等差数列复习专题

合集下载

2023年高考数学二轮复习第一部分专题攻略专题三数列第一讲等差数列与等比数列

2023年高考数学二轮复习第一部分专题攻略专题三数列第一讲等差数列与等比数列

专题三 数列第一讲 等差数列与等比数列——小题备考常考常用结论 1.等差数列(1)通项公式:a n =a 1+(n -1)d ; (2)求和公式:S n =n (a 1+a n )2=na 1+n (n−1)2d ;(3)性质:①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q ; ②a n =a m +(n -m)d ;③S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列. 2.等比数列(1)通项公式:a n =a 1q n -1(q ≠0); (2)求和公式:q =1,S n =na 1;q ≠1,S n =a 1(1−q n )1−q=a 1−a n q 1−q;(3)性质:①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m ·a n =a p ·a q ;②a n =a m ·q n -m ;③S m ,S 2m -S m ,S 3m -S 2m ,…(S m ≠0)成等比数列.微专题1 等差数列与等比数列的基本量计算保分题1.[2022·河北石家庄二模]等差数列{a n }的前n 项和记为S n ,若a 2+a 2 021=6,则S 2 022=( )A .3 033B .4 044C .6 066D .8 0882.[2022·辽宁沈阳三模]在等比数列{a n }中,a 2,a 8为方程x 2-4x +π=0的两根,则a 3a 5a 7的值为( )A .π√πB .-π√πC .±π√πD .π33.[2022·全国乙卷]已知等比数列{a n }的前3项和为168,a 2-a 5=42,则a 6=( ) A .14 B .12 C .6D .3提分题例1 (1)[2022·江苏盐城三模]已知数列{a n},{b n}均为等差数列,且a1=25,b1=75,a2+b2=120,则a37+b37的值为()A.760 B.820C.780 D.860(2)[2022·广东佛山三模]已知公比为q的等比数列{a n}的前n项和S n=c+2·q n,n∈N*,且S3=14,则a4=()A.48B.32 C.16D.8听课笔记:技法领悟1.等差、等比数列基本运算的关注点(1)基本量:在等差或等比数列中,首项a1和公差d(公比q)是两个基本元素;(2)解题思路:①设基本量a1和d(q);②列、解方程(组);把条件转化为关于a1和d(q)的方程(组),然后求解,注意整体计算,减少计算量.2.等差、等比数列性质问题的求解策略(1)解决此类问题的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.(2)应牢固掌握等差、等比数列的性质,特别是等差数列中“若m+n=p+q,则a m+a n =a p+a q”这一性质与求和公式S n=n(a1+a n)2的综合应用.巩固训练11.[2022·河北邯郸二模]在我国古代著作《九章算术》中,有这样一个问题:“今有五人分五钱,令上二人与下三人等,问各得几何?”意思是有五个人分五钱,且得钱最多的两个人的钱数之和与另外三个人的钱数之和相等,问每个人分别分得多少钱?若已知这五人分得的钱数从多到少成等差数列,则这个等差数列的公差d=()A.-16B.-15C.-14D.-132.[2022·山东淄博一模]已知等比数列{a n },其前n 项和为S n .若a 2=4,S 3=14,则a 3=________.微专题2 等差数列与等比数列的综合保分题1.[2022·辽宁沈阳一模]已知等差数列{a n }的公差为2,且a 2,a 3,a 5成等比数列,则{a n }的前n 项和S n =( )A .n(n -2)B .n(n -1)C .n(n +1)D .n(n +2) 2.各项均为正数的等比数列{a n }的前4项和为15,4a 1,2a 3,a 5成等差数列,则a 1=( ) A .5√2-5 B .5√2+5 C .5√2 D .53.已知正项等比数列{a n }的前n 项和为S n ,若S 3=4,S 9=19,则S 6,S 9的等差中项为________.提分题例2 (1)[2022·山东日照三模]在公差不为0的等差数列{a n }中,a 1,a 2,a k 1,a k 2,a k 3成公比为3的等比数列,则k 3=( )A .14B .34C .41D .86(2)[2022·山东潍坊三模](多选)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,则下列结论正确的是( )A .数列{Snn }为等差数列B .对任意正整数n ,b +n 2b n+22 ≥2b n +12 C .数列{S 2n +2-S 2n }一定是等差数列 D .数列{T 2n +2-T 2n }一定是等比数列 听课笔记:技法领悟等差、等比数列综合问题的求解策略对于等差数列与等比数列交汇的问题,要从两个数列的特征入手,理清它们的关系,常用“基本量法”求解,但有时灵活地运用等差中项、等比中项等性质,可使运算简便.巩固训练21.已知等比数列{a n }的前n 项和为S n ,且a 2,2a 5,3a 8成等差数列,则S6S 3=( )A .1或43B .1或13C .2或43D .13或432.[2022·湖北荆州三模](多选)等差数列{a n }的前项n 和为S n ,数列{b n }为等比数列,则下列说法正确的选项有 ( )A .数列{2a n }一定是等比数列B .数列{b a n }一定是等比数列C .数列{Snn }一定是等差数列D .数列{b n +b n +1}一定是等比数列微专题3 数列的递推保分题1.[2022·广东汕头三模]已知数列{a n }中,a 1=-14,当n>1时,a n =1-1a n−1,则a 2 022=( )A .-14 B .45 C .5 D .-45 2.数列{a n }中,若a 1=2,a n +1=2a n a n +2,则a 7=( )A .18 B .17 C .27 D .143.[2022·山东泰安三模]已知数列{a n }满足:对任意的m ,n ∈N *,都有a m a n =a m +n ,且a 2=3,则a 20=( )A .320B .315C .310D .35提分题 例3 (1)[2022·湖南雅礼中学二模](多选)著名的“河内塔”问题中,地面直立着三根柱子,在1号柱上从上至下、从小到大套着n 个中心带孔的圆盘.将一个柱子最上方的一个圆盘移动到另一个柱子,且保持每个柱子上较大的圆盘总在较小的圆盘下面,视为一次操作.设将n 个圆盘全部从1号柱子移动到3号柱子的最少操作数为a n ,则( )A .a 2=3B .a 3=8C .a n +1=2a n +nD .a n =2n -1(2)设{a n }是首项为1的正项数列,且(n +1)a n+12-na n 2+a n +1a n =0(n =1,2,3,…),则它的通项公式是a 100=( )A .100B .1100C .101D .1101听课笔记:技法领悟1.通过验证或者推理得出数列的周期性后求解.2.根据已知递推关系式,变形后构造出等差数列或等比数列,再根据等差数列或等比数列的知识求解.3.三种简单的递推数列:a n +1-a n =f(n),a n+1a n=f(n),a n +1=pa n +q(p ≠0,1,q ≠0),第一个使用累加的方法,第二个使用累乘的方法,第三个可以使用待定系数法化为等比数列(设a n +1+λ=p(a n +λ),展开比较系数得出λ).巩固训练3 1.南宋数学家杨辉所著的《详解九章算法·商功》中出现了如图所示的形状,后人称为“三角垛”.“三角垛”的最上层(即第一层)有1个球,第二层有3个球,第三层有6个球,…,设“三角垛”从第一层到第n层的各层的球数构成一个数列{a n},则() A.a5-a4=4 B.a100=5 000C.2a n+1=a n+a n+2D.a n+1-a n=n+12.[2022·福建漳州二模]已知S n是数列{a n}的前n项和,a1=1,a2=2,a3=3,记b n=a n+a n+1+a n+2且b n+1-b n=2,则S31=()A.171 B.278 C.351 D.395第一讲等差数列与等比数列微专题1等差数列与等比数列的基本量计算保分题=1 011×6 1.解析:由等差数列{a n}知,a2+a2 021=a1+a2 022=6,所以S2 022=2 022(a1+a2 022)2=6 066.答案:C2.解析:在等比数列{a n}中,因为a2,a8为方程x2-4x+π=0的两根,所以a2a8=π=a52,所以a5=±√π,所以a3a5a7=a53=±π√π.故选C.答案:C3.解析:设等比数列{a n }的公比为q.由题意知,{a 2q+a 2+a 2q =168,a 2−a 2q 3=42.两式相除,得1+q+q 2q (1−q 3)=4,解得q =12.代入a 2-a 2q 3=42,得a 2=48,所以a 6=a 2q 4=3.故选D .答案:D提分题[例1] 解析:(1)∵数列{a n },{b n }均为等差数列,设公差分别为d 1,d 2 (a n +1+b n +1)-(a n +b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2, 则数列{a n +b n }也为等差数列, a 1+b 1=100,a 2+b 2=120,数列{a n +b n }的首项为100,公差为20, ∴a 37+b 37=100+20×36=820,故选B .(2)因为公比为q 的等比数列{a n }的前n 项和S n =c +2·q n ①, 当n =1时a 1=S 1=c +2·q , 当n ≥2时S n -1=c +2·q n -1 ②, ①-②得a n =2·q n -2·q n -1=(2q -2)·q n -1,所以2q -2=c +2q ,则c =-2,又S 3=14,所以S 3=-2+2·q 3=14,解得q =2, 所以a n =2n ,则a 4=24=16. 答案:(1)B (2)C [巩固训练1]1.解析:若分得的钱从多到少分别为a 1,a 2,a 3,a 4,a 5, 所以{a 1+a 2=a 3+a 4+a 5a 1+a 2+a 3+a 4+a 5=5,所以{a 1=−8d5a 1+10d =5,可得{a 1=43d =−16.答案:A2.解析:设等比数列的公比为q ,因为a 2=4,S 3=14,所以a 1+a 3=10,即a2q +a 2q =10,所以2q2-5q+2=0,解得q=2或q=12,所以当q=2时,a3=8;当q=12时,a3=2所以,a3=2或a3=8.答案:2或8微专题2等差数列与等比数列的综合保分题1.解析:设等差数列{a n}公差d=2,由a2,a3,a5成等比数列得,a32=a2·a5,即(a1+2d)2=(a1+d)(a1+4d),解得a1=0,∴S n=n×0+n(n−1)2×2=n(n-1).答案:B2.解析:设等比数列{a n}的公比为q,(q>0),a1≠0,故由题意可得:{a1(1+q+q2+q3)=154a3=4a1+a5,{a1(1+q+q2+q3)=154q2=4+q4,解得q2=2,q=√2,a1=5√2-5.答案:A3.解析:设S6=x,因为{a n}为等比数列,所以S3,S6-S3,S9-S6成等比数列.因为S3=4,S9=19,所以4(19-x)=(x-4)2,解得x=10或x=-6(舍去).所以S6,S9的等差中项为292.答案:292提分题[例2]解析:(1)因为a1,a2,a k1,a k2,a k3成公比为3的等比数列,可得a2=3a1,所以a k3=a1·34=81a1,又因为数列{a n}为等差数列,所以公差d=a2-a1=2a1,所以a k 3=a 1+(k 3-1)d =a 1+2(k 3-1)a 1=(2k 3-1)a 1, 所以(2k 3-1)a 1=81a 1,解得k 3=41. 故选C .(2)设等差数列{a n }的公差为d ,则S n =na 1+n (n−1)2d ,所以,S n n =a 1+(n−1)d 2.对于A 选项,S n+1n+1−S n n=a 1+nd 2-a 1-(n−1)d 2=d 2,所以,{S n n}为等差数列,A 对;对于B 选项,对任意的n ∈N *,b n ≠0,由等比中项的性质可得b n+12=b n b n +2,由基本不等式可得b n 2 +b n +22≥2b n b n +2=2b n+12,B 对;对于C 选项,令c n =S 2n +2-S 2n =a 2n +2+a 2n +1, 所以,c n +1-c n =(a 2n +4+a 2n +3)-(a 2n +2+a 2n +1)=4d , 故数列{S 2n +2-S 2n }一定是等差数列,C 对; 对于D 选项,设等比数列{b n }的公比为q ,当q =-1时,T 2n +2-T 2n =b 2n +2+b 2n +1=b 2n +1(q +1)=0, 此时,数列{T 2n +2-T 2n }不是等比数列,D 错. 答案:(1)C (2)ABC [巩固训练2]1.解析:设等比数列公比为q ,由a 2,2a 5,3a 8成等差数列可得,2×2a 1·q 4=a 1·q +3a 1·q 7,化简得3q 6-4q 3+1=0,解得q 3=13或q 3=1,当q 3=1时,S6S 3=2;当q 3=13时,S 6S 3=a 1(1−q 6)1−q a 1(1−q 3)1−q=1+q 3=43.答案:C2.解析:若{a n }公差为d ,{b n }公比为q , A :由2a n+12a n=2a n+1−a n =2d 为定值,故{2a n }为等比数列,正确; B :由b a n+1b a n=b a n +d b a n=b a n q d b a n=q d 为定值,故{b a n }为等比数列,正确;C :由Sn+1n+1−S nn=a 1+a n+12−a 1+a n 2=a n+12−a n2=d 2为定值,故{Snn}为等差数列,正确; D :当q =-1时b n +b n +1=0,显然不是等比数列,错误. 答案:ABC微专题3 数列的递推保分题1.解析:由题意得:a 2=1-1a 1=5,a 3=1-1a 2=45,a 4=1-1a 3=-14,则数列{a n }的周期为3,则a 2 022=a 674×3=a 3=45.答案:B2.解析:因为a n +1=2a n a n +2,所以1a n+1=12+1a n,即1a n+1−1a n=12,又1a 1=12,则{1a n}是以12为首项,12为公差的等差数列,即1a n=12+12(n -1)=n2,则a n =2n ,所以a 7=27. 答案:C3.解析:因为对任意的m ,n ∈N *,都有a m a n =a m +n , 所以a 1a 1=a 2,a 1a n =a 1+n , 又a 2=3,所以a 1=±√3,所以a n+1a n=a 1,所以数列{a n }是首项为a 1,公比为a 1的等比数列, 所以a n =a 1·(a 1)n -1=(a 1)n , 所以a 20=(a 1)20=310. 答案:C提分题[例3] 解析:(1)将圆盘从小到大编为1,2,3,…号圆盘,则将第n +1号圆盘移动到3号柱时,需先将第1~n 号圆盘移动到2号柱,需a n 次操作;将第n +1号圆盘移动到3号柱需1次操作;再将1~n 号圆需移动到3号柱需a n 次操作,故a n +1=2a n +1,a n +1+1=2(a n +1),又a 1=1,∴{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2×2n -1=2n ,即a n =2n -1,∴a 2=3,a 3=7.(2)∵(n +1)a n+12−na n 2+a n +1a n =0,∴(n +1)a n+12+anan +1-na n 2=0,[(n +1)a n +1-na n ](a n +1+a n )=0,又∵a n >0,∴a n +1=n n+1·a n ,即a n+1a n =n n+1, ∴a 2a 1·a 3a 2·…·a n a n−1=12·23·…·n−1n ,即a n a 1=1n , 又∵a 1=1,∴a n =1n ,∴a 100=1100.答案:(1)AD (2)B[巩固训练3]1.解析:由相邻层球的个数差,归纳可知a n +1-a n =n +1,a 1=1, 对a n +1-a n =n +1累加得a n =n (n+1)2. 所以,a 5-a 4=5,a 100=100(100+1)2=5 050,2a n +1≠a n +a n +2,所以ABC 错误,故选D.答案:D2.解析:由b n +1-b n =2,b n +1-b n =a n +1+a n +2+a n +3-(a n +a n +1+a n +2)=a n +3-a n =2, ∴a 1,a 4,a 7,…是首项为1,公差为2的等差数列,a 2,a 5,a 8,…是首项为2,公差为2的等差数列,a 3,a 6,a 9,…是首项为3,公差为2的等差数列,S 31=(a 1+a 4+…+a 31)+(a 2+a 5+…+a 29)+(a 3+a 6+…+a 30)=1×11+11×10×22+2×10+10×9×22+3×10+10×9×22=351.故选C.答案:C。

考向19等差数列及其前n项和(重点)-备战2023年高考数学一轮复习考点微专题(全国通用)(解析版)

考向19等差数列及其前n项和(重点)-备战2023年高考数学一轮复习考点微专题(全国通用)(解析版)

