.设a, b 不共线 J =a +k b, =n a +b(k ,m€ R),则A , B C 三点共线时有( )A.k=mB.km-仁0C km+1=0D.k+m=0i-1解析:若ABC 三点共线,则’共线,I I.存在唯一实数入,使二上=入“,.a +kb =X (m a +b),A. | a |+ 4| b |= 0B. a 与b 是相反向量2.如图所示1加=1*即 a +k b = Xm a + 入 b, •」几一/• km=1.即 km-1=0.答案:BA. △ ABC 的内部B. AC 边所在直线上C. AB 边所在直线上D. BC 边所在直线上4.如图,已知 lAB =a, AC =b,図/=3。
£,用a, b 表示眉D ,贝则4DA. a +Jb3 1B. 4a+4bC. ]a + ; b)5.已知P 是厶ABC 所在平面内的一点,池色=入卩月+PB ,其中入€ R 则点P —定在(上+解析:,兀入PP R, .UP R»PACB +•上P加••虽以共线.•••C P,A三点共线,故选B.答案:B6.化简:3(6a+»-^k 解析:原式=18a+3b-9a- 3b=9a.答案:9a7.如图,在平行四边形ABCD^ , E是CD的中点,且人月=a,4D=b,贝肖E = _____________________________________________________________________________I I I I I I解析:BE=BC^-CE = AD +答案—a+b &导学号08720054 在△ ABC中,点M为边AB的中点,若。
高中数学必修4课后练习题、习题答案优选教学课件
还有一件有趣的事也不得不提。我的前桌坐着一个很秀气的姑娘,常常梳着一个麻花辫,说起话来总是温温柔柔的,暂且起名叫她“淑女”吧!有一天早上,我惊奇地发现她纤纤的十指,涂了黑漆漆的指甲油,她迫不及待地和班上的人炫耀了她的杰作。很不巧的是第一堂课是内科,老师教的又是“叩诊”,国字脸的女老师,用严厉的目光环顾了教室一周,最后锁定了我的前座,她冷冷地说:“来,这位同学,你上黑板给大家演示一下—叩诊的方法。” “淑女”显得有些难为情,慢腾腾地起身走到在黑板前,低下头,缓慢地伸出涂着黑色指甲油的双手,给大家表演着“叩诊”。如果老师当时没问也还好,可老师偏偏问了,“你这手怎么弄的,指甲都成这样了,怎么没上医院啊?”这一问引起全班哄堂大笑,老师感到有些莫名其妙,纳闷地问:“你们都笑什么?”不料班级最捣蛋的一个男 生出卖了她,“她涂的是黑色指甲油,不是病。”从此以后,我没见她再涂过任何颜色的指甲油。
甚至不知所措。我傻傻地站在那里,也不知道是过去一个小时,还是几个小时,人才渐渐地少了,突然间我的耳朵捕获了一串数字,是住宿费的缴费窗口传出来的,我不由得摸了一下包,心里便有了主意:先把住宿费交了,其他再说。于是,我深吸了一口气,故作镇定地交了住宿费,领了被罩和盆,就忐忑不安地住进了宿舍。 宿舍共八个人,来自不同的地方,因为都是年轻人,很快都熟络了起来。我的班主任则是一个娇小的,长得很漂亮的女老师,叫李丽。医学虽然看上枯燥,但很多东西都与我们息息相关,所以学起来也没有那么难。不论解剖课的死人骷髅头,各类人骨,还是内外科的各种病理药理,以及活体的各种器官,我都学得津津有味。可是学习的高涨的热情,无法掩盖我内心的不安,我很害怕触碰到老师的目光,怕她对我说:白XX,你不知道学费没有交吗?就这样我怀着惴惴不安的心情,熬过了整整三个月。直到有一天,李丽老师气匆匆地走进教室,用鄙夷的略带愤怒的目光注视着我时,我心虚了,低下头不敢再去看她,我心跟明镜似的。她喝道:“白XX, 王校长要见你,在二楼校长室。” 走廊里我挪着步,每走一步都觉得很沉,不知道校长会怎么批评我,或者是严惩我,害怕与紧张让我在房门前不得不倒吸了一口气,接着又闭上眼睛静等五秒钟后,我才敢扣响房门,听到里面传出:进来,我才小心翼翼地推开那扇门。我径直地站在校长的办公桌前,不敢发出一点声响。看见王校长端坐在桌前书写着什么,看见我进来,便马上收起笔,他从椅子上慢慢站起来,用惊愕的眼神上下打量着我,他严肃的目光里还带着一股寒气,仿佛瞬间就能将我冰封,我连大气都不敢出。紧接着他开始发怒了,大声呵斥道:“你,你就是XXX。”我不敢说话,只是点点头。他猛然摘下眼镜,愤怒下的眼睛突出的更加厉害,手在不停地拍打着豪华的办公桌,来压抑着他内心的烦躁,他一声高过一声地责问我:“你小小年纪,也太有主意了,这么多钱没交,竟然能瞒这么久”。我羞愧地低下了头了,
高中数学必修四各章节练习题(附带答案解析)
1.已知中学生一节课的上课时间一般是45分钟,那么,经过一节课,分针旋转形成的角是( )A .120°B .-120°C .270°D .-270°解析:分针旋转形成的角是负角,每60分钟转动一周,所以一节课45分钟分针旋转形成的角是-360°×4560=-270°.答案:D2.下列叙述正确的是( )A .第一或第二象限的角都可作为三角形的内角B .始边相同而终边不同的角一定不相等C .第四象限角一定是负角D .钝角比第三象限角小解析:-330°角是第一象限角,但不能作为三角形的内角,故A 错;280°角是第四象限角,它是正角,故C 错;-100°角是第三象限角,它比钝角小,故D 错.答案:B3.若α是第四象限角,则180°-α是第________象限角. 解析:∵角α与角-α的终边关于x 轴对称, 又∵角α的终边在第四象限,∴角-α终边在第一象限,又角-α与180°-α的终边关于原点对称,∴角180°-α的终边在第三象限. 答案:三4.在0°~360°范围内:与-1 000°角终边相同的最小正角是________,是第________象限角.解析:-1 000°=-3×360°+80°,∴与-1 000°角终边相同的最小正角是80°,为第一象限角. 答案:80° 一5.在角的集合{α|α=k ·90°+45°,k ∈Z }中, (1)有几种终边不相同的角?(2)若-360°<α<360°,则集合中的α共有多少个?解:(1)在给定的角的集合中终边不相同的角共有四种,分别是与45°、135°、-135°、-45°终边相同的角.(2)令-360°<k ·90°+45°<360°,得-92<k <72. 又∵k ∈Z ,∴k =-4,-3,-2,-1,0,1,2,3, ∴满足条件的角共有8个.1.下列命题中,正确的是( ) A .1弧度是1度的圆心角所对的弧 B .1弧度是长度为半径的弧C .1弧度是长度等于半径的弧所对的圆心角D .1弧度是1度的弧与1度的角之和解析:利用弧度的概念可直接推得C 为正确选项. 答案:C2.2 100°化成弧度是( ) A.35π3 B .10π C.28π3D.25π3解析:2 100°=2 100×π180=35π3. 答案:A3.若扇形的圆心角为60°,半径为6,则扇形的面积为________. 解析:扇形的面积S =12|α|r 2=12×π3×62=6π. 答案:6π4.若θ角的终边与8π5角的终边相同,在[0,2π)内与θ4角的终边相同的角是________.解析:由题设知θ=2k π+8π5,k ∈Z ,则θ4=k π2+2π5,k ∈Z . ∴当k =0时,θ4=2π5; 当k =1时,θ4=9π10; 当k =2时,θ4=7π5; 当k =3时,θ4=19π10. 答案:2π5,9π10,7π5,19π105.已知α=-800°.(1)把α改写成β+2k π(k ∈Z,0≤β<2π)的形式,并指出α的终边在第几象限;(2)求 γ角,使γ与α角的终边相同,且γ∈⎝ ⎛⎭⎪⎫-π2,π2.解:(1)∵-800°=-3×360°+280°,280°=14π9, ∴α=14π9+(-3)×2π,α角与14π9的终边相同, ∴α是第四象限角.(2)∵与α角终边相同的角为2k π+α,k ∈Z ,α与14π9终边相同, ∴γ=2k π+14π9,k ∈Z .又∵γ∈⎝ ⎛⎭⎪⎫-π2,π2,∴-π2<2k π+14π9<π2, 当k =-1时,不等式成立, ∴γ=-2π+14π9=-4π9.1.有下列说法:①终边相同的角的同名三角函数的值相等; ②终边不同的角的同名三角函数的值不等; ③若sin α>0,则α是第一、二象限的角;④若α是第二象限的角,且P (x ,y )是其终边上一点,则cos α=-xx 2+y2, 其中不正确的个数为( ) A .0 B .1 C .2 D .3答案:D2.若点P 的坐标是(sin2,cos2),则点P 位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:D3.sin420°=________.答案:324.使得lg(cos αtan α)有意义的角α是第________象限角. 解析:要使原式有意义,必须cos αtan α>0,即需cos α,tan α同号,所以α是第一或第二象限角.答案:一或二 5.求下列各式的值.(1)sin1 470°;(2)cos 9π4;(3)tan(-116π). 解:(1)sin1 470°=sin(4×360°+30°)=sin30°=12. (2)cos 9π4=cos(2π+π4)=cos π4=22. (3)tan(-11π6)=tan(-2π+π6)=tan π6=33.1.已知角α的正弦线的长度为单位长度,那么角α的终边( ) A .在x 轴上 B .在y 轴上 C .在直线y =x 上 D .在直线y =-x 上答案:B2.已知11π6的正弦线为MP ,正切线为AT ,则有( ) A .MP 与AT 的方向相同 B .|MP |=|AT | C .MP >0,AT <0D .MP <0,AT >0 解析:三角函数线的方向和三角函数值的符号是一致的.MP =sin 11π6<0,AT =tan 11π6<0.答案:A3.若角α的正弦线的长度为12,且方向与y 轴的正方向相反,则sin α的值为________.答案:-124.函数y =lg(sin x -cos x )的定义域为________.解析:利用三角函数线,如下图,MN 为正弦线,OM 为余弦线,要使sin x ≥cos x ,即MN ≥OM ,则π4≤x ≤54π,(在[0,2π]内).∴定义域为{x |π4+2k π≤x ≤54π+2k π,k ∈Z }. 答案:{x |π4+2k π≤x ≤54π+2k π,k ∈Z }5.在单位圆中画出满足cos α=12的角α的终边,并写出α组成的集合.解:如图所示,作直线x =12交单位圆于M ,N ,连接OM ,ON ,则OM ,ON 为α的终边.由于cos π3=12,cos 5π3=12,则M 在π3的终边上,N 在5π3的终边上,则α=π3+2k π或α=5π3+2k π,k ∈Z . 所以α组成的集合为S =⎩⎨⎧⎭⎬⎫αα=π3+2k π或α=5π3+2k π,k ∈Z .1.已知α是第二象限角,sin α=513,则cos α=( ) A .-1213 B .-513 C.513D.213解析:因为α是第二象限角,所以cos α<0, 故cos α=-1-sin 2α=-1-(513)2=-1213.答案:A2.已知cos α-sin α=-12,则sin αcos α的值为( ) A.38 B .±38 C.34D .±34解析:由已知得(cos α-sin α)2=sin 2α+cos 2α-2sin αcos α=1-2sin αcos α=14,解得sin αcos α=38,故选A.答案:A3.若sin θ=-45,tan θ>0,则cos θ=________.解析:由已知得θ是第三象限角,所以cos θ=-1-sin 2θ=-1-(-45)2=-35. 答案:-354.已知tan α=3,则2sin 2α+4sin αcos α-9cos 2α的值为________. 解析:原式=2sin 2α+4sin αcos α-9cos 2αsin 2α+cos 2α=2tan 2α+4tan α-9tan 2α+1 =2×32+4×3-932+1=2110.答案:21105.若π2<α<π,化简cos α1-cos 2α+sin α1-sin 2α1-cos 2α.解:因为π2<α<π,所以cos α=-1-sin 2α,sin α=1-cos 2α,所以原式=cos αsin α+sin α(-cos α)1-cos 2α=cos αsin α-sin αcos αsin 2α=cos αsin α-cos αsin α=0.1.cos(-20π3)等于( ) A.12 B.32 C .-12D .-32解析:cos(-20π3)=cos 20π3 =cos(6π+2π3)=cos 2π3=-12. 答案:C2.sin600°+tan240°的值是( ) A .-32 B.32 C .-12+ 3 D.12+3 解析:sin600°+tan240°=sin(360°+240°)+tan(180°+60°) =sin240°+tan60°=sin(180°+60°)+tan60° =-sin60°+tan60°=-32+3=32. 答案:B3.已知sin(45°+α)=513,则sin(135°-α)=________.解析:sin(135°-α)=sin[180°-(45°+α)] =sin(45°+α)=513. 答案:5134.已知α∈(0,π2),tan(π-α)=-34,则sin α=________. 解析:由于tan(π-α)=-tan α=-34, 则tan α=34,解方程组⎩⎨⎧sin αcos α=34,sin 2α+cos 2α=1,得sin α=±35,又α∈(0,π2),所以sin α>0. 所以sin α=35. 答案:355.化简tan (2π-θ)sin (-2π-θ)cos (6π-θ)cos (θ-π)sin (5π+θ).解:原式=tan (-θ)sin (-θ)cos (-θ)(-cos θ)(-sin θ)=(-tan θ)(-sin θ)cos θcos θsin θ=tan θ.1.已知sin40°=a ,则cos130°等于( ) A .a B .-a C.1-a 2D .-1-a 2解析:cos130°=cos(90°+40°)=-sin40°=-a .答案:B2.已知sin(α-π4)=13,则cos(π4+α)的值等于( ) A.223 B .-232 C.13D .-13解析:∵π4+α-(α-π4)=π2, ∴cos(π4+α)=cos[π2+(α-π4)] =-sin(α-π4)=-13. 答案:D3.已知sin(π6-θ)=13,则cos(π3+θ)等于________. 解析:cos(π3+θ)=cos[π2-(π6-θ)] =sin(π6-θ)=13. 答案:134.已知cos α=15,且α为第四象限角,那么cos(α+π2)等于________. 解析:∵α为第四象限角且cos α=15, ∴sin α=-1-cos 2α=-25 6. ∴cos(α+π2)=-sin α=25 6. 答案:2655.化简1+2sin (π2-2)·cos (π2+2).解:原式=1+2cos2·(-sin2)=1-2sin2cos2=(sin2-cos2)2=|sin2-cos2|. 又∵sin2>cos2,∴原式=sin2-cos2.1.函数y =-sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,3π2的简图是( )解析:用特殊点来验证.x =0时,y =-sin0=0,排除选项A ,C ;又x =-π2时,y =-sin ⎝ ⎛⎭⎪⎫-π2=1,排除选项B.答案:D2.方程x +sin x =0的根有( ) A .0个 B .1个 C .2个D .无数个解析:设f (x )=-x ,g (x )=sin x ,在同一直角坐标系中画出 f (x )和g (x )的图象,如图所示.由图知f (x )和g (x )的图象仅有一个交点,则方程x +sin x =0仅有一个根.答案:B3.用“五点法”画y =1-cos x ,x ∈[0,2π]的图象时,五个关键点的坐标是________.答案:(0,0),⎝⎛⎭⎪⎫π2,1,(π,2),⎝⎛⎭⎪⎫3π2,1,(2π,0)4.函数y =2cos x -2的定义域是________. 解析:由2cos x -2≥0得cos x ≥22, 借助y =cos x 的图象可得cos x ≥22的解集为 ⎩⎨⎧⎭⎬⎫x |2k π-π4≤x ≤2k π+π4,k ∈Z .答案:⎩⎨⎧⎭⎬⎫x |2k π-π4≤x ≤2k π+π4,k ∈Z 5.在[0,2π]内用五点法作出y =-sin x -1的简图. 解:(1)按五个关键点列表xπ2π3π22πy -1 -2 -1 0 -1(2)描点并用光滑曲线连接可得其图象,如图所示:1.函数y =2cos(π3-ωx )的最小正周期是4π,则ω等于( ) A .2 B.12 C .±2D .±12解析:4π=2π|ω|,∴ω=±12. 答案:D2.定义在R 上的周期函数f (x )的一个周期为5,则f (2 011)=( )A .f (1)B .f (2)C .f (3)D .f (4) 解析:f (2 011)=f (402×5+1)=f (1). 答案:A3.若函数f (x )=sin ωx (ω>0)的周期为π,则ω=________. 解析:由于周期T =2πω,所以2πω=π,解得ω=2. 答案:24.已知函数f (x )是定义在R 上的周期为6的奇函数,且f (1)=1,则f (5)=________.解析:由于函数f (x )是定义在R 上的周期为6的奇函数,则f (5)=f (5-6)=f (-1)=-f (1).又f (1)=1,则f (5)=-1. 答案:-15.若函数f (x )是以π2为周期的奇函数,且f (π3)=1,求 f (-176π)的值.证明:∵f (x )的周期为π2,且为奇函数, ∴f (-17π6)=f (-3π+π6)=f (-6×π2+π6) =f (π6).而f (π6)=f (π2-π3)=f (-π3)=-f (π3)=-1, ∴f (-17π6)=-1.1.函数y =sin(2x +52π)的图象的一条对称轴方程是( ) A .x =-π2 B .x =-π4 C .x =π8D .x =54π解析:y =sin(2x +52 π)=cos2x ,令2x =k π(k ∈Z ),则x =k2 π(k ∈Z ).