北理工数值分析大作业
孙志忠北京理工大学偏微分方程数值解上机作业
偏微分方程数值解大作业目录第一题 (3)第二题 (7)第三题 (16)第四题 (20)第五题 (26)第六题(附加题1) (39)第七题(附加题2) (45)第八题(附加题3) (51)第一题习题13.(1)解曲线图图1 (2)误差曲线图图2(3)表格表1 部分点处精确解和取不同步长时所得的数值解表2 取不同步长时部分结点处数值解的误差的绝对值和数值解的最大误差(4)MATLAB源代码M=64;a=0;b=pi/2;h=(b-a)/M;x=[a+h:h:b-h];u=zeros(M-1,M-1);u(1,1)=(2/h^2)+(x(1)-1/2)^2;u(1,2)=-(1/h^2);u(M-1,M-1)=(2/h^2)+(x(M-1)-1/2)^2;u(M-1,M-2)=-(1/h^2);for i=2:M-2u(i,i-1)=-(1/h^2);u(i,i)=(2/h^2)+(x(i)-1/2)^2;u(i,i+1)=-(1/h^2);endf=zeros(M-1,1)f(1)=(x(1).*x(1)-x(1)+5/4).*sin(x(1));f(M-1)=(x(M-1).*x(M-1)-x(M-1)+5/4).*sin(x(M-1))+1/h^2; for j=2:M-2f(j)=(x(j).*x(j)-x(j)+5/4).*sin(x(j));endy=inv(u)*f; true=sin(x); plot(x,y'-true)第二题习题二(P67 第3题)(1)h=1/4, τ=1/4精确解数值解误差(2)h=1/8, τ=1/8精确解数值解误差(3)h=1/16, τ=1/16精确解数值解误差(4)h=1/32, τ=1/32精确解数值解误差(5)h=1/64, τ=1/64精确解精确解误差(6)表格(7)Matlab代码function[p,e,u,x,y,k]=fivepoint(h,m,n,kmax,ep)%五点差分法和G-S迭代法解椭圆型方程%kmax为最大迭代次数;%m,n分别为x,y方向的网格数;%ep为精度;%u为差分解,p为精确解,e为误差;%例如在命令行窗口输入[p,e,u,x,y,k]=fivepoint(1/64,64,64,10000,1e-10);%代表步长为1/64,精度为10^(-10),最大迭代次数为10000的五点差分格式syms temp;u=zeros(n+1,m+1);x=0+(0:m)*h;y=0+(0:n)*h;for(j=1:n+1)u(j,1)=sin(y(j))+cos(y(j));u(j,m+1)=exp(1)*(sin(y(j))+cos(y(j)));endfor(i=1:m+1)u(1,i)=exp(x(i));u(n+1,i)=exp(x(i))*(sin(1)+cos(1));endt=zeros(n-1,m-1);for(k=1:kmax)for(j=2:n)for(i=2:m)temp=(u(j,i+1)+u(j,i-1)+u(j+1,i)+u(j-1,i))/4; t(j,i)=(temp-u(j,i))*(temp-u(j,i));u(j,i)=temp;endendt(j,i)=sqrt(t(j,i));if(k>kmax)break;endif(max(max(t))<ep)break;endendfor(j=1:n+1)for(i=1:m+1)p(j,i)=(sin(y(j))+cos(y(j)))*exp(x(i));e(j,i)=abs(u(j,i)-p(j,i));endend代码使用说明:在命令行窗口输入[p,e,u,x,y,k]=fivepoint(1/64,64,64,10000,1e-10);代表步长为1/64,精度为10^(-10),最大迭代次数为10000的五点差分格式surf(x,y,p)可作出近似解曲线surf(x,y,u)可作出精确解曲线surf(x,y,e)可作出误差曲线注意精度不要选取的太低,否则随着步长减小误差反而增大。
数值分析大作业三四五六七
数值分析大作业三四五六七数值分析大作业三四五六七Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】大作业三1. 给定初值0x 及容许误差,编制牛顿法解方程f (x )=0的通用程序. 解:Matlab 程序如下:函数m 文件:fu.mfunction Fu=fu(x)Fu=x^3/3-x;end函数m 文件:dfu.mfunction Fu=dfu(x)Fu=x^2-1;end用Newton 法求根的通用程序Newton.mclear;x0=input('请输入初值x0:');ep=input('请输入容许误差:');flag=1;while flag==1x1=x0-fu(x0)/dfu(x0);if abs(x1-x0)<ep< p="">flag=0;endx0=x1;endfprintf('方程的一个近似解为:%f\n',x0);寻找最大δ值的程序:Find.mcleareps=input('请输入搜索精度:');ep=input('请输入容许误差:');flag=1;k=0;x0=0;while flag==1sigma=k*eps;x0=sigma;k=k+1;m=0;flag1=1;while flag1==1 && m<=10^3x1=x0-fu(x0)/dfu(x0);if abs(x1-x0)endm=m+1;x0=x1;endif flag1==1||abs(x0)>=epflag=0;endendfprintf('最大的sigma 值为:%f\n',sigma);2.求下列方程的非零根5130.6651()ln 05130.665114000.0918x x f x x +??=-= ?-解:Matlab 程序为:(1)主程序clearclcformat longx0=765;N=100;errorlim=10^(-5);x=x0-f(x0)/subs(df(),x0);n=1;while n<n< p="">x=x0-f(x0)/subs(df(),x0);if abs(x-x0)>errorlimn=n+1;elsebreak;endx0=x;enddisp(['迭代次数: n=',num2str(n)])disp(['所求非零根: 正根x1=',num2str(x),' 负根x2=',num2str(-x)])(2)子函数非线性函数ffunction y=f(x)y=log((513+0.6651*x)/(513-0.6651*x))-x/(1400*0.0918);end(3)子函数非线性函数的一阶导数dffunction y=df()syms x1y=log((513+0.6651*x1)/(513-0.6651*x1))-x1/(1400*0.0918);y=diff(y);end运行结果如下:迭代次数: n=5所求非零根: 正根x1=767.3861 负根x2=-767.3861大作业四试编写MATLAB 函数实现Newton 插值,要求能输出插值多项式. 对函数21()14f x x=+在区间[-5,5]上实现10次多项式插值.分析:(1)输出插值多项式。
北京理工大学2008级数值分析试题及答案
课程编号:12000044 北京理工大学2009-2010学年第二学期2008级计算机学院《数值分析》期末试卷A 卷班级 学号 姓名 成绩注意:① 答题方式为闭卷。
② 可以使用计算器。
请将填空题和选择题的答案直接填在试卷上,计算题答在答题纸上。
一、 填空题(每空2分,共30分)1. 设函数f (x )区间[a ,b]内有二阶连续导数,且f (a )f (b )<0, 当 时,用双点弦截法产生的解序列收敛到方程f (x )=0的根。
2. n 个求积节点的插值型求积公式的代数精确度至少为______次,n 个求积节点的高斯求积公式的代数精度为 。
3. 已知a =3.201,b =0.57是经过四舍五入后得到的近似值,则a ⨯b 有 位有效数字,a +b 有 位有效数字。
4. 当x =1,-1,2时,对应的函数值分别为f (-1)=0,f (0)=2,f (4)=10,则f (x )的拉格朗日插值多项式是 。
5. 设有矩阵⎥⎦⎤⎢⎣⎡-=4032A ,则‖A ‖1=_______。
6. 要使...472135.420=的近似值的相对误差小于0.2%,至少要取 位有效数字。
7. 对任意初始向量0()X 和常数项N ,有迭代公式1()()k k x Mx N +=+产生的向量序列{}()k X 收敛的充分必要条件是 。
8. 已知n=3时的牛顿-科特斯系数,83,81)3(1)3(0==C C 则=)4(2C ,=)3(3C 。
9. 三次样条函数是在各个子区间上的 次多项式。
10. 用松弛法 (9.0=ω)解方程组⎪⎩⎪⎨⎧=+-=++--=++3103220241225322321321x x x x x x x x x 的迭代公式是。
11. 用牛顿下山法求解方程033=-x x 根的迭代公式是 ,下山条件是 。
二、选择填空(每题2分,共10分)1. 已知数x 1=721 x 2=0.721 x 3=0.700 x 4=7*10-2是由四舍五入得到的,则它们的有效数字的位数应分别为( )。
北理工_大数据分析报告_实验3_Matlab大数据处理
理工大学现代数据分析实验3实验报告主讲:明学生:经2012/10/24实验3数据处理1 (1)3.1实验目的 (1)3.1.1进一步熟悉Matlab数据处理基本功能。
(1)3.2实验容 (1)3.2.1成绩评估 (1)3.2.2曲线作图 (1)3.3实验代码及结果 (1)3.3.1成绩评估 (1)3.3.2曲线作图 (4)(图表页)图1.y1,y2,y3,y6曲线图 (5)图2.y4,y5曲线图 (6)图3.y7,y8曲线图 (6)实验3数据处理13.1实验目的3.1.1进一步熟悉Matlab数据处理基本功能。
3.2实验容3.2.1成绩评估某班5名学生,5门课程,生成学生成绩并进行统计:单人/单科(平均分,总分,标准差),全班学生优良率统计。
3.2.2曲线作图作出如下曲线,sin(x), sin(3x), sin(x)+sin(3x), x2,x3,1/x,log2(x),log10(x)含多曲线合成图,多子图合成图,用title命令、label命令和axis命令对图形进行规化。
