均值不等式方法及例题

合集下载

均值不等式方法及例题

均值不等式方法及例题

之阳早格格创做均值没有等式当且仅当a=b时等号创制)是一个要害的没有等式,利用它不妨供解函数最值问题.对付于有些题目,不妨曲交利用公式供解.然而是有些题目必须举止需要的变形才搞利用均值没有等式供解.底下是一些时常使用的变形要领.一、配凑1. 凑系数例1. 当时,供的最大值.剖析:由知,,利用均值没有等式供最值,必须战为定值或者积为定值,此题为二个式子积的形式,然而其战没有是定值.注意到为定值,故只需将凑上一个系数即可.当且仅当,即x=2时与等号.所以当x=2时,的最大值为8.评注:原题无法曲交使用均值没有等式供解,然而凑系数后可得到战为定值,进而可利用均值没有等式供最大值.2. 凑项例2. 已知,供函数的最大值.剖析:由题意知,最先要安排标记,又没有是定值,故需对付举止凑项才搞得到定值.∵∴当且仅当,坐即等号创制.评注:原题需要安排项的标记,又要配凑项的系数,使其积为定值.3. 分散例3. 供的值域.剖析:原题瞅似无法使用均值没有等式,无妨将分子配圆凑出含有(x+1)的项,再将其分散.当,坐即(当且仅当x=1时与“=”号).当,坐即(当且仅当x=-3时与“=”号).∴的值域为.评注:分式函数供最值,常常化成g(x)恒正或者恒背的形式,而后使用均值没有等式去供最值.二、完全代换例4. 已知,供的最小值.解法1:无妨将乘以1,而1用a+2b代换.当且仅当时与等号,由坐即,的最小值为.解法2:将分子中的1用代换.评注:原题巧妙使用“1”的代换,得到,而与的积为定值,即可用均值没有等式供得的最小值.三、换元例5. 供函数的最大值.剖析:变量代换,令,则当t=0时,y=0当时,当且仅当,坐即与等号故.评注:原题通过换元法使问题得到了简化,而且将问题转移为认识的分式型函数的供最值问题,进而为构制积为定值创制有利条件.四、与仄圆例6. 供函数的最大值.剖析:注意到的战为定值.又,所以当且仅当,坐即与等号.故.评注:原题将剖析式二边仄圆构制出“战为定值”,为利用均值没有等式创制了条件.总之,咱们利用均值没有等式供最值时,一定要注意“一正二定三相等”,共时还要注意一些变形本领,主动创制条件利用均值没有等式.1. 若,供的最大值.2. 供函数的最小值.3. 供函数的最小值.4. 已知,且,供的最小值.参照问案:1. 2. 5 3. 8 4.。

均值不等式的正确使用及例题

均值不等式的正确使用及例题

均值不等式的正确使用及例题均值不等式的正确使用及例题利用不等式求最值,要注意不等式成立的条件、等号成立的条件以及定值的条件,初学不等式时容易用错,现通过比较来说明均值不等式的正确使用。

(一)均值不等式有许多变形式子,使用哪一个不等式要选准均值不等式是指),(2+∈≥+R b a ab b a ,它的变形式子有2)2(b a ab +≤,222b a ab +≤,≤+2)(b a)(222b a +等。

由此可知,在求ab 的最大值时至少有两个不等式可供选择,那么选择哪一个更好呢?通过比较发现,若已知b a +是定值,求ab 的最大值可使用第一个不等式;若已知22b a +是定值,求ab 的最大值可用第二个不等式,若求b a +的最大值可用第三个不等式。

(二)使用均值不等式求最值,定值是前提例1. 已知正数a 、b 满足3222=+b a ,求12+b a 的最大值。

(三)连续使用不等式(连续放缩)求最值,等号必须同时成立例2. 已知0>>b a ,求)(42b a b a -+的最小值。

二. 均值不等式的应用(一)用于比较大小例1.若b a >1>,b a P lg lg ?=,)lg (lg 21b a Q +?=,2lg b a R +=,则() A .P R <<="" p="">B. Q P <<="" p="">C. P Q <<="" p="">D. R P <="" 例2.若)0(21="">++=a aa p ,≤-=1(arccos t q )1≤t 则下列不等式恒成立的是() A. q p >≥π B. 0≥>q p C. q p ≥>4 D. 0>≥q p(二)用于求取值范围例3. 若正数a 、b 满足3++=b a ab ,则ab 的取值范围是。

均值不等式专题20道-带答案

均值不等式专题20道-带答案

均值不等式专题20道-带答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(均值不等式专题20道-带答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为均值不等式专题20道-带答案的全部内容。

均值不等式专题3学校:___________姓名:___________班级:___________考号:___________一、填空题1.若则的最小值是__________.2.若,且则的最大值为______________.3.已知,且,则的最小值为______.4.已知正数满足,则的最小值是_______。

5.若直线2ax—by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则+的最小值是______.6.设正实数满足,则的最小值为________7.已知,且,则的最小值是________8.已知正实数x,y满足,则的最小值是______9.已知,函数的值域为,则的最小值为________.10.已知,,且,则的最小值为__________.11.若正数x,y满足,则的最小值是______.12.已知正实数x,y满足,则的最小值为______.13.若,,,则的最小值为______.14.若,则的最小值为________。

15.已知a,b都是正数,满足,则的最小值为______.16.已知,且,则的最小值为______.17.已知点在圆上运动,则的最小值为___________.18.若函数的单调递增区间为,则的最小值为____.19.已知正实数,满足,则的最大值为______。