当k =-1时,x =-π2.答案:A2.函数y =2sin(2x -π4)的一个单调递减区间是( ) A .[3π8,7π8] B .[-π8,3π8] C .[3π4,5π4]D .[-π4,π4]解析:令z =2x -π4,函数y =sin z 的单调递减区间是[π2+2k π,3π2+2k π](k ∈Z ).由π2+2k π≤2x -π4≤3π2+2k π,k ∈Z , 得3π8+k π≤x ≤7π8+k π,k ∈Z . 令k =0,3π8≤x ≤7π8. 答案:A3.下列关系式中正确的是( ) A .sin11°<cos10°<sin168° B .sin168°<sin11°<cos10° C .sin11°<sin168°<cos10° D .sin168°<cos10°<sin11°解析:∵sin168°=sin(180°-168°)=sin12°,cos10°=sin80°, ∴sin11°<sin12°<sin80°. ∴sin11°<sin168°<cos10°. 答案:C4.设ω>0,若函数f (x )=2sin ωx 在[-π3,π4]上单调递增,则ω的取值范围是________.解析:令-π2≤ωx ≤π2,-π2ω≤x ≤π2ω,则[-π2ω,π2ω]是函数的关于原点对称的递增区间中范围最大的,即[-π3,π4]⊆[-π2ω,π2ω],则⎩⎪⎨⎪⎧π4≤π2ω,-π3≥-π2ω.⇒ω≤32.答案:[0,32]5.求函数y =1-2cos 2x +5sin x 的最大值和最小值. 解:y =1-2cos 2x +5sin x =2sin 2x +5sin x -1 =2(sin x +54)2-338.∵sin x ∈[-1,1],而y 在[-1,1]上是增函数, ∴当sin x =-1时,函数取得最小值-4; 当sin x =1时,函数取得最大值6.1.y =tan(x +π)是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶函数答案:A2.函数y =2tan ⎝ ⎛⎭⎪⎫3x -π4的一个对称中心是( )A.⎝ ⎛⎭⎪⎫π3,0B.⎝ ⎛⎭⎪⎫π6,0 C.⎝ ⎛⎭⎪⎫-π4,0 D.⎝ ⎛⎭⎪⎫-π2,0 解析:由3x -π4=k π2,得x =k π6+π12 令k =-2得x =-π4.故选C. 答案:C3.函数y =2tan ⎝ ⎛⎭⎪⎫π3-x 2的定义域是________.解析:由π3-x 2≠k π+π2,得x ≠-2k π-π3,k ∈Z ,故函数y =2tan ⎝⎛⎭⎪⎫π3-x 2的定义域是:⎩⎨⎧⎭⎬⎫x |x ≠-π3-2k π,k ∈Z .答案:⎩⎨⎧⎭⎬⎫x |x ≠-π3-2k π,k ∈Z4.使函数y =2tan x 与y =cos x 同时为单调增的区间是________. 解析:由y =2tan x 与y =cos x 的图象知,同时为单调增的区间为(2k π-π2,2k π)(k ∈Z )和(2k π+π,2k π+3π2)(k ∈Z ).答案:⎝ ⎛⎭⎪⎫2k π-π2,2k π(k ∈Z )和(2k π+π,2k π+3π2)(k ∈Z )5.求函数y =tan(π-x ),x ∈⎝⎛⎭⎪⎫-π4,π3的值域.解:y =tan(π-x )=-tan x ,在⎝ ⎛⎭⎪⎫-π4,π3上为减函数,所以值域为(-3,1).1.把函数y =sin ⎝ ⎛⎭⎪⎫2x -π4的图象向左平移π8个单位长度,所得到的图象对应的函数是( )A .奇函数B .偶函数C .既是奇函数也是偶函数D .非奇非偶函数解析:y =sin ⎝⎛⎭⎪⎫2x -π4=sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π8,向左平移π8个单位长度后为y =sin[2(x -π8+π8)]=sin2x ,为奇函数,故选A.答案:A2.为了得到函数y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象,只需把函数y =sin ⎝ ⎛⎭⎪⎫2x +π6的图象( )A .向左平移π4个单位长度 B .向右平移π4个单位长度 C .向左平移π2个单位长度 D .向右平移π2个单位长度 解析:由y =sin ⎝ ⎛⎭⎪⎫2x +π6――→x →x +φy=sin ⎣⎢⎡⎦⎥⎤2(x +φ)+π6=sin ⎝ ⎛⎭⎪⎫2x -π3,即2x +2φ+π6=2x -π3,解得φ=-π4,即向右平移π4个单位长度.答案:B3.用“五点法”画函数y =2sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0)在一个周期内的简图时,五个关键点是(-π6,0),(π12,2),(π3,0),(712 π,-2),(5π6,0),则ω=________.解析:周期T =5π6-(-π6)=π. ∴2πω=π,ω=2. 答案:24.把函数y =2sin ⎝ ⎛⎭⎪⎫3x +π4的图象上所有的点向右平移π6个单位长度,再把所有点的横坐标伸长到原来的2倍,纵坐标不变,得到的图象对应的一个解析式为________.解析:把函数y =2sin ⎝ ⎛⎭⎪⎫3x +π4的图象上所有的点向右平移π6个单位长度,得函数y =2sin ⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫x -π6+π4=2sin ⎝ ⎛⎭⎪⎫3x -π4的图象,再把所有点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y =2sin ⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫12x -π4的图象,即y =2sin ⎝ ⎛⎭⎪⎫32x -π4.答案:y =2sin ⎝ ⎛⎭⎪⎫32x -π45.已知函数y =sin ⎝ ⎛⎭⎪⎫2x +π4+1.(1)用“五点法”画出函数的草图.(2)函数图象可由y =sin x 的图象怎样变换得到? 解:(1)列表:2x +π4 0 π2 π 3π2 2π x -π8 π8 3π8 5π8 7π8 y1211描点、连线如图所示.将y =sin ⎝ ⎛⎭⎪⎫2x +π4+1在⎣⎢⎡⎦⎥⎤-π8,7π8上的图象向左(右)平移k π(k ∈Z )个单位,即可得到y =sin(2x +π4)+1的整个图象.1.函数y =2sin(x 2+π5)的周期、振幅依次是( ) A .4π,-2 B .4π,2 C .π,2D .π,-2解析:在y =A sin(ωx +φ)(A >0,ω>0)中,T =2πω,A 叫振幅(A >0),故y =2sin(x 2+π5)的周期T =2π12=4π,振幅为2,故选B.答案:B2.已知函数f (x )=2 sin(ωx +φ),x ∈R ,其中ω>0,-π<φ≤π.若f (x )的最小正周期为6π,且当x =π2时,f (x )取得最大值,则( )A .f (x )在区间[-2π,0]上是增函数B .f (x )在区间[-3π,-π]上是增函数C .f (x )在区间[3π,5π]上是减函数D .f (x )在区间[4π,6π]上是减函数 解析:∵函数f (x )的最小正周期为6π,∴2πω=6π,得ω=13,在x =π2时,函数f (x )取得最大值, ∴13×π2+φ=2k π+π2,k ∈Z . 又∵-π<φ≤π,∴φ=π3. ∴f (x )=2sin(13x +π3).由2k π-π2≤13x +π3≤2k π+π2(k ∈Z ), 得6k π-52π≤x ≤6k π+12π(k ∈Z ).∴f (x )的增区间是[6k π-52π,6k π+π2](k ∈Z ). 取k =0,得[-52π,π2]是f (x )的一个增区间. ∴函数f (x )在区间[-2π,0]上是增函数. 答案:A3.函数y =|5sin(2x +π3)|的最小正周期为________. 解析:∵y =5sin(2x +π3)的最小正周期为π, ∴函数y =|5sin(2x +π3)|的最小正周期为π2. 答案:π24.使函数f (x )=3sin(2x +5θ)的图象关于y 轴对称的θ为________. 解析:∵函数f (x )=3sin(2x +5θ)的图象关于y 轴对称, ∴f (-x )=f (x )恒成立,∴3sin(-2x +5θ)=3sin(2x +5θ). ∴sin(-2x +5θ)=sin(2x +5θ).∴-2x +5θ=2x +5θ+2k π(舍去)或-2x +5θ+2x +5θ=2k π+π(k ∈Z ).即10θ=2k π+π,故θ=k π5+π10(k ∈Z ). 答案:θ=k π5+π10,k ∈Z5.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的一段图象如图,试求这个函数的解析式.解:方法一:易知A =22,T4=6-2=4. ∴T =16,∴2πω=16,∴ω=π8. 又∵图象过点(2,22). ∴22sin(π8×2+φ)=2 2. 又∵|φ|<π2,∴φ=π4. 于是y =22sin(π8x +π4).方法二:易知A =22,由图可知,第二、第三两关键点的横坐标分别为2和6.∵⎩⎨⎧2ω+φ=π2,6ω+φ=π,∴⎩⎪⎨⎪⎧ω=π8,φ=π4.∴y =22sin(π8x +π4).1.已知某人的血压满足函数解析式f (t )=24sin(160πt )+115.其中f (t )为血压(mmHg),t 为时间(min),则此人每分钟心跳的次数为( )A .60B .70C .80D .90解析:由题意可得频率f =1T =160π2π=80(次/分),所以此人每分钟心跳的次数是80.答案:C2.如图表示电流I 与时间t 的关系I =A sin(ωt +φ)(A >0,ω>0)在一个周期内的图象,则该函数的解析式为( )A .I =300sin ⎝ ⎛⎭⎪⎫50πt +π3B .I =300sin ⎝ ⎛⎭⎪⎫50πt -π3C .I =300sin ⎝ ⎛⎭⎪⎫100πt +π3D .I =300sin(100πt -π3)解析:由图象得周期T =2(1150+1300)=150,最大值为300,图象经过点(1150,0),则ω=2πT =100π,A =300,∴I =300sin(100πt +φ). ∴0=300sin(100π×1150+φ). ∴sin(2π3+φ)=0.取φ=π3, ∴I =300sin(100πt +π3). 答案:C 3.如图为某简谐运动的图象,则这个简谐运动需要________s 往复一次.解析:由图象知周期T =0.8-0=0.8,则这个简谐运动需要0.8 s 往复一次.答案:0.84.据市场调查,某种商品每件的售价按月呈f (x )=A sin(ωx +φ)+B (A >0,ω>0,|φ|<π2)的模型波动(x 为月份),已知3月份达到最高价8千元,7月份价格最低为4千元,则f (x )=________.解析:由题意得⎩⎪⎨⎪⎧A +B =8,-A +B =4,解得A =2,B =6.周期T =2(7-3)=8,∴ω=2πT =π4,∴f (x )=2sin ⎝ ⎛⎭⎪⎫π4x +φ+6. 又当x =3时,y =8,∴8=2sin ⎝ ⎛⎭⎪⎫3π4+φ+6. ∴sin ⎝ ⎛⎭⎪⎫3π4+φ=1.由于|φ|<π2,∴φ=-π4, ∴f (x )=2sin ⎝ ⎛⎭⎪⎫π4x -π4+6.答案:2sin ⎝ ⎛⎭⎪⎫π4x -π4+65.如图所示,摩天轮的半径为40 m ,O 点距地面的高度为50 m ,摩天轮做匀速转动,每3 min 转一圈,摩天轮上的P 点的起始位置在最低点处.(1)试确定在时刻t min 时P 点距离地面的高度;(2)在摩天轮转动的一圈内,有多长时间P 点距离地面超过70 m? 解:(1)以中心O 为坐标原点建立如图所示的坐标系,设t min 时P 距地面的高度为y ,依题意得y =40sin ⎝⎛⎭⎪⎫2π3t -π2+50.(2)令40sin ⎝ ⎛⎭⎪⎫2π3t -π2+50>70,则sin ⎝ ⎛⎭⎪⎫2π3t -π2>12,∴2k π+π6<2π3t -π2<2k π+5π6(k ∈Z ),∴2k π+2π3<2π3t <2k π+4π3(k ∈Z ),∴3k +1<t <3k +2(k ∈Z ).令k =0得1<t <2. 因此,共有1 min P 点距地面超过70 m.单元综合测试一时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.若角600°的终边上有一点(-4,a ),则a 的值是( ) A .-4 3 B .±43 C. 3D .43解析:因为tan600°=a-4=tan(540°+60°)=tan60° =3,故a =-4 3. 答案:A2.已知cos(π2+φ)=32,且|φ|<π2,则tan φ=( ) A .-33 B.33 C .- 3D.3 解析:由cos(π2+φ)=32,得sin φ=-32,又|φ|<π2,∴cos φ=12,∴tan φ=- 3. 答案:C3.下列函数中,最小正周期为π,且图象关于直线x =π3对称的是( )A .y =sin(2x +π6) B .y =sin(x 2+π6) C .y =sin(2x -π6)D .y =sin(2x -π3)解析:∵最小正周期为π,∴ω=2,又图象关于直线x =π3对称, ∴f (π3)=±1,故只有C 符合. 答案:C4.若2k π+π<θ<2k π+5π4(k ∈Z ),则sin θ,cos θ,tan θ的大小关系是( )A .sin θ<cos θ<tan θB .cos θ<tan θ<sin θC .cos θ<sin θ<tan θD .sin θ<tan θ<cos θ解析:设π<α<54π,则有sin θ=sin α, cos θ=cos α,tan θ=tan α, ∵tan α>0,而sin α<0,cos α<0,∴B 、D 排除,又∵cos α<-22<sin α,即cos α<sin α,排除A.选C. 答案:C5.已知A 是三角形的内角,且sin A +cos A =52,则tan A 等于( )A .4+15B .4-15C .4±15D .以上均不正确解析:因为sin A +cos A =52,所以2sin A cos A =14>0.所以A 为锐角.又(sin A -cos A )2=1-2sin A cos A =1-14=34,所以sin A -cos A =±32.从而可求出sin A ,cos A 的值,从而求出tan A =4±15.答案:C6.函数y =2sin(π6-2x )(x ∈[0,π])的单调递增区间是( ) A .[0,π3] B .[π12,7π12] C .[π3,5π6]D .[5π6,π]解析:由π2+2k π≤2x -π6≤3π2+2k π 可得π3+k π≤x ≤5π6+k π(k ∈Z ).∵x ∈[0,π],∴单调递增区间为[π3,5π6]. 答案:C7.为得到函数y =cos ⎝⎛⎭⎪⎫x +π3的图象,只需将函数y =sin x 的图象( )A .向左平移π6个单位长度 B .向右平移π6个单位长度 C .向左平移5π6个单位长度D .向右平移5π6个单位长度 解析:∵y =cos ⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3+π2 =sin ⎝ ⎛⎭⎪⎫x +5π6, ∴只需将y =sin x 的图象向左平移5π6个单位长度. 答案:C8.已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,则函数f (x )的一个单调递增区间是( )A.⎣⎢⎡⎦⎥⎤-7π12,5π12 B.⎣⎢⎡⎦⎥⎤-7π12,-π12 C.⎣⎢⎡⎦⎥⎤-π4,π6 D.⎣⎢⎡⎦⎥⎤11π12,17π12 解析:由图形可得14T =23π-512π,∴T =π,则ω=2,又图象过点⎝ ⎛⎭⎪⎫512π,2.∴2sin ⎝ ⎛⎭⎪⎫2×512π+φ=2, ∴φ=-π3,∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3, 其单调递增区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+512π(k ∈Z ), 取k =1,即得选项D. 答案:D9.设a 为常数,且a >1,0≤x ≤2π,则函数f (x )=cos 2x +2a sin x -1的最大值为( )A .2a +1B .2a -1C .-2a -1D .a 2解析:f (x )=cos 2x +2a sin x -1 =1-sin 2x +2a sin x -1 =-(sin x -a )2+a 2,∵0≤x ≤2π,∴-1≤sin x ≤1,又a >1,∴f (x )max =-(1-a )2+a 2=2a -1. 答案:B 10.函数y =cos(ωx +φ)(ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,A ,B 分别为最高点与最低点,并且两点间的距离为22,则该函数图象的一条对称轴方程为( )A .x =2π B .x =π2 C .x =1D .x =2解析:函数y =cos(ωx +φ)(ω>0,0<φ<π)的最大值为1,最小值为-1,所以周期T =2(22)2-22=4,所以ω=π2,又函数为奇函数,所以cos φ=0(0<φ<π)⇒φ=π2,所以函数解析式为y =cos(π2x +π2)=-sin π2x ,所以直线x =1为该函数图象的一条对称轴.答案:C11.中国最高的摩天轮是“南昌之星”,它的最高点离地面160米,直径为156米,并以每30分钟一周的速度匀速旋转,若从最低点开始计时,则摩天轮进行5分钟后离地面的高度为( )A .41米B .43米C .78米D .118米解析:摩天轮转轴离地面高160-⎝ ⎛⎭⎪⎫1562=82(米),ω=2πT =π15,摩天轮上某个点P 离地面的高度h 米与时间t 的函数关系是h =82-78cos π15t ,当摩天轮运行5分钟时,其离地面高度为h =82-78cos π15t =82-78×12=43(米).