3.3实验代码及结果3.3.1成绩评估代码:score=floor(rand(5,5)*40+60) %生成成绩,8人,6门/人sumLie=sum(score) %列求和sumHang=sum(score') %转置后利用列求和命令,实现行求和meanLie=mean(score) %列平均meanHang=mean(score') %行平均a=meanHang' %meanHang由列转置为行stdLie=std(score) %列标准差stdHang=std(score') %行标准差youliang=score>=80 %生成优良矩阵youliangHang=sum(youliang') %优良矩阵的行求和youlianglvHang=sum(youliang')/5 %优良门次除以总门次得优良率youliangLie=sum(youliang) %优良矩阵的行求和youlianglvLie=sum(youliang)/5 %优良人次除以总人数得优良率结果:score =69 97 71 64 8883 73 75 77 7180 76 80 78 7078 72 88 60 8881 76 72 86 91sumLie =391 394 386 365 408sumHang =389 379 384 386 406meanLie =78.2000 78.8000 77.2000 73.0000 81.6000 meanHang =77.8000 75.8000 76.8000 77.2000 81.2000a =77.800075.800076.800077.200081.2000stdLie =5.4498 10.32966.9785 10.7238 10.2127 stdHang =14.0250 4.6043 4.1473 11.7983 7.5961 youliang =0 1 0 0 11 0 0 0 01 0 1 0 00 0 1 0 11 0 0 1 1youliangHang =2 1 2 2 3youlianglvHang =0.4000 0.2000 0.4000 0.4000 0.6000 youliangLie =3 1 2 1 3youlianglvLie =0.6000 0.2000 0.4000 0.2000 0.60003.3.2曲线作图代码:x=-100:100;y1=sin(x);y2=sin(3*x);y3=sin(x)+sin(3*x);y4=power(x,2);y5=power(x,3);y6=1./x;y7=log2(x);y8=log10(x);subplot(2,2,1), plot(x,y1,'r-');title('y1=sin(x)');axis([0 100 -1 1]);subplot(2,2,2), plot(x,y2,'g-');title('y2=sin(3*x)');axis([0 100 -1 1]);subplot(2,2,3), plot(x,y3,'b-');title('y3=sin(x)+sin(3*x)');axis([0 100 -2 2]);subplot(2,2,4), plot(x,y6,'r-');title('y6=1./x');figure(2);plotyy(x,y4,x,y5);title('y4=x^2 and y5=x^3');xlabel('x');ylabel('y');figure(3);plotyy(x,y7,x,y8);title('y7=log2(x) and y8=log10(x)'); xlabel('x');ylabel('y');axis auto;结果:。
北理工数值计算方法试题及答案
数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。
5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。
10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。
数值分析大作业四
《数值分析》大作业四一、算法设计方案:复化梯形积分法,选取步长为1/500=0.002,迭代误差控制在E ≤1.0e-10①复化梯形积分法:11()[()()2()]2n bak hf x dx f a f b f a kh -=⎰≈+++∑,截断误差为:322()''()''(),[,]1212T b a b a R f h f a b n ηηη--=-=-∈其中。
复化Simpson 积分法,选取步长为1/50=0.02,迭代误差控制在E ≤1.0e-10②Simpson 积分法:121211()[()()4()2()]3m m bi i a i i hf x dx f a f b f x f x --==≈+++∑∑⎰, 截断误差为:4(4)(),[,]180s b a R h f a b ηη-=-∈。
③Guass积分法选用Gauss-Legendre 求积公式:111()()ni i i f x dx A f x -=≈∑⎰截断误差为:R= ()()n 2n 422n!2×(2[2!]2n 1f n n ⨯(2)η())+ η∈(1,1)。
选择9个节点:-0.9681602395,-0.8360311073,-0.6133714327,-0.3242534234,0,0.3242534234,0.6133714327,0.8360311073,0.9681602395, 对应的求积系数依次为:0.0812743884,0.1806481607,0.2606106964,0.3123470770,0.3302393550,0.3123470770,0.2606106964,0.1806481607,0.0812743884。
二、程序源代码:#include<stdio.h>#include<math.h>#include<stdlib.h>#define E 1.0e-10/****定义函数g和K*****/double g(double a){double b;b=exp(4*a)+(exp(a+4)-exp(-a-4))/(a+4);return b;}double K(double a,double b){double c;c=exp(a*b);return c;}/******复化梯形法******/void Tixing( ){double u[1001],x[1001],h,c[1001],e;int i,j,k;FILE *fp;fp=fopen("f:/result0. xls ","w");h=1.0/1500;for(i=0;i<3001;i++){x[i]=i*h-1;u[i]=g(x[i]);}for(k=0;k<100;k++){e=0;for(i=0;i<1001;i++){for(j=1,c[i]=0;j<N-1;j++)c[i]+=K(x[i],x[j])*u[j];u[i]=g(x[i])-h*c[i]-h/2*(K(x[i],x[0])*u[0]+K(x[i],x[N-1])*u[N-1]);e+=h*(exp(4*x[i])-u[i])*(exp(4*x[i])-u[i]);}if(e<=E) break;}for(i=0;i<1001;i++)fprintf(fp,"%.12lf,%.12lf\n",x[i],u[i]);fclose(fp);}/******复化Simpson法******/void simpson( ){double u[101],x[101],h,c[101],d[101],e;int i,j,k;FILE *fp;fp=fopen("f:/result1.xls","w");h=1.0/50;for(i=0;i<101;i++){x[i]=i*h-1;u[i]=g(x[i]);}for(k=0;k<50;k++){e=0;for(i=0;i<101;i++){for(j=1,c[i]=0,d[i]=0;j<51;j++){c[i]+=K(x[i],x[2*j-1])*u[2*j-1];if(j<50)d[i]+=K(x[i],x[2*j])*u[2*j];}u[i]=g(x[i])-4*h/3*c[i]-2*h/3*d[i]-h/3*(K(x[i],x[0])*u[0]+K(x[i],x[M-1])*u[M-1]);e+=h*(exp(4*x[i])-u[i])*(exp(4*x[i])-u[i]);}if(e<=E) break;}for(i=0;i<101;i++)fprintf(fp,"%.12lf,%.12lf\n",x[i],u[i]);fclose(fp);}/******Gauss积分法******/void gauss( ){double x[9]={-0.9681602395,-0.8360311073,-0.6133714327,-0.3242534234,0,\0.3242534234,0.6133714327,0.8360311073,0.9681602395},A[9]={0.0812743884,0.1806481607,0.2606106964,0.3123470770,0.3302393550,\0.3123470770,0.2606106964,0.1806481607,0.0812743884},u[9],c[9],e;int i,j,k;FILE *fp;fp=fopen("f:/result2. xls ","w");for(i=0;i<9;i++)u[i]=g(x[i]);for(k=0;k<50;k++){e=0;for(i=0;i<9;i++){for(j=0,c[i]=0;j<9;j++)c[i]+=A[j]*K(x[i],x[j])*u[j];u[i]=g(x[i])-c[i];e+=A[i]*(exp(4*x[i])-u[i])*(exp(4*x[i])-u[i]);}if(e<=E) break;}for(i=0;i<9;i++)fprintf(fp,"%.12lf,%.12lf\n",x[i],u[i]);fclose(fp);}/******主函数******/main(){Tixing ( );Simpson( );Gauss( );return 0;}三、运算结果复化梯形数据-10.018323-0.920.02523-0.9980.018471-0.9180.025433-0.9960.018619-0.9160.025637-0.9940.018768-0.9140.025843-0.9920.018919-0.9120.026051-0.990.019071-0.910.02626-0.9880.019224-0.9080.026471-0.9860.019378-0.9060.026683-0.9840.019534-0.9040.026897-0.9820.019691-0.9020.027113-0.980.019849-0.90.027331-0.9780.020008-0.8980.02755-0.9760.020169-0.8960.027772-0.9740.020331-0.8940.027995-0.9720.020494-0.8920.028219-0.970.020658-0.890.028446-0.9680.020824-0.8880.028674-0.9660.020992-0.8860.028905-0.9640.02116-0.8840.029137-0.9620.02133-0.8820.029371-0.960.021501-0.880.029607-0.9580.021674-0.8780.029844-0.9560.021848-0.8760.030084-0.9540.022023-0.8740.030326-0.9520.0222-0.8720.030569-0.950.022378-0.870.030815-0.9480.022558-0.8680.031062-0.9460.022739-0.8660.031311-0.9440.022922-0.8640.031563-0.9420.023106-0.8620.031816-0.940.023291-0.860.032072-0.9380.023478-0.8580.032329-0.9360.023667-0.8560.032589-0.9340.023857-0.8540.032851-0.9320.024048-0.8520.033114-0.930.024241-0.850.03338-0.9280.024436-0.8480.033648-0.9260.024632-0.8460.033918-0.9240.02483-0.8440.034191-0.9220.025029-0.8420.034465-0.840.034742-0.760.047841-0.8380.035021-0.7580.048225-0.8360.035302-0.7560.048613 -0.8340.035586-0.7540.049003 -0.8320.035872-0.7520.049396 -0.830.03616-0.750.049793 -0.8280.03645-0.7480.050193 -0.8260.036743-0.7460.050596 -0.8240.037038-0.7440.051002 -0.8220.037335-0.7420.051412 -0.820.037635-0.740.051825 -0.8180.037937-0.7380.052241 -0.8160.038242-0.7360.052661 -0.8140.038549-0.7340.053084 -0.8120.038858-0.7320.05351 -0.810.039171-0.730.05394 -0.8080.039485-0.7280.054373 -0.8060.039802-0.7260.054809 -0.8040.040122-0.7240.05525 -0.8020.040444-0.7220.055693 -0.80.040769-0.720.056141 -0.7980.041096-0.7180.056591 -0.7960.041426-0.7160.057046 -0.7940.041759-0.7140.057504 -0.7920.042094-0.7120.057966 -0.790.042432-0.710.058431 -0.7880.042773-0.7080.058901 -0.7860.043116-0.7060.059374 -0.7840.043463-0.7040.05985 -0.7820.043812-0.7020.060331 -0.780.044164-0.70.060816 -0.7780.044518-0.6980.061304 -0.7760.044876-0.6960.061796 -0.7740.045236-0.6940.062293 -0.7720.045599-0.6920.062793 -0.770.045966-0.690.063297 -0.7680.046335-0.6880.063805 -0.7660.046707-0.6860.064318 -0.7640.047082-0.6840.064834 -0.7620.04746-0.6820.065355-0.680.06588-0.60.090722 -0.6780.066409-0.5980.091451-0.6760.066942-0.5960.092185 -0.6740.06748-0.5940.092926 -0.6720.068022-0.5920.093672 -0.670.068568-0.590.094424 -0.6680.069119-0.5880.095183 -0.6660.069674-0.5860.095947 -0.6640.070234-0.5840.096718 -0.6620.070798-0.5820.097494 -0.660.071366-0.580.098277 -0.6580.071939-0.5780.099067 -0.6560.072517-0.5760.099862 -0.6540.0731-0.5740.100664 -0.6520.073687-0.5720.101473 -0.650.074278-0.570.102288 -0.6480.074875-0.5680.103109 -0.6460.075476-0.5660.103937 -0.6440.076082-0.5640.104772 -0.6420.076694-0.5620.105614 -0.640.077309-0.560.106462 -0.6380.07793-0.5580.107317 -0.6360.078556-0.5560.108179 -0.6340.079187-0.5540.109048 -0.6320.079823-0.5520.109924 -0.630.080464-0.550.110806 -0.6280.08111-0.5480.111696 -0.6260.081762-0.5460.112593 -0.6240.082418-0.5440.113498 -0.6220.08308-0.5420.114409 -0.620.083748-0.540.115328 -0.6180.08442-0.5380.116254 -0.6160.085098-0.5360.117188 -0.6140.085782-0.5340.118129 -0.6120.086471-0.5320.119078 -0.610.087165-0.530.120035 -0.6080.087865-0.5280.120999 -0.6060.088571-0.5260.12197 -0.6040.089282-0.5240.12295 -0.6020.089999-0.5220.123938-0.550.110806-0.470.152592 -0.5480.111696-0.4680.153817-0.5460.112593-0.4660.155053-0.5440.113498-0.4640.156298-0.5420.114409-0.4620.157553-0.540.115328-0.460.158819-0.5380.116254-0.4580.160095-0.5360.117188-0.4560.16138-0.5340.118129-0.4540.162677-0.5320.119078-0.4520.163983-0.530.120035-0.450.1653-0.5280.120999-0.4480.166628-0.5260.12197-0.4460.167966-0.5240.12295-0.4440.169315-0.5220.123938-0.4420.170675-0.520.124933-0.440.172046-0.5180.125936-0.4380.173428-0.5160.126948-0.4360.174821-0.5140.127967-0.4340.176225-0.5120.128995-0.4320.17764-0.510.130031-0.430.179067-0.5080.131076-0.4280.180505-0.5060.132128-0.4260.181955-0.5040.13319-0.4240.183416-0.5020.134259-0.4220.18489-0.50.135338-0.420.186375-0.4980.136425-0.4180.187871-0.4960.13752-0.4160.18938-0.4940.138625-0.4140.190901-0.4920.139738-0.4120.192435-0.490.140861-0.410.19398-0.4880.141992-0.4080.195538-0.4860.143132-0.4060.197109-0.4840.144282-0.4040.198692-0.4820.145441-0.4020.200288-0.480.146609-0.40.201897-0.4780.147786-0.3980.203518-0.4760.148973-0.3960.205153-0.4740.15017-0.3940.206801-0.4720.151376-0.3920.208462-0.390.210136-0.310.289382 -0.3880.211824-0.3080.291706-0.3860.213525-0.3060.294049 -0.3840.21524-0.3040.296411 -0.3820.216969-0.3020.298792 -0.380.218711-0.30.301192 -0.3780.220468-0.2980.303611 -0.3760.222239-0.2960.306049 -0.3740.224024-0.2940.308508 -0.3720.225823-0.2920.310985 -0.370.227637-0.290.313483 -0.3680.229465-0.2880.316001 -0.3660.231308-0.2860.318539 -0.3640.233166-0.2840.321098 -0.3620.235039-0.2820.323677 -0.360.236927-0.280.326277 -0.3580.23883-0.2780.328897 -0.3560.240748-0.2760.331539 -0.3540.242682-0.2740.334202 -0.3520.244631-0.2720.336886 -0.350.246596-0.270.339592 -0.3480.248576-0.2680.34232 -0.3460.250573-0.2660.345069 -0.3440.252586-0.2640.347841 -0.3420.254614-0.2620.350635 -0.340.256659-0.260.353451 -0.3380.258721-0.2580.35629 -0.3360.260799-0.2560.359151 -0.3340.262894-0.2540.362036 -0.3320.265005-0.2520.364944 -0.330.267134-0.250.367875 -0.3280.269279-0.2480.37083 -0.3260.271442-0.2460.373809 -0.3240.273622-0.2440.376811 -0.3220.27582-0.2420.379838 -0.320.278035-0.240.382888 -0.3180.280268-0.2380.385964 -0.3160.28252-0.2360.389064 -0.3140.284789-0.2340.392189 -0.3120.287076-0.2320.395339-0.230.398514-0.150.548804-0.2280.401715-0.1480.553212-0.2260.404942-0.1460.557655 -0.2240.408194-0.1440.562134 -0.2220.411473-0.1420.56665 -0.220.414778-0.140.571201 -0.2180.418109-0.1380.575789 -0.2160.421467-0.1360.580414 -0.2140.424853-0.1340.585076 -0.2120.428265-0.1320.589775 -0.210.431705-0.130.594512 -0.2080.435172-0.1280.599287 -0.2060.438668-0.1260.604101 -0.2040.442191-0.1240.608953 -0.2020.445743-0.1220.613844 -0.20.449323-0.120.618774 -0.1980.452932-0.1180.623744 -0.1960.45657-0.1160.628754 -0.1940.460237-0.1140.633805 -0.1920.463934-0.1120.638895 -0.190.46766-0.110.644027 -0.1880.471416-0.1080.6492 -0.1860.475203-0.1060.654414 -0.1840.47902-0.1040.659671 -0.1820.482867-0.1020.664969 -0.180.486746-0.10.67031 -0.1780.490655-0.0980.675694 -0.1760.494596-0.0960.681121 -0.1740.498569-0.0940.686592 -0.1720.502573-0.0920.692107 -0.170.50661-0.090.697666 -0.1680.510679-0.0880.70327 -0.1660.514781-0.0860.708919 -0.1640.518916-0.0840.714613 -0.1620.523084-0.0820.720352 -0.160.527285-0.080.726138 -0.1580.53152-0.0780.731971 -0.1560.535789-0.0760.73785 -0.1540.540093-0.0740.743776 -0.1520.544431-0.0720.749751-0.070.7557730.01 1.040796 -0.0680.7618430.012 1.049156-0.0660.7679620.014 1.057583 -0.0640.7741310.016 1.066077 -0.0620.7803480.018 1.07464 -0.060.7866160.02 1.083272 -0.0580.7929340.022 1.091973 -0.0560.7993030.024 1.100743 -0.0540.8057230.026 1.109585 -0.0520.8121950.028 1.118497 -0.050.8187190.03 1.127481 -0.0480.8252950.032 1.136537 -0.0460.8319240.034 1.145666 -0.0440.8386060.036 1.154868 -0.0420.8453410.038 1.164144 -0.040.8521310.04 1.173494 -0.0380.8589760.042 1.18292 -0.0360.8658750.044 1.192421 -0.0340.872830.046 1.201999 -0.0320.879840.048 1.211654 -0.030.8869070.05 1.221386 -0.0280.8940310.052 1.231196 -0.0260.9012120.054 1.241085 -0.0240.9084510.056 1.251054 -0.0220.9157480.058 1.261102 -0.020.9231030.06 1.271232 -0.0180.9305170.062 1.281442 -0.0160.9379910.064 1.291735 -0.0140.9455250.066 1.30211 -0.0120.953120.068 1.312569 -0.010.9607750.07 1.323112 -0.0080.9684930.072 1.333739 -0.0060.9762720.074 1.344452 -0.0040.9841130.076 1.355251 -0.0020.9920180.078 1.366136 00.9999860.08 1.377109 0.002 1.0080180.082 1.38817 0.004 1.0161140.084 1.39932 0.006 1.0242760.086 1.41056 0.008 1.0325030.088 1.4218890.09 1.433310.17 1.973853 0.092 1.4448230.172 1.9897080.094 1.4564280.174 2.005689 0.096 1.4681260.176 2.021799 0.098 1.4799180.178 2.038039 0.1 1.4918050.18 2.054408 0.102 1.5037870.182 2.07091 0.104 1.5158660.184 2.087543 0.106 1.5280410.186 2.104311 0.108 1.5403150.188 2.121213 0.11 1.5526870.19 2.138251 0.112 1.5651580.192 2.155425 0.114 1.577730.194 2.172738 0.116 1.5904020.196 2.19019 0.118 1.6031760.198 2.207781 0.12 1.6160530.2 2.225515 0.122 1.6290340.202 2.24339 0.124 1.6421180.204 2.261409 0.126 1.6553080.206 2.279573 0.128 1.6686040.208 2.297883 0.13 1.6820060.21 2.31634 0.132 1.6955160.212 2.334945 0.134 1.7091350.214 2.3537 0.136 1.7228630.216 2.372605 0.138 1.7367010.218 2.391662 0.14 1.750650.22 2.410872 0.142 1.7647120.222 2.430236 0.144 1.7788860.224 2.449756 0.146 1.7931740.226 2.469433 0.148 1.8075770.228 2.489268 0.15 1.8220960.23 2.509262 0.152 1.8367310.232 2.529417 0.154 1.8514840.234 2.549733 0.156 1.8663550.236 2.570213 0.158 1.8813460.238 2.590857 0.16 1.8964570.24 2.611667 0.162 1.911690.242 2.632645 0.164 1.9270450.244 2.65379 0.166 1.9425230.246 2.675106 0.168 1.9581260.248 2.6965930.25 2.7182520.33 3.743385 0.252 2.7400850.332 3.7734530.254 2.7620940.334 3.803761 0.256 2.7842790.336 3.834314 0.258 2.8066430.338 3.865111 0.26 2.8291860.34 3.896156 0.262 2.8519110.342 3.927451 0.264 2.8748180.344 3.958996 0.266 2.8979090.346 3.990796 0.268 2.9211850.348 4.02285 0.27 2.9446480.35 4.055162 0.272 2.96830.352 4.087734 0.274 2.9921420.354 4.120567 0.276 3.0161750.356 4.153664 0.278 3.0404010.358 4.187026 0.28 3.0648220.36 4.220657 0.282 3.0894390.362 4.254558 0.284 3.1142540.364 4.288731 0.286 3.1392680.366 4.323179 0.288 3.1644830.368 4.357903 0.29 3.18990.37 4.392906 0.292 3.2155220.372 4.42819 0.294 3.2413490.374 4.463758 0.296 3.2673840.376 4.499612 0.298 3.2936280.378 4.535753 0.3 3.3200830.38 4.572185 0.302 3.346750.382 4.608909 0.304 3.3736320.384 4.645928 0.306 3.4007290.386 4.683245 0.308 3.4280440.388 4.720861 0.31 3.4555790.39 4.75878 0.312 3.4833350.392 4.797003 0.314 3.5113130.394 4.835533 0.316 3.5395160.396 4.874373 0.318 3.5679460.398 4.913524 0.32 3.5966040.4 4.95299 0.322 3.6254930.402 4.992773 0.324 3.6546130.404 5.032876 0.326 3.6839670.406 5.0733 0.328 3.7135570.408 5.114050.41 5.1551260.497.099276 0.412 5.1965330.4927.1562980.414 5.2382720.4947.213778 0.416 5.2803460.4967.27172 0.418 5.3227590.4987.330127 0.42 5.3655120.57.389004 0.422 5.4086080.5027.448353 0.424 5.4520510.5047.508179 0.426 5.4958420.5067.568486 0.428 5.5399850.5087.629277 0.43 5.5844830.517.690556 0.432 5.6293380.5127.752327 0.434 5.6745540.5147.814595 0.436 5.7201330.5167.877362 0.438 5.7660770.5187.940634 0.44 5.8123910.528.004414 0.442 5.8590770.5228.068707 0.444 5.9061380.5248.133516 0.446 5.9535770.5268.198845 0.448 6.0013960.5288.264699 0.45 6.04960.538.331082 0.452 6.0981910.5328.397998 0.454 6.1471730.5348.465452 0.456 6.1965480.5368.533447 0.458 6.2463190.5388.601989 0.46 6.296490.548.671081 0.462 6.3470640.5428.740728 0.464 6.3980450.5448.810935 0.466 6.4494340.5468.881705 0.468 6.5012370.5488.953044 0.47 6.5534560.559.024956 0.472 6.6060940.5529.097445 0.474 6.6591550.5549.170517 