考向19 等差数列及其前n 项和1.(2022年乙卷文科第13题)记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d = .【答案】2【解析】因为32236S S =+,所以212233()6a a a ⨯=++,即213()36a a d -==,所以2d =. 2.(2022年北京卷第6题) 设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】C【解析】设等差数列{}n a 的公差为d ,则0d ≠,记[]x 为不超过x 的最大整数. 若{}n a 为单调递增数列,则0d >,若10a ≥,则当2n ≥时,10n a a >≥;若10a <,则()11n a a n d +-=, 由()110n a a n d =+->可得11a n d >-,取1011a N d ⎡⎤=-+⎢⎥⎣⎦,则当0n N >时,0n a >, 所以,“{}n a 是递增数列”⇒“存在正整数0N ,当0n N >时,0n a >”; 若存在正整数0N ,当0n N >时,0n a >,取N k *∈且0k N >,0k a >, 假设0d <,令()0n k a a n k d =+-<可得k a n k d >-,且k ak k d->, 当1k a n k d ⎡⎤>-+⎢⎥⎣⎦时,0n a <,与题设矛盾,假设不成立,则0d >,即数列{}n a 是递增数列.所以,“{}n a 是递增数列”⇐“存在正整数0N ,当0n N >时,0n a >”.所以,“{}n a 是递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充分必要条件. 故选:C.3.(2022新课标1卷第17题) 记n S 为数列{}n a 的前n 项和,已知11=a ,{}n n S a 是公差为13的等差数列.(1)求{}n a 得通项公式; (2)证明:121112+++<na a a . 【解析】(1)111==S a ,所以111=S a , 所以{}n n S a 是首项为1,公差为13的等差数列, 所以121(1)33+=+-⋅=n n S n n a ,所以23+=n n n S a .当2n 时,112133--++=-=-n n n n n n n a S S a a , 所以1(1)(1)--=+n n n a n a ,即111-+=-n n a n a n (2n ); 累积法可得:(1)2+=n n n a (2n ),又11=a 满足该式, 所以{}n a 得通项公式为(1)2+=n n n a . (2)121111112[]1223(1)+++=+++⨯⨯+n a a a n n111112(1)2231=-+-++-+n n 12(1)21=-<+n . 4.(2022新课标2卷第17题)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-(1)证明:11a b =;(2)求集合1{|,1500}k m k b a a m =+中元素的个数. 【答案】(1)见解析;(2)9. 【解析】(1)设等差数列{}n a 公差为d由2233a b a b -=-,知1111224a d b a d b +-=+-,故12d b = 由2244a b b a -=-,知()1111283a d b b a d +-=-+,故()111243a d b d a d +-=-+;故1112a d b d a +-=-,整理得11a b =,得证. (2)由(1)知1122d b a ==,由1k m b a a =+知:()111121k b a m d a -=+⋅-⋅+ 即()11111212k b b m b b -=⋅⋅+-+,即122k m -=, 因为1500m ,故1221000k -,解得210k故集合1{|,1500}k m k b a a m =+中元素的个数为9个.5.(2022年甲卷理科第17题,文科第18题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+. (1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值. 【答案】(1)略;(2)78- 【解析】(1)由于221nn S n a n+=+,变形为222n n S na n n =+-,记为①式, 又21122(1)1(1)n n S n a n n --=-+---,记为②式, ①-②可得*1(22)(22)22,2,n n n a n a n n n ----=-∈N 即*11,2,n n a a n n --=∈N ,所以{}n a 是等差数列;(2)由题意可知2749a a a =,即2111(6)(3)(8)a a a +=++,解得112a =-,所以12(1)113n a n n =-+-⨯=-,其中1212...0a a a <<<<,130a =则n S 的最小值为121378S S ==-.6.(2021年甲卷理科第18题)已知数列}{n a 的各项为正数,记n S 为}{n a 的前n 项和,从下面①②③中选出两个条件,证明另一个条件成立.①数列}{n a 为等差数列;②数列}{n S 为等差数列;③123a a =. 注:若选择不同的组合分别解答,则按第一个解答计分. 【答案】见解析. 【解析】一、选择条件①③已知}{n a 为等差数列,122a a =,设公差为d ,则d a a a +==1123,即12a d = 因为1212)1(a n d n n na S n =-+=,则n a S n ⋅=1)0(1>a 所以数列}{n S 为等差数列 二、选择条件①②已知}{n a 为等差数列,数列}{n S 为等差数列,设公差为d 则dn a a n )1(1-+=,n da d n d n n na S n )2(212)1(121-+=-+= 若数列}{n S 为等差数列,则21da =,所以1123a d a a =+=三、选择条件②③已知数列}{n S 为等差数列,123a a =设公差为d 则d S S =-12,即d a a =-114 则21da =nd d n S S n =-+=)1(1则d n S n 2=,d dn S S a n n n -=-=-21所以}{n a 为等差数列7.(2021年全国一卷第19题)记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积.已知212n nS b +=. (1)证明:数列{}n b 是等差数列; (2)求{}n a 的通项公式.【答案】(1)见解析;(2)31212(1)n n a n n n ⎧=⎪⎪∴=⎨⎪-⎪+⎩≥.【解析】(1)当1n =时,11b S =,易得132b =. 当2n ≥时,1n n n b S b -=,代入212n n S b +=消去n S 得,1212n n n b b b -+=,化简得112n n b b --=, {}n b ∴是以32为首项,12为公差的等差数列. (2)易得11132a S b ===.由(1)可得22n n b +=,由212n n S b +=可得21n n S n +=+. 当2n ≥时,12111(1)n n n n n a S S n n n n -++=-=-=-++,显然1a 不满足该式; 31212(1)n n a n n n ⎧=⎪⎪∴=⎨⎪-⎪+⎩≥.8.(2021年新高考2卷第17题)记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==.(1)求数列{}n a 的通项公式n a ; (2)求使n n S a >成立的n 的最小值.【答案】(1)=26n a n -;(2)min 7n =.【解析】(1)由题意知:35244,a S a a S =⎧⎨=⎩()()1111154+252,43342a d a d a d a d a d ⨯⎧=+⎪⎪∴⎨⨯⎪+⋅+=+⎪⎩即:121+20,46a d d a d =⎧⎪⎨-=+⎪⎩ 故14,2a d =-⎧⎨=⎩所以数列{}n a 的通项公式为26n a n =-. (2)由(1)知()21(4)25,2n n n S n n n +=⋅-+⋅=-又,26n n n S a a n >=-2526n n n ∴->-即2760n n -+>16n n ∴<>或+n N ∈min 7n ∴=1.等差数列的基本运算的解题策略(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程思想.(2)数列的通项公式和前n 项和公式在解题中起到变量代换的作用,而a 1和d 是等差数列的两个基本量,用它们表示已知量和未知量是常用方法. 2.等差数列的判定与证明方法(1)定义法:如果一个数列{a n }从第2项起,每一项与它的前一项的差等于同一个常数,那么可以判断数列{a n }为等差数列;(2)等差中项法:如果一个数列{a n }对任意的正整数n 都满足2a n+1=a n +a n+2,那么可以判断{a n }为等差数列;(3)通项公式法:如果一个数列{a n }的通项公式满足a n =p n +q (p ,q 为常数)的形式,那么可以得出{a n }是首项为p+q ,公差为p 的等差数列;(4)前n 项和公式法:如果一个数列{a n }的前n 项和公式满足S n =An 2+Bn (A ,B 为常数)的形式,那么可以得出数列{a n }是首项为A+B ,公差为2A 的等差数列.1.等差数列与函数的关系(1)通项公式:当公差d ≠0时,等差数列的通项公式a n =a 1+(n -1)d =dn +a 1-d 是关于n 的一次函数,且一次项系数为公差d .若公差d >0,则为递增数列,若公差d <0,则为递减数列.(2)前n 项和:当公差d ≠0时,S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d2n 是关于n 的二次函数且常数项为0.2.两个常用结论(1)关于等差数列奇数项和与偶数项和的性质 ①若项数为2n ,则S 偶-S 奇=nd ,S 奇S 偶=a n a n +1;②若项数为2n -1,则S 偶=(n -1)a n ,S 奇=na n ,S 奇-S 偶=a n ,S 奇S 偶=nn -1.(2)两个等差数列{a n },{b n }的前n 项和S n ,T n 之间的关系为S 2n -1T 2n -1=a nb n .1.当公差d ≠0时,等差数列的通项公式是n 的一次函数;当公差d =0时,a n 为常数. 2.注意利用“a n -a n -1=d ”时加上条件“n ≥2”.1.已知S n 为等差数列{a n }的前n 项和,a 2=2,S 4=14,则S 6等于( )A .32B .39C .42D .45 【答案】B【解析】设公差为d ,由题意得⎩⎪⎨⎪⎧a 1+d =2,4a 1+4×32d =14, 解得⎩⎪⎨⎪⎧a 1=-1,d =3,所以S 6=6a 1+5×62d =39.n n 13n A .6 B .7 C .8 D .9 【答案】C【解析】因为d =a 3-a 12=2,S n =na 1+n (n -1)2d =n +n (n -1)=64,解得n =8(负值舍去).3.设等差数列{a n }的前n 项和为S n ,若a 4+S 5=2,S 7=14,则a 10=( )A .18B .16C .14D .12n n 267A .13 B .49 C .35 D .63n n n -1n +126n n A .S 4<S 3 B .S 4=S 3 C .S 4>S 1 D .S 4=S 1 【答案】B【解析】数列{a n }满足2a n =a n -1+a n +1(n ≥2),则数列{a n }是等差数列,设等差数列{a n }的公差为d . 因为a 2=-6,a 6=6, 所以4d =a 6-a 2=12,即d =3. 所以a n =-6+3(n -2)=3n -12,所以S 1=a 1=-9,S 3=a 1+a 2+a 3=-9-6-3=-18, S 4=a 1+a 2+a 3+a 4=-9-6-3+0=-18, 所以S 4<S 1,S 3=S 4.6.在等差数列{a n }中,a 2,a 14是方程x 2+6x +2=0的两个实数根,则a 8a 2a 14=( )A .-32 B .-3 C .-6 D .2n A .100 B .120 C .390 D .540 【答案】A【解析】设S n 为等差数列{a n }的前n 项和,则S 10,S 20-S 10,S 30-S 20成等差数列,所以2(S 20-S 10)=S 10+(S 30-S 20),又等差数列{a n }的前10项和为30,前30项和为210, 所以2(S 20-30)=30+(210-S 20),解得S 20=100.8.已知等差数列{a n }的公差为4,其项数为偶数,所有奇数项的和为15,所有偶数项的和为55,则这个数列的项数为( )A .10B .20C .30D .40n n 56678是( )A .d <0B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值 【答案】ABD【解析】S 6=S 5+a 6>S 5,则a 6>0,S 7=S 6+a 7=S 6,则a 7=0,则d =a 7-a 6<0,S 8=S 7+a 8<S 7,a 8<0.则a 7+a 8<0,所以S 9=S 5+a 6+a 7+a 8+a 9=S 5+2(a 7+a 8)<S 5,由a 7=0,a 6>0知S 6,S 7是S n 中的最大值.从而ABD 均正确.10.(多选)已知数列{a n }是公差不为0的等差数列,前n 项和为S n ,满足a 1+5a 3=S 8,下列选项正确的有( )A .a 10=0B .S 10最小C .S 7=S 12D .S 20=0n +n 25898值是________. 【答案】16【解析】设等差数列{a n }的公差为d ,则a 2a 5+a 8=(a 1+d )·(a 1+4d )+a 1+7d =a 21+4d 2+5a 1d+a 1+7d =0,S 9=9a 1+36d =27,解得a 1=-5,d =2,则S 8=8a 1+28d =-40+56=16.12.已知数列{a n }与⎩⎨⎧⎭⎬⎫a 2n n 均为等差数列(n ∈N +),且a 1=2,则a 20=________.n n +1n n +2324(1)求a 1+a 3a 2的值; (2)求证:数列{a n }为等差数列.14. 已知数列{a n }中,a 1=14,其前n 项和为S n ,且满足a n =2S n2S n -1(n ≥2).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求数列{a n }的通项公式.当n =1时,a 1=14,不适合上式.所以a n=⎩⎨⎧14,n =1,-12n (n +1),n ≥2.一、单选题 1.(2022·北京·人大附中模拟预测)如图是标准对数远视力表的一部分.最左边一列“五分记录”为标准对数视力记录,这组数据从上至下为等差数列,公差为0.1;最右边一列“小数记录”为国际标准视力记录的近似值,这组数据从上至下为等比数列,公比为1010.已知标准对数视力5.0对应的国际标准视力准确值为1.0,则标准对数视力4.8对应的国际标准视力精确到小数点后两位约为( ) (参考数据:51010 1.58,10 1.26≈≈)A .0.57B .0.59C .0.61D .0.63【答案】D【解析】依题意,以标准对数视力5.0为左边数据组的等差数列的首项,其公差为-0.1,标准对数视力4.8为该数列第3项,标准对数视力5.0对应的国际标准视力值1.0为右边数据组的等比数列的首项,其公比为10110, 因此,标准对数视力4.8对应的国际标准视力值为该等比数列的第3项,其大小为2105111()0.631010⨯=≈. 故选:D数之余一,五五数之余二,….若已知该筐最多装200个鸡蛋,则筐内鸡蛋总数最多有( )A .184B .186C .187D .188.(上海杨浦二模)数列n 为等差数列,1且公差,若1,3,6也是等差数列,则其公差为( ) A .1g d B .1g2d C .lg 23D .1g 324.(2022·贵州·模拟预测(理))十七世纪法国数学家费马猜想形如“221n F =+(n ∈N )”是素数,我们称n F 为“费马数”.设()2log 1n n a F =-,22log n n b a =,n *∈N ,数列{}n a 与{}n b 的前n 项和分别为n S 与n T ,则下列不等关系一定成立的是( ) A .n n a b < B .n n a b > C .n n S T ≤ D .n n S T ≥【答案】D【解析】因为221nn F =+(n ∈N ),所以()222log 1log (211)2nn n n a F =-=+-=,n *∈N所以222log 2log 22nn n b a n ===,n *∈N ,当2n =时,22224,224a b ===⨯=,两本著作——《红高粱》《檀香刑》.假设他读完这两本书共需50个小时,第1天他读了15分钟,从第2天起,他每天阅读的时间比前一天增加10分钟,则他恰好读完这两本书的时间为( ) A .第23天 B .第24天 C .第25天 D .第26天6.(2022·安徽省舒城中学模拟预测(理))若数列n a 为等差数列,数列n b 为等比数列,则下列不等式一定成立的是( ) A .1423b b b b +≤+B .4132b b b b ≤--C .3124a a a a ≥D .3124a a a a ≤7.(2022·浙江·模拟预测)已知函数(),()f x ax b g x ax b =+=-,下列条件,能使得(m ,n )的轨迹存在实轴和虚轴相等的双曲线的是( ) A .(0)1,()f f f m n -+成等差数列B .(),()g m g g n 成等比数列C .(),2()2,()f m n f m b f m n --+成等差数列D .(),(),()g m n g m g m n -+成等比数列()()()2222amb a m n b a m n b ⎡⎤⎡⎤-=--⋅+-⎣⎦⎣⎦,整理可得()222220an an am b --=,当20an ≠,且0b ≠时,由22220an am b --≠得2212n m b b a a-=,此时是实轴和虚轴不相等的双曲线,故D 错误. 故选:C.8.(2022·广西广西·一模(文))北京天坛圜丘坛的地面由石板铺成,最中间的是圆形的天心石,围绕天心石的是9圈扇环形的石板,从内到外各圈的石板数依次为1239,,,,a a a a ⋅⋅⋅,设数列{}n a 为等差数列,它的前n 项和为n S ,且218a =,4690a a +=,则8S =( )A .189B .252C .324D .405【答案】C【解析】设等差数列{}n a 的公差为d ,由218a =,4690a a +=,得11182890a d a d +=⎧⎨+=⎩,解得:199a d =⎧⎨=⎩,所以8879893242S ⨯⨯=⨯+=. 故选:C.二、多选题9.(2022·江苏·盐城中学模拟预测)设n *∈N ,正项数列{}n x 满足11(0,1),ln 1n n n n x x x x x +∈-=,下列说法正确的有( ) A . 1x 为{}n x 中的最小项B .2x 为{}n x 中的最大项C .存在1(0,1)x ∈,使得123,,x x x 成等差数列D .存在1(0,1),x n *∈∈N ,使得12,,n n n x x x ++成等差数列 1,()x f x '>1,()x f x '<(1)1ln1f =+)1x131,(0,1),1,1,n x x f x f +∈∴>==所以A 正确 令()(ln ,1g x f x x x x =- 21()0,x g x x +-='-<()g x ∴)0,x ∴320x x -<x x 是最大的项,所以B 是最大的项,则不可能使得()n g x <,则,所以不存在,x x 10.(2022·山东·烟台二中模拟预测)已知无穷数列n a 满足:当为奇数时,21n a n =+;当n 为偶数时,2n a n =,则下列结论正确的为( )A .2021和2023均为数列{}()21n a n *-∈N 中的项B .数列{}()21n a n *-∈N 为等差数列C .仅有有限个整数k 使得23k k a a >成立D .记数列{}2na 的前n 项和为n S ,则1413n n S +<-恒成立选项,2n 为偶数,则}2n 是以4为首项,以)14414n -=-三、填空题11.(2022·新疆乌鲁木齐·模拟预测(理))已知n S 为单调递减的等差数列{}n a 的前n 项和,若数列11n n a a +⎧⎫⎨⎬⎩⎭前n 项和3612n nT n =-,则下列结论中正确的有___________.(填写序号) ①30a =;②27n S n n =-;③()2n n S n a n =+-;④4nS S ≤【答案】②④11n d a ⎛++⎝3612n n-,12.(2021·上海杨浦·一模)等差数列{}n a 满足:①10a <,22a >;②在区间(11,20)中的项恰好比区间[41,50]中的项少2项,则数列{}n a 的通项公式为n a =___________.行、每一列及两个主对角线上的整数之和都相等.早在13世纪中国古代数学家杨辉就作出了⨯幻方的每一行上整数之和为______.⨯的幻方,那么5555【答案】65【解析】因为()125251232513253252+⨯++++==⨯=,因为55⨯幻方的每一行上整数之和相等,共5行,所以每行的整数之和为325655=. 故答案为:65.九个数填入如图所示3x3的正方形网格中,每个数填一次,每个小方格中填一个数.考虑每行从左到右,每列从上到下,两条对角线从上到下这8个数列,给出下列四个结论:①这8个数列有可能均为等差数列; ②这8个数列中最多有3个等比数列;③若中间一行、中间一列、两条对角线均为等差数列,则中心数必为5; ④若第一行、第一列均为等比数列,则其余6个数列中至多有1个等差数列. 其中所有正确结论的序号是________. 【答案】①②③【解析】①. 如图将1,2,3,4,5,6,7,8,9这九个数依次填入网格中,则这8个数列均为等差数列,故①正确.②. 1,2,3,4,5,6,7,8,9这九个数中,等比数列有:1,2,4; 1,3,9;2,4,8;4,6,9. 由于1,2,4和2,4,8这两个等比数列不可能在网格中不可能在同一列,同一行或对角线上. 所以这8个数列中最多有3个等比数列,例如如图满足有3个等比数列.故②正确③. 若三个数,,a b c 成等差数列,则2b a c =+.根据题意要有4组数成等差数列,且中间的数b 相同. 则只能是5b = 由2519283746⨯=+=+=+=+则中间一行、中间一列、两条对角线四列的数分别为1,5,92,5,83,5,74,5,6;;;时满足条件;中心数为其他数时,不满足条件.故③正确.④. 若第一行为1,2,4;第一列为1,3,9,满足第一行、第一列均为等比数列.第二行为3,5,7,第二列为258,,,则第二行,第二列为等差数列,此时有两个等差数列.故④不正确故答案为:①②③四、解答题15.(2022·上海崇明·二模)已知集合(Z 是整数集,m 是大于3的正整数).若含有m 项的数列{}n a 满足:任意的,i j M ∈,都有i a M ∈,且当i j ≠时有i j a a ≠,当i m <时有12i i a a +-=或13i i a a +-=,则称该数列为P 数列. (1)写出所有满足5m =且11a =的P 数列;(2)若数列{}n a 为P 数列,证明:{}n a 不可能是等差数列; (3)已知含有100项的P 数列{}n a 满足5105100,,,,,(1,2,3,,20)k a a a a k =是公差为(0)d d >等差数列,求d 所有可能的值【解析】(1)由题意可得满足5m =且11a =的P 数列为:1,3,5,2,4;1,4,2,5,3..(2)假设{}n a 是等差数列,公差为d ,当0d >时,由题意,2d =或3, 此时1121i a a a ≥+>+(2,3,4,,)i m =,所以11a +不是等差数列{}n a 中的项,与题意不符,所以{}n a 不可能是等差数列 当0d <时,由题意,2d =-或3-,此时1121i a a a ≤-<-(2,3,4,,)i m =所以11a -不是等差数列{}n a 中的项,与题意不符,所以{}n a 不可能是等差数列 综上所述,{}n a 不可能是等差数列 (3)由题意,N*d ∈,当6d ≥时,因为51a ≥,所以100519115a a d =+≥,与题意不符; 当3d ≤时,记{}545352515,,,,(1,2,3,,20)k k k k k k M a a a a a k ----==,当{}100(1,2,3,,20)i M i ∈∈时,51004388i a ≥-⨯=,所以55()31k i a a i k d =--≥,所以k M 中的最小项314319≥-⨯=,所以1(1,2,3,20)k M k ∉=,与题意不符,当4d =时,1054a a =+,又由题意,10512342323a a x x x x =++--(*),其中N(1,2,3,4)i x i ∈=, 且12345x x x x +++=,所以13242()3()4x x x x -+-=,所以13242x x x x -=⎧⎨=⎩ , 所以322225x x ++=,与N(1,2,3,4)i x i ∈=不符;当5d =时,取,541,532,522,511,5n n n k n n k a n n k n n k n n k =-⎧⎪+=-⎪⎪=+=-⎨⎪-=-⎪-=⎪⎩ ,此时的数列{}n a 满足题意,综上所述,5d =.16.(2022·上海长宁·二模)甲、乙两人同时分别入职,A B 两家公司,两家公司的基础工资标准分别为:A 公司第一年月基础工资数为3700元,以后每年月基础工资比上一年月基础工资增加300元;B 公司第一年月基础工资数为4000元,以后每年月基础工资都是上一年的月基础工资的1.05倍.(1)分别求甲、乙两人工作满10年的基础工资收入总量(精确到1元)(2)设甲、乙两人入职第n 年的月基础工资分别为n a 、n b 元,记n n n c a b =-,讨论数列{}n c 的单调性,指出哪年起到哪年止相同年份甲的月基础工资高于乙的月基础工资,并说明理由.础工资收入总量()1024000 1.0511********.051S ⨯-=⨯=-元(2)()37003001n a n =+-,14000 1.05n n b -=⨯134003004000 1.05n n c n -=+-⨯,()1340030014000 1.05n n c n +=++-⨯,设11300200 1.050n n n c c -+-=-⨯>,即11.05 1.5n -<,解得18n ≤≤所以当18n ≤≤时,{}n c 递增,当9n ≥时,n c 递减又当0n c <,即134003004000 1.05n n -+<⨯,解得514n ≤≤,所以从第5年到第14年甲的月基础工资高于乙的月基础工资. .1.(2020全国Ⅱ理4)北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块 【答案】C【思路导引】第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,设n S 为{}n a 的前n 项和,由题意可得322729n n n n S S S S -=-+,解方程即可得到n ,进一步得到3n S .【解析】设第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,9(1)99n a n n =+-⨯=,设n S 为{}n a 的前n 项和,则第一层、第二层、第三层的块数分别为232,,n n n n n S S S S S --,因为下层比中层多729块,所以322729n n n n S S S S -=-+,即3(927)2(918)2(918)(99)7292222n n n n n n n n ++++-=-+,即29729n =,解得9n =,所以32727(9927)34022n S S +⨯===,故选C .2.(2020浙江7)已知等差数列{}n a 的前n 项和n S ,公差110,a d d≤≠.记12122,,n n n b S b S S n ++*=-=∈N ,下列等式不可能成立的是( )A .4262a a a =+B .4262b b b =+C .2428a a a =D .2428b b b =【答案】B【解析】A .由等差数列的性质可知4262a a a =+,成立;B .4566b S S a =-=-,2323b S S a =-=,()6710891093b S S a a a a =-=-++=-, 若4262b b b =+,则()6399639232a a a a a a a -=-⇔-=-, 即660d d d =-⇔=,这与已知矛盾,故B 不成立;C .()()()2242811137a a a a d a d a d =⇔+=++ ,整理为:1a d =,故C 成立;D .()89141011121314125b S S a a a a a a =-=-++++=-,当2428b b b =时,即()263125a a a =⋅-,整理为()()()211155211a d a d a d +=-++,即2211225450a a d d ++=,0∆>,方程有解,故D 成立.综上可知,等式不可能成立的是B ,故选B .3.(2019•新课标Ⅰ,理9)记n S 为等差数列{}n a 的前n 项和.已知40S =,55a =,则()A .25n a n =-B .310n a n =-C .228n S n n =-D .2122n S n n =-【答案】A【解析】设等差数列{}n a 的公差为d ,由40S =,55a =,得1146045a d a d +=⎧⎨+=⎩,∴132a d =-⎧⎨=⎩,25n a n ∴=-,24n S n n =-,故选A .4.(2018•新课标Ⅰ,理4)记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则5(a = )A .12-B .10-C .10D .12【答案】B 【解析】n S 为等差数列{}n a 的前n 项和,3243S S S =+,12a =,∴111132433(3)422a d a a d a d ⨯⨯⨯+=++++,把12a =,代入得3d =-,524(3)10a ∴=+⨯-=-,故选B .5.(2017•新课标Ⅰ,理4)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为( ) A .1 B .2 C .4 D .8【答案】C【解析】由题知,∴1113424656482a d a d a d +++=⎧⎪⎨⨯+=⎪⎩,解得12a =-,4d =,故选C . 6.(2017•新课标Ⅲ,理9)等差数列{}n a 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则{}n a 前6项的和为( ) A .24- B .3- C .3 D .8【答案】A【解析】等差数列{}n a 的首项为1,公差不为0.2a ,3a ,6a 成等比数列,∴2326a a a =, 2111(2)()(5)a d a d a d ∴+=++,且11a =,0d ≠,解得2d =-,{}n a ∴前6项的和为616565661(2)2422S a d ⨯⨯=+=⨯+⨯-=-,故选A . 7.(2016•新课标Ⅰ,理3)已知等差数列{}n a 前9项的和为27,108a =,则100(a = ) A .100 B .99 C .98 D .97【答案】C【解析】由题知,195959()92922a a a S a +⨯====27,∴53a =,又108a ==d d a 5355+=+,1d ∴=,10059598a a d ∴=+=,故选C8.(2017浙江)已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >”是“465+2S S S >”的( )A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D .既不充分也不必要条件 【答案】C【解析】∵655465()()S S S S a a d ---=-=,当0d >,可得465+2S S S >;当465+2S S S >,可得0d >.所以“0d >”是“465+2S S S >” 充分必要条件,选C .9.(2020北京8)在等差数列{n a }中,19a =-,51a =-,记12(1,2,)n n T a a a n =⋯=⋯,则数列{n T } ( )A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项 【答案】A【解析】设公差为d ,a 5-a 1=4d ,即d=2,a n =2n-11,1≤n ≤5使,a n <0,n ≥6时,a n >0,所以n=4时,T n >0,并且取最大值;n=5时,T n <0;n ≥6时,T n <0,并且当n 越来越大时,T n 越来越小,所以T n 无最小项.故选A .10.(2020上海7)已知等差数列{}n a 的首项10a ≠,且满足1109a a a +=,则12910a a a a ++⋯+= .【答案】278【解析】由条件可知111298a d a d a d+=+⇒=-,()112951010194 (92727)988a d a a a a d a a a d d ++++====+. 故答案为:278. 11.(2019•新课标Ⅲ,理14)记n S 为等差数列{}n a 的前n 项和,若10a ≠,213a a =,则105S S = . 【答案】4【解析】设等差数列{}n a 的公差为d ,则由10a ≠,213a a =可得,12d a =,∴1011051510()5()S a a S a a +=+ 112(29)24a d a d +=+11112(218)428a a a a +==+.12.(2019江苏8)已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是 .【答案】16【解析】设等差数列{}n a 的首项为1a ,公差为d ,则1111()(4)70989272a d a d a d a d ++++=⎧⎪⎨⨯+=⎪⎩,解得152a d =-⎧⎨=⎩,所以818786(5)152162dS a ⨯=+=⨯-+⨯=.13.(2019北京理10)设等差数列{}n a 的前n 项和为n S ,若25310a S =-=-,,则5a = ________ . n S 的最小值为_______. 【答案】0,-10【解析】由题意得,2151351010a a d S a d =+=-⎧⎨=⋅+=-⎩,解得141a d =-⎧⎨=⎩,所以5140a a d =+=.因为{}n a 是一个递增数列,且50a =,所以n S 的最小值为4S 或5S ,()4543441102S S ⨯==-⨯+⨯=-. 14.(2018北京)设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为___. 【答案】14【解析】解法一 设{}n a 的公差为d ,首项为1a ,则111205614a d a d a d +=⎧⎨+++=⎩,解得142a d =-⎧⎨=⎩,所以7767(4)2142S ⨯=⨯-+⨯=.解法二 32714a d +=,所以2d =.故432a a d =+=,故7477214S a ==⨯=.15.(2018上海)记等差数列{}n a 的前几项和为n S ,若30a =,6714a a +=,则7S = .【答案】63n a n =-【解析】设等差数列的公差为d ,251146536a a a d a d d +=+++=+=,∴6d =,∴3(1)663n a n n =+-⋅=-.16.(2019•新课标Ⅰ,文18)记n S 为等差数列{}n a 的前n 项和,已知95S a =-. (1)若34a =,求{}n a 的通项公式; (2)若10a >,求使得nn a S ≥的n 的取值范围.【解析】(1)根据题意,等差数列{}n a 中,设其公差为d , 若95S a =-,则19955()992a a S a a +⨯===-,变形可得50a =,即140a d +=, 若34a =,则5322a a d -==-, 则3(3)210n a a n d n =+-=-+,(2)若nn a S ≥,则d n a d n n na )1(2)1(11-+≥-+,当1n =时,不等式成立,当2≥n 时,有12a d nd-≥,变形可得12)2(a d n -≥-,又由95S a =-,即19955()992a a S a a +⨯===-,则有50a =,即140a d +=,则有112)4)(2(a a n -≥--,又由10a >,则有10≤n , 则有102≤≤n ,综合可得:102≤≤n ,n N ∈.17.(2018•新课标Ⅱ,理(文)17)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【解析】(1)等差数列{}n a 中,17a =-,315S =-, 17a ∴=-,13315a d +=-,解得17a =-,2d =,72(1)29n a n n ∴=-+-=-;(2)17a =-,2d =,29n a n =-,22211()(216)8(4)1622n n n S a a n n n n n ∴=+=-=-=--,∴当4n =时,前n 项的和n S 取得最小值为16-.18.(2016•新课标Ⅱ,文17)等差数列{}n a 中,344a a +=,576a a +=. (Ⅰ)求{}n a 的通项公式;(Ⅱ)设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]0=,[2.6]2=.【解析】(Ⅰ)设等差数列{}n a 的公差为d ,344a a +=,576a a +=.∴112542106a d a d +=⎧⎨+=⎩,解得:1125a d =⎧⎪⎨=⎪⎩,2355n a n ∴=+;(Ⅱ)[]n n b a =,1231b b b ∴===,452b b ==,6783b b b ===,9104b b ==. 故数列{}n b 的前10项和103122332424S =⨯+⨯+⨯+⨯=.。