答案:B12.设ω>0,函数y =sin(ωx +π3)+2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是( )A.23B.43C.32D .3解析:方法一:函数y =sin(ωx +π3)+2的图象向右平移4π3个单位后得到函数y =sin[ω(x -4π3)+π3]+2=sin(ωx -4π3ω+π3)+2的图象.∵两图象重合,∴ωx +π3=ωx -4π3ω+π3+2k π,k ∈Z ,解得ω=32k ,k ∈Z .又ω>0,∴当k =1时,ω的最小值是32.方法二:由题意可知,4π3是函数y =sin(ωx +π3)+2(ω>0)的最小正周期T 的正整数倍,即4π3=kT =2k πω(k ∈N *),ω=32k ,ω的最小值为32. 答案:C第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.在扇形中,已知半径为8,弧长为12,则圆心角是________弧度,扇形面积是________.解析:圆心角α=l r =128=32, 扇形面积S =12lr =12×12×8=48.答案:32 4814.方程sin x =lg x 的解的个数为________.解析:画出函数y =sin x 和y =lg x 的图象(图略),结合图象易知这两个函数的图象有3个交点.答案:315.设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β为非零常数.若f (2 013)=-1,则f (2 014)=________.解析:f (2 013)=a sin(2 013π+α)+b cos(2 013π+β) =-1,f (2 014)=a sin(2 014π+α)+b cos(2 014π+β) =a sin[π+(2 013π+α)]+b cos[π+(2 013π+β)] =-[a sin(2 013π+α)+b cos(2 013π+β)]=1. 答案:116.关于函数f (x )=cos ⎝⎛⎭⎪⎫2x +π3+1有以下结论:①函数f (x )的值域是[0,2];②点⎝⎛⎭⎪⎫-512π,0是函数f (x )的图象的一个对称中心;③直线x =π3是函数f (x )的图象的一条对称轴;④将函数f (x )的图象向右平移π6个单位长度后,与所得图象对应的函数是偶函数.其中,所有正确结论的序号是________.解析:①∵-1≤cos ⎝ ⎛⎭⎪⎫2x +π3≤1, ∴0≤cos ⎝⎛⎭⎪⎫2x +π3+1≤2;②∵f ⎝ ⎛⎭⎪⎫-5π12=cos ⎝ ⎛⎭⎪⎫-5π6+π3+1=cos ⎝ ⎛⎭⎪⎫-π2+1=1≠0,∴点⎝ ⎛⎭⎪⎫-512π,0不是函数f (x )图象的一个对称中心;③∵f ⎝ ⎛⎭⎪⎫π3=cos ⎝ ⎛⎭⎪⎫2π3+π3+1=cosπ+1=0,函数取得最小值,∴直线x =π3是函数f (x )的图象的一条对称轴;④将函数f (x )的图象向右平移π6个单位长度后,与所得图象对应的函数解析式为g (x )=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+π3+1=cos2x +1,此函数是偶函数.综上所述,①③④正确.答案:①③④三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知sin θ=45,π2<θ<π, (1)求tan θ;(2)求sin 2θ+2sin θcos θ3sin 2θ+cos 2θ的值.解:(1)∵sin 2θ+cos 2θ=1,∴cos 2θ=1-sin 2θ=925.又π2<θ<π,∴cos θ=-35. ∴tan θ=sin θcos θ=-43.(2)sin 2θ+2sin θcos θ3sin 2θ+cos 2θ=tan 2θ+2tan θ3tan 2θ+1=-857.18.(12分)(1)已知cos(75°+α)=13,其中α为第三象限角,求cos(105°-α)+sin(α-105°)的值;(2)已知π<θ<2π,cos(θ-9π)=-35,求tan(10π-θ)的值. 解:(1)cos(105°-α)=cos[180°-(75°+α)] =-cos(75°+α)=-13,sin(α-105°)=-sin[180°-(75°+α)] =-sin(75°+α). ∵α为第三象限角,∴75°+α为第三或第四象限角,又cos(75°+α)=13>0, ∴75°+α为第四象限角,∴sin(75°+α)=-1-cos 2(75°+α) =-1-⎝ ⎛⎭⎪⎫132=-223, ∴cos(105°-α)+sin(α-105°) =-13+223=22-13. (2)由已知得cos(θ-9π)=-35, ∴cos(π-θ)=-35,∴cos θ=35, ∵π<θ<2π,∴3π2<θ<2π,∴sin θ=-45, ∴tan θ=-43,∴tan(10π-θ)=tan(-θ)=-tan θ=43.19.(12分)已知函数f (x )=2cos(2x -π4),x ∈R . (1)求函数f (x )的最小正周期和单调递增区间.(2)求函数f (x )在区间[-π8,π2]上的最小值和最大值,并求出取得最值时x 的值.解:(1)因为f (x )=2cos(2x -π4),所以函数f (x )的最小正周期为T =2π2=π.由-π+2k π≤2x -π4≤2k π(k ∈Z ),得-3π8+k π≤x ≤π8+k π(k ∈Z ),故函数f (x )的单调递增区间为[-3π8+k π,π8+k π](k ∈Z ).(2)因为f (x )=2cos(2x -π4)在区间[-π8,π8]上为增函数,在区间[π8,π2]上为减函数,又f (-π8)=0,f (π8)=2,f (π2)=2cos(π-π4)=-2cos π4=-1,所以函数f (x )在区间[-π8,π2]上的最大值为2,此时x =π8;最小值为-1,此时x =π2.20.(12分)函数f 1(x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的一段图象过点(0,1),如图所示.(1)求函数f 1(x )的表达式;(2)把f 1(x )的图象向右平移π4个单位长度得到f 2(x )的图象,求f 2(x )取得最大值时x 的取值.解:(1)由图知,T =π,于是ω=2πT =2.将y =A sin2x 的图象向左平移π12,得y =A sin(2x +φ)的图象,于是φ=2×π12=π6.将(0,1)代入y =A sin(2x +π6),得A =2.故f 1(x )=2sin(2x +π6).(2)依题意,f 2(x )=2sin[2(x -π4)+π6] =-2cos(2x +π6),当2x +π6=2k π+π(k ∈Z ),即x =k π+5π12(k ∈Z )时, y max =2.此时x 的取值为{x |x =k π+5π12,k ∈Z }. 21.(12分)已知函数f (x )=2sin(2x +π6)-1.(1)若点P (1,-3)在角α的终边上,求f (α2-π12)的值; (2)若x ∈[-π6,π3],求f (x )的值域.解:(1)因为点P (1,-3)在角α的终边上, 所以sin α=-32,cos α=12,所以f (α2-π12)=2sin[2×(α2-π12)+π6]-1 =2sin α-1=2×(-32)-1=-3-1. (2)令t =2x +π6,因为x ∈[-π6,π3],所以-π6≤2x +π6≤5π6,而y =sin t 在[-π6,π2]上单调递增, 在[π2,5π6]上单调递减, 且sin(-π6)=-12,sin 5π6=12,所以函数y =sin t 在[-π6,5π6]上的最大值为1, 最小值为-12,即-12≤sin(2x +π6)≤1, 所以f (x )的值域是[-2,1].22.(12分)已知函数f (x )=A sin(ωx +φ)+B (A >0,ω>0)的一系列对应值如下表:(1)(2)根据(1)的结果,若函数y =f (kx )(k >0)的最小正周期为2π3,当x ∈[0,π3]时,方程f (kx )=m 恰有两个不同的解,求实数m 的取值范围. 解:(1)设f (x )的最小正周期为T , 得T =11π6-(-π6)=2π, 由T =2πω,得ω=1.又⎩⎪⎨⎪⎧ B +A =3,B -A =-1.解得⎩⎪⎨⎪⎧A =2,B =1.令ω·5π6+φ=π2,即5π6+φ=π2,解得φ=-π3, ∴f (x )=2sin(x -π3)+1.(2)∵函数y =f (kx )=2sin(kx -π3)+1的最小正周期为2π3, 又k >0,∴k =3,令t =3x -π3, ∵x ∈[0,π3],∴t ∈[-π3,2π3],若sin t =s 在[-π3,2π3]上有两个不同的解, 则s ∈[32,1),∴方程f (kx )=m 在x ∈[0,π3]时恰好有两个不同的解,则m ∈[3+1,3),即实数m的取值范围是[3+1,3).1.如图,在⊙O 中,向量OB →,OC →,AO →是( ) A .有相同起点的向量 B .共线向量 C .模相等的向量 D .相等的向量解析:由题知OB →,OC →,AO →对应的有向线段都是圆的半径,因此它们的模相等.答案:C2.下列说法中正确的是( ) A .若|a |>|b |,则a >b B .若|a |=|b |,则a =b C .若a =b ,则a ∥bD .若a ≠b ,则a 与b 不是共线向量解析:向量不能比较大小,所以A 不正确;a =b 需满足两个条件:a ,b 同向且|a |=|b |,所以B 不正确,C 正确;a 与b 是共线向量只需方向相同或相反,所以D 不正确.答案:C3.设O 是正方形ABCD 的中心,则OA →,BO →,AC →,BD →中,模相等的向量是________.解析:∵四边形ABCD 为正方形,O 为正方形的中心, ∴OA =BO ,即|OA →|=|BO →|,|AC →|=|BD →|. 答案:OA →与BO →,AC →与BD →4.如图所示,四边形ABCD 和ABDE 都是平行四边形. (1)与向量ED →相等的向量为______;(2)若|AB →|=3,则向量EC →的模等于________. 解析:(1)在平行四边形ABCD 和ABDE 中, ∵AB →=ED →,AB →=DC →,∴ED →=DC →. (2)由(1)知ED →=DC →,∴E 、D 、C 三点共线,|EC →|=|ED →|+|DC →|=2|AB →|=6. 答案:(1)AB →、DC →(2)65.一个人从点A 出发沿东北方向走了100 m 到达点B ,然后改变方向,沿南偏东15°方向又走了100 m 到达点C .(1)画出AB →,BC →,CA →. (2)求|CA →|. 解:(1)如图所示. (2)|AB →|=100 m , |BC →|=100 m ,∠ABC =45°+15°=60°, 则△ABC 为正三角形. 故|CA →|=100 m.1.在四边形ABCD 中,AC →=AB →+AD →,则( ) A .ABCD 一定是矩形 B .ABCD 一定是菱形 C .ABCD 一定是正方形D .ABCD 一定是平行四边形解析:由AC →=AB →+AD →知由A ,B ,C ,D 构成的四边形一定是平行四边形.答案:D2.下列等式不成立的是( ) A .0+a =a B .a +b =b +a C.AB →+BA →=2BA →D.AB →+BC →=AC →解析:对于C ,∵AB →与BA →是相反向量, ∴AB →+BA →=0. 答案:C3.化简(AB →+MB →)+(BO →+BC →)+OM →=________.解析:原式=(AB →+BO → )+(OM →+MB → )+BC →=AO →+OB →+BC →=AB →+BC →=AC →.答案:AC →4.若a =“向北走8 km ”,b =“向东走8 km ”,则|a +b |=________;a +b 的方向是________.解析:由向量加法的平行四边形法则,知|a +b |=82,方向为东北方向.答案:8 2 km 东北方向5.在水流速度为4 3 km/h 的河中,要使船以12 km/h 的实际航速与河岸成直角行驶,求船在静水中的航行速度的大小和方向.解:设AB →表示水流的速度,AC →表示船的实际航行速度,如图,作出AB →,AC →,连接BC ,作AD 綊BC ,连接DC ,则AD →为所求船的静水航速,且AD →+AB →=AC →.∵|AB →|=43,|AC →|=12, tan ∠ACB =4312=33. ∴∠ACB =30°=∠CAD , |AD →|=|BC →|=83,∠BAD =120°.∴船在静水中的航行速度的大小为8 3 km/h ,方向与水流速度成120°角.1.下列等式: ①0-a =-a ②-(-a )=a ③a +(-a )=0 ④a +0=a ⑤a -b =a +(-b ) ⑥a +(-a )=0正确的个数是( )A .3B .4C .5D .6解析:根据向量的加减运算易知①②③④⑤均正确. 答案:C2.设AB →,BC →,AC →是三个非零向量,且AB →+BC →=AC →,则( ) A .线段AB ,BC ,AC 一定构成一个三角形 B .线段AB ,BC 一定共线 C .线段AB ,BC 一定平行D .线段AB ,BC ,AC 构成三角形或共线解析:由于三角形法则对于共线时也成立,因此线段AB ,BC ,AC 可以构成三角形,也可以共线,但线段AB ,BC 不可能平行.答案:D3.若向量a 与b 共线,且|a |=|b |=1,则|a -b |=________. 解析:∵a 与b 共线, ∴两向量同向或反向. 又|a |=|b |=1,∴|a -b |=0或2. 答案:0或24.化简:(1)(AD →-BM →)+(BC →-MC →)=________. (2)(PQ →-MO →)+(QO →-QM →)=________. 答案:(1)AD → (2)PQ →5.如图,在五边形ABCDE 中,若四边形ACDE 是平行四边形,且AB →=a ,AC →=b ,AE →=c ,试用a ,b ,c 表示向量BD →,BE →,CE →.解:∵四边形ACDE 为平行四边形, ∴CD →=AE →=c ,BC →=AC →-AB →=b -a . ∴BD →=BC →+CD →=b -a +c , BE →=AE →-AB →=c -a , CE →=AE →-AC →=c -b .1.在四边形ABCD 中,若AB →=-12CD →,则此四边形是( ) A .平行四边形 B .菱形 C .梯形D .矩形解析:由AB →=-12CD →可得,在四边形ABCD 中有AB ∥CD ,但|AB |≠|CD |,故为梯形.答案:C2.已知非零向量a ,b 满足a =λb ,b =λa (λ∈R ),则λ=( ) A .-1 B .±1 C .0D .0解析:∵a =λb ,b =λa ,∴a =λ2a ,∴λ±1.答案:B3.化简:2(a -2b )+3(13a +b )=________. 答案:3a -b4.若|a |=5,b 与a 的方向相反,且|b |=7,则a =________b . 解析:∵b 与a 方向相反,∴设a =λb (λ<0) ∴|a |=|λ||b |,∴5=|λ|×7,∴|λ|=57, ∴λ=±57,又λ<0,∴λ=-57. 答案:-57 5.如图,在梯形ABCD 中,AB ∥CD ,且AB =2CD ,M ,N 分别是DC 和AB 的中点,若AB →=a ,AD →=b ,试用a ,b 表示BC →和MN →.解:在四边形ANMD 中,有 MN →=MD →+DA →+AN → =-12DC →-AD →+12AB → =-AD →-12(12AB →)+12AB →=-AD →+14AB →=14a -b . 在四边形ABCD 中,有BC →=BA →+AD →+DC →=-AB →+AD →+12AB → =AD →-12AB →=b -12a .1.已知e 1,e 2是表示平面内所有向量的一组基底,那么下面四组向量中,不能作为一组基底的是( )A .e 1,e 1+e 2B .e 1-2e 2,e 2-2e 1C .e 1-2e 2,4e 2-2e 1D .e 1+e 2,e 1-e 2解析:因为4e 2-2e 1=-2(e 1-2e 2),从而e 1-2e 2与4e 2-2e 1共线.答案:C2.在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,以b 与c 作为基底,则AD →=( )A.23b +13cB.53c -23bC.23b -13cD.13b +23c解析:∵BD →=2DC →,∴AD →-AB →=2(AC →-AD →), ∴AD →-c =2(b -AD →),∴AD →=13c +23b . 答案:A。
【北师大版】高中数学必修四全册学案(全册共340页 附答案)