0.476 6.7126420.5569.244175 0.478 6.7665580.5589.318426 0.48 6.8209080.569.393272 0.482 6.8756950.5629.46872 0.484 6.9309210.5649.544774 0.486 6.9865910.5669.621439 0.4887.0427080.5689.6987190.579.776620.6513.46367 0.5729.8551470.65213.571810.5749.9343050.65413.68082 0.57610.01410.65613.79071 0.57810.094530.65813.90147 0.5810.175610.6614.01313 0.58210.257340.66214.12569 0.58410.339730.66414.23915 0.58610.422780.66614.35352 0.58810.50650.66814.46881 0.5910.590890.6714.58502 0.59210.675960.67214.70217 0.59410.761710.67414.82026 0.59610.848150.67614.9393 0.59810.935280.67815.05929 0.611.023110.6815.18025 0.60211.111650.68215.30218 0.60411.20090.68415.42509 0.60611.290870.68615.54898 0.60811.381560.68815.67387 0.6111.472980.6915.79977 0.61211.565130.69215.92667 0.61411.658020.69416.0546 0.61611.751660.69616.18355 0.61811.846050.69816.31354 0.6211.94120.716.44457 0.62212.037110.70216.57665 0.62412.133790.70416.7098 0.62612.231250.70616.84401 0.62812.32950.70816.97931 0.6312.428530.7117.11569 0.63212.528360.71217.25316 0.63412.628990.71417.39174 0.63612.730420.71617.53143 0.63812.832680.71817.67225 0.6412.935750.7217.81419 0.64213.039650.72217.95728 0.64413.144390.72418.10151 0.64613.249960.72618.24691 0.64813.356390.72818.393470.7318.541210.8125.53363 0.73218.690130.81225.738720.73418.840250.81425.94545 0.73618.991580.81626.15385 0.73819.144120.81826.36392 0.7419.297890.8226.57568 0.74219.452890.82226.78914 0.74419.609140.82427.00431 0.74619.766640.82627.22121 0.74819.925410.82827.43985 0.7520.085450.8327.66025 0.75220.246780.83227.88242 0.75420.409410.83428.10638 0.75620.573340.83628.33213 0.75820.738580.83828.5597 0.7620.905160.8428.78909 0.76221.073070.84229.02033 0.76421.242330.84429.25342 0.76621.412950.84629.48839 0.76821.584940.84829.72524 0.7721.758310.8529.964 0.77221.933080.85230.20467 0.77422.109250.85430.44728 0.77622.286830.85630.69184 0.77822.465840.85830.93836 0.7822.646290.8631.18686 0.78222.828190.86231.43735 0.78423.011550.86431.68986 0.78623.196380.86631.9444 0.78823.382690.86832.20098 0.7923.570510.8732.45962 0.79223.759830.87232.72034 0.79423.950670.87432.98315 0.79624.143040.87633.24807 0.79824.336960.87833.51513 0.824.532440.8833.78432 0.80224.729490.88234.05568 0.80424.928110.88434.32922 0.80625.128340.88634.60496 0.80825.330170.88834.882910.8935.163090.94643.99154 0.89235.445520.94844.344880.89435.730220.9544.701070.89636.017210.95245.060110.89836.306510.95445.422040.936.598120.95645.786870.90236.892080.95846.154630.90437.188410.9646.525350.90637.487110.96246.899050.90837.788210.96447.275750.9138.091730.96647.655470.91238.397680.96848.038240.91438.70610.9748.424090.91639.016990.97248.813040.91839.330380.97449.205110.9239.646280.97649.600330.92239.964720.97849.998720.92440.285720.9850.400320.92640.60930.98250.805140.92840.935480.98451.213210.9341.264280.98651.624560.93241.595720.98852.039210.93441.929820.9952.45720.93642.26660.99252.878540.93842.606090.99453.303270.9442.948310.99653.73140.94243.293270.99854.162980.94443.64101154.59802复化Simpson数据:-1 0.018319929 -0.34 0.256658088 0.32 3.596641805 -0.98 0.0198445 -0.32 0.278035042 0.34 3.896195298-0.96 0.021494322 -0.3 0.301192133 0.36 4.220697765-0.94 0.023283225 -0.28 0.326278124 0.38 4.572227037-0.92 0.025220379 -0.26 0.353453177 0.4 4.95303418-0.9 0.027320224 -0.24 0.382891765 0.42 5.365557596-0.88 0.029594431 -0.22 0.41478194 0.44 5.812438891-0.86 0.032059069 -0.16 0.527292277 0.54 8.671138204-0.84 0.034728638 -0.14 0.571209036 0.56 9.39333156-0.82 0.037621263 -0.12 0.61878367 0.58 10.17567433-0.8 0.040754615 -0.1 0.670320427 0.6 11.02317608-0.78 0.044149394 -0.08 0.726149698 0.62 11.94126383-0.76 0.047826844 -0.06 0.78662861 0.64 12.93581634-0.74 0.051810827 -0.04 0.85214479 0.66 14.01320231-0.72 0.056126648 -0.02 0.92311742 0.68 15.1803205-0.7 0.060802006 0 1.0000013 0.7 16.44464467 -0.68 0.065866854 0.02 1.083288424 0.72 17.81427057 -0.66 0.071353499 0.04 1.173512427 0.74 19.29796874 -0.64 0.077297255 0.06 1.271250748 0.76 20.90523965 -0.62 0.083735917 0.08 1.377129533 0.78 22.64637562 -0.6 0.090711017 0.1 1.491826493 0.8 24.53252554 -0.58 0.098266855 0.12 1.616076341 0.82 26.57576756 -0.56 0.106452202 0.14 1.750674449 0.84 28.78918506 -0.54 0.11531904 0.16 1.896482943 0.86 31.18695183 -0.52 0.12492459 0.18 2.054435268 0.88 33.78442141 -0.5 0.135329888 0.2 2.225543071 0.9 36.59822683 -0.48 0.14660204 0.22 2.410901825 0.92 39.64638571 -0.46 0.158812728 0.24 2.611698647 0.94 42.94841704 -0.44 0.17204064 0.26 2.829219145 0.96 46.52546475 -0.42 0.18636997 0.28 3.064856356 0.98 50.40043451 -0.4 0.201892977 0.3 3.320119013 1 54.59813904 -0.38 0.218708553 0.46 6.296539601-0.36 0.236924875 0.48 6.820959636-0.2 0.449328351 0.5 7.389057081-0.18 0.486751777 0.52 8.0044696750102030405060四、讨论①在满足相同精度要求的情况下复化梯形积分法比复化Simpson 积分法计算所需节点数多,计算量大。
北京理工大学.2006.数值分析(A)
课程编号: 北京理工大学2007-2008学年第二学期2006级计算机系《数值分析》期末试卷A 卷班级 学号 姓名 成绩注意:① 答题方式为闭卷。
② 可以使用计算器。
请将填空题直接填在试卷上,大题答在答题纸上。
一、 填空题(每空2分,共40分)1. 若x = 0.03600是按四舍五入原则得到的近似数,则它有______位有效数字,绝对误差限和相对误差限分别为 、 。