20.已知,,则的最小值为____.参考答案1.【解析】【分析】根据对数相等得到,利用基本不等式求解的最小值得到所求结果.【详解】则,即由题意知,则,则当且仅当,即时取等号本题正确结果:【点睛】本题考查基本不等式求解和的最小值问题,关键是能够利用对数相等得到的关系,从而构造出符合基本不等式的形式。

02柯西不等式与平均值不等式(含经典例题+答案)

02柯西不等式与平均值不等式(含经典例题+答案)

柯西不等式与平均值不等式一、比较法1.求差比较法知道a >b ⇔a -b >0,a <b ⇔a -b <0,因此要证明a >b ,只要证明a -b >0即可,这种方法称为求差比较法.2.求商比较法由a >b >0⇔a b >1且a >0,b >0,因此当a >0,b >0时要证明a >b ,只要证明1a b即可,这种方法称为求商比较法.二、分析法从所要证明的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实,从而得出要证的命题成立,这种证明方法称为分析法,即“执果索因”的证明方法.三、综合法从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理,论证而得出命题成立,这种证明方法称为综合法即“由因寻果”的方法.四、放缩法在证明不等式时,有时我们要把所证不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的.这种方法称为放缩法.五、反证法的步骤1.作出否定结论的假设;2.进行推理,导出 矛盾;3.否定假设,肯定结论.六、柯西不等式的二维形式1.柯西不等式的代数形式:设a ,b ,c ,d 都是实数,则(a 2+b 2).(c 2+d 2)≥(ac +bd)2,其中等号当且仅当a 1b 2=a 2b 1时成立.2.柯西不等式的向量形式:设α,β为平面上的两个向量,则|α||β|≥|α·β|,其中等号当且仅当两个向量方向相同或相反时成立.3.二维形式的三角不等式:设x 1,y 1,x 2,y 2∈R ,那么x 21+y 21+x 22+y 22≥(x 1-x 2)2+(y 1-y 2)2七、柯西不等式的一般形式柯西不等式的一般形式:设a 1,a 2,…,a n ,b 1,b 2,…b n 为实数,则(a 21+a 22+…+a 2n )·(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2.八、基本不等式的一般形式a 1+ a 2+…a n n≥n (a 1+ a 2+...a n ) 例3:设n 是正整数,求证:12≤1+1+ (12)<1.解:(1)由|2x -1|<1,得-1<2x -1<1,解得0<x <1,所以M ={x|0<x <1}.(2)由(1)和a ,b ∈M 可知0<a <1,0<b <1.所以(ab +1)-(a +b)=(a -1)(b -1)>0, 故ab +1>a +b. 本例条件不变,试比较logm(ab +1)与logm(a +b)(m >0且m≠1)的大小.解:∵0<a <1,0<b <1,∴(ab +1)-(a +b)=(a -1)(b -1)>0.故ab +1>a +b.当m >1时,y =logmX 在(0,+∞)上递增,∴logm(ab +1)>logm(a +b)当0<m <1时logmX 在(0,+∞)上单调递减,∴logm(ab +1)<logm(a +b).例6:设a >b >0,求证:a2+b 2>a -b .例8:已知m >0,a ,b ∈R ,求证:a mb +⎛⎫ ⎪≤a 2+mb 21+m . 它的变形形式又有(a +b )2≥4ab ,a 2+b 22≥22a b +⎛⎫ ⎪⎝⎭等;(4)a +b 2≥ab (a ≥0,b ≥0),它的变形形式又有a +1a ≥2 (a >0),b a +a b ≥2(ab >0),b a +a b≤-2(ab <0)等. 2.分析法证明不等式的注意事项:用分析法证明不等式时,不要把“逆求”错误地作为“逆推”,分析法的过程仅需要寻求充分条件即可,而不是充要条件,也就是说,分析法的思维是逆向思维,因此在证题时,应正确使用“要证”、“只需证”这样的连接“关键词”.例10:设m 是|a |,|b |和1中最大的一个,当|x |>m 时,求证:⎪⎪⎪⎪a x +b x 2<2. [证明]由已知m ≥|a |,m ≥|b |,m ≥1.又|x |>m ,∴|x |>|a |,|x |>|b |,|x |>1.∴⎪⎪⎪⎪a x +b x 2≤⎪⎪⎪⎪a x +⎪⎪⎪⎪b x 2=|a ||x |+|b ||x |2<|x ||x |+|x ||x |2=1+1|x |<1+|x ||x |=2.∴|a x +b x2|<2成立. 例11:已知a >0,b >0,c >0,a +b >c .求证:a 1+a +b 1+b >c 1+c. 证明:∵a >0,b >0,∴a 1+a >a 1+a +b ,b 1+b >b 1+a +b .∴a 1+a +b 1+b >a +b 1+a +b. 而函数f (x )=x 1+x =1-11+x 在(0,+∞)上递增,且a +b >c ,∴f (a +b )>f (c ),则a +b 1+a +b >c 1+c, 所以a 1+a +b 1+b >c 1+c,则原不等式成立. 例12:求证:32-1n +1<1+122+132+…+1n 2<2-1n(n ≥2,n ∈N +). 