【北师大版】高中数学必修四全册学案(全册共340页附答案)目录§1周期现象§2角的概念的推广§3弧度制4.1 单位圆与任意角的正弦函数、余弦函数的定义4.2 单位圆与周期性4.3 单位圆与正弦函数、余弦函数的基本性质4.4 单位圆的对称性与诱导公式(一)4.4 单位圆的对称性与诱导公式(二)5.1 正弦函数的图像5.2 正弦函数的性质§6余弦函数的图像与性质7.1 正切函数的定义7.2 正切函数的图像与性质7.3 正切函数的诱导公式§8函数y=A sin(ωx+φ)的图像与性质(一)§8函数y=A sin(ωx+φ)的图像与性质(二)§9三角函数的简单应用章末复习课第二章平面向量§1从位移、速度、力到向量2.1 向量的加法2.2 向量的减法3.1 数乘向量3.2 平面向量基本定理§4平面向量的坐标§5从力做的功到向量的数量积§1周期现象内容要求 1.了解周期现象,能判断简单的实际问题中的周期(重点).2.初步了解周期函数的概念,能判断简单的函数的周期性(难点).知识点周期现象(1)概念:相同间隔重复出现的现象.(2)特点:①有一定的规律;②不断重复出现.【预习评价】1.(正确的打“√”,错误的打“×”)(1)地球上一年春、夏、秋、冬四季的变化是周期现象.(√)(2)钟表的分针每小时转一圈,它的运行是周期现象.(√)2.观察“2,0,1,7,2,0,1,7,2,0,1,7,…”寻找规律,则第25个数字是________.解析观察可知2,0,1,7每隔四个数字重复出现一次,具有周期性,故第25个数字为2. 答案 2题型一周期现象的判断【例1】判断下列现象是否为周期现象,并说明理由.(1)地球的自转;(2)连续抛掷一枚骰子,朝上一面的点数;(3)钟表的秒针的转动;(4)某段高速公路每天通过的车辆数.解(1)地球每天自转一圈,并且每一天内的任何时段总会重复前一天内相同时段的动作,因此是周期现象.(2)连续抛掷一枚骰子,朝上一面的点数有可能为1,2,…,6,并且前一次出现的点数,下一次可能出现,也可能不出现,故出现的点数是随机的,因此不是周期现象.(3)钟表的秒针的转动,每一分钟转一圈,并且每分钟总是重复前一分钟的动作,因此是周期现象.(4)某段高速公路每天通过的车辆数,会因时间、天气、交通状况等因素而发生变化,没有一个确定的规律,因此不是周期现象.规律方法周期现象的判断关键:首先要认真审题,明确题目的实际背景,然后应牢牢抓住“间隔相同,现象(或值)重复出现”这一重要特征进行判断.【训练1】判断下列现象是否为周期现象:(1)每届奥运会的举办时间;(2)北京天安门广场的国旗,日出时升旗,日落时降旗,则其每天的升旗时间;(3)中央电视台每晚7:00的新闻联播.解(1)奥运会每4年一届,所以其举办时间呈周期现象.(2)北京每天的日出、日落随节气变化,并非恒定,相邻两天的升旗时间间隔是变化的,不是常数,所以不是周期现象.(3)每24小时,新闻联播重复一次,所以是周期现象.题型二周期现象的应用【例2】一个地区不同日子里白昼的时长是不同的,所给表是某地一年中10天测量的白昼时间统计表(时间近似到0.1小时):坐标系中画出这些数据的散点图,并估计该地区一年中大约有多少天白昼时间大于15.9小时.(2)白昼时间的变化是否具有周期现象?你估计该地区来年6月21日的白昼时间是多少?解(1)散点图如图所示,因为从4月27日至8月13日的白昼时间均超过15.9小时,所以该地区一年白昼时间超过15.9小时的大约有3+31+30+31+12=107(天).(2)由散点图可知,白昼时间的变化是周期现象,该地区来年6月21日的白昼时间为19.4小时.规律方法收集数据、画散点图,分析、研究数据特点从而得出结论是用数学方法研究现实问题的常用方法.【训练2】受日月的引力,海水会发生涨落,这种现象叫做潮汐.已知某海滨浴场的海浪高度y(米)是时间t(0≤t≤24,单位:时)的函数,记作y=f(t),下表是某日各时的浪高数据:几次?时间最长的一次是什么时候?有多长时间?解由题中表可知,一天内能开放三次,时间最长的一次是上午9时至下午3时,共6个小时.【例3】2017年5月1日是星期一,问2017年10月1日是星期几?解按照公历记法,2017年5、7、8这三个月份都是31天,6、9月份各30天.从2017年5月1日到2017年10月1日共有153天,因为每星期有7天,故由153=22×7-1知,从2017年5月1日再过154天恰好与5月1日相同都是星期一,这一天是公历2017年10月2日,故2017年10月1日是星期日.【迁移1】试确定自2017年5月1日再过200天是星期几?解由200=28×7+4知自2017年5月1日再过200天是星期五.【迁移2】从2017年5月1日到2017年10月1日经过了几个星期五?几个星期一?解因为从2017年5月1日到2017年10月1日的153天中有21个完整的周期零6天,在每个周期中有且仅有一个星期五和一个星期一,故共经过了22个星期五,21个星期一.【迁移3】试确定自2017年5月1日再过7k+3(k∈Z)天后那一天是星期几?解每隔七天,周一至周日依次循环,故7k天后为周一,7k+3天后为星期四.规律方法应用周期性解决实际问题的两个要点特别提醒计算两个日期的间隔时间时要注意有的月份30天,有的月份31天,二月份有28天(或29天).课堂达标1.下列自然现象:月亮东升西落,气候的冷暖,昼夜变化,火山爆发.其中是周期现象的有( )A.1个B.2个C.3个D.4个解析月亮东升西落及昼夜变化为周期现象;气候的冷暖与火山爆发不是周期现象,故选B.答案 B2.如果今天是星期五,则58天后的那一天是星期( )A.五B.六C.日D.一解析每隔七天循环一次,58=7×8+2,故58天后为周日.答案 C3.共有50架飞机组成编队,按侦察机、直升机、轰炸机、歼击机的顺序轮换编队,则最后一架飞机是________飞机.解析周期为4,50=12×4+2,所以最后一架是直升机.答案直升机4.某物体作周期运动,如果一个周期为0.4秒,那么运动4秒,该物体经过了________个周期.解析4÷0.4=10,所以经过了10个周期.答案105.某班有48名学生,每天安排4名同学进行卫生值日,按一周上五天课,一学期二十周计算,该班每位同学一学期要值日几次?解共有48名学生,每天安排4名,则12个上课日就轮完一遍.一学期有5×20=100(个)上课日,而12×8=96(个)上课日,所以一个学期内该班每位同学至少值日8次,有部分同学要值日9次.课堂小结1.对于某些具有重复现象的事件,研究其规律,可预测未来在一定时间该现象发生的可能性及发生规律,具有一定的研究价值.2.利用散点图可以较直观地分析两变量之间的某种关系,然后再利用这种关系选择一种合适的函数去拟合这些散点,从而可以避免因盲目选择函数模型而造成的不必要的失误.基础过关1.下列是周期现象的为( ) ①闰年每四年一次;②某交通路口的红绿灯每30秒转换一次; ③某超市每天的营业额; ④某地每年6月份的平均降雨量. A .①②④B .②④C .①②D .①②③解析 ①②是周期现象;③中每天的营业额是随机的,不是周期现象;④中每年6月份的降雨量也是随机的,不是周期现象. 答案 C2.把17化成小数,小数点后第20位是( )A .1B .2C .4D .8解析 17=0.1·42857·,小数点后“142857”呈周期性变化,且周期为 6.∵20=3×6+2,∴第20位为4. 答案 C3.按照规定,奥运会每4年举行一次.2016的夏季奥运会在巴西举办,那么下列年份中不举办夏季奥运会的应该是( ) A .2020 B .2024 C .2026D .2028解析 C 中2026不是4的倍数,选C. 答案 C4.把一批小球按2个红色,5个白色的顺序排列,第30个小球是________色. 解析 周期为7,30=4×7+2,所以第30个小球与第2个小球颜色相同,为红色. 答案 红5.如图所示,变量y与时间t(s)的图像如图所示,则时间t至少隔________ s时y=1会重复出现1次.答案 26.若今天是星期一,则第7天后的那一天是星期几?第120天后的那一天是星期几?(注:今天是第一天)解每星期有7天,从星期一到星期日,呈周期性变化,其周期为7.∴第7天后的那一天是星期一.∵120=17×7+1,∴第120天后的那一天是星期二.7.水车上装有16个盛水槽,每个盛水槽最多盛水10升,假设水车5分钟转一圈,计算1小时内最多盛水多少升?解因为1小时=60分钟=12×5分钟,且水车5分钟转一圈,所以1小时内水车转12圈.又因为水车上装有16个盛水槽,每个盛水槽最多盛水10升,所以每转一圈,最多盛水16×10=160(升,)所以水车1小时内最多盛水160×12=1 920(升).能力提升8.钟表分针的运动是一个周期现象,其周期为60分钟,现在分针恰好指在2点处,则100分钟后分针指在( )A.8点处B.10点处C.11点处D.12点处解析由于100=1×60+40,所以100分钟后分针所指位置与40分钟后分针所指位置相同,现在分针恰好指在2点处,经过40分钟分针应指在10点处,故选B.答案 B9.设钟摆每经过1.8秒回到原来的位置.在图中钟摆达到最高位置A点时开始计时,经过1分钟后,钟摆的大致位置是( )A.点A处B.点B处C.O、A之间D.O、B之间解析 钟摆的周期T =1.8 秒,1分钟=(33×1.8+0.6)秒,又T 4<0.6<T2,所以经过1分钟后,钟摆在O 、B 之间. 答案 D10.今天是星期六,再过100天后是星期________. 解析 100=14×7+2,∴再过100天是星期一. 答案 一11.一个质点,在平衡位置O 点附近振动,如果不考虑阻力,可将此振动看作周期运动,从O 点开始计时,质点向左运动第一次到达M 点用了0.3 s ,又经过0.2 s 第二次通过M 点,则质点第三次通过M 点,还要经过的时间可能是________ s.解析 质点从O 点向左运动,O →M 用了0.3 s ,M →A →M 用了0.2 s ,由于M →O 与O →M 用时相同,因此质点运动半周期T2=0.2+0.3×2=0.8(s),从而当质点第三次经过M 时用时应为M →O →B →O →M ,所用时间为0.3×2+0.8=1.4(s). 答案 1.412.游乐场中的摩天轮匀速旋转,每转一圈需要12分钟,其中心O 距离地面40.5米,半径40米.如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时,请解答下列问题:(1)你与地面的距离随时间的变化而变化,这个现象是周期现象吗? (2)转四圈需要多少时间?(3)你第四次距地面最高需要多少时间? (4)转60分钟时,你距离地面是多少? 解 (1)是周期现象,周期12分钟/圈. (2)转四圈需要时间为4×12=48(分钟).(3)第1次距离地面最高需122=6(分钟),而周期是12分钟,所以第四次距地面最高需12×3+6=42(分钟).(4)∵60÷12=5,∴转60分钟时你距离地面与开始时刻距离地面相同,即40.5-40=0.5(米).13.(选做题)下面是一个古希腊的哲学家、数学家、天文学家毕达哥拉斯的故事:有一次毕达哥拉斯处罚学生,让他来回数在黛安娜神庙的七根柱子(这七根柱子的标号分别为A,B,C,…,G),如图所示,一直到指出第1 999个数的柱子的标号是哪一个才能够停止.你能帮助这名学生尽快结束这个处罚吗?解通过观察可发现规律:数“2,3,4,…,1 997,1 998,1 999”按标号为“B,C,D,E,F,G,F,E,D,C,B,A”这12个字母循环出现,因此周期是12.先把1去掉,(1 999-1)÷12=166……6,因此第1 999个数的柱子的标号与第167个周期的第6个数的标号相同,故数到第1 999个数的柱子的标号是G.§2角的概念的推广内容要求 1.理解正角、负角、零角与象限角的概念(知识点1 角的概念(1)角的概念:角可以看成平面内一条射线绕着端点O从一个位置OA旋转到另一个位置OB 所形成的图形.点O是角的顶点,射线OA,OB分别是角α的始边和终边.(2)按照角的旋转方向,分为如下三类:(正确的打“√”,错误的打“×”)(1)按逆时针方向旋转所成的角是正角(√)(2)按顺时针方向旋转所成的角是负角(√)(3)没有作任何旋转就没有角对应(×)(4)终边和始边重合的角是零角(×)(5)经过1小时时针转过30°(×)知识点2 象限角如果角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是第几象限角.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.【预习评价】1.锐角属于第几象限角?钝角又属于第几象限角?提示锐角属于第一象限角,钝角属于第二象限角.2.第二象限的角比第一象限的角大吗?提示不一定.如120° 是第二象限的角,390°是第一象限的角,但120°<390°.知识点3 终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任何一个与角α终边相同的角,都可以表示成角α与周角的整数倍的和.【预习评价】(正确的打“√”,错误的打“×”)(1)终边相同的角一定相等(×)(2)相等的角终边一定相同(√)(3)终边相同的角有无数多个(√)(4)终边相同的角它们相差180°的整数倍(×)题型一角的概念的推广【例1】写出下图中的角α,β,γ的度数.解要正确识图,确定好旋转的方向和旋转的大小,由角的概念可知α=330°,β=-150°,γ=570°.规律方法 1.理解角的概念的三个“明确”2.表示角时的两个注意点(1)字母表示时:可以用希腊字母α,β等表示,“角α”或“∠α”可以简化为“α”.(2)用图示表示角时:箭头不可以丢掉,因为箭头代表了旋转的方向,也即箭头代表着角的正负.【训练1】(1)图中角α=________,β=________;(2)经过10 min,分针转了________.解析(1)α=-(180°-30°)=-150°β=30°+180°=210°.(2)分针按顺时针过了周角的16,即-60°.答案(1)-150°210°(2)-60°题型二终边相同的角【例2】已知α=-1 910°.(1)把α写成β+k×360°(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求θ,使θ与α的终边相同,且-720°≤θ<0°.解(1)-1 910°=250°-6×360°,其中β=250°,从而α=250°+(-6)×360°,它是第三象限角.(2)令θ=250°+k×360°(k∈Z),取k=-1,-2就得到满足-720°≤θ<0°的角,即250°-360°=-110°,250°-720°=-470°.所以θ为-110°,-470°.规律方法将任意角化为α+k·360°(k∈Z,且0°≤α<360°)的形式,关键是确定k.可用观察法(α的绝对值较小时适用),也可用除以360°的方法.要注意:正角除以360°,按通常的除法进行,负角除以360°,商是负数,且余数为正值.【训练2】写出终边在阴影区域内(含边界)的角的集合.解 终边在直线OM 上的角的集合为M ={α|α=45°+k ·360°,k ∈Z }∪{α|α=225°+k ·360°,k ∈Z }={α|α=45°+2k ·180°,k ∈Z }∪{α|α=45°+(2k +1)·180°,k ∈Z } ={α|α=45°+n ·180°,n ∈Z }.同理可得终边在直线ON 上的角的集合为{α|α=60°+n ·180°,n ∈Z }, 所以终边在阴影区域内(含边界)的角的集合为 {α|45°+n ·180°≤α≤60°+n ·180°,n ∈Z }.【探究1】 在四个角-20°,-400°,-2 000°,1 600°中,第四象限角的个数是( ) A .0 B .1 C .2D .3解析 -20°是第四象限角,-400°=-360°-40°与-40°终边相同,是第四象限角,-2 000°=-6×360°+160°与160°终边相同,是第二象限角,1 600°=4×360°+160°与160°终边相同,是第二象限角,故第四象限角有2个. 答案 C【探究2】 写出终边落在第一象限和第二象限内的角的集合.解 根据终边相同的角一定是同一象限的角,又可以先写出第一象限锐角范围和第二象限钝角的范围,再加上360°的整数倍即可. 所以表示为:第一象限角的集合:S ={β|β=k ·360°+α,0°<α<90°,k ∈Z },或S ={β|k ·360°<β<k ·360°+90°,k ∈Z }.第二象限角的集合:S ={β|β=k ·360°+α,90°<α<180°,k ∈Z },或S ={β|k ·360°+90°<β<k ·360°+180°,k ∈Z }.【探究3】 已知α为第二象限角,那么2α,α2分别是第几象限角?解 ∵α是第二象限角,∴90+k ×360°<α<180°+k ×360°,180°+2k ×360°<2α<360°+2k ×360°,k ∈Z .∴2α是第三或第四象限角,或是终边落在y 轴的非正半轴上的角.同理45°+k 2×360°<α2<90°+k2×360°,k ∈Z .当k 为偶数时,不妨令k =2n ,n ∈Z ,则45°+n ×360°<α2<90°+n ×360°,此时,α2为第一象限角;当k 为奇数时,令k =2n +1,n ∈Z ,则225°+n ×360°<α2<270°+n ×360°,此时,α2为第三象限角.∴α2为第一或第三象限角. 【探究4】 已知α为第一象限角,求180°-α2是第几象限角.解 ∵α为第一象限角,∴k ·360°<α<k ·360°+90°,k ∈Z , ∴k ·180°<α2<k ·180°+45°,k ∈Z , ∴-45°-k ·180°<-α2<-k ·180°,k ∈Z ,∴135°-k ·180°<180°-α2<180°-k ·180°,k ∈Z .当k =2n (n ∈Z )时,135°-n ·360°<180°-α2<180°-n ·360°,为第二象限角;当k =2n +1(n ∈Z )时,-45°-n ·360°<180°-α2<-n ·360°,为第四象限角.∴180°-α2是第二或第四象限角.规律方法 1.象限角的判定方法(1)根据图像判定.利用图像实际操作时,依据是终边相同的角的概念,因为0°~360°之间的角与坐标系中的射线可建立一一对应的关系.(2)将角转化到0°~360°范围内,在直角坐标平面内,0°~360°范围内没有两个角终边是相同的.2.α,2α,α2等角的终边位置的确定方法不等式法:(1)利用象限角的概念或已知条件,写出角α的范围. (2)利用不等式的性质,求出2α,α2等角的范围.(3)利用“旋转”的观点,确定角终边的位置.例如,如果得到k ×120°<α3<k ×120°+30°,k ∈Z ,可画出0°<α3<30°所表示的区域,再将此区域依次逆时针或顺时针转动120°(如图所示).易错警示 由α的范围确定2α的范围时易忽视终边在坐标轴上的情况.课堂达标1.-361°的终边落在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析 因为-361°的终边和-1°的终边相同,所以它的终边落在第四象限,故选D. 答案 D2.设A ={θ|θ为锐角},B ={θ|θ为小于90°的角},C ={θ|θ为第一象限的角},D ={θ|θ为小于90°的正角},则下列等式中成立的是( ) A .A =B B .B =C C .A =CD .A =D解析 直接根据角的分类进行求解,容易得到答案. 