2. 要使162277660.310=的近似值的相对误差小于0.01%,至少要取 位有效数字。
3. 设f (x )=a n x n +1 (a n ≠0),则f [x 0, x 1,…, x n ]=_________。
4. 设函数f (x )区间[a,b]内有二阶连续导数,且f (a )f (b )<0, 当 时,则用双点弦截法产生的解序列收敛到方程f (x )=0的根。
5. n 个求积节点的插值型求积公式的代数精确度至少为______次,n 个求积节点的高斯求积公式的代数精度为 。
6. 求0123=--x x 在[1.3, 1.6]内的根时,迭代法3211n n x x +=+和2111nn x x +=+_____(填:前者或后者)收敛较快。
7. 设有矩阵⎥⎦⎤⎢⎣⎡-=6433A ,则‖A ‖∞=______,‖A ‖2=_______。
8. 对任意初始向量0()X 和常数项N ,有迭代公式1()()k k x Mx N +=+产生的向量序列{}()k X 收敛的充分必要条件是 。
9. 在牛顿-柯特斯求积公式中,当牛顿-柯特斯系数有负值时,公式稳定性不能得到保证,所以实际应用中只使用n ≤______的牛顿-柯特斯公式。
10. 用松弛法 (03.1=ω)解方程组⎪⎩⎪⎨⎧-=+-=-+-=-3444143232121x x x x x x x 的迭代公式是。
11. 用复化辛卜生公式求积分⎰+=101x dx I 的近似值时,至少需 个节点处的函数值,才能保证所求积分近似值的误差不超过10-5。
BUAA数值分析大作业三
北京航空航天大学2020届研究生《数值分析》实验作业第九题院系:xx学院学号:姓名:2020年11月Q9:方程组A.4一、 算法设计方案(一)总体思路1.题目要求∑∑===k i kj s r rsy x cy x p 00),(对f(x, y) 进行拟合,可选用乘积型最小二乘拟合。
),(i i y x 与),(i i y x f 的数表由方程组与表A-1得到。
2.),(**j i y x f 与1使用相同方法求得,),(**j i y x p 由计算得出的p(x,y)直接带入),(**j i y x 求得。
1. ),(i i y x 与),(i i y x f 的数表的获得对区域D ={ (x,y)|1≤x ≤1.24,1.0≤y ≤1.16}上的f (x , y )值可通过xi=1+0.008i ,yj=1+0.008j ,得到),(i i y x 共31×21组。
将每组带入A4方程组,即可获得五个二元函数组,通过简单牛顿迭代法求解这五个二元数组可获得z1~z5有关x,y 的表达式。
再将),(i i y x 分别带入z1~z5表达式即可获得f(x,y)值。
2.乘积型最小二乘曲面拟合2.1使用乘积型最小二乘拟合,根据k 值不用,有基函数矩阵如下:⎪⎪⎪⎭⎫ ⎝⎛=k i i k x x x x B 0000 , ⎪⎪⎪⎭⎫ ⎝⎛=k j jk y y y y G 0000数表矩阵如下:⎪⎪⎪⎭⎫⎝⎛=),(),(),(),(0000j i i j y x f y x f y x f y x f U记C=[rs c ],则系数rs c 的表达式矩阵为:11-)(-=G G UG B B B C T TT )(通过求解如下线性方程,即可得到系数矩阵C 。
UG B G G C B B T T T =)()(2.2计算),(),,(****j i j i y x p y x f (i =1,2,…,31 ; j =1,2,…,21) 的值),(**j i y x f 的计算与),(j i y x f 相同。
2010-2011学年北京理工大学硕士研究生数值分析期末试卷
20102011学年北京理工大学硕士研究生数值分析期末试卷20102011学年北京理工大学硕士研究生数值分析期末试卷1一20分考虑线性方程组axb其中a111t1222123312b4321341
2010-2011 学年北京理工大学硕士研究生数值分析期末试卷 1 一(20 分)考虑线性方程组 Ax=b,其中 A= 1 1 1
π 2 0
1−
3 cos x 4
2
dx,
用数值积分的方法求其近似值(要求计算结果具有四位有效数字) 。 2 四(15 分)用迭代法求 x +10x-18=0 在[1,2]内的根,取初值为 1.5 1. 构造一个收敛的迭算 2 步,然后采用 Aitken 加速算法再计算一步是否能得 到更精确的近似值?计算过程中小数点后保留 4 位。 五(10 分)求函数 ex 在区间[0,1]上的一次最佳平方逼近多项式。 y ′ + y = 0, xϵ[0,1] 六(20 分)对初值问题 y 0 =1 1. 求此微分方程的精确解。 2. 证明:用格式yn+1 = yn + 2 (−yn − yn+1 )所求得的近似解在步长 h0 时收敛 于精确解。 3. 写出上述格式的 Matlab 程序源代码, 要求: 输出近似解曲线图和误差曲线图。
T
1 2 2 2
1 2 3 3
1 2 ,b=(4,3,2,1) 3 4
1. 用平方根法解线性方程组。 2. 对上述方程组构造收敛的迭代格式,说明其收敛原因,取初始值 X(0)=(0,0,0,0)T 用所给的迭代格式计算迭代序列的前两项(用分数表示) 。 二(15 分)已知sin (0.32)=0.314567,sin (0.34)=0.333487 均具有 6 位有效 数字。 1. 请用线性插值求sin (0.33)的近似值。 2. 证明在区间[0.32,0.34]上用线性插值求sin x的近似值时至少有 4 位有效数字。 三(20 分)长半轴为 2,短半轴为 1 的椭圆的周长 s 为 s=8
北理工考博数值分析——试卷
一、填空题:(共20分)1.非奇异矩阵的条件数为,条件数的大小反映了方程组的。
2.的相对误差和的相对误差之间的关系是。
3.给出一个求解对任意初值都收敛的迭代公式,说明如何获得及收敛理由。
4. 设为互异节点,为对应节点上的拉格朗日插值基函数,则, 。
5.设互异,则当时,;。
6.数值积分公式的代数精确度是,____Gauss型求积公式。
二、(10分)设阶矩阵对称正定,用迭代公式求解。
问实数取何值时迭代收敛?三、(13分)设有线性方程组, (1)将系数矩阵A分解为,求;(2)求解方程组。
四、(10分)用最小二乘法确定中的参数和,使该函数曲线拟合于下列形式的数据(推导满足的正则方程组)。
五、(10分)求四次插值多项式,使其满足条件,并写出插值余项。
六、(10分)设,考虑方程,证明求解该方程的牛顿法产生的序列(其中)是收敛的;并求,使得。
七、(15分)对于积分,当要求误差小于时,用复化梯形公式及复化抛物线公式计算近似值时,所需节点数及步长分别为多少?计算满足精度要求的近似值。
八、(12分)试求系数,使3步公式的阶数尽可能高,并写出其局部截断误差的主项。
一、(12分)设有线性方程组,(1)将系数矩阵A分解为L和U的乘积,其中L是单位下三角阵,U是上三角阵;(2)解线性方程组。
二、(18分)(1)已知数据:试分别用线性及二次插值计算的近似值,并估计误差。
(2)设,试求三次插值多项式使得,并对任一写出误差估计式。
三、(20分)(1)设线性方程组的系数矩阵试写出收敛的迭代计算公式;(2)若线性方程组的系数矩阵,用表示迭代法和迭代法收敛的充分必要条件。
四、(15分)(1)若用复化梯形、复化辛普森公式计算积分的近似值,要求计算结果有5位有效数字,分别应取多大?(2)选一复化求积公式计算积分的近似值,要求截断误差小于。
五、(10)确定,使求积公式的代数精确度尽可能高,并指出是否是型求积公式。
六、(15分)试用法推导出求近似值的迭代格式, 并用导出的公式计算的近似值,要求误差不超过。
北京理工大学数值分析总复习
考试时带计算器
• 上机题请在11月30日晚9:30之前交,交 打印稿。
• 答疑时间:11月28,29, 30(即星期3, 4, 5)晚上7:30—9:30,上机作业也在答疑 时间交。
• 答疑地点:中教816。
2
第一章 误差
绝对(相对)误差 ( 限 ) 有效数字
(2) H H '((xx ii)) yyii,', (i0,1, ,n).
24
➢ H ( x ) y 0 h 0 ( x ) y 1 h 1 ( x ) y n h n ( x ) y 0 ' H 0 ( x ) y 1 ' H 1 ( x ) y n ' H n ( x )
(i 1 ,2 , ,n )
12
➢ 迭代法收敛的充分必要条件
x(k1) Mx(k) g,
x(0) 任意
收敛
(M)1.
➢ 迭代法收敛的充分条件
若i迭代法和Gauss-Seidel迭代法均收敛.
若A为对称正定阵, 则求解Ax=b的Gauss-Seidel迭代 法收敛.
复化梯形公式 复化Simpson公式 Romberg算法 Gauss型求积公式 代数精确度 截断误差
33
代数精确度
设有求积公式
b
n
f(x)dx
a
Akf(xk)
k0
若它对 f (x)=1, x, x2,…, xm 都能精确成立(即上式等
号成立), 但对 f (x)=xm+1 上式等号不成立, 则称该求
hi (x)
xi x0
(2n+1)次多项式
x i x n 1
h i ( x ) 1 2 l i ' ( x ) x ( x i ) l i 2 ( x ),
北京理工大学2009级数值分析试题及答案
课程编号:12000044 北京理工大学2010-2011学年第一学期2009级计算机学院《数值分析》期末试卷A 卷班级 学号 姓名 成绩注意:① 答题方式为闭卷。
② 可以使用计算器。
请将填空题和选择题的答案直接填在试卷上,计算题答在答题纸上。
一、 填空题 (2 0×2′)1. 设x =0.231是精确值x *=0.229的近似值,则x 有 位有效数字。
2. 设⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=32,1223X A ,‖A ‖∞=___ ____,‖X ‖∞=__ _____,‖AX ‖∞≤____ ___ (注意:不计算‖AX ‖∞的值) 。
3. 非线性方程f (x )=0的迭代函数x =ϕ(x )在有解区间满足 ,则使用该迭代函数的迭代解法一定是局部收敛的。
4. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= ,f [20,21,22,23,24,25,26,27,28]= 。
5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 阶的连续导数。
6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商公式的 (填写前插公式、后插公式或中心差分公式),若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 (填写前插公式、后插公式或中心差分公式);如果要估计结果的舍入误差,应该选用插值公式中的 。
7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=ni i x a 0)( ;所以当系数a i (x )满足 ,计算时不会放大f (x i )的误差。
8. 要使20的近似值的相对误差小于0.1%,至少要取 位有效数字。
9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收敛于方程组的精确解x *的充分必要条件是 。