证明:∵k (k +1)>k 2>k (k -1),k ≥2,∴1k (k +1)<1k 2<1k (k -1),即1k -1k +1<1k 2<1k -1-1k ,分别令k =2,3,…,n 得12-13<122<1-12;13-14<132<12-13;…1n -1n +1<1n 2<1n -1-1n; 将上述不等式相加得:12-13+13-14+…+1n -1n +1<122+132+…+1n 2<1-12+12-13+…+1n -1-1n, 即12-1n +1<122+132+…+1n 2<1-1n ,∴32-1n +1<1+122+132+…+1n 2<2-1n. (1)在不等式的证明中,“放”和“缩”是常用的推证技巧.“放”和“缩”的方向与“放”和“缩”的量的大小是由题目分析得出的.常见的放缩变换有变换分式的分子和分母,如1k 2<1k (k -1),1k 2>1k (k +1),1k <2k +k -1,1k >2k +k +1.上面不等式中k ∈N +,k >1.利用函数的单调性,真分数性质“若0<a <b ,m >0,则a b <a +m b +m ”,添加或减少项,利用有界性等. (2)在用放缩法证明不等式时,“放”和“缩”均有一个度.例13:已知x ,y 均为正数,且x >y,2x +1x 2-2xy +y 2≥2y +3. 解:因为x >0,y >0,x -y >0,2x +1x 2-2xy +y 2-2y =2(x -y )+1x -y 2=(x -y )+(x -y )+1x -y 2≥33x -y 21x -y 2=3,所以2x +1x 2-2xy +y 2≥2y +3. 例14:设a ,b ,c 为正实数,求证:1a 3+1b 3+1c3+abc ≥2 3. 证明:因为a ,b ,c 为正实数,由平均不等式可得1a 3+1b 3+1c 3≥331a 3·1b 3·1c 3,即1a 3+1b 3+1c 3≥3abc. 所以1a 3+1b 3+1c 3+abc ≥3abc +abc .而3abc +abc ≥2 3abc ·abc =2 3.所以1a 3+1b 3+1c3+abc ≥2 3. 例15:若n 为大于1的自然数,求证:n n n +1<n +1+12+13+ (1). 证明:由柯西不等式右边=1+1+1+12+1+13+…+1+1n =2+32+43+54+…+n +1n ≥n ·n 2·32·43·…·n +1n=n .n n +1=左边.∵2≠32≠43,故不取等号.∴不等式n n n +1<n +1+12+13+ (1)成立. 例16:已知f (x )=x 2+px +q ,求证|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.证明:假设|f (1)|,|f (2)|,|f (3)|都小于12,则|f (1)|+2|f (2)|+|f (3)|<2.而|f (1)|+2|f (2)|+|f (3)|≥|f (1)+f (3)-2f (2)|=|(1+p +q )+(9+3p +q )-(8+4p +2q )|=2,与|f (1)|+2|f (2)|+|f (3)|<2矛盾,∴|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12. 例17:设a 、b 、c 均为正数,求证:12a +12b +12c ≥1b +c +1c +a +1a +b. 证明:∵a 、b 、c 均为正数,∴121122a b ⎛⎫+ ⎪⎝⎭≥12ab ≥1a +b,当a =b 时等号成立;12(12b +12c )≥12bc ≥1b +c ,当b =c 时等号成立;12(12c +12a )≥12ca ≥1c +a ,当a =c 时等号成立.三个不等式相加即得12a +12b +12c ≥1b +c +1c +a+1a +b,当且仅当a =b =c 时等号成立. 例18:已知:a n =1×2+2×3+3×4+…+n n +1(n ∈N +),求证:n n +12<a n <n n +22. 证明:∵n n +1=n 2+n ,∴n n +1>n ,∴a n =1×2+2×3+…+n n +1>1+2+3+…+n =n n +12.∵n n +1<n +n +12,∴a n <1+22+2+32+3+42+…+n +n +12=12+(2+3+…+n )+n +12=n n +22.综上得:n n +12<a n <n n +22. 例19:设a ,b ,c 为正数且a +b +c =1,求证:21a a ⎛⎫+ ⎪⎝⎭+21b b ⎛⎫+ ⎪⎝⎭+21c c ⎛⎫+ ⎪⎝⎭≥1003. 证明:21a a ⎛⎫+ ⎪⎝⎭+21b b ⎛⎫+ ⎪⎝⎭+21c c ⎛⎫+ ⎪⎝⎭=13(12+12+12)[21a a ⎛⎫+ ⎪⎝⎭+21b b ⎛⎫+ ⎪⎝⎭+21c c ⎛⎫+ ⎪⎝⎭] ≥132111111a b c a b c ⎡⎤⎛⎫⎛⎫⎛⎫⨯++⨯++⨯+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=2111113a b c ⎡⎤⎛⎫+++ ⎪⎢⎥⎝⎭⎣⎦=()2111113a b c a b c ⎡⎤⎛⎫+++++ ⎪⎢⎥⎝⎭⎣⎦≥13(1+9)2=1003. 例20:已知a ,b 为正实数.(1)求证:a 2b +b 2a ≥a +b ;(2)利用(1)的结论求函数y =1-x 2x+x 21-x(0<x <1)的最小值. 解:(1)证明:法一:∵a >0,b >0,∴(a +b )22a b b a ⎛⎫+ ⎪⎝⎭=a 2+b 2+a 3b +b 3a ≥a 2+b 2+2ab =(a +b )2. ∴a 2b +b 2a≥a +b ,当且仅当a =b 时等号成立。