高考数学复习考点知识专题讲解课件第33讲 等差数列及其前n项和

高考数学复习考点知识专题讲解课件第33讲 等差数列及其前n项和
求出
1 + 4 = 5,
首项和公差,然后求出通项公式和前n项和即可;
4×3

2
1 = −3,
= 0,
[解析]设等差数列{an}的公差为d,由题意有ቐ
解得ቊ

=
2,
1 + 4 = 5,
41 +
(−1)
课堂考点探究
(2)[2022·福建莆田二检] 已知等差数列{an}满足a3+a6+a8+a11=12,则a4-3a6的
从而求出{an}的通项公式,最终得证.
证明:由{ }是等差数列,a2=3a1,得 2 - 1 = 41 - 1 = 1 ,即{ }的公
差为 1 ,所以 = 1 +(n-1) 1 =n
2
2
1 ,所以Sn=n a1.当n≥2时,Sn-1=(n-1) a1,
所以an=Sn-Sn-1=(2n-1)a1=a1+(n-1)·2a1,故{an}是公差为2a1的等差数列.
12a6=36,故a6=3,所以S11=
2
=11a6=33,故选D.
课堂考点探究
角度2 等差数列前n项和的性质
例4 (1)已知等差数列{an}的前n项和为Sn,且a8-a5=-6,S9-S4=75,则Sn取得最大值
5 − 2
=1,且
5−2
=12,可得a13=12×12=144.故选B.
1 =0,满足题意,则有 13 = 1 +(13-1)d
课堂考点探究
(3)[2020·全国卷Ⅱ] 记Sn为等差数列{an}的前n项和,若a1=-2,a2+a6=2,则
25
S10=
.
[解析]设等差数列{an}的公差为d,则a2+a6=a1+d+a1+5d=2,∴2a1+6d=2,又a1=-2,

高考数学一轮复习《等差数列》练习题(含答案)

高考数学一轮复习《等差数列》练习题(含答案)

