一元一次方程的应用PPT课件

合集下载

一元一次方程应用题精选ppt课件

一元一次方程应用题精选ppt课件
将实际问题抽象为数学问题,通 过数学语言描述问题中的数量关 系和变化规律。
方程设立及未知数选择
设立方程
根据问题中的数量关系和已知条件,设立一元一次方程。
选择未知数
根据问题的实际情况和需要求解的未知量,选择合适的未知 数。
实际问题转化为数学问题
转化思想
将实际问题中的数量关系和已知条件 转化为数学表达式和方程。
列方程
根据已知条件和未知量 之间的关系,列出包含 未知数的等式,即方程 。
解方程
运用一元一次方程的解 法,求解方程,得到未 知数的值。
提高解题速度和准确性策略
掌握基本题型和解题方法
熟练掌握一元一次方程应用题的基本题型和解题方法,能够快速准确地识别问题并求解。
加强练习和反思
通过大量练习,提高解题速度和准确性;同时,及时反思和总结解题过程中的问题和不足 ,不断完善自己的解题思路和方法。
思路拓展
通过变换思考角度、引入新变量等方式,拓展解题思路。
创新方法应用
将拓展的思路和方法应用到具体问题的求解中,提高解题效率。
05
方程应用题常见错误及纠 正方法
设立方程时常见错误
错误设立未知数
在设立方程时,未能正确识别问题中的未知数,导致方程设立错 误。
忽视问题中的限制条件
在设立方程时,未考虑问题中的限制条件,导致方程解不符合实际 情况。
一元一次方程
只含有一个未知数,并且 未知数的次数是1的方程 叫做一元一次方程。
一般形式
ax + b = 0(a、b为常数 ,a ≠ 0)。
方程解与根的概念
方程的解
使方程左右两边相等的未 知数的值叫做方程的解。
方程的根
方程的解也叫做方程的根 。

3.3 一元一次方程的应用(三)(课件)沪科版(2024)数学七年级上册

3.3  一元一次方程的应用(三)(课件)沪科版(2024)数学七年级上册
解题秘方:此类问题多用列表法找相等关系 .
解:设应调往甲处 x 人,则调往乙处(20-x) 人 . 知8-练
列表如下:
原有人数 增加人数
甲处
23
x
乙处
17
20-x
根据题意,得
1 2
×(23+x)
=17+(20-x)
.
解得 x=17,则 20-x=3.
现有人数 23+ x
17+( 20-x)
答:应调往甲处 17 人,调往乙处 3 人 .
组成的两位数,求原来的两位数 .
解题秘方:用各数位上的数字表示原数和新数, 知7-练
利用两个数之间的关系列方程 .
解:设原来的两位数个位上的数字为 x,
则十位上的数字为 9-x.
设间接未知数 .
根据题意,得 10(9-x) +x+63=10x+9-x.
解得 x=8. 所以 10(9-x) +x=18.
14-1.某校组建了90人的合唱队和15人的舞蹈队,根据知8-练 实际需要,从合唱队中准备抽调部分同学加入舞 蹈队,使合唱队的人数恰好是舞蹈队人数的4倍, 则需从合唱队中抽调多少人加入舞蹈队? 解:设需从合唱队中抽调x人加入舞蹈队. 根据题意,得90-x=4(15+x),解得x=6. 答:需从合唱队中抽调6人加入舞蹈队.
知8-练
解:设用x千克紫砂泥做茶壶,则用(9-x)千克紫砂泥做 茶杯. 由题意得3x×4=6(9-x),解得x=3, 所以9-x=6,3x=9. 答:应用3千克紫砂泥做茶壶,6千克紫砂泥做茶杯,可 配成9套.
知8-练
例14 学校组织植树活动,已知在甲处植树的有 23 人,在乙 处植树的有 17 人,现调 20 人去支援,使在甲处植树 的人数是在乙处植树人数的 2 倍,应调往甲、乙两处 各多少人?

应用一元一次方程ppt课件

应用一元一次方程ppt课件
解:(1)不可能,假设出售1 000张票所得票款是6 930元,
设售出的学生票为x张,则售出的成人票为(1000-x)张.
由题意得 5x+8(1 000-x)=6 930,
解得

x≈356 .