均值不等式八种技巧

均值不等式八种技巧

运用均值不等式的八类拼凑技巧一、 拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。

例1 已知01x <<,求函数321y x x x =--++的最大值。

解:()()()()()()222111111y xx x x x x x =-+++=+-=+-()()311111322241422327x x x x x x ++⎛⎫++- ⎪++=•••-≤=⎪ ⎪⎝⎭。

当且仅当112x x +=-,即13x =时,上式取“=”。

故max 3227y =。

评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。

例2求函数)01y x x =<<的最大值。

解:y ==。

因()()32222221122122327x x x x x x ⎛⎫++- ⎪••-≤=⎪ ⎪ ⎪⎝⎭, 当且仅当()2212x x=-,即3x =时,上式取“=”。

故max 9y =。

评注:将函数式中根号外的正变量移进根号内的目的是集中变元,为“拼凑定和”创造条件。

例3 已知02x <<,求函数()264y x x =-的最大值。

解:()()()222222236418244y xx x x x =-=⨯--()()3222324418818327x x x ⎡⎤+-+-⨯⎢⎥≤=⎢⎥⎣⎦。

当且仅当()2224x x=-,即x ==”。

故max3218827y ⨯=,又max 0,3y y >=。

二、 拼凑定积通过裂项、分子常数化、有理代换等手段,变为“和”的形式,然后以均值不等式的取等条件为出发点,配项凑定积,创造运用均值不等式的条件例4 设1x >-,求函数()()521x x y x ++=+的最小值。

解:()())14114415159111x x y x x x x ++++⎡⎤⎡⎤⎣⎦⎣⎦==+++≥+=+++。

均值不等式最值恒成立

均值不等式最值恒成立

均值不等式一、 重点考点1.不等式成立问题 (1)恒成立问题① 若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > ② 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < (2)能成立问题① 若在区间D 上存在实数x 使不等式()A x f >成立,则等价于在区间D 上()max f x A >; ② 若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上的()min f x B <. (3)恰成立问题① 若不等式()A x f >在区间D 上恰成立, 则等价于不等式()A x f >的解集为D ; ② 若不等式()B x f <在区间D 上恰成立, 则等价于不等式()B x f <的解集为D . 2.不等式最值问题常用方法:配凑法(凑系数,凑项,分离)、整体代换、换元、取平方、倒数二、典型例题(一)不等式恒成立常规处理方式:常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法例1、(1)设实数,x y 满足22(1)1x y +-=,当0x y c ++≥时,c 的取值范围是________)21,⎡-+∞⎣(2)不等式a x x >-+-34对一切实数x 恒成立,求实数a 的取值范围________1a <(3)若不等式na n n1)1(2)1(+-+<-对于任意正整数n 恒成立,则实数a 的取值范围是_____3[2,)2-(4)若不等式22210x mx m -++>对01x ≤≤的所有实数x 都成立,求m 的取值范围.12m >-(5)已知不等式a x x <-+-34在实数集R 上的解集不是空集,求实数a 的取值范围________1a >(二)最值问题 1. 配凑 ① 凑系数例2、当04<<x 时,求y x x =-()82的最大值。

均值不等式常考题型

均值不等式常考题型

均值不等式及其应用一.均值不等式2 21. (1)若a,b € R ,则 a 2+b 2>2ab (2)若a,b 亡 R ,则 a^a b(当且仅当 a = b 时取“二”)2(2) 若a,b 壬R *,则a + b > 2(当且仅当a = b 时取“=”)x=1时取“=”);若X c 0,则X + —仝2 (当且仅当x = —1时取“=”)x若XHO ,则x +- >2即x +->2或x +-<-2 (当且仅当a = b 时取“=”3.若ab >0,贝y >2 (当且仅当a =b 时取“=”)b aa b a b a b —+ — >2即一+— >2或一+— <-2 (当且仅当a=b 时取“=”b a b a4.若a,b 忘R ,则(王^)22注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”.(2) 求最值的条件“一正,二定,三相等”(3) 均值定理在求最值、应用一:求最值 例1 :求下列函数的值域2步=V 6 •••值域为[76 ,+ m(2)当 x >0 时,y = X +1>2p x - X1当 X <0 时,y = x +- = —(— X —•••值域为(一s,— 2] U [2 ,2.(1)若a,^R*,则宁鼻"£ a⑶若a,b 壬R ,则ab 兰丨a +b i (当且仅当a = b 时取“=”)1 3.若X A O ,则X +— >2 (当且仅当 x2 2 <a b(当且仅当a=b 时取“=”) 221(1) y = 3x 2+ 21(2) y =x + x比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.例1 :已知x 解:因4X-5V0,所以首先要“调整”符号,不是常数,所以对4x-2要进行拆、凑项,4x —5=—5-4x+^^ ]+3 兰—2 + 3 = 1I 5-4x 丿 又(4x-2)U 申 51 :X < — 5-4x A0,”■. y=4x-2+ ------ 4 4x —o 1解:(1) y = 3x + 2~T >1 x)—1 -=—2+s)解题技巧:技巧一:凑项5 4< —,求函数y =4x —2+---- 的最大值。

《均值不等式》例题-完整版课件

《均值不等式》例题-完整版课件
• 【思路点拨】 以污水池的长或宽为自变量, 表示出函数(总造价),无条件限制时,用基本 不等式求最值,在限制条件下不能用基本不等 式求最值时,考虑用函数单调性求最值.
【解析】 (1)设污水池的长为 x,则宽为40x0,总造价
y=2x+2·40x0·200+2·250·40x0+80×400
= 400x+90x0 + 32 000≥400·2