高考数学一轮复习《等差数列》练习题(含答案)一、单选题1.若3与13的等差中项是4与m 的等比中项,则m =( ) A .12B .16C .8D .202.在等差数列{}n a 中,49a =,且2410,,a a a 构成等比数列,则公差d 等于( ) A .3-B .0C .3D .0或33.已知等差数列{}n a 的前n 项和为n S ,若7614,10S a ==,则{}n a 的公差为( ) A .4B .3C .2D .14.已知数列{}n a ,{}n b 均为等差数列,且125a =,175b =,22120a b +=,则3737a b +的值为( ) A .760B .820C .780D .8605.在等差数列{an }中,若a 2+2a 6+a 10=120,则a 3+a 9等于( ) A .30B .40C .60D .806.在明朝程大位《算法统宗》中有首依筹算钞歌:“甲乙丙丁戊己庚,七人钱本不均平,甲乙念三七钱钞,念六一钱戊己庚,惟有丙丁钱无数,要依等第数分明,请问先生能算者,细推详算莫差争.”题意是:“现有甲、乙、丙、丁、戊、己、庚七人,他们手里钱不一样多,依次成等差数列,已知甲、乙两人共237钱,戊、己、庚三人共261钱,求各人钱数.”根据上题的已知条件,戊有( ) A .107钱B .102钱C .101钱D .94钱7.已知数列{an }是首项为1a ,公差为d 的等差数列,前n 项和为Sn ,满足4325a a =+,则S 9=( ) A .35B .40C .45D .50 8.正项等比数列{}n a 中,5a ,34a ,42a -成等差数列,若212a =,则17a a =( ) A .4B .8C .32D .649.已知{}n a 是公差不为零的等差数列,2414a a +=,且126,,a a a 成等比数列,则公差为( ) A .1B .2C .3D .410.设等差数列{}n a 的公差为d ,10a >,则“50a >”是“0d >”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件11.设等差数列 {}n a 的前n 项和为n S ,若3710a a += ,则9S = ( ) A .22.5B .45C .67.5D .9012.在等差数列{}n a 中n S 为前n 项和,7624a a =- ,则9S =( ) A .28 B .30C .32D .36二、填空题13.记n S 为等差数列{n a }的前n 项和,若24a =,420S =,则9a =_________.14.已知公差不为0的等差数列{}n a 的前n 项和为n S ,若4a ,5S ,{}750S ∈-,,则n S 的最小值为__________.15.已知数列{}n a 中,11a =,()1121n n n n a a n a na ++⋅=+-,则通项公式n a =______. 16.等差数列{}n a 的前n 项和为n S ,若30a =,636S S =+,则7S =_____. 三、解答题17.已知等差数列{}n a 满足32a =,前4项和47S =. (1)求{}n a 的通项公式;(2)设等比数列{}n b 满足23b a =,415b a =,数列{}n b 的通项公式.18.已知等差数列{}n a 满足首项为3331log 15log 10log 42-+的值,且3718a a +=. (1)求数列{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .19.记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+. (1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.20.已知在n的展开式中,前3项的系数成等差数列,求:(1)展开式中二项式系数最大项的项; (2)展开式中系数最大的项; (3)展开式中所有有理项.21.设等差数列{}n a 的前n 项和为n S ,已知535S =,且4a 是1a 与13a 的等比中项,数列{}n b 的前n 项和245n T n n =+.(1)求数列{}{}n n a b 、的通项公式; (2)若14a <,对任意*n ∈N 总有1122111444n nS b S b S b λ+++≤---恒成立,求实数λ的最小值.22.这三个条件中任选一个,补充在下面题目条件中,并解答.①25a =,()11232,n n n S S S n n *+--+=≥∈N ;②25a =,()111322,n n n n S S S a n n *+--=--≥∈N ;③()132,12n n S S n n n n *--=≥∈-N . 问题:已知数列{}n a 的前n 项和为n S ,12a =,且___________.(1)求数列{}n a 的通项公式;(2)已知n b 是n a 、1n a +的等比中项,求数列21n b ⎧⎫⎨⎬⎩⎭的前n 项和n T参考答案1.B2.D3.A4.B5.C7.C8.D9.C10.B11.B12.D 13.18 14.6- 15.21nn - 16.717.(1)设等差数列{}n a 首项为1a ,公差为d .∵3427a S =⎧⎨=⎩∴()1122441472a d a d +=⎧⎪⎨⨯-+=⎪⎩解得:1112a d =⎧⎪⎨=⎪⎩∴等差数列{}n a 通项公式()11111222n a n n =+-⨯=+(2)设等比数列{}n b 首项为1b ,公比为q∵2341528b a b a ==⎧⎨==⎩∴13128b q b q ⋅=⎧⎨⋅=⎩ 解得:24q =即112b q =⎧⎨=⎩或112b q =-⎧⎨=-⎩ ∴等比数列{}n b 通项公式12n n b -=或()12n n b -=--18.(1)根据题意得,13331log 15log 10log 42a =-+333331533log log log log 2log 211022⎛⎫=+=+=⨯= ⎪⎝⎭,因为数列{}n a 是等差数列,设公差为d ,则由3718a a +=,得112618a d a d +++=,解得2d =,所以()11221n a n n =+-⨯=-.(2)由(1)可得1111(21)(21)22121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,所以1111111112323522121n T n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭11122121nn n ⎛⎫=-=⎪++⎝⎭. 19.(1)因为221nn S n a n +=+,即222n n S n na n+=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----, 即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈, 所以{}n a 是以1为公差的等差数列. (2)[方法一]:二次函数的性质由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=--⎪⎝⎭, 所以,当12n =或13n =时,()min 78n S =-. [方法二]:【最优解】邻项变号法由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-, 所以13n a n =-,即有1123210,0a a a a <<<<=.则当12n =或13n =时,()min 78n S =-. 20.(1)n展开式的通项公式为1C kn kk k nT -+=⋅3561C 2n kk n k x -=,依题意得122112C 1C 22n n ⋅⋅=+⋅,即2C 4(1)n n =-,得8n =,所以8的展开式有9项,二项式系数最大的项为5项,所以22433584135C 28T x x ==. (2)由(1)知,2456181C 2kk k k T x -+=,设展开式中系数最大的项为第1k +项,则1881188111C C 2211C C 22k k k k k k k k --++⎧≥⎪⎪⎨⎪≥⎪⎩,即()()()()()()8!8!2!8!1!9!8!8!2!8!1!7!k k k k k k k k ⎧≥⋅⎪⋅--⋅-⎪⎨⎪⋅≥⎪⋅-+⋅-⎩,即92228k k k k -≥⎧⎨+≥-⎩,解得23k ≤≤,所以2k =或3k =, 所以展开式中系数最大的项为737x 和327x . (3)由2456181C 2kk k k T x -+=(0,1,2,3,4,5,6,7,8)k =为有理项知,2456k -为整数,得0k =,6.所以展开式中所有有理项为4x 和716x. 21.(1)设等差数列{}n a 的公差为d , 由535S =得151035a d +=, 因为4a 是1a 与13a 的等比中项,所以()()2111312a d a a d +=+.化简得172a d =-且2123a d d =,解方程组得17,0a d ==或13,2a d==.故{}n a 的通项公式为7n a =或21n a n =+(其中N n *∈);因为245n T n n =+,所以214(1)5(1)n T n n -=-+-,(2)n ≥,所以22145[4(1)5(1)]81n n n b T T n n n n n -=-=+--+-=+,因为119b T ==,满足上式,所以()81N n b n n *=+∈;(2)因为14a <,所以21n a n =+, 所以(2)n S n n =+,所以221114488141n n S b n n n n ==-+---,所以22211221111114442141(2)1n n S b S b S b n +++=+++------1111335(21)(21)n n =+++⨯⨯-+111111123352121n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦111221n ⎛⎫=- ⎪+⎝⎭, 易见111221n ⎛⎫- ⎪+⎝⎭随n 的增大而增大,从而11112212n ⎛⎫-< ⎪+⎝⎭恒成立, 所以12λ≥,故λ的最小值为12.22.(1)解:选条件①时,25a =,1123n n n S S S +--+=,整理得()()113n n n n S S S S +----=,故13n n a a +-=(常数),且213a a -=, 所以数列{}n a 是以2为首项,3为公差的等差数列.故()13131n a a n n =+-=-;选条件②时,25a =,()*111322,n n n n S S S a n n +--=--≥∈N ,整理得()1112n n n n n S S S S a +---=--,故112n n n a a a +-+=,故数列{}n a 是等差数列,公差213d a a =-=,故()13131n a a n n =+-=-; 选条件③时,()*132,12n n S S n n n n --=≥∈-N ,且121S =, 所以数列n S n ⎧⎫⎨⎬⎩⎭是以2为首项,32为公差的等差数列,则()33121222n S n n n =+-=+,所以23122n S n n =+,则2n ≥时,131n n n a S S n -=-=-.又112311a S ===⨯-满足31n a n =-,所以31n a n =-,*n ∈N . (2)解:由(1)得:31n a n =-,由于n b 是n a 、1n a +的等比中项,所以()()213132n n n b a a n n +==-+⋅,则()()211111313233132n b n n n n ⎛⎫==- ⎪-+-+⎝⎭, 故()11111111113255831323232232n nT n n n n ⎛⎫⎛⎫=⨯-+-++-=-=⎪ ⎪-+++⎝⎭⎝⎭。

2023考点专题复习——等差数列及其性质(原卷版)

2023考点专题复习——等差数列及其性质(原卷版)

2023考点专题复习——等差数列及其性质考法一、 等差数列的基本运算⑴等差数列的通项公式:⑴等差数列的前和的求和公式:例1、在等差数列{}n a 中,若3930a a +=,411a =,则{}n a 的公差为( ) A .-2B .2C .-3D .3例2、已知等差数列{}n a 的前n 项和为n S ,8100S =,724a a =,则4a =( ). A .10B .11C .12D .13例3、记n S 为等差数列{}n a 的前n 项和.已知55S =,55a =,则( ) A .25n a n =-B .n a n =C .229n S n n =-D .21322n S n n =- 练习1、等差数列1、2a 、24a 、的第五项等于( )A .12B .1C .5D .16练习2、设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为__________. 练习3、在等差数列{a n }中,a 1+a 2+a 3=21,a 2a 3=70,若a n =61,则n =( ) A .18B .19C .20D .21练习4、已知等差数列{}n a 的前n 项和为n S ,若111152S S S =-,则611a a =( )A .65B .56C .1110D .1011练习5、设n S 是某个等差数列的前n 项和,若201920202020S S ==,则2021S =( ) A .220202019-B .220202019+C .120201010-D .120201010+练习6、已知n S 是数列{}n a 的前n 项和,则“2n S n n =-”是“数列{}n a 是公差为2的等差数列”的( )1(1)n a a n d=+-n 11()(1)22n n n a a n n S na d +-==+A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件练习7、已知数列{}n a 中各项为非负数,21a =,516a =,若数列为等差数列,则13a=( )A .169B .144C .12D .13练习8、已知公差不为0的等差数列{}n a 中,246a a a +=,296a a =,则10a =______.练习9、已知等差数列{}n a 的前n 项和为n S ,若171251,0S a ==,则{}n a 的通项公式为_____________ 练习10、已知等差数列{}n a 满足13248,14a a a a +=+=,则它的前8项的和8S =( ) A .70B .82C .92D .105练习11、已知等差数列{}n a 的前n 项和为n S ,若312S =,410a =,则{}n a 的公差为( ) A .4B .3C .2D .1练习12、等差数列{}n a 中,前n 项和为n S ,且131,9S S ==,则5S =( ) A .17 B .25C .5D .81考法二、 等差数列的性质⑴在等差数列中,对任意,,,;⑴在等差数列中,若,,,且,则,特殊地,时,则,是的等差中项.⑴等差数列被均匀分段求和后,得到的数列仍是等差数列,即成等差数列.⑴设数列是等差数列,且公差为,(⑴)若项数为偶数,设共有项,则①;② ;⑴若项数为奇数,设共有项,则①(中间项);②.⑴若与为等差数列,且前项和分别为与,则.{}n a m n N +∈()n m a a n m d =+-n ma a d n m-=-()m n ≠{}n a m n p q N +∈m n p q +=+m n p q a a a a +=+{}n a d 2n -S S nd =奇偶1n n S aS a +=奇偶21n -S S -偶奇n a a ==中1S n S n =-奇偶{}n a {}n b n nS 'n S 2121'm m m m a S b S --=例1、在等差数列{}n a 中,若34567750a a a a a ++++=,则28a a +=( ) A .360B .300C .240D .200例2、已知数列{a n }为等差数列,n S 为其前n 项和,4252a a a +=+,则5S =( ) A .2B .14C .50D .10例3、在等差数列{}n a 中,11826a a =+,则267a a a ++=( ) A .18-B .6-C .8D .12例4、已知数列{}n a 是等差数列,若1231a a a ++=,4563a a a ++=,则789a a a ++=( ) A .5B .4C .9D .7例5、设等差数列{}n a 的前n 项和为n S ,其中23S =,415S =,则6S =( ) A .9B .18C .27D .36例6、已知数列{}n a 、{}n b 都是等差数列,设{}n a 的前n 项和为n S ,{}n b 的前n 项和为n T .若2132n n S n T n +=+,则55a b =( ) A .1929B .1125C .1117D .23练习1、已知数列{}n a 为等差数列,且31a =,则12345a a a a a ++++=( ) A .3B .4C .5D .6练习2、n S 是等差数列{}n a 的前n 项和,1233a a a ,7910a a +=,则9S =( )A .9B .16C .20D .27练习3、已知公差不为0的等差数列{}n a 满足22225678a a a a +=+,则( ) A .60a =B .70a =C .120S =D .130S =练习4、已知等差数列{}n a 的前n 项和为n S ,等差数列{}n b 的前n 项和为n T .若211n n S n T n -=+,则55a b =( ) A .1911B .1710C .32D .75练习5、已知数列{}n a ,{}n b 为等差数列,其前n 项和分别为n S ,n T ,422n n S n T n +=+,则59a b =( ) A .3811B .109C .1110D .2练习6、等差数列{}n a 的前()m m N +∈项和为30,前2m 项和为100,则前3m 项和为( )A .130B .170C .210D .260练习7、等差数列{a n }的前n 项和为S n ,且S 10=20,S 20=15,则S 30=( )A .10B .30-C .15-D .25练习8、两等差数列{}n a 和{}n b 的前n 项和分别是n n S T 、,已知73n n S n T n =+,则55a b = A .7 B .23C .278D .214练习9、设等差数列{}n a 的前n 项和为n S ,若1254a a a +=+,则11S =( )A .28B .34C .40D .44练习10、已知等差数列{}n a 的前n 项和为n S ,若39S =,663S =,则789a a a ++等于( )A .63B .71C .99D .117练习11、已知等差数列{}n a 的前n 项和为n S ,若1122S =,则378a a a ++=( )A .18B .12C .9D .6练习12、已知等差数列{}{},n n a b 的前n 项和分别为,n n S T ,若对于任意的自然数n ,都有481n n S n T n -=+,则3153111572a a a b b b b ++=++( )A .3B .6C .327D .8013练习13、已知等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且521n n S n T n +=-,则76a b =( )A .67B .1211C .1825D .1621练习14、设等差数列{}n a 的前n 项和为n S ,若1020S =,2030S =,则30S =( )A .20B .30C .40D .50练习15、已知等差数列{}n a 的项数为奇数,其中所有奇数项之和为319,所有偶数项之和为290,则该数列的中间项为( )A .28B .29C .30D .31练习16、等差数列{a n }的前n 项和为S n ,若a 2+a 7+a 12=12,则S 13=_____.练习17、已知等差数列{}n a 的前n 项和为n S ,若246820a a a a +++=,则9S =___________.练习18、已知数列{}n a 和{}n b 均为等差数列,前n 项和分别为n S ,n T ,且满足:*n ∀∈N ,321n n S n T n +=+,则161419581215a a a ab b b b +++=+++____________.练习19、两个等差数列{}n a 和{}n b 的前n 项和分别为n S 、n T ,且523n n S n T n +=+,则220715a a b b ++等于( )A .10724B .724C .14912D .1493考法三、 等差数列的最值问题⑴.利用等差数列的单调性或性质,求出其正负转折项,便可求得和的最值.当,时,有最大值;,时,有最小值;若已知,则最值时的值()则当,,满足的项数使得取最大值,(2)当,时,满足的项数使得取最小值.⑴利用等差数列的前n 项和:(为常数, )为二次函数,通过配方或借助图像,二次函数的性质,转化为二次函数的最值的方法求解;有时利用数列的单调性(,递增;,递减);⑴. 利用数列中最大项和最小项的求法:求最大项的方法:设为最大项,则有;求最小项的方法:设为最小项,则有.只需将等差数列的前n 项和依次看成数列,利用数列中最大项和最小项的求法即可.10a >0d <n S 10a <0d >n S n a n S n n N +∈10a >0d <100n n a a +≥⎧⎨≤⎩n n S 10a <0d >10n n a a +≤⎧⎨≥⎩n n S 2n S An Bn =+,A B n N ∈*0d >0d <n a 11n n nn a a a a -+≥⎧⎨≥⎩n a 11n n nn a a a a -+≤⎧⎨≤⎩1,2,3,n ={}n S例1、等差数列{}n a 的前n 项和为n S ,73649,3S a a ==,则n S 取最大值时的n 为( ) A .7B .8C .14D .15例2、在等差数列{}n a 中,若981a a <-,且它的前n 项和n S 有最小值,则当0n S >时,n 的最小值为 A .B .C .D .例3、等差数列{}n a 中,3716,8,n a a S ==是数列{}n a 的前n 项和,则n S 最大时,n =( ) A .10B .11C .10或11D .11或12练习1、若公差为负的等差数列{}n a 中的两项39,a a 是方程21090x x -+=的两个根,设数列{}n a 的前n 项和为n S ,则当n S 最大时,n 的值为( ) A .5B .9或10C .10D .9练习2、已知等差数列{}n a 的前n 项和为n S ,且78S S >,8910S S S =<,则下面结论错误的是( ) A .90a = B .1514S S >C .0 d <D .8S 与9S 均为n S 的最小值练习3、等差数列{}n a 的前n 项和为n S ,若n N *∀∈,7n S S ≤,则数列{}n a 的通项公式可能是( )A .315n a n =-B .173n a n =-C .7n a n =-D .152n a n =-练习4、等差数列{}n a 的前n 项和记为n S ,若10a >,1020S S =,则不成立是( )A .0d <B .160a <C .15n S SD .当且仅当0nS <时32n练习5、已知等差数列{}n a 的前n 项和为n S ,且满足54a ≤,540S ≥,则该数列的公差d 可取的值是( )A .3B .1C .-1D .-3练习6、等差数列{}n a 的前n 项和为n S ,若7,n n S S *∀∈≤N ,则数列{}n a 的通项公式可能是( )A .163n a n =-B .152n a n =-C .214n a n =-D .215n a n =-练习7、等差数列{}n a 中,3716,8,n a a S ==是数列{}n a 的前n 项和,则数列n S n ⎧⎫⎨⎬⎩⎭的前n 项和最大时,n =( )A .20B .21C .20或21D .21或22练习8、设等差数列{}n a 的前n 项和为n S ,若111a =-,466a a +=-,则下列结论正确的是( ) A .当且仅当6n =时n S 取最小值 B .当且仅当6n =时n S 取最大值 C .当且仅当7n =时n S 取最小值 D .当且仅当7n =时n S 取最大值练习9、已知数列{}n a 的通项公式为3n a n =-,*n ∈N ,n S 为其前n 项和,则当0n n a S ≤时,正整数n 的最大值为( )A .3B .4C .5D .6练习10、若数列{a n }满足:a 1=19,a n +1=a n -3,则数列{a n }的前n 项和数值最大时,n 的值为A .6B .7C .8D .9练习11、设n S 为等差数列{}n a 的前n 项和,()()11n n n S nS n N *++<∈.若871a a <-,则( ) A .n S 的最大值是8S B .n S 的最小值是8S C .n S 的最大值是7SD .n S 的最小值是7S练习12、已知数列{}n a 是首项为a ,公差为1的等差数列,数列{}n b 满足1.nn na b a +=若对任意的*n ∈N ,都有6n b b ≥成立,则实数a 的取值范围是( )A .[]6,5--B .()6,5--C .[]5,4--D .()5,4--练习13、已知等差数列{}n a 的前n 项和记为1234,24n S a a a S ++=+,则“11a <”是“{}n S 为单调数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件练习14、已知n S 是等差数列{}n a 的前n 项和,且675S S S >>,给出下列五个命题:①0d <;②110S >;③120S <;④数列{}n S 中的最大项为11S ;⑤67a a <. 其中正确命题的是___________.练习15、设1a ,d 为实数,首项为1a ,公差为d 的等差数列{}n a 的前n 项和为n S ,满足:30a <,且56160S S +=,则11S 的最小值为_________.练习16、已知n S 为等差数列{}n a 的前n 项和,且235S =,23439a a a ++=,则当n S 取最大值时,n 的值为___________.考法四、 等差数列的证明与判断例1、已知数列{}n a 满足12a =,121n n n a a a +-=,证明:数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列;例2、已知数列{}12,13n a a a ==,,且满足11212n n n a a a +-+=+(2n ≥且*n N ∈),证明新数列{}1n n a a +-是等差数列,并求出n a 的通项公式.例3、已知数列{}n b 首项13b =,且满足()*1212123n n n b b n n n +-=+-∈-N ,令23n n b c n =-. (1)求证:数列{}n c 为等差数列; (2)求数列{}n b 中的最小项.练习1、已知在数列{}n a 中,112a =,12n n a a n ++=,求证:{}n a 为等差数列;练习2、在正项数列{}n a 中,11a =,0=,*N n ∈,求证:数列为等差数列;练习3、已知数列{}n a 满足12a =,1210n n n a a a +-+=,N n *∈,证明:11n a ⎧⎫⎨⎬-⎩⎭是等差数列;练习4、已知数列{}n a 满足112a =,()()11110n n n n n n a a n a na --+++-=,2n ≥,n N ∈,求证:数列()11n n a ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭为等差数列;练习5、已知数列{}n a 满足()*143n n n a a n N a +-=∈-,且14a =,证明:数列12n a ⎧⎫⎨⎬-⎩⎭是等差数列;练习6、已知数列{}n a 中,13a =,且满足()2*122,n n n n a a n b a n n N +=++=-∈,证明:数列{}n b 是等差数列,并求{}n b 的通项公式;练习7、记n S 为数列{}n a 的前n 项和,已知210,3n a a a >=,且数列是等差数列,证明:{}na 是等差数列.练习8、在数列{}n a 中,12a =,n a 是1与1n n a a +的等差中项,求证:数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列,并求{}n a 的通项公式;练习9、已知正项数列{}n a 满足121,2a a ==,且对任意的正整数n ,211n a ++是2n a 和22n a +的等差中项,证明:{}221n n aa +-是等差数列,并求{}n a 的通项公式;练习10、已知数列{}n a 满足11a =,11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; (2)求{}n a 的前20项和.考法五、实际生活中的等差数列例1、在古印度的数学著作《丽拉沃蒂》中,有这样一个问题:某人给一个人布施,初日施3德拉玛(古印度货币单位),其后日增2德拉玛,共布施360德拉玛,请快告诉我,他布施了几日?这个问题的答案是( ) A .9B .18C .20D .24例2、《九章算术》是我国古代的数学名著,书中有如下题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得之和与丙、丁、戊三人所得之和相等,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种质量单位)在这个问题中,戊所得为( ) A .14钱 B .12钱 C .23钱 D .35钱练习1、《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问小满日影长为()(1丈=10 尺=100寸)A.四尺五寸B.三尺五寸C.二尺五寸D.一尺五寸练习2、《孙子算经》是中国古代重要的数学著作,据书中记载,中国古代诸侯的等级从低到高分为五级:男、子、伯、侯、公.现有每个级别的诸侯各一人,共5人,要把80个橘子分完且每人都要分到橘子,级别每高一级就多分m个(m为正整数),若按这种方法分橘子,“子”恰好分得13个橘子的概率是()A.18B.17C.16D.15练习3、《张丘建算经》是我国古代的一部数学著作,现传本有92问,比较突出的成就有最大公约数与最小公倍数的计算、各种等差数列问题的解决、某些不定方程问题求解等.书中记载如下问题:“今有女子善织,日增等尺,初日织五尺,三十日共织390尺,问日增几何?”那么此女子每日织布增长()A.47尺B.1631尺C.1629尺D.815尺练习4、我国明代数学家程大位的《算法统宗》中有这样一个问题:今有钞二百三十八贯,令五等人从上作互和减半分之,只云戊不及甲三十三贯六百文,问:各该钞若干?其意思是:现有钱238贯,采用等差数列的方法依次分给甲、乙、丙、丁、戊五个人,现在只知道戊所得钱比甲少33贯600文(1贯=1000文),问各人各得钱多少?在这个问题中,戊所得钱数为()A.30.8贯B.39.2贯C.47.6贯D.64.4贯练习5、中国古代数学著作《算法统宗》中有这样一个问题:“九百九十六斤棉,赠分八子作盘缠,次第每人多十七,要将第八数来言,务要分明依次弟,孝和休惹外人传.”其意思为:“996斤棉花,分别赠送给8个子女作旅费,从第一个开始,以后每人依次多17斤,使孝顺子女的美德外传,试求各人应分得多少斤.”则第3个子女分得棉花()A.65斤B.82斤C.99斤D.106斤练习6、《九章算术》卷七“盈不足”有这样一段话:“今有良马与弩马发长安至齐.齐去长安三千里,良马初日行一百九十三里.日增十三里,驽马初日行九十七里,日减半里.”意思是:今有良马与弩马从长安出发到齐国,齐国与长安相距3000里,良马第一日走193里,以后逐日增加13里,弩马第一日走97里,以后逐日减少0.5里.则8天后两马之间的距离为___________里.练习7、我国古代数学名著《算法统宗》中说:“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次第,孝和休惹外人传.”意为:“996斤棉花,分别赠送给8个子女做旅费,从第1个孩子开始,以后每人依次多17斤,直到第8个孩子为止.分配时一定要按照次序分,要顺从父母,兄弟间和气,不要引得外人说闲话.”在这个问题中,第8个孩子分到的棉花为()A.184斤B.176斤C.65斤D.60斤练习8、明朝程大位的《算法统宗》中有首依等算钞歌:“甲乙丙丁戊已庚,七人钱本不均分,甲乙念三七钱钞,念六一钱戊已庚,惟有丙丁钱无数,要依等第数分明,请问先生能算者,细推详算莫差争.”大意是:“现有甲、乙、丙、丁、戊、己、庚七人,他们手里钱不一样多,依次成等差数列,已知甲、乙两人共237钱,戊、已、庚三人共261钱,求各人钱数.”根据题目的已知条件,乙有()A.122钱B.115钱C.108钱D.107钱练习9、中国古代词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子做盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是A.174斤B.184斤C.191斤D.201斤练习10、2022北京冬奥会开幕式将我国二十四节气融入倒计时,尽显中国人之浪漫.倒计时依次为:大寒、小寒、冬至、大雪、小雪、立冬、霜降、寒露、秋分、白露、处暑、立秋、大暑、小暑、夏至、芒种、小满、立夏、谷雨、清明、春分、惊蛰、雨水、立春,已知从冬至到夏至的日影长等量减少,若冬至、立冬、秋分三个节气的日影长之和为31.5寸,冬至到处暑等九个节气的日影长之和为85.5寸,问大暑的日影长为()A.4.5寸B.3.5寸C.2.5寸D.1.5寸。