∴票的张数是正整数,所以所得票款不可能是6 930元.
方法总结:应用一元一次方程解决实际问题时,除了要检验方程的解是
成人票款+学生票款=6 950元.②
成人票8元/人,
学生票5元/人
二、新知探究
某文艺团体为“希望工程”募捐组织了一场义演,共售票1 000张,筹
得票款6 950元.售出成人票与学生票各多少张?
解:设售出的儿童票为x张,填写下表:
学生
票数/张
x
票款/元
5x
成人
1 000-x
8(1 000-x)
根据等量关系②,可列出方程
644-356=288.
答:所得票款可能是6 932元.其中成人票比学生票多售出288张.
二、新知探究
跟踪练习
地点
某校组织150名学生参观历史博物馆和民俗展览
馆,每一名学生只能参加其中一项活动,共支付 历史博物馆
票款2000元,票价信息右表所示:
民俗展览馆
(1)请问参观历史博物馆和民俗展览馆的人数各是多少人;
实际问题
抽象
寻找等量关系
解方程
解释
实际问题的解
数学问题(一元一次方程)
验证
数学问题的解(一
元一次方程的解)
六、作业布置
习题5.8
原有人数
调人员分配人数
现有人数
甲处
乙处
27
19
x
27+x

《一元一次方程的应用》PPT课件 (公开课获奖)2022年浙教版 (13)

《一元一次方程的应用》PPT课件 (公开课获奖)2022年浙教版 (13)

2、小明把x元按一年期的定期储蓄存入银行,年利
率为%,到期后可得利息 %x 元。
3、小明把x元按一年期的定期储蓄存入银行,年利率
为%,利息税的税率为20%,到期后应交利息
税 %x×20% 元。
最后小明实得本利和为
元。
〔x–x〕
银行存款涉及哪些数量? 它们有什么样的联系呢?
本金 利息 年利率 利息税税率 实得本利和
解得:x=500
检验:x=500适合方程,且符合题意. 答:小明存入银行的压岁钱有500元.
勤于稳固1:
1.某年二年期定期储蓄的年利率为%,所得利息需交 纳20%的利息税,某储户到期的实得利息为450元, 问该储户存入本金多少元?
解:设该储户存入本金x元,根据题意,得

×2 -%×2×20%
解得:x=12500 法二: %×2×〔1-20%〕=450
乙校年平均下降额较大.但是,年平均下降额 (名)不等同于年平均下降率(百分数)
经过计算,你能得出什么结论?本钱下降额 较大的药品,它的本钱下降率一定也较大 吗 ?应怎样全面地比较对象的变化状况?
经过计算,本钱下降额较大的药品,它的本钱 下降率不一定较大,应比较降前及降后的价格.
小结 类似地 这种增长率的问题在实际
喜讯
中雁学校在 2009年的中考中 再创佳绩,有20 名学生考上乐清 中学
学生家长贺
2009年7月
分析:封面的长宽之比为 27:21=9:7 ,中央矩形的长宽之比也应 是 9:7 ,由此判断上下边衬与左右边衬的宽度之比也是 9:7 .
设上、下边衬的宽均为9x dm,左、右边衬的宽均为7x dm,那么中央 矩形的长为〔27-18x〕 dm,宽为_〔__2_1_-__1_4_x_〕___dm.