某工厂拟建一座平面图为矩形且面
积为400平方米的三级污水处理池,平面图
如下图所示.池外ห้องสมุดไป่ตู้建造单价为每米200元,
中间两条隔墙建造单价每米250元,池底建
造单价为每平方米80元(池壁的厚度忽略不
计,且池无盖).
• (1)试设计污水池的长和宽,使总造价最低,并 求出最低造价;
• (2)若受场地限制,长与宽都不能超过25米,则 污水池的最低造价为多少?
【解析】 ∵a>2,∴a-2>0, 又∵m=a+a-1 2=(a-2)+a-1 2+2, ∴m≥2 a-2×a-1 2+2=4,即 m∈[4,+∞). 由 b≠0 得 b2≠0,∴2-b2<2,∴22-b2<4,即 n<4, ∴n∈(0,4),综上易得 m>n.
【答案】 A
已知 a、b、c 为正数,求证:b+ac-a+c+ab-b +a+bc-c≥3.
从而ba+ab+ac+ac+bc+bc≥6(当且仅当 a=b=c 时取 等号).
∴ba+ab+ac+ac+bc+bc-3≥3, 即b+ac-a+c+ab-b+a+bc-c≥3.
【思路点拨】 因为 x<54,∴4x-5<0,故应先处理符号, 再将 4x-2 化为 4x-5+3,然后用基本不等式.
【解析】 ∵x<54,∴5-4x>0, ∴y=4x-2+4x-1 5=-[(5-4x)+5-14x]+3≤-2+3 =1, 当且仅当 5-4x=5-14x时,即 x=1 时,上式等号成立. ∴x=1 时,ymax=1.

均值不等式

均值不等式

(一)知识联系说明:①、a 1、a 2……a n ∈R+(公式a 12+a 22≥2 a 1 a 2中,a 1、a 2∈R )②、在①的限制下,所有“≥”或“≤”中取“=”的充要条件是a 1=a 2=……=a n ③、在应用均值不等式求最值时,控制到项数(或因式)最多为3项的(二)、正例同化例1、如果a 、b ∈R+,且a ≠b ,求证:a 3+ b 3>a 2b+ab 2(课本例题)说明:该例题课本上已给出了证法一、证法二(分析法、综合法)这里再用均值不等式探索另外两种证法。

证法三:∵a 、b ∈R+,且a ≠b则a 3+b 3=31 [(a 3+a 3+b 3)+(a 3+b 3+b 3)] >31(3333333333b b a b a a +) =a 2b+ab 2 ∴a 3+b 3 >a 2b+ab 2证法四:a 3+b 3=(a+b )(a 2+b 2-ab )>(a+b )(2ab-ab )=a 2b+ab 2 ∴a 3+b 3>a 2b+ab 2例2、已知:0<x <31,求函数y=x (1-3x )的最大值分析一、原函数式可化为:y=-3x 2+x ,利用二次函数求某一区间的最值 解法一、(利用二次函数法可获得求解)(解略) 分析二、挖掘隐含条件,∵3x+1-3x=1为定值,且0<x <31,则1-3x >0;可用均值不等式法解法二、∵0<x <31,∴1-3x >0∴y=x (1-3x )=∙313x (1-3x )≤31(23x-13x +)2=121当且仅当 3x=1-3x 即x=61时 y 大=121例3、求函数y=4sinx ·cos 2x 的最值a 12+a 22≥2a 1a 2 a 13+a 23+a 33≥3a 1a 2a 3 221a a +≥21a a 3321a a a ++≥3321a a a对于n 个正数而言,积定值则和有最小值,和定值则积有最大值 a 1n +a 2n +…+a n n ≥na 1a 2…a n n a a a n+++ 21≥n n a a a 21 a 1a 2…a n ≤n a a a n n n n +++ 21 a 1a 2…a n ≤()na a a nn +++ 21 ()⎪⎭⎫ ⎝⎛++++++nna a a a a a 1112121 ≥n 2 nna a a 21≥naa a n 11121+++分析:利用sin 2x+cos 2x=1进行本方法,凑出和为定值,才能使用均值不等式求最值 解:∵y 2=16sin 2x ·cos 2x ·cos 2x=8(2sin 2x · cos 2x ·cos 2x )≤8(3xcos x cos x 2sin 222++)3=8*278=2764∴y 2≤2764,当且仅当2sin 2x=cos 2x 即tgx=±22时,取“=”号∴y 大=398y 小=-398例4、已知:a 、b 、c 都是小于1的正数,求证:(1-a )b 、(1-b )c 、(1-c )a 中至少有一个不大于41思路:用反证法,配凑整理后用均值不等式证法一、假设(1-a )b >41,(1-b )c >41,(1-c )a >41∵a 、b 、c ∈(0,1),则3=[(1-a )+b]+[(1-b )+c]+[(1-c )+a] ≥()()()a c c b b a -+-+-121212>412412412⋅+⋅+⋅=3即3>3,这是矛盾的,∴假设不成立,即原结论正确证法二、假设(1-a )b >41,(1-b )c >41,(1-c )a >41则(1-a )b (1-b )c (1-c )a >641……………………①又(1-a )b (1-b )c (1-c )a ≤66a c)-(1c b)-(1b a -?1⎪⎭⎫ ⎝⎛+++++=621⎪⎭⎫⎝⎛=641 这与①是矛盾的 ∴假设不成立,即原结论正确证法三、思路与法1、法2同,但变式方法不同(过程略)小结:1、利用均值不等式放缩不等式的常用辅助技巧是添项、拆项2、利用均值不等式求最值问题的常用辅助技巧是配凑和(或积)为定值(三)、反例训应 例5、求y=sinx+sinx5的最小值,[x ∈(0,π)]错解,∵x ∈(0,π)∴sinx >0∴y=sinx+sinx5≥52=52∴y mix =52错因:y=52的充要条件是:sinx=sinx5,即sin 2x=5,这是不存在的。