高考一轮复习 等差数列 知识点+例题+练习

高考一轮复习 等差数列 知识点+例题+练习

自主梳理1.等差数列的有关定义(1)一般地,如果一个数列从第____项起,每一项与它的前一项的____等于同一个常数,那么这个数列就叫做等差数列.符号表示为____________ (n ∈N *,d 为常数).(2)数列a ,A ,b 成等差数列的充要条件是____________,其中A 叫做a ,b 的____________.2.等差数列的有关公式(1)通项公式:a n =____________,a n =a m +__________ (m ,n ∈N *).(2)前n 项和公式:S n =______________=________________.3.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列的充要条件是其前n 项和公式S n =____________.4.等差数列的性质(1)若m +n =p +q (m ,n ,p ,q ∈N *),则有________________,特别地,当m +n =2p 时,________________.(2)等差数列中,S m ,S 2m -S m ,S 3m -S 2m 成等差数列.(3)等差数列的单调性:若公差d >0,则数列为________;若d <0,则数列为__________;若d =0,则数列为____________.自我检测1. 已知等差数列{a n }中,a 5+a 9-a 7=10,记S n =a 1+a 2+…+a n ,则S 13的值为________.2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d =________.3.设等差数列{a n }的前n 项和为S n .若S 9=72,则a 2+a 4+a 9=________.4.若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=________.学生姓名教师姓名 班主任 日期时间段 年级 课时 教学内容 等差数列及其前n 项和教学目标 1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.了解等差数列与一次函数的关系.4.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.重点 等差数列性质、公式灵活应用难点同上5.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5=________.探究点一 等差数列的基本量运算例1 等差数列{a n }的前n 项和记为S n .已知a 10=30,a 20=50,(1)求通项a n ;(2)若S n =242,求n .变式迁移1 设等差数列{a n }的公差为d (d ≠0),它的前10项和S 10=110,且a 1,a 2,a 4成等比数列,求公差d 和通项公式a n .探究点二 等差数列的判定例2 已知数列{a n }中,a 1=35,a n =2-1a n -1 (n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大值和最小值,并说明理由.变式迁移2 已知数列{a n }中,a 1=5且a n =2a n -1+2n -1(n ≥2且n ∈N *).(1)求a 2,a 3的值.(2)是否存在实数λ,使得数列{a n +λ2n }为等差数列?若存在,求出λ的值;若不存在,说明理由.探究点三 等差数列性质的应用例3 若一个等差数列的前5项之和为34,最后5项之和为146,且所有项的和为360,求这个数列的项数.变式迁移3 已知数列{a n }是等差数列.(1)前四项和为21,末四项和为67,且前n 项和为286,求n ;(2)若S n =20,S 2n =38,求S 3n ;(3)若项数为奇数,且奇数项和为44,偶数项和为33,求数列的中间项和项数.探究点四 等差数列的综合应用例4 已知数列{a n }满足2a n +1=a n +a n +2 (n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72.若b n =12a n -30,求数列{b n }的前n 项和的最小值.变式迁移4 在等差数列{a n }中,a 16+a 17+a 18=a 9=-36,其前n 项和为S n .(1)求S n 的最小值,并求出S n 取最小值时n 的值.(2)求T n =|a 1|+|a 2|+…+|a n |.1.等差数列的判断方法有:(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列.(2)中项公式:2a n +1=a n +a n +2 (n ∈N *)⇔{a n }是等差数列.(3)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列.(4)前n 项和公式:S n =An 2+Bn (A 、B 为常数)⇔{a n }是等差数列.2.对于等差数列有关计算问题主要围绕着通项公式和前n 项和公式,在两个公式中共五个量a 1、d 、n 、a n 、S n ,已知其中三个量可求出剩余的量,而a 与d 是最基本的,它可以确定等差数列的通项公式和前n 项和公式.3.要注意等差数列通项公式和前n 项和公式的灵活应用,如a n =a m +(n -m )d ,S 2n -1=(2n -1)a n 等.4.在遇到三个数成等差数列问题时,可设三个数为①a ,a +d ,a +2d ;②a -d ,a ,a +d ;③a -d ,a +d ,a +3d 等可视具体情况而定.一、填空题1.已知{a n }为等差数列,a 3+a 8=22,a 6=7,则a 5=______.2.如果等差数列{}a n 中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7=________.3.已知{a n }是等差数列,a 1=-9,S 3=S 7,那么使其前n 项和S n 最小的n 是________.4.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值为________.5.等差数列{a n }的前n 项和满足S 20=S 40,下列结论中正确的序号是________. ①S 30是S n 中的最大值;②S 30是S n 中的最小值;③S 30=0;④S 60=0.6.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,则a 9=________.7.等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m =________.8.在数列{a n }中,若点(n ,a n )在经过点(5,3)的定直线l 上,则数列{a n }的前9项和S 9=________.二、解答题9.设{a n }是一个公差为d (d ≠0)的等差数列,它的前10项和S 10=110,且a 22=a 1a 4.(1)证明:a 1=d ;(2)求公差d 的值和数列{a n }的通项公式.10.已知等差数列{a n}满足:a3=7,a5+a7=26,{a n}的前n项和为S n.(1)求a n及S n;(2)令b n=1a2n-1(n∈N*),求数列{b n}的前n项和T n. 11.在数列{a n}中,a1=1,3a n a n-1+a n-a n-1=0(n≥2).(1)证明数列{1a n}是等差数列;(2)求数列{a n}的通项;(3)若λa n+1a n+1≥λ对任意n≥2的整数恒成立,求实数λ的取值范围.。