北理工数值分析大作业
数值分析上机作业第 1 章1.1计算积分,n=9。
(要求计算结果具有6位有效数字)程序:n=1:19;I=zeros(1,19);I(19)=1/2*((exp(-1)/20)+(1/20));I(18)=1/2*((exp(-1)/19)+(1/19));for i=2:10I(19-i)=1/(20-i)*(1-I(20-i));endformat longdisp(I(1:19))结果截图及分析:在MATLAB中运行以上代码,得到结果如下图所示:当计算到数列的第10项时,所得的结果即为n=9时的准确积分值。
取6位有效数字可得.1.2分别将区间[-10.10]分为100,200,400等份,利用mesh或surf命令画出二元函数z=的三维图形。
程序:>> x = -10:0.1:10;y = -10:0.1:10;[X,Y] = meshgrid(x,y);Z = exp(-abs(X))+cos(X+Y)+1./(X.^2+Y.^2+1);subplot(2,2,1);mesh(X,Y,Z);title('步长0.1')>> x = -10:0.2:10;y = -10:0.2:10;[X,Y] = meshgrid(x,y);Z = exp(-abs(X))+cos(X+Y)+1./(X.^2+Y.^2+1);subplot(2,2,1);mesh(X,Y,Z);title('步长0.2')>>x = -10:0.05:10;y = -10:0.05:10;[X,Y] = meshgrid(x,y);Z = exp(-abs(X))+cos(X+Y)+1./(X.^2+Y.^2+1);subplot(2,2,1);mesh(X,Y,Z);title('步长0.05')结果截图及分析:由图可知,步长越小时,绘得的图形越精确。
数值计算方法丁丽娟课后习题答案
数值计算方法丁丽娟课后习题答案【篇一:北京理工大学数值计算方法大作业数值实验1】)书p14/4分别将区间[?10,10]分为100,200,400等份,利用mesh或surf命令画出二元函数的三维图形。
z=|??|+ ??+?? +??++??【matlab求解】[x,y]=meshgrid(-10:0.1:10);a=exp(-abs(x));b=cos(x+y);c=1./(x.^2+y.^2+1);z=a+b+c;mesh(x,y,z);[x,y]=meshgrid(-10:0.05:10);a=exp(-abs(x));b=cos(x+y);c=1./(x.^2+y.^2+1);z=a+b+c;mesh(x,y,z);[x,y]=meshgrid(-10:0.025:10); a=exp(-abs(x));b=cos(x+y);c=1./(x.^2+y.^2+1);z=a+b+c;mesh(x,y,z);(二)书p7/1.3.2数值计算的稳定性(i)取= ??c语言程序—不稳定解 +=ln1.2,按公式=?? (n=1,2,…) #includestdio.h#includeconio.h#includemath.hvoid main(){float m=log(6.0)-log(5.0),n;int i;i=1;printf(y[0]=%-20f,m); while(i20){n=1/i-5*m;printf(y[%d]=%-20f,i,n);m=n;i++;if (i%3==0) printf(\n); }getch();}(ii) c语言程序—稳定解≈??[ ??+?? +?? ??+??按公式 =??(??)#includestdio.h#includeconio.h#includemath.hvoid main(){float m=(1/105.0+1/126.0)/2,n; k=n,n-1,n-2,…)(【篇二:北京理工大学数值计算方法大作业数值实验4】 p260/1考纽螺线的形状像钟表的发条,也称回旋曲线,它在直角坐标系中的参数方程为= ?????????????????? ?? ??????????= ?????????????? ??曲线关于原点对称,取a=1,参数s的变化范围[-5,5],容许误差限分别是,,和。
北理工数值分析考试卷-2013级数值分析考试习题
2013——2014年《数值分析》考试习题一、(15分)设2101202a a ⎡⎤⎢⎥A =⎢⎥⎢⎥⎣⎦ ,123x x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ ,331b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(1)求出当a 满足何条件时可以对A 进行cholesky 分解(即T LL 分解,L 为非奇异下三角矩阵)(2)若a=1时利用T LL 分解对方程组Ax=b 进行求解(保留两位小数)二、(10分)求证:111a a a a a a ⎡⎤⎢⎥A =⎢⎥⎢⎥⎣⎦,只有当1122a -<< 时用Jacobi 迭代法求解方程组Ax=b 才收敛 三、(15分) (1)已知i x1 3 4 6 ()i f x-75814对其进行3次插值,并求出()2f 的值 (2)给定函数组i x0 1 2 ()i f x 1 4 15 ()'i f x6对其进行3次Hermite 插值多项式3H 并求出余项()()f x H x - 的表达式四、(15分)利用最小二乘法,求形如2y a bx =+ 的拟合i x 1 2 3 4 5 i y0.12.98.114.924.1五、(15分)(1)选择合适的数值积分方法,对210x e dx ⎰ 进行积分,使其具有2位有效数字 (2)根据(1)中选取的数值积分方法,编写Matlab 源程序代码 六、(15分)(1)构造迭代格式求解40x x e --= 的根,使其具有4位有效数字 (2)从理论上证明你所构造的迭代格式是收敛的七、(15分)对常微分方程初值问题()()'00,y f x y y x y ⎧=⎪⎨=⎪⎩ ,证明其二步公式111(58)12n n n n n hy y f f f ++-=++- 是三阶精度的迭代公式,并求出该二步公式的局部截断误差主项。
北理工数值分析大作业
北理工数值分析大作业近年来,随着计算机技术的飞速发展,数值分析成为了计算机科学与工程中的重要领域。
数值分析着重于通过数值方法和计算技术解决实际问题,并通过数值计算的精度、稳定性和效率来评价算法的优劣。
本文将介绍北理工数值分析大作业的主题和方案。
本次数值分析大作业的主题是解决常微分方程(Ordinary Differential Equation,ODE)的初值问题。
常微分方程是描述自然界中许多物理现象和工程问题的数学模型,解决常微分方程的初值问题是数值分析中的经典问题之一我们将采用龙格-库塔法(Runge-Kutta method)来解决常微分方程的初值问题。
龙格-库塔法是一种常用的数值求解ODE的方法,其核心思想是通过将微分方程近似为差分方程,用离散化的方法逼近真实解。
具体方法是以一种递归的方式计算不同阶的近似解,从而提高解的精度。
首先,我们将介绍龙格-库塔法的基本原理和算法。
龙格-库塔法的核心是通过递归计算中间值来逼近真实解,并根据这些中间值计算最终的近似解。
我们将详细介绍四阶龙格-库塔法的具体算法和推导过程,并给出其误差分析和收敛性证明。
接下来,我们将选取一个具体的常微分方程作为案例来验证龙格-库塔法的有效性和稳定性。
我们选择经典的二阶线性常微分方程作为案例,该方程具有已知的解析解。
我们将通过比较数值解和解析解的差异来评估龙格-库塔法的精度和可靠性,并对算法的参数设置进行优化。
最后,我们将对龙格-库塔法进行性能测试和分析。
我们将使用不同的问题规模和不同的算法参数来测试算法的运行时间和内存占用情况,并通过绘制性能曲线来评估算法的效率和可扩展性。
总结起来,本文介绍了北理工数值分析大作业的主题和方案,主要包括龙格-库塔法的基本原理和算法、常微分方程的解析解验证、算法参数优化以及性能测试。
通过本次大作业的完成,我们将对数值分析的基本理论和方法有更深入的理解,并能够熟练应用数值方法解决实际问题。
北京理工大学数学专业数学分析Ⅰ试题(MTH17001,H0171001)
2010级数学专业数学分析Ⅰ第一次阶段测验1.(10分)设0x →。
试写出十个与x 等价且尽可能不同的无穷小量。
2.(15分)设1,2,n x n == 。
(1)求证:对任意自然数n ,112n x n-<; (2)用N ε-语言证明1lim 2n n x →∞=,并研究数列{}n x 中是否有最大数和最小数。
3.(15分)用εδ-语言叙述0x →时函数f 收敛和发散的严格含义,并用两种方法证明0x →时函数()1cosf x x=发散。
4.(10分)已知lim 0x ax b →+∞⎛⎫--=⎪⎪⎭,求常数,a b 的值;并给出,a b 的几何意义。
5.(10分)研究函数()11cos xx x f x x ⎛⎫+-= ⎪ ⎪⎝⎭在0x =点极限的存在性。
6.(15分)证明定理:设()(),y f u u x ϕ==构成复合函数()()y fx ϕ=。
若()()lim ,lim x u x f u A ϕ→+∞→∞=∞=,其中A 是实常数,则当x →+∞时,函数()()f x ϕ的极限存在,且()()()lim lim x u f x f u ϕ→+∞→∞=。
7.(15分)(1)叙述()lim x f x →∞=-∞的严格含义;(2)叙述f 在(),-∞+∞内取得最大值的严格含义;(3)设f 在(),-∞+∞内连续,且()lim x f x →∞=-∞。
求证:f 在(),-∞+∞内必取得最大值。
8.(10分)设,0n n b ∀>,且成立极限1lim 10n n n b n p b →∞+⎛⎫-=>⎪⎝⎭。
求证:数列{}n b 收敛,且lim 0n n b →∞=。
2011级数学专业数学分析Ⅰ第一次阶段测验1.(10分)设0x →。
试写出十个与x 等价且尽可能不同的无穷小量。
2.(15分)设1,2,n x n == ,用N ε-语言证明1lim 2n n x →∞=,并研究数列{}n x 中是否有最大数和最小数。
北京理工大学 2006级数值分析期末试题(B)
8x1 x2 x3 1 性方程组 2x1 10x2 x3 4 一定收敛。
6 x1 x2 ax3 3
8. 向量 X=(1,-2,3),Y=(3,4,0),则向量 X 的 1-范数||X||1=
范数|||Y||2=
。
9.
已知
n=4
时的牛顿-科特斯系数则
C (4) 0
7 90
,
C
(4 3
时
,上述两类误差分配最为合理。
2. 已知 a=3.201,b=0.57 是经过四舍五入后得到的近似值,则 ab 的结果的计算误差
大约为
,a+b 的结果的计算误差大约为
。
3. 用 双 点 弦 截 法 求 解 方 程 x 4 2x 4 0 在 [1,2] 之 间 的 根 的 迭 代 公 式
是
。
4.
)
16 45
,
C (4) .1
C (4) 2
。
I
10. 用复化辛卜生公式求积分
1 dx
0 1 x
的近似值时,至少需
函数值,才能保证所求积分近似值的误差不超过 10-5。
,向量 Y 的 2,
个节点处的
11. 当 x=1,-1,2 时 , f(x)=0,-3,4 , 则 f(x) 的 拉 格 朗 日 插 值 多 项 式
6. 用 Euler 法、隐式欧拉法、梯形法求解初值问题, 取 h=0.1,计算到 x=0.5,要求计算 结果保留小数点后 5 位。
y y
' y2 (0)
, 1
0 x 0.5
2
3.