利用均值不等式求最值

利用均值不等式求最值
利用算术(几何)平均数
极值定理
练习:(1)已知x,y都是正数,求证:如果积xy 是定值p,那么当x=y时,和x+y有最小值2√p 。
(2)x,y都是正数,如果和x+y是定值S,那么当 1 2 x=y时,积xy有最大值 S。 4
例1、判断正误 1 (1)函数y=x+ x 的最小值为2 ( 2 )已知 1≤x≤3, 2≤y≤4, 则当 x=y=3 时, xy 有 最大值9 x 3 1 (3)函数y= x 2 x 2 x 2 的最小值为2
(2) 若正数x,y满足6x+5y=18, 求xy的最大值.
目标式:
6 x 5 y 1 6 x 5 y 2 81 27 xy ( ) 30 30 2 30 10
例4
1、已知 x 0 ,当 x 取何值时, 81 2 x 2的值最小?最小为多少
x
2、求函数
1 x 1 y 2x 8( x 1)
1 例2、若x>0,求 y x x 的最小值
变1:若 x<0 呢?
构造条 件
变2:若x>3 ,求
1 y x x3
的最小值

用均值定理求函数最值时要注意: 一正、二定、三相等
变3:若0<x< 的最大值
1 2
求y=x(1-2x)
例题3 (1)已知m 、n都是正数,且 2m+n=3,求mn的最大值
y
的最小值 3:若x>-1,求 最小值
x 2 x 5
x 1
作业:
1、课本P11习题6.2 选做: 2、若x, y 1, 4 、 5、 6
且 lg x lg y 4
b 1 2

均值不等式及其应用

均值不等式及其应用

均值不等式及其应用一、均值不等式定义1.均值不等式:如果,0a b >,那么2a b +≥,当且仅当a b =时,式中等号成立. 对于均值不等式的理解:(1)对任意两个正实数,a b ,2a b +叫做,a b叫做,a b 的几何平均值.(2)均值不等式可以表述为:两个正实数的算术平均值大于或等于它的几何平均值.2.均值不等式的两种证明:(1)代数法:20,0,0222a b a b a b ++->>∴==≥,即2a b +≥.当且仅当a b =时,式中等号成立. (2)几何法:如图,AB 是圆O 的直径,点Q 是AB 上任一点,,AQ a BQ b ==,过点Q 作PQ 垂直AB 于Q ,连接,AP PB .易证Rt APQ Rt PBQ ∽,那么2PQ AQ QB =⋅,即PQ =22AB a b PO +==.根据三角形三边关系可得:PO PQ ≥,即2a b +≥当且仅当点Q 与圆心O 重合,即a b =时,等号成立.几何意义可简记为:“半径不小于半弦”要点提炼:(2)等号成立的条件:当且仅当a b =时取等号.常见基本不等式1.基本不等式:ab ≤a +b 2(1)基本不等式成立的条件:a ≥0,b ≥0.(2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b 2称为正数a ,ba ,b 的几何平均数. 2.两个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号.(2)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号.3.利用基本不等式求最值已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大). 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三相等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值1、基本题型例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x2、常见解题技巧:技巧一:凑项(不正时)例1:已知54x <,求函数14245y x x =-+-的最大值。

均值不等式常用变形及解题方法总结

均值不等式常用变形及解题方法总结

均值不等式应用(一)均值不等式* 也可是值为正的代数式1.调和平均数:2.几何平均数:3.算数平均数:4.平方平均数:·均值不等式:,当且仅当时等号成立常用:两个正数的算术平均数不小于它们的几何平均数。

两个正数的等差中项不小于他们的等比中项。

(二)常见变形1.2.3.4.5.6.()7.()8.9.()10.()11.12.(三)解题技巧(一定、二正、三相等、四同时)1.计算函数最值·形函数例:求函数2y =的值域。

(2)t t =≥2y =1(2)t t t ==+≥当1t t=时函数在x 轴正半轴有最小值,在y 轴负半轴有最大值,即1t =± ∵1t =±不属于区间[)2,+∞,故等号不成立,考虑单调性。

∵1y t t=+在区间[)1,+∞单调递增, ∴52y ≥∴所求函数的值域为5,2⎡⎫+∞⎪⎢⎣⎭·分离法例3.:求2710(1)1x x y x x ++=>-+的值域。

解:当,即时,421)591y x x ≥+⨯+=+(,当且仅当x =1时等号成立·换元法例:已知 ,则解:令 则·拼凑(系数、常数)例:已知x ,y 为正实数,且x 2+y 22 =1,求x 1+y 2 的最大值.解:x 1+y 2=x2·1+y 22 = 2 x ·12 +y 22x 1+y 2 = 2 ·x 12 +y 22 ≤ 2x 2+(12 +y 22 )22 ≤ 342例:已知54x <,求函数14245y x x =-+-的最大值。

解:∵54x <∴540x -> ∴11425432314554y x x x x ⎛⎫=-+=--++≤-+= ⎪--⎝⎭ 当且仅当15454x x-=-,即1x =时等号成立 ∴当1x =时,max 1y =。

·化积为和(因式分解、平方)例:已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab 的最小值分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。

均值不等式基础方法15类总结-(原卷版)

均值不等式基础方法15类总结-(原卷版)