答案 D3.将-885°化为α+k ·360°(0°≤α<360°,k ∈Z )的形式是________________. 答案 195°+(-3)×360°4.与-1 692°终边相同的最大负角是________. 解析 ∵-1 692°=-5×360°+108°, ∴与108°终边相同的最大负角为-252°. 答案 -252°5.如图所示,写出终边落在阴影部分的角的集合.解设终边落在阴影部分的角为α,角α的集合由两部分组成.①{α|k·360°+30°≤α<k·360°+105°,k∈Z}.②{α|k·360°+210°≤α<k·360°+285°,k∈Z}.∴角α的集合应当是集合①与②的并集:{α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,或(2k+1)·180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|n·180°+30°≤α<n·180°+105°,n∈Z}.课堂小结1.对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转量”决定角的“绝对值大小”.2.区域角的表示形式并不唯一,如第二象限角的集合,可以表示为{α|90°+k×360°<α<180°+k×360°,k∈Z},也可以表示为{α|-270°+k×360°<α<-180°+k×360°,k∈Z}.基础过关1.下列各组角中,终边相同的是( )A.495°和-495°B.1 350°和90°C.-220°和140°D.540°和-810°解析-220°=-360°+140°,∴-220°与140°终边相同.答案 C2.设A={小于90°的角},B={锐角},C={第一象限角},D={小于90°而不小于0°的角},那么有( )A.B C A B.B A CC.D A∩C) D.C∩D=B解析锐角、0°~90°的角、小于90°的角及第一象限角的范围,如下表所示.答案 D3.若α是第四象限角,则180°-α是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析可以给α赋一特殊值-60°,则180°-α=240°,故180°-α是第三象限角.答案 C4.已知角α=-3 000°,则与角α终边相同的最小正角是______.解析∵-3 000°=-9×360°+240°,∴与-3 000°角终边相同的最小正角为240°.答案240°5.在-180°~360°范围内,与2 000°角终边相同的角是______.解析因为2 000°=200°+5×360°,2 000°=-160°+6×360°,所以在-180°~360°范围内与2 000°角终边相同的角有-160°,200°两个.答案-160°,200°6.在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°;(3)-950°15′.解(1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.7.写出与25°角终边相同的角的集合,并求出该集合中满足不等式-1 080°≤β<-360°的角β.解与25°角终边相同的角的集合为S={β|β=k·360°+25°,k∈Z}.令k=-3,则有β=-3×360°+25°=-1 055°,符合条件;令k=-2,则有β=-2×360°+25°=-695°,符合条件;令k =-1,则有β=-1×360°+25°=-335°,不符合条件. 故符合条件的角有-1 055°,-695°.能力提升8.以下命题正确的是( ) A .第二象限角比第一象限角大B .A ={α|α=k ·180°,k ∈Z },B ={β|β=k ·90°,k ∈Z },则ABC .若k ·360°<α<k ·360°+180°(k ∈Z ),则α为第一或第二象限角D .终边在x 轴上的角可表示为k ·360°(k ∈Z ) 解析 A 不正确,如-210°<30°.在B 中,当k =2n ,k ∈Z 时,β=n ·180°,n ∈Z . ∴AB ,∴B 正确.又C 中,α为第一或第二象限角或在y 轴的非负半轴上, ∴C 不正确.显然D 不正确. 答案 B9.集合M =⎩⎨⎧⎭⎬⎫x |x =k ·180°2±45°,k ∈Z ,P =⎩⎨⎧⎭⎬⎫x |x =k ·180°4±90°,k ∈Z ,则M 、P之间的关系为( ) A .M =P B .M P C .M PD .M ∩P =∅解析 对集合M 来说,x =(2k ±1)·45°,即45°的奇数倍;对集合P 来说,x =(k ±2)·45°,即45°的倍数. 答案 B10.已知角α、β的终边相同,那么α-β的终边在________. 解析 ∵α、β终边相同, ∴α=k ·360°+β(k ∈Z ).∴α-β=k ·360°,故α-β终边会落在x 轴非负半轴上. 答案 x 轴的非负半轴上11.若α为第一象限角,则k ·180°+α(k ∈Z )的终边所在的象限是第________象限. 解析 ∵α是第一象限角,∴k 为偶数时,k ·180°+α终边在第一象限;k 为奇数时,k ·180°+α终边在第三象限. 答案 一或三12.求终边在直线y =x 上的角的集合S .解 因为直线y =x 是第一、三象限的角平分线,在0°~360°之间所对应的两个角分别是45°和225°,所以S ={α|α=k ·360°+45°,k ∈Z }∪{α|α=k ·360°+225°,k∈Z }={α|α=2k ·180°+45°,k ∈Z }∪{α|α=(2k +1)·180°+45°,k ∈Z }={α|α=n ·180°+45°,n ∈Z }.13.(选做题)已知角α、β的终边有下列关系,分别求α、β间的关系式: (1)α、β的终边关于原点对称; (2)α、β的终边关于y 轴对称.解 (1)由于α、β的终边互为反向延长线,故α、β相差180°的奇数倍(如图1),于是α-β=(2k -1)·180°(k ∈Z ).(2)在0°~360°内,设α的终边所表示的角为90°-θ,由于α、β关于y 轴对称(如图2),则β的终边所表示的角为90°+θ.于是α=90°-θ+k 1·360°(k 1∈Z ),β=90°+θ+k 2·360°(k 2∈Z ).两式相加得α+β=(2k +1)·180°(k ∈Z ).§3 弧度制内容要求 1.了解弧度制的意义,能正确地进行弧度与角度的换算,熟记特殊角的弧度数(重点).2.掌握弧度制下的弧长公式,会用弧度解决一些实际问题(难点).知识点1 弧度制 (1)角度制与弧度制的定义(2)如果半径为r 的圆的圆心角α所对弧的长为l ,那么角α的弧度数的绝对值是|α|=lr. 【预习评价】(正确的打“√”,错误的打“×”)(1)“度”与“弧度”是度量角的两种不同的度量单位(√) (2)1°的角是周角的1360,1 rad 的角是周角的12π(√)(3)1°的角比1 rad 的角要大(×)(4)1 rad 的角的大小和所在圆的半径的大小有关(×) 知识点2 角度制与弧度制的换算 常见角度与弧度互化公式如下:请填充完整下表,一些特殊角的角度数与弧度数的对应关系有:设扇形的半径为R ,弧长为l ,α(0<α<2π)为其圆心角,则1.一个扇形的半径为2 cm ,圆心角为π6,则该扇形所对的弧长l =________cm.答案π32.一个扇形的半径为2 cm ,其对应的弧长为2.则该扇形的面积为________cm 2. 答案 2知识点4 利用弧度制表示终边相同的角在弧度制下,与α终边相同的角连同α在内可以表示为2k π+α(k ∈Z ),其中α的单位必须是弧度. 【预习评价】1.与30°终边相同的角为( ) A .2k π+π3(k ∈Z )B .2k π+π6(k ∈Z )C .360°k +π3(k ∈Z )D .2k π+30°(k ∈Z )答案 B2.终边在x 轴上的角的集合用弧度制表示为________. 答案 {α|α=k π,k ∈Z }题型一 角度与弧度的互化【例1】 将下列角度与弧度进行互化: (1)20°;(2)-15°;(3)7π12;(4)-115π.解 (1)20°=20×π180 rad =π9 rad.(2)-15°=-15×π180 rad =-π12 rad.(3)712π rad =712×180°=105°. (4)-115π rad =-115×180°=-396°.规律方法 角度制与弧度制互化的原则、方法以及注意点(1)原则:牢记180°=π rad ,充分利用1°=π180rad 和1 rad =⎝ ⎛⎭⎪⎫180π°进行换算.(2)方法:设一个角的弧度数为α,角度数为n ,则α rad =α·180°;n °=n ·π180rad.(3)注意点:①用“弧度”为单位度量角时,“弧度”二字或“rad”可以省略不写;②用“弧度”为单位度量角时,“常常把弧度数写成多少π的形式,如无特别要求,不必把π写成小数;③度化弧度时,应先将分、秒化成度,再化成弧度. 【训练1】 将下列各角度与弧度互化: (1)512π;(2)-76π;(3)-157°30′. 解 (1)512π=512×180°=75°;(2)-76π=-76×180°=-210°;(3)-157°30′=-157.5°=-157.5×π180rad=-78π rad.题型二 用弧度制表示终边相同的角【例2】 (1)把-1 480°写成α+2k π(k ∈Z )的形式,其中0≤α<2π; (2)若β∈[-4π,0),且β与(1)中α终边相同,求β. 解 (1)∵-1 480°=-74π9=-10π+16π9,0≤16π9<2π,∴-1 480°=16π9-2×5π=16π9+2×(-5)π.(2)∵β与α终边相同,∴β=2k π+16π9,k ∈Z .又∵β∈[-4π,0),∴β1=-2π9,β2=-209π.【训练2】 用弧度制表示终边在图中阴影区域内角的集合(包括边界)并判断 2 015°是不是这个集合的元素.解 因为150°=5π6.所以终边在阴影区域内角的集合为S =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫β⎪⎪⎪5π6+2k π≤β≤3π2+2k π,k ∈Z . 因为2 015°=215°+5×360°=43π36+10π,又5π6<43π36<3π2.所以2 015°=43π36∈S ,即2 015°是这个集合的元素.方向1 求弧长【例3-1】 已知扇形OAB 的圆心角α为120°,半径长为6.求的长;解 ∵α=120°=23π,r =6,∴的长l =23π×6=4π.方向2 求圆心角【例3-2】 已知扇形周长为10,面积是4,求扇形的圆心角. 解 设圆心角是θ,半径是r , 则⎩⎪⎨⎪⎧2r +r θ=10,12θ·r 2=4⇒⎩⎪⎨⎪⎧r =4,θ=12或⎩⎪⎨⎪⎧r =1,θ=8(舍).故扇形圆心角为12.方向3 求面积的最值【例3-3】 已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?解 设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S , 则l +2r =40,∴l =40-2r . ∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2,此时θ=l r =40-2×1010rad =2 rad.∴当扇形的圆心角为2 rad ,半径为10 cm 时,扇形的面积最大为100 cm 2.规律方法 灵活运用扇形弧长公式、面积公式列方程组求解是解决此类问题的关键,有时运用函数思想、转化思想解决扇形中的有关最值问题,将扇形面积表示为半径的函数,转化为r 的二次函数的最值问题.课堂达标1.与120°角终边相同的角为( ) A .2k π-2π3(k ∈Z )B.11π3C .2k π-10π3(k ∈Z )D .(2k +1)π+2π3(k ∈Z )解析 120°=2π3且2k π-10π3=(2k -4)π+2π3(k ∈Z ),∴120°与2k π-10π3(k ∈Z ),终边相同.答案 C2.-23π12化为角度应为( )A .-345°B .-15°C .-315°D .-375°解析 -23π12=-2312×180°=-345°.答案 A3.已知扇形的半径为12,弧长为18,则扇形圆心角为________.解析 由弧长公式l =αR 得α=l R =1812=32.答案 324.下列结论不正确的是________(只填序号).①π3 rad =60°;②10°=π18 rad ;③36°=π5 rad ;④5π8 rad =115°. 解析5π8 rad =58×180°=112.5°,∴④错. 答案 ④5.一个扇形的面积为1,周长为4,求圆心角的弧度数. 解 设扇形的半径为R ,弧长为l ,则2R +l =4, ∴l =4-2R ,根据扇形面积公式S =12lR ,得1=12(4-2R )·R ,∴R =1,∴l =2,∴α=l R =21=2,即扇形的圆心角为2 rad.课堂小结1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad”这一关系式. 3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,具体应用时,要注意角的单位取弧度.基础过关1.在半径为10的圆中,240°的圆心角所对弧长为( )A.403πB.203π C.2003π D.4003π 解析 240°=240×π180 rad =43π rad ,∴弧长l =|α|·r =43π×10=403π,故选A.答案 A2.下列与9π4的终边相同的角的表达式中,正确的是( )A .2k π+45°(k ∈Z )B .k ·360°+9π4(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )答案 C3.若α=-3,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析 ∵-π<-3<-π2,∴-3是第三象限角.答案 C4.若三角形三内角之比为4∶5∶6,则最大内角的弧度数是____________. 答案 25π5.如果一扇形的弧长变为原来的32倍,半径变为原来的一半,则该扇形的面积为原扇形面积的________.解析 由于S =12lR ,若l ′=32l ,R ′=12R ,则S ′=12l ′R ′=12×32l ×12R =34S .答案 346.把下列各角化为2k π+α(0≤α<2π,k ∈Z ) 的形式且指出它是第几象限角,并写出与它终边相同的角的集合.(1)-46π3;(2)-1 485°;(3)-20.解 (1)-46π3=-8×2π+2π3,它是第二象限角,终边相同的角的集合为。
高中数学 第一章 三角函数 1.2.2 同角三角函数的基本关系课后习题 新人教A版必修4-新人教A版
1.2.2 同角三角函数的基本关系一、A组1.化简sin2β+cos4β+sin2βcos2β的结果是()A. B. C.1 D.解析:原式=sin2β+cos2β(sin2β+cos2β)=sin2β+cos2β=1.答案:C2.(2016·某某某某实验中学检测)已知tan α=2,则sin2α-sin αcos α的值是()A. B.- C.-2 D.2解析:sin2α-sin αcos α==.答案:A3.(2016·某某某某十一中高一期中)(1+tan215°)cos215°的值等于()A. B.1 C.- D.解析:(1+tan215°)cos215°=cos215°=cos215°+sin215°=1.答案:B4.已知α是第四象限角,tan α=-,则sin α=()A. B.- C. D.-解析:∵α是第四象限角,∴sin α<0.由tan α=-,得=-,∴cos α=-sin α.由sin2α+cos2α=1,得sin2α+=1,∴sin2α=1,sin α=±.∵sin α<0,∴sin α=-.答案:D5.若角α的终边落在直线x+y=0上,则的值为()A.2B.-2C.0D.2或-2解析:由题知,α为第二或第四象限角,原式=.当α为第二象限角时,原式=-=0.当α为第四象限角时,原式==0.综上,原式=0.答案:C6.在△ABC中,cos A=,则tan A=.解析:在△ABC中,可得0<A<π.∵cos A=,∴sin A=.∴tan A==2.答案:27.已知sin α=2m,cos α=m+1,则m=.解析:∵sin2α+cos2α=1,∴(2m)2+(m+1)2=4m2+m2+2m+1=1,∴m=0或m=-.答案:0或-8.(2016·某某某某溧水中学月考)若tan2x-sin2x=,则tan2x sin2x=.解析:tan2x sin2x=tan2x(1-cos2x)=tan2x-tan2x cos2x=tan2x-sin2x=.答案:9.若<α<2π,化简:.解:∵<α<2π,∴sin α<0.∴原式====-=-.10.求证:(1)sin4α-cos4α=2sin2α-1;(2)sin θ(1+tan θ)+cos θ.证明:(1)左边=(sin2α+cos2α)(sin2α-cos2α)=sin2α-(1-sin2α)=2sin2α-1=右边,∴原式成立.(2)左边=sin θ+cos θ=sin θ++cos θ+===右边.∴原式成立.二、B组1.锐角α满足sin αcos α=,则tan α的值为()A.2-B.C.2±D.2+解析:将sin αcos α看作分母是1的分式,则sin αcos α=,分子、分母同时除以cos2α(cos α≠0),得,化成整式方程为tan2α-4tan α+1=0,解得tan α=2±,符合要求,故选C.答案:C2.化简的结果为()A.-cos 160°B.cos 160°C. D.解析:原式===|cos 160°|=-cos 160°,故选A.答案:A3.已知sin θ=,cos θ=,其中θ∈,则tan θ的值为()A.-B.C.-或-D.与m的值有关解析:∵sin2θ+cos2θ=1,∴=1,解得m=0或m=8.∵θ∈,∴sin θ≥0,cos θ≤0.当m=0时,sin θ=-,cos θ=,不符合题意;当m=8时,sin θ=,cos θ=-,tan θ=-,故选A.答案:A4.已知cos,0<α<,则sin=.解析:∵sin2+cos2=1,∴sin2=1-.∵0<α<,∴<α+.∴sin.答案:5.导学号08720014若0<α<,则的化简结果是. 解析:由0<α<,得0<,所以0<sin<cos.故原式==cos-sin+sin+cos=2cos.答案:2cos6.(2016·某某某某溧水中学月考)若α∈(π,2π),且sin α+cos α=.(1)求cos2α-cos4α的值;(2)求sin α-cos α的值.解:(1)因为sin α+cos α=,所以(sin α+cos α)2=,即1+2sin αcos α=,所以sin αcos α=-.所以cos2α-cos4α=cos2α(1-cos2α)=cos2αsin2α=(sin αcos α)2=.(2)(sin α-cos α)2=1-2sin αcos α=1-2×,由(1)知sin αcos α=-<0,又α∈(π,2π),所以α∈.所以sin α<0,cos α>0,所以sin α-cos α<0,所以sin α-cos α=-.7.导学号08720015已知关于x的方程2x2-(+1)x+m=0的两根为sin θ和cos θ.求:(1)的值;(2)m的值.解:因为已知方程有两根,所以(1)==sin θ+cos θ=.(2)对①式两边平方,得1+2sin θcos θ=, 所以sin θcos θ=.由②,得,即m=.由③,得m≤,所以m=.。