七年级数学上册---一元一次方程应用题归类解题思路PPT课件

七年级数学上册---一元一次方程应用题归类解题思路PPT课件

1.市场经济问题 【例题】某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、 2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供 2280名学生就餐. 〔1〕求1个大餐厅、1个小餐厅分别可供多少名学生就餐; 解:设1个小餐厅可供名学生就餐,那么1个大餐厅可供〔1680-2y〕名学生就 餐,根据题意,得2〔1680-2y〕+y=2280解得:y=360〔名〕所以16802y=960〔名〕 〔2〕假设7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由. 解:因为960x5+360x2=5520>5300, 所以如果同时开放7个餐厅,能够供全校的5300名学生就餐.
【例题】两列火车分别行驶在平行的轨道上,其中快车车长为100米,慢车 车长150米,当两车相向而行时,快车驶过慢车某个窗口所用的时间为5秒。 ⑴ 两车的速度之和与两车相向而行时慢车经过快车某一窗口所用的时间各是 多少? 解:两车的速度之和=100÷5=20〔米/秒〕 慢车经过快车某一窗口所用的时间=150÷20=7.5〔秒〕 ⑵ 如果两车同向而行,慢车速度为8米/秒,快车从后面追赶慢车,那么从快 车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需的时间至少 是多少秒? 解:设至少是x秒,〔快车车速为20-8〕 那么〔20-8〕x-8x=100+150 x=62.5 答:至少62.5秒快车从后面追赶上并全部超过慢车。
【例题】与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。 行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。如果一 列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时 间是26秒。 ⑴ 行人的速度为每秒多少米? 行人的速度是:3.6km/时=3600米÷3600秒=1米/秒 骑自行车的人的速度是: 10.8km/时=10800米÷3600秒=3米/秒 ⑵ 这列火车的车长是多少米?

一元一次方程(组)实际应用PPT课件

一元一次方程(组)实际应用PPT课件

对解进行解释和应用
解释解的意义
根据实际问题背景,解释解的实际意义 和作用。
VS
应用解到实际问题
将解应用到实际问题中,解决实际问题, 并对结果进行评估和解释。
04
实际应用练习与思考
练习题一:购物问题
总结词
购物问题是一元一次方程在实际生活中的常见应用,主要涉及到商品价格、折扣、优惠 等方面的计算。
投资问题
总结词
投资问题通常涉及到利率、本金和收益等,通过建立一元一次方程可以计算出最优的投资方案。
详细描述
例如,某人有一定数量的本金,可以选择存入银行或购买股票等不同的投资方式,银行的年利率为2%, 股票的年收益率不确定但风险较大。通过一元一次方程可以计算出最优的投资方式。
03
解决实际问题的策略和技 巧

要点二
详细描述
在投资问题中,通常需要解决诸如“本金增长、利息计算 、投资回报”等问题。通过设立一元一次方程,可以预测 投资未来的收益和风险,从而做出明智的投资决策。
THANKS
感谢观看
解算方程
使用代数方法对方程进行 求解,得到未知数的值。
检验解的合理性
根据实际问题背景,检验 解的合理性,排除不合逻 辑或实际意义的解。
对解进行检验和验证
检验解的正确性
通过代入原方程或方程组,验证解是否满足原方程或方程组。
验证解的实际意义
根据实际问题背景,验证解是否符合实际情况,排除不符合实际意义的解。
02
工程设计
在工程设计中,我们需要解决各种实际问题,例如计算建筑物的面积、
体积、高度等,一元一次方程可以帮我们快速准确地完成这些计算。
03
经济分析
在经济分析中,我们需要分析各种经济数据,例如分析某个行业的市场

2024年秋湘教版七年级数学上册 3.4.1 一元一次方程的应用(一)(课件)

2024年秋湘教版七年级数学上册 3.4.1 一元一次方程的应用(一)(课件)

解得
x=23
答:经过 2 min,两人首次相遇.
例1 某房间里有4条腿的椅子和3条腿的凳子 共16把,如果椅子腿数与凳子腿数的和为60, 试问:有几张椅子和几把凳子?
分析:题目中的等量关系: 椅子数+凳子数=16, 椅子腿数+凳子腿数=60 .
例1 某房间里有4条腿的椅子和3条腿的凳子共16把,如椅子腿数与凳子腿数的和为60,
解得
x=18 .
因此,轮船在静水中的航行速度为18 km/h .
练一练
1.运动场的跑道一圈长400 m. 小健练习骑自行车,平
均每分钟骑350 m;小康练习跑步,平均每分钟跑250
m.两人从同一处同时反向出发,经过多少时间首次相
遇? 解:设经过 x min,两人首次相遇.
根据题意,得
350x+250x=400
合绣. 试问:再合绣多少天可以完成这件作品?
分析:设总工作量为1,则甲每天完成工作总量的115,乙
每天完成工作总量的112. 若设甲、乙两人合绣了x天,则甲 共绣了(x+1) 天,乙共绣了(x+4) 天.
例 2
刺绣是我国民间传统手工艺之一. 我国刺绣
主要有湘绣、苏绣、蜀绣、粤绣四大类. 若刺绣
一件作品,甲单独绣需要15天才能完成,乙单
试问:有几张椅子和几把凳子?
解:设有x张椅子,则有(16-x)把凳子.
根据题意,得
解得
4x+3(16-x)=60 . x=12 .
因此,凳子有 16-12=4 (把) .
答:有12张椅子,4把凳子.
练一练
1.儿子今年13岁,父亲今年40岁,是否有哪一 年父亲的年龄恰好是儿子年龄的四倍?为什么?
解:设 x 年后父亲的年龄恰好是儿子年龄的4倍.