专题3 均值不等式基础方法15类总结目录一、热点题型归纳【题型一】对勾型 (2)【题型二】添加常数构造“对勾型” (3)【题型三】“和定求积”型 (3)【题型四】“积定求和”型 (4)【题型五】单元(单变量)分离常数型 (4)【题型六】“常数”因子法: (5)【题型七】“单分母”构造因子法 (6)【题型八】“双分母”构造法 (6)【题型九】有和有积无常数型 (7)【题型十】有和有积有常数型:求“积”型 (8)【题型十一】有和有积有常数型:求“和”型 (8)【题型十二】多元分离型 (9)【题型十三】反解消元型 (9)【题型十四】换元型 (10)【题型十五】较简单的三元均值 (11)培优第一阶——基础过关练 (11)培优第二阶——能力提升练 (13)培优第三阶——培优拔尖练 (14)知识点综述:1.基本不等式::a2+b2≥ 2ab(a,b∈R);2.常用不等式:ab ≤a +b2; (1) 基本不等式成立的条件:a >0,b >0;(2)等号成立的条件:当且仅当a =b .简称为““一正”“二定”“三相等”,三个条件缺一不可. 3.基本不等式的变形:①a +b ≥2ab ,常用于求和的最小值;②ab ≤⎝⎛⎭⎫a +b 22,常用于求积的最大值;4.重要不等式链:a 2+b 22≥ a +b 2≥ab ≥2aba +b;【题型一】对勾型【典例分析】(2021·江苏·高一专题练习)不等式(x -2y )+12x y -≥2成立的前提条件为( ) A .x ≥2yB .x >2yC .x ≤2yD .x <2y【提分秘籍】 基本规律对勾型:1t t +,bat t+ 容易出问题的地方,在于能否“取等”,如1.2sin sin θθθ+,其中锐角(第五章会学习到)2.221x 5x 5+++1.(2022·全国·高一专题练习)若0x >,0y >,则1122x y x y+++的最小值是( ) A .32B .42C .4D .22.(2022·河南驻马店·高一期末)已知a >0,则当19a a+取得最小值时,a 的值为( )A .19B .16C .13D .3【题型二】 添加常数构造“对勾型”【典例分析】(2022·吉林延边·高一期末)已知2x >,则函数()1222y x x =+--的最小值是( ) A .22B .222 C .2 D 2【提分秘籍】 基本规律 对于形如1cx+d ax b ++,则把cx+d 转化为分母的线性关系:c 1ax+b)ax b cd a a ++-+(可消去。

用均值不等式求值的方法和技巧

用均值不等式求值的方法和技巧

用均值不等式求值的方法和技巧————————————————————————————————作者:————————————————————————————————日期:几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2ab ab +≤≤≤222b a +。

三、用均值不等式求最值的常见的技巧 1、 添、减项(配常数项) 例1 求函数221632y x x =++的最小值.2、 配系数(乘、除项)例2 已知0,0x y >>,且满足3212x y +=,求lg lg x y +的最大值.3、 裂项例3 已知1x >-,求函数()()521x x y x ++=+的最小值.4、 取倒数例4 已知102x <<,求函数2(1)(12)x y x x +=-的最小值.5、 平方例5 已知0,0x y >>且22283y x +=求262x y +的最大值.6、 换元(整体思想) 例6 求函数225x y x +=+的最大值.7、 逆用条件例7 已知191(0,0)x y x y +=>>,则x y +的最小值是( ) .8、 巧组合例8 若,,0a b c >且()423a a b c bc +++=-,求2a b c ++的最小值 .9、 消元例9、设,,x y z 为正实数,230x y z -+=,则2y xz 的最小值是.几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2ab ab +≤≤≤222b a +。

均值不等式常见题型及解析

均值不等式常见题型及解析

均值不等式常见题型及解析一、直接应用均值不等式均值不等式的基本形式是对于正实数a、b,有\(\frac{a + b}{2}\geq\sqrt{ab}\),当且仅当a = b时等号成立。

比如说,已知\(a>0\),\(b>0\),\(a + b = 1\),求\(ab\)的最大值。

这时候就可以直接用均值不等式啦。

由\(\frac{a + b}{2}\geq\sqrt{ab}\),把\(a + b = 1\)代入,得到\(\frac{1}{2}\geq\sqrt{ab}\),那么\(ab\leq\frac{1}{4}\),当且仅当\(a=b=\frac{1}{2}\)的时候取到最大值。

这种直接应用的题型呢,关键就是要识别出是两个正实数的和与积的关系,然后套公式就好啦。

就像看到一道题,告诉你两个正数的和是定值,那你就赶紧想均值不等式求积的最值;要是告诉你积是定值,就想求它们和的最值。

这就像一个小窍门,一看到这种形式,心里就“叮”一下,知道该怎么做啦。

二、凑项应用均值不等式有些题呢,不会直接给你能用均值不等式的形式,需要咱们自己去凑项。

比如说,求\(y = x+\frac{1}{x - 1}(x>1)\)的最小值。

这时候直接用均值不等式可不行,因为\(x\)和\(\frac{1}{x - 1}\)的和不是直接能用均值不等式的形式。

那我们就凑项呀,把式子变成\(y=(x - 1)+\frac{1}{x - 1}+1\)。

因为\(x>1\),所以\(x - 1>0\),\(\frac{1}{x - 1}>0\)。

根据均值不等式\(\frac{(x - 1)+\frac{1}{x - 1}}{2}\geq\sqrt{(x - 1)\times\frac{1}{x - 1}}\),也就是\((x - 1)+\frac{1}{x - 1}\geq2\),那么\(y=(x - 1)+\frac{1}{x - 1}+1\geq2 + 1=3\),当且仅当\(x - 1=\frac{1}{x - 1}\),也就是\(x = 2\)的时候取到最小值。

均值不等式求最值的常用技巧及习题(含解答:经典)

均值不等式求最值的常用技巧及习题(含解答:经典)

,则12x x +³ ( (当且仅当当且仅当1x =时取“时取“==”);若0x <,则12x x+£- ( (当且仅当当且仅当当且仅当 _____________ _____________时取“时取“时取“==”) 若0x ¹,则11122-2x x x x x x +³+³+£即或 ( (当且仅当当且仅当当且仅当____________________________________时取“时取“时取“==”) 2.2.若若0>ab ,则2³+ab b a ( (当且仅当当且仅当当且仅当____________________________________时取“时取“时取“==”) 若若0ab ¹________。