人教版高中数学必修4课后习题答案详解
数学必修4课后习题答案第二章 平面向量2.1平面向量的实际背景及基本概念 练习(P77)1、略.2、AB ,BA . 这两个向量的长度相等,但它们不等.3、2AB =, 2.5CD =,3EF =,22GH =4、(1)它们的终点相同; (2)它们的终点不同. 习题2.1 A 组(P77) 1、(2). 3、与DE 相等的向量有:,AF FC ;与EF 相等的向量有:,BD DA ; 与FD 相等的向量有:,CE EB .4、与a 相等的向量有:,,CO QP SR ;与b 相等的向量有:,PM DO ; 与c 相等的向量有:,,DC RQ ST5、332AD =. 6、(1)×; (2)√; (3)√; (4)×. 习题2.1 B 组(P78)1、海拔和高度都不是向量.2、相等的向量共有24对. 模为1的向量有18对. 其中与AM 同向的共有6对,与AM 反向的也有6对;与AD 同向的共有3对,与AD 反向的也有6的向量共有4对;模为2的向量有2对2.2平面向量的线性运算 练习(P84)1、图略.2、图略.3、(1)DA ; (2)CB .4、(1)c ; (2)f ; (3)f ; (4)g . 练习(P87)1、图略.2、DB ,CA ,AC ,AD ,BA .3、图略. 练习(P90) 1、图略.2、57AC AB =,27BC AB =-.说明:本题可先画一个示意图,根据图形容易得出正确答案. 值得注意的是BC 与AB 反向.3、(1)2b a =; (2)74b a =-; (3)12b a =-; (4)89b a =.4、(1)共线; (2)共线.5、(1)32a b -; (2)111123a b -+; (3)2ya . 6、图略.习题2.2 A 组(P91)1、(1)向东走20 km ; (2)向东走5 km ;(3)向东北走km ;(4)向西南走;(5)向西北走;(6)向东南走km. 2、飞机飞行的路程为700 km ;两次位移的合成是向北偏西53°方向飞行500 km. 3、解:如右图所示:AB 表示船速,AD 表示河水的流速,以AB 、AD 为邻边作□ABCD ,则AC 表示船实际航行的速度.在Rt △ABC 中,8AB =,2AD =,所以228AC AB AD =+==因为tan 4CAD ∠=,由计算器得76CAD ∠≈︒所以,实际航行的速度是km/h ,船航行的方向与河岸的夹角约为76°. 4、(1)0; (2)AB ; (3)BA ; (4)0; (5)0; (6)CB ; (7)0.5、略6、不一定构成三角形. 说明:结合向量加法的三角形法则,让学生理解,若三个非零向量的和为零向量,且这三个向量不共线时,则表示这三个向量的有向线段一定能构成三角形.7、略. 8、(1)略; (2)当a b ⊥时,a b a b +=-9、(1)22a b --; (2)102210a b c -+; (3)132a b +; (4)2()x y b -.10、14a b e +=,124a b e e -=-+,1232310a b e e -=-+. 11、如图所示,OC a =-,OD b =-,DC b a =-,BC a b =--.12、14AE b =,BC b a =-,1()4DE b a =-,34DB a =, 34EC b =,1()8DN b a =-,11()48AN AM a b ==+.13、证明:在ABC ∆中,,E F 分别是,AB BC 的中点,所以EF AC //且12EF AC =,即12EF AC =;同理,12HG AC =,所以EF HG =.习题2.2 B 组(P92)1、丙地在甲地的北偏东45°方向,距甲地1400 km.2、不一定相等,可以验证在,a b 不共线时它们不相等.3、证明:因为MN AN AM =-,而13AN AC =,13AM AB =, 所以1111()3333MN AC AB AC AB BC =-=-=.4、(1)四边形ABCD 为平行四边形,证略 (2)四边形ABCD 为梯形.证明:∵13AD BC =,∴AD BC //且AD BC ≠ ∴四边形ABCD 为梯形. (3)四边形ABCD 为菱形.(第11题)(第12题)EHGFC AB丙乙(第1题)(第4题(2))BCD证明:∵AB DC =,∴AB DC //且AB DC =∴四边形ABCD 为平行四边形 又AB AD =∴四边形ABCD 为菱形.5、(1)通过作图可以发现四边形ABCD 为平行四边形. 证明:因为OA OB BA -=,OD OC CD -= 而OA OC OB OD +=+所以OA OB OD OC -=- 所以BA CD =,即AB ∥CD .因此,四边形ABCD 为平行四边形. 2.3平面向量的基本定理及坐标表示 练习(P100)1、(1)(3,6)a b +=,(7,2)a b -=-; (2)(1,11)a b +=,(7,5)a b -=-; (3)(0,0)a b +=,(4,6)a b -=; (4)(3,4)a b +=,(3,4)a b -=-.2、24(6,8)a b -+=--,43(12,5)a b +=.3、(1)(3,4)AB =,(3,4)BA =--; (2)(9,1)AB =-,(9,1)BA =-; (3)(0,2)AB =,(0,2)BA =-; (4)(5,0)AB =,(5,0)BA =-4、AB ∥CD . 证明:(1,1)AB =-,(1,1)CD =-,所以AB CD =.所以AB ∥CD .5、(1)(3,2); (2)(1,4); (3)(4,5)-.6、10(,1)3或14(,1)3-7、解:设(,)P x y ,由点P 在线段AB 的延长线上,且32AP PB =,得32AP PB =-(,)(2,3)(2,3)AP x y x y =-=--,(4,3)(,)(4,3)PB x y x y =--=---∴3(2,3)(4,3)2x y x y --=---- ∴32(4)233(3)2x x y y ⎧-=--⎪⎪⎨⎪-=---⎪⎩(第4题(3))(第5题)∴815x y =⎧⎨=-⎩,所以点P 的坐标为(8,15)-.习题2.3 A 组(P101)1、(1)(2,1)-; (2)(0,8); (3)(1,2).说明:解题时可设(,)B x y ,利用向量坐标的定义解题. 2、123(8,0)F F F ++=3、解法一:(1,2)OA =--,(53,6(1))(2,7)BC =---=而AD BC =,(1,5)OD OA AD OA BC =+=+=. 所以点D 的坐标为(1,5).解法二:设(,)D x y ,则((1),(2))(1,2)AD x y x y =----=++,(53,6(1))(2,7)BC =---=由AD BC =可得,1227x y +=⎧⎨+=⎩,解得点D 的坐标为(1,5).4、解:(1,1)OA =,(2,4)AB =-. 1(1,2)2AC AB ==-,2(4,8)AD AB ==-,1(1,2)2AE AB =-=-. (0,3)OC OA AC =+=,所以,点C 的坐标为(0,3); (3,9)OD OA AD =+=-,所以,点D 的坐标为(3,9)-; (2,1)OE OA AE =+=-,所以,点E 的坐标为(2,1)-. 5、由向量,a b 共线得(2,3)(,6)x λ=-,所以236x =-,解得4x =-. 6、(4,4)AB =,(8,8)CD =--,2CD AB =-,所以AB 与CD 共线. 7、2(2,4)OA OA '==,所以点A '的坐标为(2,4);3(3,9)OB OB '==-,所以点B '的坐标为(3,9)-; 故(3,9)(2,4)(5,5)A B ''=--=- 习题2.3 B 组(P101)1、(1,2)OA =,(3,3)AB =.当1t =时,(4,5)OP OA AB OB =+==,所以(4,5)P ; 当12t =时,13357(1,2)(,)(,)22222OP OA AB =+=+=,所以57(,)22P ; 当2t =-时,2(1,2)(6,6)(5,4)OP OA AB =-=-=--,所以(5,4)P --; 当2t =时,2(1,2)(6,6)(7,8)OP OA AB =+=+=,所以(7,8)P .2、(1)因为(4,6)AB =--,(1,1.5)AC =,所以4AB AC =-,所以A 、B 、C 三点共线;(2)因为(1.5,2)PQ =-,(6,8)PR =-,所以4PR PQ =,所以P 、Q 、R 三点共线;(3)因为(8,4)EF =--,(1,0.5)EG =--,所以8EF EG =,所以E 、F 、G 三点共线.3、证明:假设10λ≠,则由11220e e λλ+=,得2121e e λλ=-. 所以12,e e 是共线向量,与已知12,e e 是平面内的一组基底矛盾, 因此假设错误,10λ=. 同理20λ=. 综上120λλ==.4、(1)19OP = (2)对于任意向量12OP xe ye =+,,x y 都是唯一确定的,所以向量的坐标表示的规定合理.2.4平面向量的数量积 练习(P106)1、1cos ,86242p q p q p q ⋅=⋅⋅<>=⨯⨯=. 2、当0a b ⋅<时,ABC ∆为钝角三角形;当0a b ⋅=时,ABC ∆为直角三角形.3、投影分别为0,-图略 练习(P107)1、2(3)5a =-=,252b =+=35427a b ⋅=-⨯+⨯=-.2、8a b ⋅=,()()7a b a b +-=-,()0a b c ⋅+=,2()49a b +=.3、1a b ⋅=,13a =,74b =,88θ≈︒. 习题2.4 A 组(P108)1、63a b ⋅=-222()225a b a a b b +=+⋅+=-25a b +=-2、BC 与CA 的夹角为120°,20BC CA ⋅=-.3、22223a b a a b b +=+⋅+=,22235a b a a b b -=-⋅+=. 4、证法一:设a 与b 的夹角为θ.(1)当0λ=时,等式显然成立;(2)当0λ>时,a λ与b ,a 与b λ的夹角都为θ,所以()cos cos a b a b a b λλθλθ⋅==()cos a b a b λλθ⋅=()cos cos a b a b a b λλθλθ⋅== 所以 ()()()a b a b a b λλλ⋅=⋅=⋅;(3)当0λ<时,a λ与b ,a 与b λ的夹角都为180θ︒-,则 ()cos(180)cos a b a b a b λλθλθ⋅=︒-=-()cos cos a b a b a b λλθλθ⋅==-()cos(180)cos a b a b a b λλθλθ⋅=︒-=- 所以 ()()()a b a b a b λλλ⋅=⋅=⋅; 综上所述,等式成立.证法二:设11(,)a x y =,22(,)b x y =,那么 11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+112212121212()(,)(,)()a b x y x y x x y y x x y y λλλλλ⋅=⋅=+=+11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+所以 ()()()a b a b a b λλλ⋅=⋅=⋅;5、(1)直角三角形,B ∠为直角.证明:∵(1,4)(5,2)(6,6)BA =---=--,(3,4)(5,2)(2,2)BC =-=-∴6(2)(6)20BA BC ⋅=-⨯-+-⨯=∴BA BC ⊥,B ∠为直角,ABC ∆为直角三角形(2)直角三角形,A ∠为直角证明:∵(19,4)(2,3)(21,7)AB =---=,(1,6)(2,3)(1,3)AC =-----=-∴2117(3)0AB AC ⋅=⨯+⨯-=∴AB AC ⊥,A ∠为直角,ABC ∆为直角三角形(3)直角三角形,B ∠为直角证明:∵(2,5)(5,2)(3,3)BA =-=-,(10,7)(5,2)(5,5)BC =-=∴35350BA BC ⋅=-⨯+⨯=∴BA BC ⊥,B ∠为直角,ABC ∆为直角三角形6、135θ=︒.7、120θ=︒.22(23)(2)44361a b a b a a b b -+=-⋅-=,于是可得6a b ⋅=-,1cos 2a ba bθ⋅==-,所以120θ=︒.8、23cos 40θ=,55θ=︒. 9、证明:∵(5,2)(1,0)(4,2)AB =--=-,(8,4)(5,2)(3,6)BC =--=,(8,4)(4,6)(4,2)DC =-=-∴AB DC =,43(2)60AB BC ⋅=⨯+-⨯= ∴,,,A B C D 为顶点的四边形是矩形.10、解:设(,)a x y =,则2292x y yx⎧+=⎪⎨=⎪⎩,解得5x y⎧=⎪⎪⎨⎪=⎪⎩5x y ⎧=⎪⎪⎨⎪=-⎪⎩.于是35(,55a=或35(55a =--. 11、解:设与a 垂直的单位向量(,)e x y =,则221420x y xy ⎧+=⎨+=⎩,解得5x y ⎧=⎪⎪⎨⎪=⎪⎩或5x y ⎧=-⎪⎪⎨⎪=⎪⎩.于是5(,55e =-或5(,55e =-. 习题2.4 B 组(P108)1、证法一:0()0()a b a c a b a c a b c a b c ⋅=⋅⇔⋅-⋅=⇔⋅-=⇔⊥- 证法二:设11(,)a x y =,22(,)b x y =,33(,)c x y =.先证()a b a c a b c ⋅=⋅⇒⊥-1212a b x x y y ⋅=+,1313a c x x y y ⋅=+由a b a c ⋅=⋅得12121313x x y y x x y y +=+,即123123()()0x x x y y y -+-=而2323(,)b c x x y y -=--,所以()0a b c ⋅-= 再证()a b c a b a c ⊥-⇒⋅=⋅由()0a b c ⋅-=得 123123()()0x x x y y y -+-=, 即12121313x x y y x x y y +=+,因此a b a c ⋅=⋅2、cos cos cos sin sin OA OB AOB OA OBαβαβ⋅∠==+.3、证明:构造向量(,)u a b =,(,)v c d =.cos ,u v u v u v ⋅=<>,所以,ac bd u v +=<>∴2222222222()()()cos ,()()ac bd a b c d u v a b c d +=++<>≤++4、AB AC ⋅的值只与弦AB的长有关,与圆的半径无关.证明:取AB 的中点M ,连接CM ,则CM AB ⊥,12AM AB =又cos AB AC AB AC BAC ⋅=∠,而AM BAC AC∠=所以212AB AC AB AM AB ⋅==5、(1)勾股定理:Rt ABC ∆中,90C ∠=︒,则222CA CB AB +=证明:∵AB CB CA =-∴2222()2AB CB CA CB CA CB CA =-=-⋅+. 由90C ∠=︒,有CA CB ⊥,于是0CA CB ⋅= ∴222CA CB AB +=(2)菱形ABCD 中,求证:AC BD ⊥证明:∵AC AB AD =+,,DB AB AD =-∴22()()AC DB AB AD AB AD AB AD ⋅=+⋅-=-.∵四边形ABCD 为菱形,∴AB AD =,所以220AB AD -= ∴0AC DB ⋅=,所以AC BD ⊥(3)长方形ABCD 中,求证:AC BD =证明:∵ 四边形ABCD 为长方形,所以AB AD ⊥,所以0AB AD ⋅=∴222222AB AB AD AD AB AB AD AD +⋅+=-⋅+.∴22()()AB AD AB AD +=-,所以22AC BD =,所以AC BD =(4)正方形的对角线垂直平分. 综合以上(2)(3)的证明即可. 2.5平面向量应用举例 习题2.5 A 组(P113) 1、解:设(,)P x y ,11(,)R x y则1111(1,0)(,)(1,)RA x y x y =-=--,(,)(1,0)(1,0)AP x y x =-=-由2RA AP =得11(1,)2(1,)x y x y --=-,即11232x x y y=-+⎧⎨=-⎩代入直线l 的方程得2y x =. 所以,点P 的轨迹方程为2y x =. 