设方程组
0x.14
0.4x2 x1 x2
0.4 x 3 0.8 x 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析上机作业第 1 章1.1计算积分,n=9。
(要求计算结果具有6位有效数字)程序:n=1:19;I=zeros(1,19);I(19)=1/2*((exp(-1)/20)+(1/20));I(18)=1/2*((exp(-1)/19)+(1/19));for i=2:10I(19-i)=1/(20-i)*(1-I(20-i));endformat longdisp(I(1:19))结果截图及分析:在MATLAB中运行以上代码,得到结果如下图所示:当计算到数列的第10项时,所得的结果即为n=9时的准确积分值。
取6位有效数字可得.1.2分别将区间[-10.10]分为100,200,400等份,利用mesh或surf命令画出二元函数z=的三维图形。
程序:>> x = -10:0.1:10;y = -10:0.1:10;[X,Y] = meshgrid(x,y);Z = exp(-abs(X))+cos(X+Y)+1./(X.^2+Y.^2+1);subplot(2,2,1);mesh(X,Y,Z);title('步长0.1')>> x = -10:0.2:10;y = -10:0.2:10;[X,Y] = meshgrid(x,y);Z = exp(-abs(X))+cos(X+Y)+1./(X.^2+Y.^2+1);subplot(2,2,1);mesh(X,Y,Z);title('步长 0.2')>>x = -10:0.05:10;y = -10:0.05:10;[X,Y] = meshgrid(x,y);Z = exp(-abs(X))+cos(X+Y)+1./(X.^2+Y.^2+1);subplot(2,2,1);mesh(X,Y,Z);title('步长0.05')结果截图及分析:由图可知,步长越小时,绘得的图形越精确。
第 2 章试用MATLAB 编程实现追赶法求三对角方程组的算法,并考虑梯形电路电阻问题:电路中的电流128{,,,}i i i 满足下列线性方程组:121232343454565676787822/252025202520252025202520250i i V R i i i i i i i i i i i i i i i i i i i i -=-+-=-+-=-+-=-+-=-+-=-+-=-+=设220,27V V R ==Ω,求各段电路的电流量。
处理思路:观察该方程的系数矩阵可知,它是一个三对角矩阵,故可运用追赶法对其进行求解。
程序:for i=1:8a(i)=-2;b(i)=5;c(i)=-2;d(i)=0; enda(1)=0;b(1)=2;c(8)=0;d(1)=220/27; for i=2:8a(i)=a(i)/b(i-1);b(i)=b(i)-c(i-1)*a(i); d(i)=d(i)-a(i)*d(i-1); endd(8)=d(8)/b(8); for i=7:-1:1d(i)=( d(i)-c(i)*d(i+1) )/b(i); endfor i=1:8 x(i)=d(i); endx结果截图及分析:在MATLAB 中运行以上代码,得到结果如下图所示:图中8个值依次为128{,,,}i i i 的数值。
第 3 章试分别用(1)Jacobi 迭代法;(2)Gauss-Seidel 解线性方程组1234510123412191232721735143231211743511512x x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--=⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦迭代初始向量取(0)(0,0,0,0,0)T x =. 3.1 Jacobi 迭代法 程序:>> A=[10 1 2 3 4;1 9 -12 -3; 2 -1 73 -5; 3 2 3 12 -1;4 -3 -5 -1 15]; b=[12;-27;14;-17;12]; x0=[0;0;0;0;0]; D=diag(diag(A)); I=eye(5);L=-tril(A,-1); B=I-D\A; g=D\b; y=B*x0+g; n=1;while norm(y-x0)>=1.0e-6 x0=y; y=B*x0+g; n=n+1; endfprintf('%8.6f\n',y); n结果截图及分析:得到此结果时迭代次数为67次,达到精度要求。
3.2 Gauss-Seidel迭代法:程序:>> A=[10 1 2 3 4;1 9 -12 -3;2 -1 73 -5;3 2 3 12 -1;4 -3 -5 -1 15];b=[12;-27;14;-17;12];x0=[0;0;0;0;0];D=diag(diag(A));U=-triu(A,1);L=-tril(A,-1);M=(D-L)\U;g=(D-L)\b;y=M*x0+g;n=1;while norm(y-x0)>=1.0e-6x0=y;y=M*x0+g;n=n+1;endfprintf('%8.6f\n',y);结果截图及分析:Gauss-Seidel迭代法只需要迭代38次即可满足精度要求。
第 4 章设A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--162621666612,取先用幂法迭代3次,得到A 的按模最大特征值的近似值,取为其整数部分,再用反幂法计算A 的按模最大特征值的更精确的近似值,要求误差小于.程序:A=[12 6 -6;6 16 2; -6 2 16]; x0=[1;1;1];y=x0;b=max(abs(x0));k=1; while ( k<4 )x=A*y;b=max(abs(x));y=x./b; k=k+1;fprintf('eig1 equals %6.4f\n',b); end>> bb0=fix(b);I=eye(3,3);x0=[1;1;1];y=x0;l=0;bb=max(abs(x0));k=1;while ( abs(bb-l)>=1.0e-10 )l=bb;x=(A-bb0*I)\y;bb=max(abs(x));y=x./bb;eig=l+b;>> fprintf('eig2(%d) equals %12.10f\n',k, eig);k=k+1;end实验截图及分析:由图可知,由幂法3次迭代后得到的特征值为19.4,而由反幂法得到的特征值为20.3999999999.误差小于第 5 章试编写MATLAB函数实现Newton插值,要求能输出插值多项式。
对函数f(x)=在区间[-5,5]上实现10次多项式插值。
要求:(1)输出插值多项式。
(2)在区间[-5,5]均匀插入99个节点,计算这些节点上函数f(x)的近似值,并在同一图上画出原函数和插值多项式的图形。
(3)观察龙格现象,计算插值函数在各节点处的误差,并画出误差图。
5.1输出插值多项式程序:x=-5:1:5;y=1./(1+4*(x.^2));newpoly(x,y)function [c,d]=newpoly(x,y)n=length(x);d=zeros(n,n);d(:,1)=y';for j=2:nfor k=j:nd(k,j)=(d(k,j-1)-d(k-1,j-1))/(x(k)-x(k-j+1));endendc=d(n,n);for k=(n-1):-1:1c=conv(c,poly(x(k)));m=length(c);c(m)=c(m)+d(k,k);endend结果及分析:ans =Columns 1 through 2-0.3049Columns 3 through 40.8483 0.0000Columns 5 through 6-0.6720 0.0000Columns 7 through 80.2312 0.0000Columns 9 through 10-1.1025 0.0001Column 111.000010次插值多项式由高到低系数为Columns 1至Column 115.2原函数与插值多项式的图形程序:x=-5:1:5;y=1./(1+4*(x.^2));n=newpoly(x,y);x0=-5:0.1:5;y0=1./(1+4*(x0.^2));vn=polyval(n,x0);plot(x0,vn,'-r',x0,y0,'--b');xlabel('x');ylabel('y');实验结果截图:yx原函数与插值多项式的图形如上图所示,蓝色为原函数的图形,红色为插值多项式的图形。
5.3各节点的误差及误差图程序:format long;x=-5:1:5;y=1./(1+4*(x.^2));n=newpoly(x,y);x0=-5:0.1:5;y0=1./(1+4*(x0.^2));vn=polyval(n,x0);plot(x0,y0-vn,'-r');xlabel('x');ylabel('y');实验结果截图:yx 误差图如上图所示。
第 6 章炼钢厂出钢时所用的盛钢水的钢包,在使用过程中由于钢液及炉渣对包衬耐火材料的腐蚀,使其容积不断加大。
经试验,钢包的容积与相应的使用次数的数据列表如下:选用双曲线xb a y11+=对数据进行拟合,使用最小二乘法求出拟合函数,作出拟合曲线图。
处理思路:用Y 替代1/y ,用X 替代1/x ,原曲线化为Y=a+bx ,双曲线转化为一次线性方程,使用最小二乘法求出该一次方程的系数。
程序:x=[2 3 5 6 7 9 10 11 12 14 16 17 19 20];y=[106.42 108.26 109.58 109.5 109.86 110 109.93 110.59 110.60 110.72 110.9 110.76 111.1 111.3];k1=0; k2=0; k3=0; k4=0;for i=1:14k1=k1+1/x(i);endfor i=1:14k2=k2+1/y(i);endfor i=1:14k3=k3+1/(x(i))^2;endfor i=1:14k4=k4+1/(x(i)*y(i));endb=(k1*k2-14*k4)/(k1^2-14*k3)a=k2/14-k1*b/14plot(x,y,'r*')hold onx=2:0.01:20;y=1./(a+b./x);plot(x,y)xlabel('x')ylabel('y')grid on实验结果截图与分析:即最小二乘法求出拟合函数为:=0.008973+0.000842拟合曲线图为:第 7 章考纽螺线的形状象钟表的发条,也称回旋曲线,它在直角坐标系中的参数方程为⎪⎪⎩⎪⎪⎨⎧==⎰⎰ssdt at s y dt at s x 02221sin )(21cos)( 曲线关于原点对称,取a=1,参数s 的变化围[-5,5],容许误差限分别是和。