解:因为x >0,y>0,所以234343xy x yxy +³=(当且仅当34x y =,即x=6,y=8时取等号),于是13xy £, 3.xy \£,故xy 的最大值3. 变式:若44log log 2x y +=,求11x y+的最小值.并求x ,y 的值的值解:∵44log log 2x y += 2log 4=\xy 即xy=16 21211211==³+\xy y x y x 当且仅当x=y 时等号成立时等号成立技巧二:配凑项求 例2:已知54x <,求函数14245y x x =-+-的最大值。

的最大值。

解:5,5404x x <\->,11425434554y x x x x æö\=-+=--++ç÷--èø231£-+=当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y=。

例3. 3. 当当时,求(82)y x x =-的最大值。

均值不等式典型题汇编

均值不等式典型题汇编

A. 8
B. 6
C. 4
D. 2
xy
例 30、(全国 1 理,2008)若直线 1通过点 M cos,sin ,则[ ]
ab
A. a2 b2 1
B. a2 b2 1
11
11
C. 1 D. 1
a2 b2
a2 b2
1 1 25
例 31、已知 a 0,b 0 且 a b 1,求证: (a )(b ) .
A.

a

b


1

1


4
a b
B. a3 b3 2ab2
C. a 2 b2 2 2a 2b
D. | a b | a b
1a
例 29、(陕西理,2006)已知不等式 (x y)( ) 9 对任意正实数 x, y 恒成
xy
立,则正实数 a 的最小值为[ ]
有极值,则 ab 的最大值等于[ ]
A. 2
B. 3
C. 6
D. 9
例 4、(重庆文,2011)若函数 f (x) x 1 (x 2) 在 x a 处取最小值,则
x2
a[ ]
A.1 2
B.1 3
C. 3
例 5、已知 x 5 ,求函数 y 4x 2 1 的最大值.
值是
.
3

21 、 ( 重 庆 文 , 2004) 已 知
23
2 x 0, y 0
,则
xy
的最小值
xy

.
例 22、(重庆理,2007)若 a 是1 2b 与1 2b 的等比中项,则 2ab 的最

均值不等式求值的常用技巧及习题含解答:经典

均值不等式求值的常用技巧及习题含解答:经典

均值不等式求最值的常用技巧及习题(含解答:经典)————————————————————————————————作者:————————————————————————————————日期:利用基本不等式求最值的常用技巧及练习题(含解答)(经典) 一.基本不等式的常用变形 1.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当 _____________时取“=”)若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当____________时取“=”)2.若0>ab ,则2≥+a b b a (当且仅当____________时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当_________时取“=”) 注:(1)当两个正数的积为定植时,可以求它们和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的重要条件“一正,二定,三取等” 二、利用基本不等式求最值的技巧: 技巧一:直接求: 例1 已知,x y R +∈,且满足134x y+=,则xy 的最大值为 ________。

解:因为x >0,y>0,所以234343x y x yxy+≥=(当且仅当34x y =,即x=6,y=8时取等号),于是13xy≤, 3.xy ∴≤,故xy 的最大值3. 变式:若44log log 2x y +=,求11x y+的最小值.并求x ,y 的值 解:∵44log log 2x y += 2log 4=∴xy 即xy=1621211211==≥+∴xy y x y x 当且仅当x=y 时等号成立技巧二:配凑项求 例2:已知54x <,求函数14245y x x =-+-的最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

均值不等式当且仅当a=b时等号成立)是一个重要的不等式,利用它可以求解函数最值问题。

对于有些题目,可以直接利用公式求解。

但是有些题目必须进行必要的变形才能利用均值不等式求解。

下面是一些常用的变形方法。

一、配凑1. 凑系数
例1. 当时,求的最大值。

解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。

注意到为定值,故只需将凑上一个系数即可。

当且仅当,即x=2时取等号。

所以当x=2时,的最大值为8。

评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。

2. 凑项例2. 已知,求函数的最大值。

解析:由题意知,首先要调整符号,又不是定值,故需对进行凑项才能得到定值。

∵∴
当且仅当,即时等号成立。

评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

3. 分离例3. 求的值域。

解析:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x+1)的项,再将其分离。

当,即时(当且仅当x=1时取“=”号)。

当,即时(当且仅当x=-3时取“=”号)。

∴的值域为。

评注:分式函数求最值,通常化成g(x)恒正或恒负的形式,然后运用均值不等式来求最值。

二、整体代换例4. 已知,求的最小值。

解法1:不妨将乘以1,而1用a+2b代换。

当且仅当时取等号,由即时,的最小值为。

解法2:将分子中的1用代换。

评注:本题巧妙运用“1”的代换,得到,而与的积为定值,即可用均值不等式求得的最小值。

三、换元例5. 求函数的最大值。

解析:变量代换,令,则
当t=0时,y=0当时,当且仅当,即时取等号故。

评注:本题通过换元法使问题得到了简化,而且将问题转化为熟悉的分式型函数的求最值问题,从而为构造积为定值创造有利条件。

四、取平方例6. 求函数的最大值。

解析:注意到的和为定值。

又,所以当且仅当,即时取等号。

故。

评注:本题将解析式两边平方构造出“和为定值”,为利用均值不等式创造了条件。

总之,我们利用均值不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用均值不等式。

1. 若,求的最大值。

2. 求函数的最小值。

3. 求函数的最小值。

4. 已知,且,求的最小值。

参考答案:1. 2. 5 3. 8 4.。

相关文档
最新文档