2、解:(1)易知,OFD ∆∽OBC ∆,12DF BC =, 所以23BO BF =.2211()()3323AO BO BA BF a b a a a b =-=+=-+=+(2)因为1()2AE a b =+所以23AO AE =,因此,,A O E 三点共线,而且2AOOE =同理可知:2,2BO CO OF OD ==,所以2AO BO COOE OF OD===3、解:(1)(2,7)B A v v v =-=-; (2)v 在A v 方向上的投影为135A Av v v ⋅=. 4、解:设1F ,2F 的合力为F ,F 与1F 的夹角为θ,则31F =+,30θ=︒; 331F =+,3F 与1F 的夹角为150°.习题2.5 B 组(P113)1、解:设0v 在水平方向的速度大小为x v ,竖直方向的速度的大小为y v ,则0cos x v v θ=,0sin y v v θ=.设在时刻t 时的上升高度为h ,抛掷距离为s ,则001sin ,()2cos h v t gt g s v t θθ⎧=-⎪⎨⎪=⎩为重力加速度 所以,最大高度为220sin 2v gθ,最大投掷距离为20sin 2v gθ.2、解:设1v 与2v 的夹角为θ,合速度为v ,2v 与v 的夹角为α,行驶距离为d .则1sin 10sin sin v vvθθα==,0.5sin 20sin v d αθ==. ∴120sin d v θ=. 所以当90θ=︒,即船垂直于对岸行驶时所用时间最短. 3、(1)(0,1)-ODFEABC(第2题)(第4题)解:设(,)P x y ,则(1,2)AP x y =--. (2,22)AB =-.将AB 绕点A 沿顺时针方向旋转4π到AP ,相当于沿逆时针方向旋转74π到AP ,于是7777(2cos 22sin ,2sin 22cos )(1,3)4444AP ππππ=+-=--所以1123x y -=-⎧⎨-=-⎩,解得0,1x y ==-(2)32y x=-解:设曲线C 上任一点P 的坐标为(,)x y ,OP 绕O 逆时针旋转4π后,点P 的坐标为(,)x y ''则cos sin 44sin cos44x x y y x y ππππ⎧'=-⎪⎪⎨⎪'=+⎪⎩,即2()22()2x x y y x y ⎧'=-⎪⎪⎨⎪'=+⎪⎩又因为223x y ''-=,所以2211()()322x y x y --+=,化简得32y x=-第二章 复习参考题A 组(P118)1、(1)√; (2)√; (3)×; (4)×.2、(1)D ; (2)B ; (3)D ; (4)C ; (5)D ; (6)B .3、1()2AB a b =-,1()2AD a b =+4、略解:2133DE BA MA MB a b ==-=-+2233AD a b =+,1133BC a b =+1133EF a b =--,1233FA DC a b ==-1233CD a b =-+,2133AB a b =-CE a b =-+5、(1)(8,8)AB =-,82AB =;(2)(2,16)OC =-,(8,8)OD =-; (3)33OA OB ⋅=.(第4题)6、AB 与CD 共线.证明:因为(1,1)AB =-,(1,1)CD =-,所以AB CD =. 所以AB 与CD 共线. 7、(2,0)D -. 8、2n =. 9、1,0λμ=-=.10、34cos ,cos 0,cos 55A B C ===11、证明:2(2)22cos6010n m m n m m -⋅=⋅-=︒-=,所以(2)n m m -⊥.12、1λ=-. 13、13a b +=,1a b -=. 14、519cos ,cos 820θβ==第二章 复习参考题B 组(P119)1、(1)A ; (2)D ; (3)B ; (4)C ; (5)C ; (6)C ; (7)D .2、证明:先证a b a b a b ⊥⇒+=-.222()2a b a b a b a b+=+=++⋅,222()2a b a b a b a b -=-=+-⋅.因为a b ⊥,所以0a b ⋅=,于是22a b a b a b +=+=-. 再证a b a b a b +=-⇒⊥.由于222a b a a b b +=+⋅+,222a b a a b b -=-⋅+ 由a b a b +=-可得0a b ⋅=,于是a b ⊥所以a b a b a b +=-⇔⊥. 【几何意义是矩形的两条对角线相等】 3、证明:先证a b c d =⇒⊥22()()c d a b a b a b ⋅=+⋅-=- 又a b =,所以0c d ⋅=,所以c d ⊥ 再证c d a b ⊥⇒=.由c d ⊥得0c d ⋅=,即22()()0a b a b a b +⋅-=-=所以a b = 【几何意义为菱形的对角线互相垂直,如图所(第3题)(第6题)示】4、12AD AB BC CD a b =++=+,1142AE a b =+而34EF a =,14EM a =,所以1111(4242AM AE EM a b a =+=++=5、证明:如图所示,12OD OP OP =+,由于1230OP OP OP ++=,所以3OP OD =-,1OD = 所以11OD OP PD == 所以1230OPP ∠=︒,同理可得1330OPP ∠=︒所以31260P PP ∠=︒,同理可得12360PP P ∠=︒,23160P P P ∠=︒,所以123PP P ∆为正三角形.6、连接AB .由对称性可知,AB 是SMN ∆的中位线,222MN AB b a ==-. 7、(18=(千米/时), 沿与水流方向成60°的方向前进; (2)实际前进速度大小为 沿与水流方向成90︒+的方向前进. 8、解:因为OA OB OB OC ⋅=⋅,所以()0OB OA OC ⋅-=,所以0OB CA ⋅= 同理,0OA BC ⋅=,0OC AB ⋅=,所以点O 是ABC ∆的垂心. 9、(1)2110200a x a y a y a x -+-=; (2)垂直;(3)当12210A B A B -=时,1l ∥2l ;当12120A A B B +=时,12l l ⊥,夹角θ的余弦cos θ=;(4)d =P 2(第5题)第三章 三角恒等变换3.1两角和与差的正弦、余弦和正切公式 练习(P127)1、cos()cos cos sin sin 0cos 1sin sin 222πππαααααα-=+=⨯+⨯=.cos(2)cos2cos sin 2sin 1cos 0sin cos παπαπαααα-=+=⨯+⨯=.2、解:由3cos ,(,)52πααπ=-∈,得4sin 5α==;所以34cos()cos cos sin sin ()44455πππααα-=+=-=3、解:由15sin 17θ=,θ是第二象限角,得8cos 17θ===-;所以8115cos()cos cos sin sin 33317217πππθθθ-=+=-⨯+=. 4、解:由23sin ,(,)32πααπ=-∈,得cos α==又由33cos ,(,2)42πββπ=∈,得sin β== 所以32cos()cos cos sin sin ((()43βαβαβα-=+=⨯+⨯-=. 练习(P131)1、(1; (2) (3(4)22、解:由3cos ,(,)52πθθπ=-∈,得4sin 5θ==;所以413sin()sin cos cos sin ()333525πππθθθ+=+=⨯+-=. 3、解:由12sin 13θ=-,θ是第三象限角,得5cos 13θ===-; 所以5112cos()cos cos sin sin ()()66613213πππθθθ+=-=--⨯-=. 4、解:tan tan 314tan()241311tan tan 4παπαπα+++===--⨯-⋅.5、(1)1; (2)12; (3)1; (4);(5)原式=1(cos34cos26sin34sin 26)cos(3426)cos602-︒︒-︒︒=-︒+︒=-︒=-;(6)原式=sin 20cos70cos20sin70(sin 20cos70cos20sin70)sin901-︒︒-︒︒=-︒︒+︒︒=-︒=-.6、(1)原式=cos cos sin sin cos()333x x x πππ-=+;(2)原式=1cos )2(sin cos cos sin )2sin()2666x x x x x πππ+=+=+;(3)原式=)2(sin cos cos sin )2sin()444x x x x x πππ=-=-;(4)原式=12(cos )cos sin sin ))2333x x x x x πππ=-=+.7、解:由已知得3sin()cos cos()sin 5αβααβα---=,即3sin[()]5αβα--=,3sin()5β-=所以3sin 5β=-. 又β是第三象限角,于是4cos 5β===-.因此55534sin()sin cos cos sin ()(()(44455πππβββ+=+=-+-=练习(P135)1、解:因为812παπ<<,所以382αππ<<又由4cos 85α=-,得3sin 85α=-,3sin385tan 484cos 85ααα-===- 所以3424sinsin(2)2sin cos 2()()48885525αααα=⨯==⨯-⨯-=2222437cos cos(2)cos sin ()()48885525αααα=⨯=-=---=2232tan23162484tan tan(2)3482771tan 1()84αααα⨯=⨯===⨯=-- 2、解:由3sin()5απ-=,得3sin 5α=-,所以222316cos 1sin 1()525αα=-=--=所以2221637cos2cos sin ()25525ααα=-=--=3、解:由sin2sin αα=-且sin 0α≠可得1cos 2α=-,又由(,)2παπ∈,得sin α=,所以sintan (2)cos ααα==-=4、解:由1tan 23α=,得22tan 11tan 3αα=-. 所以2tan 6tan 10αα+-=,所以tan 3α=-5、(1)11sin15cos15sin3024︒︒=︒=; (2)22cos sin cos 88πππ-==;(3)原式=212tan 22.511tan 4521tan 22.522︒⋅=︒=-︒; (4)原式=cos45︒=. 习题3.1 A 组(P137)1、(1)333cos()cos cos sin sin 0cos (1)sin sin 222πππαααααα-=+=⨯+-⨯=-;(2)333sin()sin cos cos sin 1cos 0sin cos 222πππαααααα-=-=-⨯-⨯=-;(3)cos()cos cos sin sin 1cos 0sin cos παπαπαααα-=+=-⨯+⨯=-; (4)sin()sin cos cos sin 0cos (1)sin sin παπαπαααα-=-=⨯--⨯=.2、解:由3cos ,05ααπ=<<,得4sin 5α==,所以431cos()cos cos sin sin 666552πππααα-=+=⨯=.3、解:由2sin ,(,)32πααπ=∈,得cos α===又由33cos ,(,)42πββπ=-∈,得sin β===,所以32cos()cos cos sin sin ()(43αβαβαβ-=+=-+⨯=.4、解:由1cos 7α=,α是锐角,得sin α=== 因为,αβ是锐角,所以(0,)αβπ+∈,又因为11cos()14αβ+=-,所以sin()αβ+===所以cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+++1111()1472=-⨯= 5、解:由60150α︒<<︒,得9030180α︒<︒+<︒又由3sin(30)5α︒+=,得4cos(30)5α︒+=-所以cos cos[(30)30]cos(30)cos30sin(30)sin30αααα=︒+-︒=︒+︒+︒+︒431552=-+⨯=6、(1) (2) (3)2-7、解:由2sin ,(,)32πααπ=∈,得cos α===又由3cos 4β=-,β是第三象限角,得sin β==.所以cos()cos cos sin sin αβαβαβ+=-32()(43=--⨯=sin()sin cos cos sin αβαβαβ-=-23()((34=⨯--⨯=8、解:∵53sin ,cos 135A B ==且,A B 为ABC ∆的内角∴0,02A B ππ<<<<,124cos ,sin 135A B =±=当12cos 13A =-时,sin()sin cos cos sin AB A B A B +=+5312433()013513565=⨯+-⨯=-< A B π+>,不合题意,舍去∴124cos ,sin 135A B ==∴cos cos()(cos cos sin sin )C A B A B A B =-+=--1235416()13513565-⨯-⨯=- 9、解:由3sin ,(,)52πθθπ=∈,得4cos 5θ==-.∴sin 353tan ()cos 544θθθ==⨯-=-. ∴31tan tan 242tan()311tan tan 111()42θϕθϕθϕ-+++===--⋅--⨯. 31tan tan 42tan()2311tan tan 1()42θϕθϕθϕ----===-+⋅+-⨯. 10、解:∵tan ,tan αβ是22370x x +-=的两个实数根.∴3tan tan 2αβ+=-,7tan tan 2αβ⋅=-.∴3tan tan 12tan()71tan tan 31()2αβαβαβ-++===--⋅--.11、解:∵tan()3,tan()5αβαβ+=-=∴tan()tan()tan 2tan[()()]1tan()tan()αβαβααβαβαβαβ++-=++-=-+⋅-3541357+==--⨯tan()tan()tan 2tan[()()]1tan()tan()αβαββαβαβαβαβ+--=+--=++⋅-3511358-==-+⨯12、解:∵::2:3:6BD DC AD =∴11tan ,tan 32BD DC AD AD αβ====∴tan tan tan tan()1tan tan BAC αβαβαβ+∠=+=-⋅1132111132+==-⨯ 又∵0180BAC ︒<∠<︒,∴45BAC ∠=︒(第12题)13、(1))6x π+; (23sin()3x π-; (3)2sin()26x π+;(47sin()12x π-; (5)2; (6)12; (7)sin()αγ+; (8)cos()αγ--; (9) (10)tan()βα-.14、解:由sin 0.8,(0,)2παα=∈,得cos 0.6α===∴sin22sin cos 20.80.60.96ααα==⨯⨯= 2222cos2cos sin 0.60.80.28ααα=-=-=- 15、解:由cos 270ϕϕ=︒<<︒,得sin ϕ===∴sin 22sin cos 2((ϕϕϕ==⨯⨯=22221cos2cossin ((3ϕϕϕ=-=-=- sin 2tan 2(3)cos 23ϕϕϕ==-=-16、解:设5sin sin 13B C ==,且090B ︒<<︒,所以12cos 13B =. ∴512120sin sin(1802)sin 22sin cos 21313169A B B B B =︒-===⨯⨯=2222125119cos cos(1802)cos2(cos sin )(()())1313169A B B B B =︒-=-=--=--=-sin 120169120tan ()cos 169119119A A A ==⨯-=-17、解:22122tan 33tan 211tan 41()3βββ⨯===--,13tan tan 274tan(2)1131tan tan 2174αβαβαβ+++===-⋅-⨯. 18、解:1cos()cos sin()sin 3αββαββ+++=⇒1cos[()]3αββ+-=,即1cos 3α= 又3(,2)2παπ∈,所以sinα== ∴1sin 22sincos 2()339ααα==⨯-⨯=-222217cos2cos sin ()(39ααα=-=-=-∴78cos(2)cos2cos sin 2sin (444929218πππααα-+=-=-⨯--⨯=19、(1)1sin2α+; (2)cos2θ; (3)1sin 44x ; (4)tan2θ.习题3.1 B 组(P138) 1、略.2、解:∵tan ,tan A B 是x 的方程2(1)10x p x +++=,即210x px p +++=的两个实根∴tan tan A B p +=-,tan tan 1A B p ⋅=+ ∴tan tan[()]tan()C A B A B π=-+=-+tan tan 11tan tan 1(1)A B pA B p +-=-=-=--⋅-+由于0C π<<,所以34C π=. 3、反应一般的规律的等式是(表述形式不唯一)223sin cos (30)sin cos(30)4αααα++︒++︒=(证明略) 本题是开放型问题,反映一般规律的等式的表述形式还可以是:223sin (30)cos sin(30)cos 4αααα-︒++-︒=223sin (15)cos (15)sin(15)cos(15)4αααα-︒++︒+-︒+︒=223sin cos sin cos 4αβαβ++=,其中30βα-=︒,等等思考过程要求从角,三角函数种类,式子结构形式三个方面寻找共同特点,从而作出归纳. 对认识三角函数式特点有帮助,证明过程也会促进推理能力、运算能力的提高.4、因为12PA PP =,则2222(cos()1)sin ()(cos cos )(sin sin )αβαβαβαβ+-++=-++ 即22cos()22cos cos 2sin sin αβαβαβ-+=-+ 所以cos()cos cos sin sin αβαβαβ+=-3.2简单的三角恒等变换 练习(P142)1、略.2、略.3、略.4、(1)1sin 42y x =. 最小正周期为2π,递增区间为[,],8282k k k Z ππππ-++∈,最大值为12;(2)cos 2y x =+. 