等差等比数列专题题目+答案

等差等比数列专题题目+答案

高三二轮复习讲义 等差、等比数列1.(2015·江苏卷)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.2.(2014·江苏卷)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.3.(2010·江苏卷)函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴交点的横坐标为a k +1,k 为正整数,a 1=16,则a 1+a 3+a 5=________.4.(2013·江苏卷)在正项等比数列{a n }中,a 5=12,a 6+a 7=3.则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为________.5、等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则S n 的最小值为________.6、 (2015·郑州模拟)设等比数列{a n }的前n 项和为S n ,若S m -1=5,S m =-11,S m +1=21,则m 等于________.7、 (2015·苏北四市模拟)在等差数列{a n }中,a 1=-2 015,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 015的值为________.8、在等比数列{a n }中,公比q =2,前87项和S 87=140,则a 3+a 6+a 9+…+a 87=________.9、(2015·苏州期中)在等差数列{a n }中,a 5=3,a 6=-2,则a 3+a 4+…+a 8=________.10、设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.11、 数列{a n }的前n 项和为S n ,a 1=1,且对任意正整数n ,点(a n +1,S n )在直线2x +y -2=0上. (1)求数列{a n }的通项公式;(2)是否存在实数λ,使得数列⎩⎨⎧⎭⎬⎫S n +λn +λ2n 为等差数列?若存在,求出λ的值;若不存在,请说明理由.12、 已知数列{a n }是各项均不为0的等差数列,S n 为其前n 项和,且满足a 2n =S 2n -1,令b n=1a n ·a n +1,数列{b n }的前n 项和为T n .(1)求数列{a n }的通项公式及数列{b n }的前n 项和T n ;(2)是否存在正整数m ,n (1<m <n ),使得T 1,T m ,T n 成等比数列?若存在,求出所有的m ,n 的值;若不存在,请说明理由.13.(2015·广州模拟)等比数列{a n }的前n 项和为S n ,若2S 4=S 5+S 6,则数列{a n }的公比q 的值为________.14.(2015·南师附中调研)设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 7=________.15.(2015·南通检测)已知等比数列{a n }为递增数列,且a 3+a 7=3,a 2a 8=2,则a 13a 11=________.16.在等比数列{a n }中,已知a 1+a 3=8,a 5+a 7=4,则a 9+a 11+a 13+a 15=________.17.(2015·阳泉模拟)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.18.(2015·安徽卷)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于________.19.(2015·福建卷改编)若a,b是函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于________.20.已知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n-a n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和.21.(2015·洛阳模拟)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5. (1)求数列{b n }的通项公式; (2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列.22.(2015·苏、锡、常、镇调研)已知数列{a n }是首项为133,公比为133的等比数列,设b n +15log 3a n =t ,常数t ∈N *.(1)求证:{b n }为等差数列;(2)设数列{c n }满足c n =a n b n ,是否存在正整数k ,使c k ,c k +1,c k +2按某种次序排列后成等比数列?若存在,求k ,t 的值;若不存在,请说明理由.数列的综合应用1、(2015·江苏卷)设a 1,a 2,a 3,a 4是各项为正数且公差为d (d ≠0)的等差数列. (1)证明:2a 1,2a 2,2a 3,2a 4依次构成等比数列;(2)是否存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列?并说明理由;(3)是否存在a 1,d 及正整数n ,k ,使得a n 1,a n +k 2,a n +2k 3,a n +3k 4依次构成等比数列?并说明理由.2、(2011·江苏卷)设M 为部分正整数组成的集合,数列{a n }的首项a 1=1,前n 项的和为S n ,已知对任意的整数k ∈M ,当整数n >k 时,S n +k +S n -k =2(S n +S k )都成立. (1)设M ={1},a 2=2,求a 5的值; (2)设M ={3,4},求数列{a n }的通项公式.3、(2012·江苏卷)已知各项均为正数的两个数列{a n }和{b n }满足:a n +1=a n +b na 2n +b 2n,n ∈N *. (1)设b n +1=1+b n a n ,n ∈N *,求证:数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;(2)设b n +1=2·b na n ,n ∈N *,且{a n }是等比数列,求a 1和b 1的值.4、如果无穷数列{a n}满足下列条件:①a n+a n+22≤a n+1;②存在实数M,使得a n≤M,其中n∈N*,那么我们称数列{a n}为Ω数列.(1)设数列{b n}的通项为b n=5n-2n,且是Ω数列,求M的取值范围;(2)设{c n}是各项为正数的等比数列,S n是其前n项和,c3=14,S3=74,证明:数列{S n}是Ω数列;(3)设数列{d n}是各项均为正整数的Ω数列,求证:d n≤d n+1.5、(2014·江苏卷)设数列{a n}的前n项和为S n.若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”.(1)若数列{a n}的前n项和S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0.若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n(n∈N*)成立.6、(2014·泰州期末)设数列{a n}的前n项积为T n,已知对∀n,m∈N*,当n>m时,总有T nT m=T n-m·q(n-m)m(q>0是常数).(1)求证:数列{a n}是等比数列;(2)设正整数k,m,n(k<m<n)成等差数列,试比较T n·T k和(T m)2的大小,并说明理由;(3)探究:命题p:“对∀n,m∈N*,当n>m时,总有T nT m=T n-m·q(n-m)m(q>0是常数)”是命题t:“数列{a n}是公比为q(q>0)的等比数列”的充要条件吗?若是,请给出证明;若不是,请说明理由.7、 (2015·徐州质检)已知数列{a n },{b n }满足a 1=3,a n b n =2,b n +1=a n ⎝⎛⎭⎪⎫b n -21+a n ,n ∈N *.(1)求证:数列⎩⎨⎧⎭⎬⎫1b n 是等差数列,并求数列{b n }的通项公式;(2)设数列{c n }满足c n =2a n -5,对于给定的正整数p ,是否存在正整数q ,r (p <q <r ),使得1c p,1c q,1cr成等差数列?若存在,试用p 表示q ,r ;若不存在,请说明理由.18.(2015·全国Ⅱ卷)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =____________.19.数列{a n }的通项公式a n =1 n +n +1,若{a n }的前n 项和为24,则n 为________.20.(2012·江苏卷改编)各项均为正数的等比数列{a n }满足a 1a 7=4,a 6=8,若函数f (x )=a 1x +a 2x 2+a 3x 3+…+a 10x 10的导数为f ′(x ),则f ′⎝ ⎛⎭⎪⎫12=________.21.在等差数列{a n }中,a 1=142,d =-2,从第一项起,每隔两项取出一项,构成新的数列{b n },则此数列的前n 项和S n 取得最大值时n 的值是________.22.在正项数列{a n }中,a 1=2,a n +1=2a n +3×5n ,则数列{a n }的通项公式为________.23.(2015·苏、锡、常、镇模拟)已知各项都为正的等比数列{a n }满足a 7=a 6+2a 5,存在两项a m ,a n 使得 a m ·a n =4a 1,则1m +4n 的最小值为________.24.(2015·南通调研)设S n 为数列{a n }的前n 项之和,若不等式a 2n +S 2n n2≥λa 21对任何等差数列{a n }及任何正整数n 恒成立,则λ的最大值为________.25.(2015·南京、盐城模拟)已知等比数列{a n }的首项为43,公比为-13,其前n 项和为S n ,若A ≤S n -1S n≤B 对n ∈N *恒成立,则B -A 的最小值为________.26.数列{a n}满足a n=2a n-1+2n+1(n∈N*,n≥2),a3=27.(1)求a1,a2的值;(2)是否存在一个实数t,使得b n=12n(a n+t)(n∈N*),且数列{b n}为等差数列?若存在,求出实数t;若不存在,请说明理由;(3)求数列{a n}的前n项和S n.27.(2013·江苏卷)设{a n}是首项为a,公差为d的等差数列(d≠0),S n是其前n项的和.记b n=nS nn2+c,n∈N*,其中c为实数.(1)若c=0,且b1,b2,b4成等比数列,证明:S nk=n2S k(k,n∈N*);(2)若{b n}是等差数列,证明:c=0.28.(2014·南京、盐城模拟)已知数列{a n}满足a1=a(a>0,a∈N*),a1+a2+…+a n-pa n+1=0(p≠0,p≠-1,n∈N*).(1)求数列{a n}的通项公式a n;(2)若对每一个正整数k,若将a k+1,a k+2,a k+3按从小到大的顺序排列后,此三项均能构成等差数列,且公差为d k.①求p的值及对应的数列{d k}.②记S k为数列{d k}的前k项和,问是否存在a,使得S k<30对任意正整数k恒成立?若存在,求出a 的最大值;若不存在,请说明理由.。

等差数列公式复习题

等差数列公式复习题

等差数列公式复习题等差数列公式复习题等差数列是数学中常见且重要的概念之一,它在各个领域都有广泛的应用。

掌握等差数列的公式和性质对于解决各类数学问题至关重要。

本文将通过一些复习题来巩固对等差数列公式的理解和运用。

1. 已知等差数列的首项是a,公差是d,第n项是an,求第m项的值am。

解析:根据等差数列的性质,我们知道第n项的值可以通过公式an = a + (n-1)d来计算。

同样地,第m项的值可以通过公式am = a + (m-1)d来计算。

因此,am = a + (m-1)d。

2. 若等差数列的首项是3,公差是5,前n项和Sn = 2n^2 + 3n,求第n项的值an。

解析:我们知道等差数列的前n项和公式是Sn = (n/2)(2a + (n-1)d)。

根据题目给出的前n项和Sn = 2n^2 + 3n,代入公式中得到2n^2 + 3n = (n/2)(2a + (n-1)d)。

化简后得到4n^2 + 6n = 2an + nd - d。

由于首项a = 3,公差d = 5,代入公式中得到4n^2 + 6n = 6n + 5n - 5。

化简后得到4n^2 = 11n - 5。

移项后得到4n^2 - 11n + 5 = 0。

解这个二次方程可以得到n的值。

将求得的n代入Sn的公式中,即可求得第n项的值an。

3. 若等差数列的首项是2,公差是4,求前100项的和Sn。

解析:我们知道等差数列的前n项和公式是Sn = (n/2)(2a + (n-1)d)。

根据题目给出的首项a = 2,公差d = 4,代入公式中得到Sn = (100/2)(2*2 + (100-1)*4)。

化简后得到Sn = 50(4 + 99*4)。

计算得到Sn = 50(4 + 396) = 50*400 = 20000。

因此,前100项的和Sn = 20000。

4. 若等差数列的首项是1,公差是2,前n项和Sn = 3n^2 + 2n,求第n项的值an。

等差数列的性质总结(复习知识)

等差数列的性质总结(复习知识)

等差数列性质总结 1.等差数列的定义式:d a a n n =--1(d 为常数)(2≥n );2.等差数列通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而mn a a d mn --=; 3.等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2b a A +=或b a A +=2(2)等差中项:数列{}n a 是等差数列+-112(2,n N )n n n a a a n +⇔=+≥∈212+++=⇔n n n a a a4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+(其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项()()()12121121212n n n n a a S n a +++++==+(项数为奇数的等差数列的各项和等于项数乘以中间项)5.等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a .⑶数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。

(4)数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)。

6.等差数列的证明方法定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列 等差中项性质法:-112(2n )n n n a a a n N ++=+≥∈,.7.提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。

等差数列专题(有答案) 百度文库

等差数列专题(有答案) 百度文库
A.4B.5C.7D.8
29.等差数列 中, 为其前 项和, ,则以下正确的是()
A.
B.
C. 的最大值为
D.使得 的最大整数
30.(多选题)等差数列 的前n项和为 ,若 ,公差 ,则下列命题正确的是()
A.若 ,则必有 =0
B.若 ,则必有 是 中最大的项
C.若 ,则必有
D.若 ,则必有
【参考答案】***试卷处理标记,请不要删除
,即
故选:B
17.D
【分析】
由 得到 ,再分n为奇数和偶数得到 , ,然后再联立递推逐项判断.
【详解】
因为 ,
所以 ,
所以 , ,
联立得: ,
所以 ,
故 ,
从而 ,
, ,
则 ,故 ,


故①②③正确.
故选:D
18.C
【分析】
根据甲、乙、丙、丁、戊所得依次成等差数列,设甲、乙、丙、丁、戊所得钱分别为 , ,a, , ,然后再由五人钱之和为5,甲、乙的钱与与丙、丁、戊的钱相同求解.
所以

故选:B
【点睛】
关键点点睛:此题考查由数列的递推式求数列的前 项和,解题的关键是由已知条件得 ,从而数列 是以4为公差,以1为首项的等差数列,进而可求 , ,然后利用裂项相消法可求得结果,考查计算能力和转化思想,属于中档题
12.A
【分析】
由已知等式分别求出数列的前三项,由 列出方程,求出公差,利用等差数列的通项公式求解可得答案.
25.设数列 满足 , 对任意的 恒成立,则下列说法正确的是()
A. B. 是递增数列
C. D.
26.已知数列 满足 , ,则下列各数是 的项的有()
A. B. C. D.

2023届高考数学复习:历年经典好题专项(等差数列)练习(附答案)

2023届高考数学复习:历年经典好题专项(等差数列)练习(附答案)

6 -1
=-1,a3=5,a4=4,∴a3a4=20.故选
6-1
当 a1=7,a6=2 时,d=
D.
6.C 把每段重量依次用 ai(i=1,2,…,20)表示,数列{an}是等差数列,由题意得





7.A 由已知


4,

2
1
1

1
3
3
两式相加得 a1+a20= (4+2)= ,所以 a10+a11=a1+a20= .故选 C.
.
围是
13.(历年浙江,11)我国古代数学家杨辉、朱世杰等研究过高阶等差数列的求和问题,如数列
是二阶等差数列.数列
( 1)
2
(n∈N*)的前 3 项和是
( 1)
2
.
14.在等差数列{an}中,a1=-8,a2=3a4.
(1)求数列{an}的通项公式;
4
(n∈N*),Tn 为数列{bn}的前
(14 )
(n∈N*),则该数列的通项公式为(
2
)
2
1
3

8.(多选)设{an}是等差数列,Sn 为其前 n 项和,且 S7<S8,S8=S9>S10,则下列结论正确的是(
)
A.d<0
B.a9=0
C.S11>S7
D.S8,S9 均为 Sn 的最大值
9.(2018 北京,理 9)设{an}是等差数列,且 a1=3,a2+a5=36,则{an}的通项公式为
问各得几何?”其意思是:“已知甲、乙、丙、丁、戊五人分五钱,甲、乙两人所得之和与丙、丁、戊三
人所得之和相等,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”这个问题中,戊所