浙教版初一数学一元一次方程的应用PPT演示课件

浙教版初一数学一元一次方程的应用PPT演示课件
浙教版初一数学一元一次方程 的应用ppt演示课件

CONTENCT

• 引言 • 一元一次方程的基本概念 • 一元一次方程的解法 • 一元一次方程的应用举例 • 一元一次方程与实际问题的结合 • 课堂互动与练习
01
引言
目的和背景
帮助学生理解一元一次方程的概念和应用
通过演示课件,学生可以更直观地了解一元一次方 程的定义、性质和解法,以及在实际问题中的应用 。
设定未知数
根据问题背景,合理设定 未知数,并用字母表示。
建立方程
根据问题中的等量关系, 建立一元一次方程。
方程解的合理性讨论
解的存在性
根据方程的形式和性质,判断方 程是否有解。
解的合理性
将方程的解代入实际问题中,检验 是否符合实际情况。
解的唯一性
根据方程的解和实际情况,判断方 程的解是否唯一。
实际问题的解决方案
骤。
利润问题
利润问题基本要素
介绍利润问题中的基本要素,包括进价、售价、利润和折扣等。
利润问题方程的建立
通过实例展示如何根据利润问题的基本要素建立一元一次方程。
利润问题方程的解法
详细解释如何解这类一元一次方程,包括列方程、解方程等步骤。
05
一元一次方程与实际问题的结合
建立数学模型
实际问题抽象化
将实际问题中的关键信息 抽象出来,用数学语言进 行描述。
练习题目
老师应当提供一些与一元一次方程应用相关的练 习题目,供学生在课堂上进行练习。
3
及时反馈
对于学生的测验和练习结果,老师应当及时给予 反馈,指出学生的不足之处,并提供相应的指导。
小组合作与讨论
分组合作
老师可以将学生分成若干小组,让每组学生共同 讨论和解决与一元一次方程应用相关的问题。

2024版人教版数学七上册第五章一元一次方程5.2.5 利用去分母解一元一次方程 教学课件ppt

2024版人教版数学七上册第五章一元一次方程5.2.5  利用去分母解一元一次方程 教学课件ppt

6 (4x+9) -10(3+2x) = 15(x-5).
去括号,得 x-1-4x-2 = 6. 去括号,得 24x+54-30-20x = 15x-75.
移项,得 x-4x = 6+2+1. 移项,得24x-20x-15x =-75-54+30 .
合并同类项,得-3x = 9.
合并同类项,得-11x = -99.
(1)不要漏乘不含分母的项; (2)如果分子是一个多项式,去分母时应将分子 作为一个整体加上括号.
3x 1 2 3x 2 2x 3
2
10
5
去分母(方程两边同乘各分母的最小公倍数)
5(3x 1) 10 2 (3x 2) 2(2x 3)
去括号
15x 5 20 3x 2 4x 6
程的特点灵活选用.
移项,得 2x + x = 8 + 2 – 2 + 4 .
对于2x+2-4=8+2-x,
合并同类项,得 3x = 12.
也可以先合并同类项,
系数化为1,得 x = 4.
再移项.
探究新知
(2)3x x- 1=3- 2x-1
2
3
解:去分母(方程两边乘6),得
18x + 3(x – 1)= 18 – 2(2x – 1)
去括号,得 18x + 3x – 3 = 18 – 4x + 2
移项,得 18x + 3x +4x = 18 + 2 + 3
合并同类项,得 25x = 23
系数化为1,得 x 23
25
探究新知
学生活动三 【一起探究】
解下列方程: 3 x 1 2.5 0.4 2x 7.5

一元一次方程的应用ppt课件

一元一次方程的应用ppt课件
答: 应从第二条生产线调 12 人到第一条生产线.
知1-练
3-1. [期末·上海松江区]甲、乙两个车间工作人员的人数之
知1-练
比是3∶ 4,乙车间突然遇上紧急事件,急需增加人员,
即刻从甲车间调出12人到乙车间,这时甲车间人数是

乙车间人数的 ,甲车间原有多少人?