最小正周期为2π,递增区间为[2,22],k k k Z ππππ++∈,最大值为3;(3)2sin(4)3y x π=+. 最小正周期为2π,递增区间为5[,],242242k k k Z ππππ-++∈,最大值为2.习题3.2 A 组( P143) 1、(1)略; (2)提示:左式通分后分子分母同乘以2; (3)略; (4)提示:用22sin cos ϕϕ+代替1,用2sin cos ϕϕ代替sin 2ϕ;(5)略; (6)提示:用22cos θ代替1cos2θ+;(7)提示:用22sin θ代替1cos2θ-,用22cos θ代替1cos2θ+; (8)略.2、由已知可有1sin cos cos sin 2αβαβ+=……①,1sin cos cos sin 3αβαβ-=……②(1)②×3-①×2可得sin cos 5cos sin αβαβ=(2)把(1)所得的两边同除以cos cos αβ得tan 5tan αβ= 注意:这里cos cos 0αβ≠隐含与①、②之中3、由已知可解得1tan 2θ=-. 于是2212()2tan 42tan 211tan 31()2θθθ⨯-===---- 1tan tan1142tan()1431tan tan 1()142πθπθπθ+-++===-⋅--⨯∴tan 24tan()4πθθ=-+4、由已知可解得sin x θ=,cos y θ=,于是2222sin cos 1x y θθ+=+=.5、()2sin(4)3f x x π=+,最小正周期是2π,递减区间为7[,],242242k k k Z ππππ++∈.习题3.2 B 组(P143) 1、略.2、由于762790+⨯=,所以sin76sin(9014)cos14m ︒=︒-︒=︒= 即22cos 71m ︒-=,得cos7︒=3、设存在锐角,αβ使223παβ+=,所以23απβ+=,tan()2αβ+又tantan 22αβ=,又因为tantan 2tan()21tantan 2αβαβαβ++=-,所以tantan tan()(1tan tan )3222αααβββ+=+-=由此可解得tan 1β=, 4πβ=,所以6πα=.经检验6πα=,4πβ=是符合题意的两锐角.4、线段AB 的中点M 的坐标为11((cos cos ),(sin sin ))22αβαβ++. 过M 作1MM 垂直于x 轴,交x 轴于1M ,111()()22MOM βαααβ∠=-+=+.在Rt OMA ∆中,cos cos 22OM OA βααβ--==. 在1Rt OM M ∆中,11cos cos cos22OM OM MOM αβαβ+-=∠=11sin sin cos22M M OM MOM αβαβ+-=∠=. 于是有 1(cos cos )cos cos222αβαβαβ+-+=, 1(sin sin )sin cos222αβαβαβ+-+= 5、当2x =时,22()sin cos 1f ααα=+=;当4x =时,4422222()sin cos (sin cos )2sin cos f ααααααα=+=+-211sin 22α=-,此时有1()12f α≤≤;当6x =时,662232222()sin cos (sin cos )3sin cos (sin cos )f ααααααααα=+=+-+231sin 24α=-,此时有1()14f α≤≤;由此猜想,当2,x k k N +=∈时,11()12k f α-≤≤6、(1)345(sin cos )5sin()55y x x x ϕ=+=+,其中34cos ,sin 55ϕϕ==所以,y 的最大值为5,最小值为﹣5; (2))y x ϕ+,其中cos ϕϕ==所以,y ;第三章 复习参考题A 组(P146)1、1665. 提示:()βαβα=+- (第4题)2、5665. 提示:5sin()sin[()]sin[()()]44ππαβπαββα+=-++=-+-- 3、1.4、(1)提示:把公式tan tan tan()1tan tan αβαβαβ++=-变形;(2; (3)2; (4) 提示:利用(1)的恒等式.5、(1)原式4sin(3010)4sin 20︒-︒==︒;(2)原式=sin10sin 40(sin 40cos10︒︒=︒ =2sin 40cos40sin801cos10cos10-︒︒-︒==-︒︒;(3)原式=tan 70cos101)tan 70cos10︒︒-=︒ =sin702sin10sin 20cos101cos70cos20cos70︒-︒-︒⋅︒⋅==-︒︒︒;(4)原式=sin50(1sin50︒⋅= 2cos50sin100sin501cos10cos10︒︒=︒⋅==︒︒6、(1)95; (2)2425;(3). 提示:4422222sin cos (sin cos )2sin cos θθθθθθ+=+-; (4)1725.7、由已知可求得2cos cos 5αβ=,1sin sin 5αβ=,于是sin sin 1tan tan cos cos 2αβαβαβ==. 8、(1)左边=222cos 214cos232(cos 22cos21)αααα-++=++22242(cos21)2(2cos )8cos ααα=+===右边(2)左边=2222sin cos 2sin cos (sin cos )2cos 2sin cos 2cos (cos sin )αααααααααααα+++=++ sin cos 11tan 2cos 22αααα+==+=右边(3)左边=sin(2)2cos()sin sin[()]2cos()sin sin 2cos (cos sin )αβαβααβααβααααα+-+++-+=+sin()cos cos()sin sin sin sin αβααβαβαα+-+===右边 (4)左边=222234cos22cos 212(cos 22cos21)34cos22cos 212(cos 22cos21)A A A A A A A A -+--+=++-++(第12(2)题)2224222(1cos2)(2sin )tan (1cos2)(2cos )A A A A A -===+=右边 9、(1)1sin 21cos2sin 2cos222)24y x x x x x π=+++=++++递减区间为5[,],88k k k Z ππππ++∈(222,最小值为22.10、2222()(cos sin )(cos sin )2sin cos cos2sin 22)4f x x x x x x x x x x π=+--=-+(1)最小正周期是π;(2)由[0,]2x π∈得52[,]444x πππ+∈,所以当24x ππ+=,即38x π=时,()f x 的最小值为2-()f x 取最小值时x 的集合为3{}8π.11、2()2sin 2sin cos 1cos2sin 22)14f x x x x x x x π=+=-+=-+(1)最小正周期是π21;(2)()f x 在[,]22ππ-上的图象如右图:12、()3sin cos 2sin()6f x x x a x a π=++=++.(1)由21a +=得1a =-;(2)2{22,}3x k x k k Z πππ+∈≤≤.13、如图,设ABD α∠=,则CAE α∠=,2sin h AB α=,1cos hAC α=所以1212sin 2ABC h h S AB AC α∆=⋅⋅=,(0)2πα<<当22πα=,即4πα=时,ABC S ∆的最小值为12h h .第三章 复习参考题B 组(P147)1、解法一:由221sin cos 5sin cos 1αααα⎧-=⎪⎨⎪+=⎩,及0απ≤≤,可解得4sin 5α=, 13cos sin 55αα=-=,所以24sin 225α=,7cos225α=-, 312sin(2)sin 2cos cos2sin 44450πππααα-=-=. αh 1h 2l 2l 1BDE AC(第13题)解法二:由1sin cos 5αα-=得21(sin cos )25αα-=,24sin 225α=,所以249cos 2625α=. 又由1sin cos 5αα-=,得sin()4πα-=.因为[0,]απ∈,所以3[,]444πππα-∈-.而当[,0]44ππα-∈-时,sin()04πα-≤;当3[,]444πππα-∈时,sin()4πα->所以(0,)44ππα-∈,即(,)42ππα∈所以2(,)2παπ∈,7cos225α=-.sin(2)4πα-=2、把1cos cos 2αβ+=两边分别平方得221cos cos 2cos cos 4αβαβ++=把1sin sin 3αβ+=两边分别平方得221sin sin 2sin sin 9αβαβ++=把所得两式相加,得1322(cos cos sin sin )36αβαβ++=,即1322cos()36αβ+-=,所以59cos()72αβ-=-3、由sin()sin 3παα++= 可得3sin 2αα=4sin()65πα+=-. 又02πα-<<,所以366πππα-<+<,于是3cos()65πα+=.所以cos cos[()]66ππαα=+-4、22sin 22sin 2sin cos 2sin 2sin cos (cos sin )sin 1tan cos sin 1cos x x x x x x x x x x x x x x +++==---1tan sin 2sin 2tan()1tan 4x x x x x π+==+-由177124x ππ<<得5234x πππ<+<,又3cos()45x π+=,所以4sin()45x π+=-,4tan()43x π+=-所以cos cos[()]cos()cos sin()sin 444444x x x x ππππππ=+-=+++=,sin x =7sin 22sin cos 25x x x ==, 所以2sin 22sin 281tan 75x x x +=--, 5、把已知代入222sin cos (sin cos )2sin cos 1θθθθθθ+=+-=,得。
高中数学人教A版必修4习题:第一章三角函数1.1.1含解析
01第一章三角函数1.1任意角和弧度制1.1.1任意角课时过关·能力提升基础巩固1-215°是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:由于-215°=-360°+145°,而145°是第二象限角,则-215°也是第二象限角.答案:B2下列与150°角终边相同的角是()A.30°B.-150°C.390°D.-210°答案:D3与-457°角终边相同的角的集合是()A.{α|α=k·360°+457°,k∈Z}B.{α|α=k·360°+97°,k∈Z}C.{α|α=k·360°+263°,k∈Z}D.{α|α=k·360°-263°,k∈Z}答案:C4已知α是第二象限角,则2α的终边在()A.第一、二象限B.第二象限C.第三、四象限D.以上都不对解析:∵α是第二象限角,∴k·360°+90°<α<k·360°+180°,k∈Z,∴2k·360°+180°<2α<2k·360°+360°,k∈Z,∴2α角的终边在第三或第四象限或在y轴的非正半轴上.答案:D5若手表的时针走了2 h,则该时针转过的度数为()A.60°B.-60°C.30°D.-30°答案:B6在-360°~720°之间,与-367°角终边相同的角是.解析:与-367°角终边相同的角可表示为α=k·360°-367°,k∈Z.当k=1,2,3时,α=-7°,353°,713°,这三个角都是符合条件的角.答案:-7°,353°,713°7终边落在图中阴影部分(不包括边界)的角的集合为.解析:在0°~360°内,终边在阴影部分的角的范围是120°<α<225°,所以终边落在阴影部分的角的集合为{β|k·360°+120°<β<k·360°+225°,k∈Z}.答案:{β|k·360°+120°<β<k·360°+225°,k∈Z}8在坐标系中画出下列各角:(1)-180°;(2)1 070°.解在坐标系中画出各角如图.9在-720°~720°范围内,用列举法写出与60°角终边相同的角的集合S.解与60°角终边相同的角的集合为{α|α=60°+k·360°,k∈Z},令-720°≤60°+k·360°<720°(k∈Z),得k=-2,-1,0,1,相应的角为-660°,-300°,60°,420°,从而S={-660°,-300°,60°,420°}.10已知α=-1 910°.(1)把α写成β+k·360°(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求角θ,使θ与α的终边相同,且-720°≤θ<0°.解(1)∵-1910°=-6×360°+250°,∴β=250°,即α=250°-6×360°.又250°是第三象限角,∴α是第三象限角.(2)θ=250°+k·360°(k∈Z).∵-720°≤θ<0°,∴-720°≤250°+k·360°<0°,解得−9736≤k<−2536.又k∈Z,∴k=-1或k=-2.∴θ=250°-360°=-110°或θ=250°-2×360°=-470°.能力提升1下列说法中,正确的是()A.钝角必是第二象限角,第二象限角必是钝角B.第三象限的角必大于第二象限的角C.小于90°的角是锐角D.-95°20',984°40',264°40'是终边相同的角答案:D2若A={α|α=k·360°,k∈Z},B={α|α=k·180°,k∈Z},C={α|α=k·90°,k∈Z},则下列关系正确的是() A.A=B=C B.A=B∩CC.A∪B=CD.A⊆B⊆C答案:D3若角θ是第四象限角,则90°+θ是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:如图,将θ的终边按逆时针方向旋转90°得90°+θ的终边,则90°+θ是第一象限角.答案:A4已知α为第三象限角,则α3是第象限角.解析:∵α是第三象限角,∴k·360°+180°<α<k·360°+270°,k∈Z,∴k·120°+60°<α3<k·120°+90°,k∈Z.∵k·120°+60°角的终边在第一象限、x轴非正半轴、第四象限,k·120°+90°角的终边在y轴非负半轴、第三象限、第四象限,∴α3是第一、三或四象限角.答案:一、三或四5已知角α的终边在图中阴影所表示的范围内(不包括边界),则角α组成的集合为.解析:由图知,将x轴绕原点分别旋转30°与150°得边界,∴终边在阴影内的角的集合为{α|k·180°+30°<α<k·180°+150°,k∈Z}.答案:{α|k·180°+30°<α<k·180°+150°,k∈Z}★6角α满足180°<α<360°,角5α与α有相同的始边,且又有相同的终边,则角α=.解析:∵5α与α的始边和终边分别相同,∴这两角的差应是360°的整数倍,即5α-α=4α=k·360°.∴α=k·90°.又180°<α<360°,令180°<k·90°<360°,则2<k<4,∴k=3,α=270°.答案:270°7已知角的顶点与坐标原点重合,始边落在x轴的非负半轴上,作出下列各角,指出它们是第几象限角,并指出在0°~360°范围内与其终边相同的角.(1)780°;(2)-435°;(3)1 215°;(4)-870°.解(1)如图①,780°是第一象限角;在0°~360°范围内,60°角与其终边相同.(2)如图②,-435°是第四象限角;在0°~360°范围内,285°角与其终边相同.(3)如图③,1215°是第二象限角;在0°~360°范围内,135°角与其终边相同.(4)如图④,-870°是第三象限角;在0°~360°范围内,210°角与其终边相同.★8已知集合M={α|k·180°+30°<α<k·180°+120°,k∈Z},N={β|k·360°+90°<β<k·360°+270°,k∈Z},求M∩N.解∵M={α|k·180°+30°<α<k·180°+120°,k∈Z},∴当k=2n(n∈Z)时,M={α|n·360°+30°<α<n·360°+120°,n∈Z}.又N={β|k·360°+90°<β<k·360°+270°,k∈Z},∴M∩N={x|k·360°+90°<x<k·360°+120°,k∈Z}.当k=2n+1(n∈Z)时,M={α|n·360°+210°<α<n·360°+300°,n∈Z},又N={β|k·360°+90°<β<k·360°+270°,k∈Z},∴M∩N={x|k·360°+210°<x<k·360°+270°,k∈Z},∴M∩N={x|k·360°+90°<x<k·360°+120°或k·360°+210°<x<k·360°+270°,k∈Z}.。
高中数学必修四练习册(后含答案)
C.{α|α=k·180°,k∈Z}
D.{α|α=k·180°+90°,k∈Z}
6.射线 OA 绕端点 O 逆时针旋转 120°到达 OB 位置,由
OB 位置顺时针旋转 270°到达 OC 位置,则∠AOC=
()
A.150°
B.-150°
C.390°
D.-390°
7.若集合 M={α|α=±30°+k·180°,k∈Z},N={α|α=(-
D.α|α=2kπ+53π,k∈Z
3.已知集合 A={α|2kπ≤α≤(2k+1)π,k∈Z},B={α|-
4≤α≤4},则 A∩B=( )
A.
B.{α|0≤α≤π|
C.{α|-4≤α≤4|
D.{α|-4≤α≤-π 或 0≤α≤π}
4.一条弦的长等于半径,则这条弦所对的圆心角是____
弧度 ( )
1.1.1 任意角
一、选择题
1.下列各命题正确的是( )
A.终边相同的角一定相等
B.第一象限角都是锐角
C.锐角都是第一象限角
D.小于 90°的角都是锐角
2.若 α 是第一象限角,则下列各角中属于第四象限角的
是( )
A.90°-α
B.90°+α
C.360°-α
D.180°+α
3.在“①160°,②480°,③-960°,④-1600°”这四个角
A.sinα+cosα<0
B.tanα-sinα<0
π
π
π
A.π
B.2
C.3
D.4
5.如图中,圆的半径为 5,圆内阴影部分的面积是( )
175π A. 36
125π B. 18
75π C. 18