2023年新高考数学一轮复习7-2 等差数列及其前n项和(真题测试)解析版

2023年新高考数学一轮复习7-2 等差数列及其前n项和(真题测试)解析版

专题7.2 等差数列及其前n 项和(真题测试)一、单选题1.(2022·全国·高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.9【答案】D 【解析】 【分析】设11111OD DC CB BA ====,则可得关于3k 的方程,求出其解后可得正确的选项. 【详解】设11111OD DC CB BA ====,则111213,,CC k BB k AA k ===, 依题意,有31320.2,0.1k k k k -=-=,且111111110.725DD CC BB AA OD DC CB BA +++=+++,所以30.530.30.7254k +-=,故30.9k =,故选:D2.(2021·北京·高考真题)《中国共产党党旗党徽制作和使用的若干规定》指出,中国共产党党旗为旗面缀有金黄色党徽图案的红旗,通用规格有五种.这五种规格党旗的长12345,,,,a a a a a (单位:cm)成等差数列,对应的宽为12345,,,,b b b b b (单位: cm),且长与宽之比都相等,已知1288a =,596=a ,1192b =,则3b =A .64 B .96C .128D .160【答案】C 【解析】 【分析】设等差数列{}n a 公差为d ,求得48d =-,得到3192a =,结合党旗长与宽之比都相等和1192b =,列出方程,即可求解. 【详解】由题意,五种规格党旗的长12345,,,,a a a a a (单位:cm)成等差数列,设公差为d , 因为1288a =,596=a ,可得519628848513a a d --===--, 可得3288(31)(48)192a =+-⨯-=, 又由长与宽之比都相等,且1192b =,可得3113a ab b =,所以3131192192=128288a b b a ⋅⨯==. 故选:C.3.(2020·全国·高考真题(理))北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块 【答案】C 【解析】 【分析】第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,设n S 为{}n a 的前n 项和,由题意可得322729n n n n S S S S -=-+,解方程即可得到n ,进一步得到3n S . 【详解】设第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,9(1)99n a n n =+-⨯=, 设n S 为{}n a 的前n 项和,则第一层、第二层、第三层的块数分 别为232,,n n n n n S S S S S --,因为下层比中层多729块, 所以322729n n n n S S S S -=-+, 即3(927)2(918)2(918)(99)7292222n n n n n n n n ++++-=-+ 即29729n =,解得9n =, 所以32727(9927)34022n S S +⨯===.故选:C4.(2022·吉林·东北师大附中模拟预测(理))数列{}n a 为等差数列,前n 项的和为n S ,若10110a <,101110120a a +>,则当0n S <时,n 的最大值为( )A .1011B .1012C .2021D .2022【答案】C 【解析】 【分析】分析数列{}n a 的单调性,计算2021S 、2022S ,即可得出结论. 【详解】因为10110a <,101110120a a +>,则10120a >,故数列{}n a 为递增数列, 因为()12021202110112021202102a a S a +==<,()()120222022101110122022101102a a S a a +==+>,且当1012n ≥时,10120n a a ≥>,所以,当2022n ≥时,20220n S S ≥>, 所以,满足当0n S <时,n 的最大值为2021.故选:C.5.(2022·北京·高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】设等差数列{}n a 的公差为d ,则0d ≠,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论. 【详解】设等差数列{}n a 的公差为d ,则0d ≠,记[]x 为不超过x 的最大整数. 若{}n a 为单调递增数列,则0d >,若10a ≥,则当2n ≥时,10n a a >≥;若10a <,则()11n a a n d +-=, 由()110n a a n d =+->可得11a n d >-,取1011a N d ⎡⎤=-+⎢⎥⎣⎦,则当0n N >时,0n a >, 所以,“{}n a 是递增数列”⇒“存在正整数0N ,当0n N >时,0n a >”; 若存在正整数0N ,当0n N >时,0n a >,取N k *∈且0k N >,0k a >, 假设0d <,令()0n k a a n k d =+-<可得k a n k d >-,且k ak k d->, 当1k a n k d ⎡⎤>-+⎢⎥⎣⎦时,0n a <,与题设矛盾,假设不成立,则0d >,即数列{}n a 是递增数列.所以,“{}n a 是递增数列”⇐“存在正整数0N ,当0n N >时,0n a >”.所以,“{}n a 是递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充分必要条件. 故选:C.6.(2021·北京·高考真题)已知{}n a 是各项均为整数的递增数列,且13a ≥,若12100n a a a ++⋅⋅⋅+=,则n 的最大值为( ) A .9B .10C .11D .12【答案】C 【解析】【分析】使数列首项、递增幅度均最小,结合等差数列的通项及求和公式求得n 可能的最大值,然后构造数列满足条件,即得到n 的最大值. 【详解】若要使n 尽可能的大,则,递增幅度要尽可能小, 不妨设数列是首项为3,公差为1的等差数列,其前n 项和为,则,,所以11n ≤. 对于,,取数列各项为(1,2,10)n =⋯,1125a =,则1211100a a a ++⋅⋅⋅+=, 所以n 的最大值为11. 故选:C .7.(2022·海南海口·二模)设公差不为0的等差数列{}n a 的前n 项和为n S ,已知()9353m S a a a =++,则m =( ) A .9 B .8C .7D .6【答案】C 【解析】 【分析】根据等差数列的前n 项和的性质及等差数列通项公式化简可得. 【详解】因为()9353m S a a a =++,又959S a =, 所以()53593m a a a a =++,所以3553m a a a a ++=,即352m a a a +=,设等差数列{}n a 的公差为d ,则1112(1)2(4)a d a m d a d +++-=+, 所以(+1)8m d d =,又0d ≠,所以18m +=, 所以7m =. 故选:C.8.(2023·全国·高三专题练习)等差数列{}n a 的首项为正数,其前n 项和为n S .现有下列命题,其中是假命题的有( )A .若n S 有最大值,则数列{}n a 的公差小于0B .若6130a a +=,则使0n S >的最大的n 为18C .若90a >,9100a a +<,则{}n S 中9S 最大D .若90a >,9100a a +<,则数列{}n a 中的最小项是第9项 【答案】B 【解析】 【分析】由n S 有最大值可判断A ;由6139100a a a a +=+=,可得90a >,100a <,利用91018182+=⨯a a S 可判断BC ; 90a >,9100a a +<得90a >,991010a a a a =<-=,可判断D. 【详解】对于选项A ,∵n S 有最大值,∴ 等差数列{}n a 一定有负数项, ∴等差数列{}n a 为递减数列,故公差小于0,故选项A 正确; 对于选项B ,∵6139100a a a a +=+=,且10a >, ∴90a >,100a <, ∴179=170S a >,910181802a a S +=⨯=, 则使0n S >的最大的n 为17,故选项B 错误;对于选项C ,∵90a >,9100a a +<,∴90a >,100a <, 故{}n S 中9S 最大,故选项C 正确;对于选项D ,∵90a >,9100a a +<, ∴90a >,991010a a a a =<-=,故数列{}n a 中的最小项是第9项,故选项D 正确. 故选:B. 二、多选题9.(2023·全国·高三专题练习)已知等差数列{an }的公差为d ,前n 项和为Sn ,且91011S S S =<,则( ) A .d <0 B .a 10=0 C .S 18<0 D .S 8<S 9【答案】BC 【解析】 【分析】由91011S S S =<,得100,0d a >= ,判断出A,B 选项,再结合90a <,11818118910918()9()9()92a a S a a a a a +==+=+=判断C 选项,再根据等式性质判断D 选项 【详解】910S S = ,101090a S S ∴=-= ,所以B 正确又1011S S < ,111110100a S S a d ∴=-=+> ,0d ∴> ,所以A 错误 1090,0,0a d a =>∴<11818118910918()9()9()902a a S a a a a a +==+=+=<,故C 正确 9989890,,a S S a S S <=+∴> ,故D 错误故选:BC10.(2022·江苏·南京市宁海中学模拟预测)定义11222n nn a a a H n-+++=为数列{}n a 的“优值”.已知某数列{}n a 的“优值”2nn H =,前n 项和为n S ,下列关于数列{}n a 的描述正确的有( )A .数列{}n a 为等差数列B .数列{}n a 为递增数列C .2022202520222S = D .2S ,4S ,6S 成等差数列 【答案】ABC 【解析】【分析】由新定义可得112222n n n a a a n -++⋯+=⋅,利用该递推关系求出数列{}n a 的通项公式,然后逐一核对四个选项得答案. 【详解】 由已知可得112222n n nn a a a H n-+++==,所以112222n n n a a a n -+++=⋅,①所以2n ≥时,()211212212n n n a a a n ---+++=-⋅,②得2n ≥时,()()111221212n n n n n a n n n ---=⋅--⋅=+⋅,即2n ≥时,1n a n =+,当1n =时,由①知12a =,满足1n a n =+.所以数列{}n a 是首项为2,公差为1的等差数列,故A 正确,B 正确, 所以()32n n n S +=,所以32n S n n +=故2022202520222S =,故C 正确. 25S =,414S =,627S =,2S ,4S ,6S 不是等差数列,故D 错误,故选:ABC .11.(2022·江苏·南京市江宁高级中学模拟预测)已知两个等差数列{}n a 和{}n b ,其公差分别为1d 和2d ,其前n 项和分别为n S 和n T ,则下列说法正确的是( )A .若为等差数列,则112d a =B .若{}n n S T +为等差数列,则120d d +=C .若{}n n a b 为等差数列,则120d d ==D .若*n b N ∈,则{}n b a 也为等差数列,且公差为12d d 【答案】ABD 【解析】 【分析】对于A ,利用对于B ,利用()2211332S T S T S T +=+++化简可得答案; 对于C ,利用2211332a b a b a b =+化简可得答案;对于D ,根据112n n b b a a d d +-=可得答案. 【详解】对于A ,因为为等差数列,所以即 化简得()21120d a -=,所以112d a =,故A 正确;对于B ,因为{}n n S T +为等差数列,所以()2211332S T S T S T +=+++, 所以()11121111122223333a d b d a b a d b d +++=+++++, 所以120d d +=,故B 正确;对于C ,因为{}n n a b 为等差数列,所以2211332a b a b a b =+, 所以11121111122()()(2)(2)a d b d a b a d b d ++=+++, 化简得120d d =,所以10d =或20d =,故C 不正确;对于D ,因为11(1)n a a n d =+-,且*n b N ∈,所以11(1)n b n a a b d =+-()112111a b n d d =++--⎡⎤⎣⎦,所以()()1111211n b a a b d n d d =+-+-,所以()()()11111211112111n n b b a a a b d nd d a b d n d d +-=+-+-----12d d =, 所以{}n b a 也为等差数列,且公差为12d d ,故D 正确. 故选:ABD12.(2022·福建南平·三模)如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n =⋅⋅⋅⋅⋅⋅且,i i x y ∈Z .记n n n a x y =+,如()11,0A 记为11a =,()21,1A -记为20a =,()30,1A -记为31,a =-⋅⋅⋅,以此类推;设数列{}n a 的前n 项和为n S .则( )A .202242a =B .202287S =-C .82n a n =D .()245312n n n n S ++=【答案】ABD 【解析】 【分析】由图观察可知第n 圈的8n 个点对应的这8n 项的和为0,则2440n n S +=,同时第n 圈的最后一个点对应坐标为(),n n ,设2022a 在第k 圈,则k 圈共有()41k k +个数,可判断前22圈共有2024个数,2024a 所在点的坐标为()22,22,向前推导,则可判断A ,B 选项;当2n =时,16a 所在点的坐标为()2,2--,即可判断C 选项;借助2440n n S +=与图可知22222244144245454544n n n n n nn n n n n n S S S a a a++++++++=-=+++,即n 项之和,对应点的坐标为()1,+n n ,()1,1n n +-,…,()1,1n +,即可求解判断D 选项.【详解】由题,第一圈从点()1,0到点()1,1共8个点,由对称性可知81280S a a a =+++=;第二圈从点()2,1到点()2,2共16个点,由对称性可知248910240S S a a a -=+++=,即 240S =,以此类推,可得第n 圈的8n 个点对应的这8n 项的和为0,即()214482n nn n SS ++⨯==,设2022a 在第k 圈,则()()888168412k k k kk ++++==+,由此可知前22圈共有2024个数,故20240S =,则()2022202420242023S S a a =-+,2024a 所在点的坐标为()22,22,则2024222244a =+=,2023a 所在点的坐标为()21,22,则2023212243a =+=,2022a 所在点的坐标为()20,22,则2022202242a =+=,故A 正确;()()20222024202420230444387S S a a =-+=-+=-,故B 正确;8a 所在点的坐标为()1,1,则8112a =+=,16a 所在点的坐标为()2,2--,则16224a =--=-,故C 错误;22222244144245454544n n n n n nn n n n n n S S S aaa++++++++=-=+++,对应点的坐标为()1,+n n ,()1,1n n +-,…,()1,1n +,所以()()()()()245111112122n n S n n n n n n n n +=+++++-++++=+++++()()2123122n n n n n ++++==,故D 正确.故选:ABD 三、填空题13.(2019·全国·高考真题(理))记Sn 为等差数列{an }的前n 项和,12103a a a =≠,,则105S S =___________. 【答案】4. 【解析】 【分析】根据已知求出1a 和d 的关系,再结合等差数列前n 项和公式求得结果. 【详解】因213a a =,所以113a d a +=,即12a d =,所以105S S =11111091010024542552a d a a a d ⨯+==⨯+. 14.(2019·江苏·高考真题)已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是_____.【答案】16. 【解析】 【分析】由题意首先求得首项和公差,然后求解前8项和即可.【详解】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 15.(2021·福建省华安县第一中学高三期中)已知数列{}n a 的前n 项和为n S ,11a =,121n n a a n +=++(*n ∈N ),则99a 的值为________,99S 的值为________. 【答案】 99 4950 【解析】 【分析】利用数列的递推关系可知数列{}n a 的奇数项是首项为1,公差为2的等差数列,偶数项是首项为2,公差为2的等差数列,利用等差数列的通项公式和前n 项和公式即可求解. 【详解】将1n =代入121n n a a n +=++得2312a =-=, 由121n n a a n +=++①得123n n a a n +++=+2②, ②-①得22n n a a +-=,所以数列{}n a 的奇数项、偶数项都是以2为公差的等差数列,()991501299a =+-⨯=, ()()991359924698S a a a a a a a a =+++++++++ 5049494815022492495022⨯⨯=⨯+⨯+⨯+⨯=, 故答案为:99 ; 4950.16.(2020·海南·高考真题)将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{an },则{an }的前n 项和为________. 【答案】232n n - 【解析】 【分析】首先判断出数列{}21n -与{}32n -项的特征,从而判断出两个数列公共项所构成新数列的首项以及公差,利用等差数列的求和公式求得结果. 【详解】因为数列{}21n -是以1为首项,以2为公差的等差数列, 数列{}32n -是以1首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列{}n a 是以1为首项,以6为公差的等差数列,所以{}n a 的前n 项和为2(1)16322n n n n n -⋅+⋅=-, 故答案为:232n n -. 四、解答题17.(2023·全国·高三专题练习)已知数列{}n a 中,11a =,当2n ≥时,11n n n n a a a a ---=⋅.求证:数列1{}na 是等差数列.【答案】证明见解析 【解析】 【分析】利用定义法证明出数列1{}na 是等差数列.【详解】当2n ≥时,11n n n n a a a a ---=⋅,因11a =,显然0n a ≠,否则10n a -=,由此可得10a =,矛盾, 两边同时除以1n n a a -⋅,得1111n n a a --=,而11a =1, 所以数列1{}na 是以1为首项,1为公差的等差数列.18.(2019·北京·高考真题(文))设{n a }是等差数列,a 1=–10,且a 2+10,a 3+8,a 4+6成等比数列.(Ⅰ)求{na }的通项公式;(Ⅱ)记{na }的前n 项和为Sn ,求Sn 的最小值.【答案】(Ⅰ)212n a n =-;(Ⅱ)30-. 【解析】 【分析】(Ⅰ)由题意首先求得数列的公差,然后利用等差数列通项公式可得{}n a 的通项公式;(Ⅱ)首先求得n S 的表达式,然后结合二次函数的性质可得其最小值. 【详解】(Ⅰ)设等差数列{}n a 的公差为d ,因为234+10+8+6a a a ,,成等比数列,所以2324(+8)(+10)(+6)a a a =,即2(22)(34)d d d -=-,解得2d =,所以102(1)212n a n n =-+-=-.(Ⅱ)由(Ⅰ)知212n a n =-, 所以22102121112111()224n n S n n n n -+-=⨯=-=--;当5n =或者6n =时,n S 取到最小值30-.19.(2016·全国·高考真题(文))等差数列{n a }中,34574,6a a a a +=+=. (Ⅰ)求{n a }的通项公式;(Ⅱ) 设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]=0,[2.6]=2. 【答案】(Ⅰ)235n n a +=;(Ⅱ)24. 【解析】 【详解】试题分析:(Ⅰ) 根据等差数列的通项公式及已知条件求1a ,d ,从而求得n a ;(Ⅱ)由(Ⅰ)求n b ,再求数列{}n b 的前10项和.试题解析:(Ⅰ)设数列{}n a 的公差为d ,由题意有112+54,+53a d a d ==. 解得121,5a d ==.所以{}n a 的通项公式为235n n a +=. (Ⅱ)由(Ⅰ)知235n n b +⎡⎤=⎢⎥⎣⎦. 当n=1,2,3时,2312,15n n b +≤<=; 当n=4,5时,2323,25n n b +≤<=; 当n=6,7,8时,2334,35n n b +≤<=;当n=9,10时,2345,45n n b +≤<=. 所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=.20.(2022·全国·高考真题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式; (2)证明:121112na a a +++<.【答案】(1)()12n n n a +=(2)见解析 【解析】 【分析】(1)利用等差数列的通项公式求得()121133n n S n n a +=+-=,得到()23n n n a S +=,利用和与项的关系得到当2n ≥时,()()112133n n n n n n a n a a S S --++=-=-,进而得:111n n a n a n -+=-,利用累乘法求得()12n n n a +=,检验对于1n =也成立,得到{}n a 的通项公式()12n n n a +=; (2)由(1)的结论,利用裂项求和法得到121111211n a a a n ⎛⎫+++=- ⎪+⎝⎭,进而证得.(1)∵11a =,∴111S a ==,∴111S a =, 又∵n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列,∴()121133n n S n n a +=+-=,∴()23n n n a S +=, ∴当2n ≥时,()1113n n n a S --+=,∴()()112133n n n n n n a n a a S S --++=-=-,整理得:()()111n n n a n a --=+, 即111n n a n a n -+=-, ∴31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯()1341112212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--,显然对于1n =也成立, ∴{}n a 的通项公式()12n n n a +=; (2)()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭∴12111na a a +++1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 21.(2022·安徽·合肥一中模拟预测(文))已知()f x =数列{}na 的前n 项和为n S ,点11,+⎛⎫- ⎪⎝⎭n n n P a a 在曲线()y f x =上(n N +∈)且11a =,0n a >.(1)求数列{}n a 的通项公式;(2)数列{}n b 的前n 项和为n T ,且满足212211683++=+--n nn n T Tn n a a ,确定1b 的值使得数列{}n b 是等差数列.【答案】(1)*N =∈n a n (2)1 【解析】 【分析】(1)根据点11,+⎛⎫- ⎪⎝⎭n n n P a a 在曲线()y f x =上(n N +∈),得到11+n a 212141+-=n n a a ,利用等差数列的定义求解; (2)由(1)化简得到114143+-=+-n n T Tn n ,利用等差数列的定义得到()()1431=-+-n T n T n ,再利用数列通项与前n 项和的关系求解. (1)解:因为()f x =11,+⎛⎫- ⎪⎝⎭n n n P a a 在曲线()y f x =上(n N +∈),所以11+=n a 212141+-=n n a a ,所以21n a ⎧⎫⎨⎬⎩⎭是以1为首项,以4为公差的等差数列,所以()2114143=+-=-n n n a,即*N =∈n a n ; (2)由(1)知:212211683++=+--n nn n T Tn n a a ,即为()()()()143414341+-=++-+n n n T n T n n ,整理得:114143+-=+-n n T Tn n , 所以数列43⎧⎫⎨⎬-⎩⎭n T n 是以1T 为首项,以1为公差的等差数列, 则1143=+--nT T n n ,即()()1431=-+-n T n T n , 当2n ≥时,114811-=-=+-n n n b T T b n , 若{}n b 是等差数列,则1b 适合上式, 令1n =,得1143=-b b ,解得11b =.22.(2021·全国·高考真题)已知数列{}n a 满足11a =,11,,2,.n n na n a a n ++⎧=⎨+⎩为奇数为偶数 (1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; (2)求{}n a 的前20项和.【答案】(1)122,5,31n b b b n ===-;(2)300. 【解析】 【分析】(1)方法一:由题意结合递推关系式确定数列{}n b 的特征,然后求和其通项公式即可; (2)方法二:分组求和,结合等差数列前n 项和公式即可求得数列的前20项和. 【详解】解:(1)[方法一]【最优解】:显然2n 为偶数,则21222212,1n n n n a a a a +++=+=+, 所以2223n n a a +=+,即13n n b b +=+,且121+12b a a ===, 所以{}n b 是以2为首项,3为公差的等差数列, 于是122,5,31n b b b n ===-.[方法二]:奇偶分类讨论由题意知1231,2,4a a a ===,所以122432,15b a b a a ====+=. 由11n n a a +-=(n 为奇数)及12n n a a +-=(n 为偶数)可知, 数列从第一项起,若n 为奇数,则其后一项减去该项的差为1, 若n 为偶数,则其后一项减去该项的差为2.所以*23()n n a a n N +-=∈,则()11331n b b n n =+-⨯=-.[方法三]:累加法由题意知数列{}n a 满足*113(1)1,()22nn n a a a n +-==++∈N . 所以11213(1)11222b a a -==++=+=, 322433223(1)3(1)11212352222b a a a a a --==++=+=+++=++=+=,则222121222111()()()121221+n n n n n n b a a a a a a a a a ---==-+-+-+=+++++++12(1)131n n n =+-+=-⨯.所以122,5b b ==,数列{}n b 的通项公式31n b n =-. (2)[方法一]:奇偶分类讨论 20123201351924620++++++++()()S a a a a a a a a a a a a =+=+++1231012310(1111)b b b b b b b b =-+-+-++-+++++110()102103002b b +⨯=⨯-=. [方法二]:分组求和由题意知数列{}n a 满足12212121,1,2n n n n a a a a a -+==+=+, 所以2122123n n n a a a +-=+=+.所以数列{}n a 的奇数项是以1为首项,3为公差的等差数列;同理,由2221213n n n a a a ++=+=+知数列{}n a 的偶数项是以2为首项,3为公差的等差数列. 从而数列{}n a 的前20项和为: 201351924260()()S a a a a a a a a =+++++++++1091091013102330022⨯⨯=⨯+⨯+⨯+⨯=.【整体点评】 (1)方法一:由题意讨论{}n b 的性质为最一般的思路和最优的解法;方法二:利用递推关系式分类讨论奇偶两种情况,然后利用递推关系式确定数列的性质; 方法三:写出数列{}n a 的通项公式,然后累加求数列{}n b 的通项公式,是一种更加灵活的思路. (2)方法一:由通项公式分奇偶的情况求解前n 项和是一种常规的方法;方法二:分组求和是常见的数列求和的一种方法,结合等差数列前n 项和公式和分组的方法进行求和是一种不错的选择.。

高考数学专题三数列 微专题21 等差数列、等比数列

高考数学专题三数列 微专题21 等差数列、等比数列

设等差数列{an}的公差为d,等比数列{bn}的公比为q,且q>0, 因为 S14=7(a10+3),则 14a1+14×2 13d=7(a1+9d+3),可得 a1+4d= 3,即 a5=3,
因为b5=b=16,则b1q4=(b1q)4=16,可得q=2,b1=1, 因为cn=an+bn, 所以T9=c1+c2+…+c9=(a1+a2+…+a9)+(b1+b2+…+b9) =a1+2 a9×9+b111--qq9=a5×9+11--229 =3×9+11--229=538.