解:设甲车间原有3x人,则乙车间原有4x人,
(1) 求八年级选取的人数;
解:设八年级选取x人,则九年级选取2x人,
由题意,得25+x+2x=100,解得x=25.
答:八年级选取25人.
知1-练
(2)如果下一次学校选取志愿者,七年级的人数至少要
30人,则七年级志愿者人数至少要增加百分之几?
解:(30-25)÷25=20%.
答:七年级志愿者人数至少要增加20%.
若甲、乙同时出发,则相遇时,甲用的时间 = 乙用的时间 .
(2) 追及问题中的相等关系: ①当快者追上慢者时,快者走的
路程 -慢者走的路程 = 追及路程;②若同时出发,当快者
追上慢者时,快者用的时间 = 慢者用的时间 .
(3) 航行问题中的相等关系: 顺水(顺风)速度 = 静水(无风) 速度
+ 水(风)速,逆水(逆风)速度 = 静水(无风)速度 -水(风)速 .
速度为 60 km/h,一列快车从乙站开出,速度为 90 km/h.
(1)若两车相向而行,慢车先开 30 min,快车开出几小时
后两车相遇?
(2)若两车同时开出,相背而行,多少小时后两车相距
1 800 km ?
(3)若两车同时开出,快车在慢车后面同向而行,多少小
时后两车相距 1 200 km(此时快车在慢车的后面)?
同向:两列火车所行路程的差 = 两列火车车身长的和 .

2024年秋新湘教版七年级上册数学课件 3.4 一元一次方程的应用

2024年秋新湘教版七年级上册数学课件 3.4 一元一次方程的应用

A. 33
B. 32
C. 30
D. 29
感悟新知
知1-练
例3 甲、乙、丙三位爱心人士向贫困山区的希望小学捐赠 图书,已知这三位爱心人士捐赠图书的册数之比是 5∶ 8∶ 9,如果他们共捐赠 748 册图书,那么这三位 爱心人士各捐赠多少册图书?
感悟新知
知1-练
解题秘方:若未知量以比例的形式出现,则解决 问题的关键是求出单位量,通过设单 位量表示总量列方程 .
感悟新知
知1-讲
2. 常见的两种基本等量关系: (1) 总量与分量关系问题: 总量 = 各分量的和; (2) 余缺问题: 表示同一个量的两个不同的式子相等 .
感悟新知
特别提醒
知1-讲
列一元一次方程解决实际问题时需要注意:
1. 恰当地设未知数可以简化运算,且单位要统一;
2. 题中的相等关系不一定只有一个,要根据具体情
知1-练
感悟新知
1-1. [期末·永州]某校花费 700 元购买 A,B 两种笔记本知,1-练 其中 A种笔记本每本 5 元, B种笔记本每本 3 元, 购买的 A 种笔记本比 B 种笔记本的 2 倍多 10 本, 问购买 A, B 两种笔记本各多少本? 解:设购买B种笔记本x本,则购买A种笔记本(2x+10)本, 根据题意,得5(2x+10)+3x=700,解得x=50. 则2x+10=110. 答:购买A,B两种笔记本分别是110本、50本.
知1-练
解题秘方:根据分量的和等于总量,即到甲纪念 馆参观的学生人数 + 到乙纪念馆参观 的学生人数 = 参观学生总数,列出方 程,解决问题 .
感悟新知
解:设到乙纪念馆参观的学生有 x 名, 则到甲纪念馆参观的学生有(2x-10)名 . 根据题意,得 2x-10+x=200. 移项,得 2x+x=200+10. 合并同类项,得 3x=210. 两边都除以 3,得 x=70. 答:到乙纪念馆参观的学生有 70 名 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

美国芝加哥 “时速队” 得了几分?
(1)你能直接列出算式求美国芝加哥“时速队”的得分吗?
(2)如果用列方程的方法求解,你准备设哪个未知数为X?
(3)根据怎样的相等关系来列方程?方程的解是多少?
解:设美国芝加哥“时速队”得了X 由题意得
分, 2X-65=81
2×时速队的得分 - 65= 猛狮队的得分
解之得 X=73
2020年10月2日
6
甲、乙两人分别从东中体育馆,吴宁三中两
地同时出发,甲步行,乙骑电动车,沿着同 一条路线相向匀速行走,出发后经8分钟两 人相遇,已知在相遇时乙比甲多行了1600米, 相遇后经1.6分钟乙到达东中体育馆,问甲、
乙行驶的速度分别是多少?
2020年10月2日
7
甲、乙两人分别从东中体育馆,吴宁三中两地同时出
检验:X=73适合方程,且符合题意
202答0年:10月美2日国芝加哥“时速队”得了73分。
4
我校五位老师带着本校的体育生一起去观看这次 “中美篮球对抗赛”
教师门票按全票价每人100元, 学生只收半价,已知共付门票 费1100元。
你能算出带 了多少名体 育生吗?
老师的总票价+体育 解:设带了X名体育生,由题意得 生的总票价=1100
5×100+50X=1100 解之得 X=12
检验:X=12适合方程,且符合题意
答:共带了12名体育生。
2020年10月2日
5
列方程是解决实际问题的有效途径之一
1、审题:分析题意,找出图中的数量及其关系 2、设元:选择一个适当的未知数用字母表示(如X) 3、列方程:根据找出的相等关系列出方程 4、解方程:求出未知数的值 5、检验:检查求得的值是否正确和符合实际情形, 6、答:写出答案
汇报人:XXX 汇报日期:20XX年10月10日
13
10
1、列一元一次方程解应用题的一般步骤: 一审,二设,三列,四解,五检,六答
2、能运用一元一次方程解决一些实际问题
3、在解较复杂的行程问题时,可利用数形结合 的思想,借助线段图来分析问题中的数量关系
2020年10月2日
11
A组:作业题1、2、3、4
B组:作业题1、2、3、4、另加下题: 5、某学 生在做作业时,不慎将墨水瓶打翻,使一道作业 题只看到如下字样:“甲、乙两地相距40千米/ 小时,运货汽车的速度为35千米/小时,-------------(横线部分表示被墨水覆盖的若干文字),请 你将这道作业题补充完整,并列方程解答。
东中体
育馆 乙 1.6分钟走的路程
1、三个连续的奇数的和为57,求这三个数。若设中间一 个奇数为X,则另外两个为__X_-_2___、_X_+__2___,并可得方 程为_(__X_-_2_)__+_X__+_(__X+2)=57
2、在某个月的日历表中任意圈出一个横列上相邻的三个 数,和为57,若设中间一个数为X,则另外两个为 __X_-_1___、__X_+__1__,并可得方程为(_X__-_1_)__+_X_+_(__X__+1)=57
在某个月的日历表中任意圈出一个竖列上相邻的三个数, 和为57,若设中间一个数为X,则另外两个为__X_-_7___、 __X_+_7___,并可得方程为(__X__-_7_)__+_X_+_(__X_ +7)=57
2020年10月2日
9
上题中适当化简后可得方程1.6X+320=8X,
2020年10月2日
发,甲步行,乙骑电动车,沿着同一条路线相向匀速 行走,出发后经8分钟两人相遇,已知在相遇时乙比 甲多行了1600米,相遇后经1.6分钟乙到达东中体育馆,
问甲、乙行驶的速度分别是多少?
相遇前甲行驶的路程+1600=相遇前乙行驶的路中
乙8分钟 走的路程
甲8分钟 走的路程
C组:作业题1、2、3、4、5
2020年10月2日
12
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
2020年10月2日
1
2020年10月2日
2
浙江广厦“猛狮”队获得了 81分,比美国芝加哥“时速 队”得分的2倍少65分。
哪支球队 赢了?
2005年10月17日晚,在原东阳中学体育馆举行了
“中美篮球对抗赛”,由浙江广厦“猛狮”队抗
衡2020美年10国月2日芝加哥“时速队”
3
浙江广厦“猛狮”队获得了 81分,比美国芝加哥“时速 队”得分的2倍少65分。
相关文档
最新文档