由 a1+S11=67,得 12a1+11×2 10d=67,即 12a1+55d=67.

由①②解得a1=1,d=1,所以an=n, 于是a3a10=3×10=30,而a30=30,故a3a10是{an}中的第30项.
1 2 3 4 5 6 7 8 9 10
2.(2023·武汉模拟)已知等比数列{an}满足a6=2,且a7,a5,a9成等差数列,
(2)(2023·新高考全国Ⅰ)设等差数列{an}的公差为 d,且 d>1.令 bn=n2a+n n, 记 Sn,Tn 分别为数列{an},{bn}的前 n 项和. ①若 3a2=3a1+a3,S3+T3=21,求{an}的通项公式;
∵3a2=3a1+a3, ∴3d=a1+2d,解得a1=d, ∴S3=3a2=3(a1+d)=6d,
1 2 3 4 5 6 7 8 9 10
3.记 Sn 为等比数列{an}的前 n 项和.若 a5-a3=12,a6-a4=24,则Sann等于
A.2n-1
√B.2-21-n
C.2-2n-1
D.21-n-1
1 2 3 4 5 6 7 8 9 10
方法一 设等比数列{an}的公比为q, 则 q=aa65--aa43=2142=2. 由a5-a3=a1q4-a1q2=12a1=12,得a1=1. 所以 an=a1qn-1=2n-1,Sn=a111--qqn=2n-1, 所以Sann=22n-n-11=2-21-n.

高考数学复习考点题型专题讲解8 等差数列与等比数列

高考数学复习考点题型专题讲解8 等差数列与等比数列

高考数学复习考点题型专题讲解专题8 等差数列与等比数列高考定位 1.等差、等比数列的基本运算和性质的考查是高考热点,经常以小题形式出现;2.数列的通项也是高考热点,难度中档以下.1.(2022·全国乙卷)已知等比数列{a n }的前3项和为168,a 2-a 5=42,则a 6=( ) A.14 B.12 C.6 D.3 答案 D解析 法一 设等比数列{a n }的首项为a 1,公比为q , 由题意可得⎩⎨⎧S 3=168,a 2-a 5=42,即⎩⎨⎧a 1(1+q +q 2)=168,a 1q (1-q 3)=42,解得⎩⎨⎧a 1=96,q =12,所以a 6=a 1q 5=3,故选D.法二 设等比数列{a n }的首项为a 1,公比为q , 由题意可得⎩⎨⎧S 3=168,a 2-a 5=42,即⎩⎨⎧a 1(1-q 3)1-q =168,a 1q (1-q 3)=42,解得⎩⎨⎧a 1=96,q =12,所以a 6=a 1q 5=3,故选D.2.(2021·全国甲卷)记S n 为等比数列{a n }的前n 项和.若S 2=4,S 4=6,则S 6=( ) A.7 B.8 C.9 D.10 答案 A解析 法一 因为S 2=4,S 4=6,且易知公比q ≠±1,所以由等比数列的前n 项和公式,得⎩⎪⎨⎪⎧S 2=a 1(1-q 2)1-q =a 1(1+q )=4,S 4=a 1(1-q 4)1-q =a 1(1+q )(1+q 2)=6,两式相除,得q 2=12,所以⎩⎨⎧a 1=4(2-2),q =22或⎩⎨⎧a 1=4(2+2),q =-22,所以S 6=a 1(1-q 6)1-q=7.故选A.法二 易知S 2,S 4-S 2,S 6-S 4构成等比数列,由等比中项得S 2(S 6-S 4)=(S 4-S 2)2,即4(S 6-6)=22,所以S 6=7.故选A.3.(2022·新高考Ⅱ卷)图1是中国古代建筑中的举架结构,AA ′,BB ′,CC ′,DD ′是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图,其中DD 1,CC 1,BB 1,AA 1是举,OD 1,DC 1,CB 1,BA 1是相等的步,相邻桁的举步之比分别为DD 1OD 1=0.5,CC 1DC 1=k 1,BB 1CB 1=k 2,AA 1BA 1=k 3.已知k 1,k 2,k 3成公差为0.1的等差数列,且直线OA 的斜率为0.725,则k 3等于( )A.0.75B.0.8C.0.85D.0.9答案 D解析设OD1=DC1=CB1=BA1=1,则CC1=k1,BB1=k2,AA1=k3,依题意,有k3-0.2=k1,k3-0.1=k2,且DD1+CC1+BB1+AA1OD1+DC1+CB1+BA1=0.725,所以0.5+3k3-0.34=0.725,故k3=0.9.4.(2021·全国甲卷)已知数列{a n}的各项为正数,记S n为{a n}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等差数列;②数列{S n}是等差数列;③a2=3a1.注:若选择不同的组合分别解答,则按第一个解答计分.解①③⇒②.已知{a n}是等差数列,a2=3a1.设数列{a n}的公差为d,则a2=3a1=a1+d,得d=2a1,所以S n=na1+n(n-1)2d=n2a1.因为数列{a n }的各项均为正数, 所以S n =n a 1,所以S n +1-S n =(n +1)a 1-n a 1=a 1(常数),所以数列{S n }是等差数列. ①②⇒③.已知{a n }是等差数列,{S n }是等差数列. 设数列{a n }的公差为d , 则S n =na 1+n (n -1)2d=12n 2d +⎝⎛⎭⎪⎫a 1-d 2n .因为数列{S n }是等差数列,所以数列{S n }的通项公式是关于n 的一次函数, 则a 1-d2=0,即d =2a 1, 所以a 2=a 1+d =3a 1. ②③⇒①.已知数列{S n }是等差数列,a 2=3a 1, 所以S 1=a 1,S 2=a 1+a 2=4a 1. 设数列{S n }的公差为d ,d >0, 则S 2-S 1=4a 1-a 1=d ,得a 1=d 2, 所以S n =S 1+(n -1)d =nd , 所以S n =n 2d 2,所以n ≥2时,a n =S n -S n -1=n 2d 2-(n -1)2d 2=2d 2n -d 2, 对n =1也适合,所以a n =2d 2n -d 2,所以a n +1-a n =2d 2(n +1)-d 2-(2d 2n -d 2)=2d 2(常数), 所以数列{a n }是等差数列.热点一 等差数列、等比数列的基本公式1.等差数列的通项公式:a n =a 1+(n -1)d ;2.等比数列的通项公式:a n =a 1·q n -1.3.等差数列的求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d ;4.等比数列的求和公式:S n =⎩⎨⎧a 1(1-q n )1-q =a 1-a n q1-q ,q ≠1,na 1,q =1.例 1 (1)已知等比数列{a n }的各项均为正数,且3a 12,a 34,a 2成等差数列,则a 20+a 19a 18+a 17等于( ) A.9 B.6 C.3 D.1(2)(2022·全国乙卷)记S n 为等差数列{a n }的前n 项和.若2S 3=3S 2+6,则公差d =________.(3)已知{a n }是递减的等比数列,且a 2=2,a 1+a 3=5,则{a n }的通项公式为________;a 1a 2+a 2a 3+…+a n a n +1(n ∈N *)=________. 答案 (1)A (2)2(3)a n =⎝ ⎛⎭⎪⎫12n -3(n ∈N *) 323×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n解析 (1)设公比为q ,由3a 12,a 34,a 2成等差数列, 可得3a 12+a 2=a 32,所以3a 12+a 1q =a 1q 22,则q 2-2q -3=0,解得q =-1(舍去)或q =3.所以a 20+a 19a 18+a 17=a 18q 2+a 17q 2a 18+a 17=q 2=9.(2)由2S 3=3S 2+6,可得2(a 1+a 2+a 3)=3(a 1+a 2)+6, 化简得2a 3=a 1+a 2+6, 即2(a 1+2d )=2a 1+d +6, 解得d =2.(3)设等比数列{a n }的公比为q , 由a 2=2,a 1+a 3=5, 得2q+2q =5, 解得q =12或q =2,又{a n }是递减的等比数列, 所以q =12,所以a n =a 2×⎝ ⎛⎭⎪⎫12n -2=12n -3,所以a n a n +1=12n -3·12n -2=122n -5,则a 1a 2+a 2a 3+…+a n a n +1是首项为8, 公比为14的等比数列的前n 项和,故a 1a 2+a 2a 3+…+a n a n +1=8×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n1-14=323×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n.规律方法 等差数列、等比数列的基本量问题的求解策略 (1)抓住基本量:首项a 1、公差d 或公比q .(2)熟悉一些结构特征,如前n 项和为S n =an 2+bn (a ,b 是常数)形式的数列为等差数列,通项公式为a n =p ·q n -1(p ,q ≠0)形式的数列为等比数列.训练1 (1)(2022·潍坊三模)已知等差数列{a n }的前n 项和为S n ,若S 7-S 6=24,a 3=8,则数列{a n }的公差d =( ) A.2 B.4 C.6 D.8(2)已知等比数列{a n }的前n 项和为S n ,a 1+a 3=30,S 4=90,设b n =log 2⎝ ⎛⎭⎪⎫13a n ,则数列{b n }的前15项和为( ) A.16 B.80 C.120 D.150(3)(2022·成都诊断)程大位是我国明代伟大的数学家,在他所著的《算法统宗》中有一道“竹筒容米”题:家有九节竹一茎,为因盛米不均平;下头三节三升九,上梢四节贮三升;惟有中间二节竹,要将米数次第盛;若是先生能算法,教君只算到天明.用你所学的数学知识求得中间二节的容积和为( ) A.2.1升 B.2.6升 C.2.7升 D.2.9升 答案 (1)B (2)C (3)A解析 (1)设等差数列{a n }的首项为a 1, 公差为d ,则a n =a 1+(n -1)d , 而a 7=S 7-S 6=24,又a 3=8,∴a 7-a 3=a 1+6d -(a 1+2d )=4d =16, 解得d =4,故选B.(2)设等比数列{a n }的公比为q ,则S 4=a 1+a 2+a 3+a 4=(a 1+a 3)(1+q )=90, 又a 1+a 3=a 1(1+q 2)=30, 解得a 1=6,q =2, 所以a n =a 1q n -1=3·2n , 所以b n =log 2⎝ ⎛⎭⎪⎫13a n =n ,则{b n }为等差数列, 所以数列{b n }的前15项和T 15=15(b 1+b 15)2=15×(1+15)2=120.故选C.(3)设从下到上每节竹容积构成数列{a n },易知{a n }为等差数列, 设其公差为d ,则a 1+a 2+a 3=3.9,a 6+a 7+a 8+a 9=3,即(a 1+a 3)×32=3.9,(a 6+a 9)×42=3,所以a 1+a 3=2.6,a 6+a 9=1.5, 即2a 1+2d =2.6,2a 1+13d =1.5, 解得a 1=1.4,d =-0.1, 所以a 4=1.1,a 5=1, 所以a 4+a 5=2.1.故选A.热点二 等差数列、等比数列的性质1.通项性质:若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则对于等差数列,有a m +a n =a p +a q =2a k ,对于等比数列,有a m a n =a p a q =a 2k .2.前n 项和的性质(m ,n ∈N *):对于等差数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列;对于等比数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等比数列(q =-1且m 为偶数情况除外).例2 (1)在各项均为正数的等比数列{a n }中,a 3=2-2,a 5=2+1,则a 1a 5+2a 2a 6+a 3a 7=( ) A.1 B.9C.52+7D.32+9(2)(2022·徐州二模)设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=( ) A.2 B.73C.83D.3(3)(2022·金华模拟)设S n 为等差数列{a n }的前n 项和,a 6+a 7=1,则S 12=________;若a 7<0,则使得不等式S n <0成立的最小整数n =________. 答案 (1)B (2)B (3)6 13 解析 (1)由等比数列的性质可得:a 1a 5+2a 2a 6+a 3a 7=a 23+2a 3a 5+a 25=(a 3+a 5)2=(2-2+2+1)2=9,故选B. (2)因为等比数列{a n }的前n 项和为S n ,S 6S 3=3,即S 6=3S 3, 则S 3,S 6-S 3,S 9-S 6成等比数列, 即S 6-S 3S 3=S 9-S 6S 6-S 3, 故4S 3=S 9-S 6,故S 9=7S 3,故S 9S 6=73.(3)根据题意,{a n }为等差数列, 若a 6+a 7=1,则S 12=(a 1+a 12)×122=(a 6+a 7)×122=6,若a 7<0,则S 13=(a 1+a 13)×132=13a 7<0,则使不等式S n <0成立的最小整数n =13. 规律方法 等差、等比数列性质问题的求解策略(1)抓住项与项之间的关系及项与序号之间的关系,从这些特点入手选择恰当的性质进行求解.(2)数列是一种特殊的函数,具有函数的一些性质,如单调性、周期性等,可利用函数的性质解题.训练2 (1)(2022·长沙三模)在等比数列{a n}中,a7,a11是方程x2+5x+2=0的两根,则a3a9a15a5a13的值为( )A.-2+22B.- 2C.2D.-2或 2(2)(2022·聊城检测)设S n是等差数列{a n}的前n项和,若S4S8=25,则S8S16=( )A.514B.726C.35 D.25(3)已知各项均为正数的等比数列{a n},a6,3a5,a7成等差数列,若{a n}中存在两项a m,a n ,使得4a1为其等比中项,则1m+4n的最小值为( )A.4B.9C.23 D.32答案(1)B (2)A (3)D解析(1)在等比数列{a n}中,a7,a11是方程x2+5x+2=0的两根,则a7+a11=-5,a7·a11=2,∴a9=-2,则a3a9a15a5a13=a39a29=a9=- 2.(2)因为数列{a n}为等差数列,所以S4,S8-S4,S12-S8,S16-S12成等差数列.因为S 4S 8=25,所以设S 4=2k ,S 8=5k ,k ≠0, 则S 8-S 4=3k ,可知S 12-S 8=4k ,S 16-S 12=5k , 所以S 12=9k ,S 16=14k , 所以S 8S 16=5k 14k =514.(3)因为a 6,3a 5,a 7成等差数列, 所以2×3a 5=a 6+a 7.又{a n }是各项均为正数的等比数列, 设其首项为a 1,公比为q , 所以6a 1q 4=a 1q 5+a 1q 6, 所以q 2+q -6=0,解得q =2或q =-3(舍去), 又4a 1为a m ,a n 的等比中项, 所以(4a 1)2=a m ·a n ,所以16a 21=a 1·2m -1·a 1·2n -1=a 21·2m +n -2=24×a 21,所以m +n -2=4,即m +n =6,所以1m +4n =16(m +n )·⎝ ⎛⎭⎪⎫1m +4n =16⎝ ⎛⎭⎪⎫1+4m n +n m +4≥16⎝ ⎛⎭⎪⎫5+24mn ·n m =32, 当且仅当4m n =nm,即m =2,n =4时,等号成立,所以1m+4n的最小值为32.故选D.热点三等差数列、等比数列的判断与证明证明数列为等差(比)数列一般使用定义法.例3(2021·全国乙卷)设S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知2Sn +1bn=2.(1)证明:数列{b n}是等差数列;(2)求{a n}的通项公式.(1)证明因为b n是数列{S n}的前n项积,所以n≥2时,S n=bnbn-1,代入2Sn+1bn=2可得,2b n-1bn+1bn=2,整理可得2b n-1+1=2b n,即b n-b n-1=12(n≥2).又2S 1+1b 1=3b 1=2,所以b 1=32, 故{b n }是以32为首项,12为公差的等差数列.(2)解 由(1)可知,b n =32+12(n -1)=n +22,则2S n +2n +2=2,所以S n =n +2n +1, 当n =1时,a 1=S 1=32,当n ≥2时,a n =S n -S n -1=n +2n +1-n +1n =-1n (n +1). 故a n=⎩⎪⎨⎪⎧32,n =1,-1n (n +1),n ≥2.易错提醒a n +1=a n q 和a 2n =a n -1a n +1(n ≥2)都是数列为等比数列的必要不充分条件,判定时还要看各项是否为零.训练3 已知数列{a n }的前n 项和为S n ,a 2=6,S n =12a n +1+1.(1)证明:数列{S n -1}为等比数列,并求出S n ;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和T n .(1)证明 由S n =12a n +1+1,得S n =12(S n +1-S n )+1,即S n +1-1=3(S n -1),又a 2=6,∴S 1=2a 2+1=4,S 1-1=3≠0,∴数列{S n -1}是首项为3,公比为3的等比数列,即S n -1=3n , ∴S n =3n +1.(2)解 由(1)可得:S n =12a n +1+1=3n +1,∴a n +1=2×3n , ∴a n =2×3n -1(n ≥2), 又a 1=4≠2×31-1=2, ∴a n =⎩⎨⎧4,n =1,2×3n -1,n ≥2, ∴1a n=⎩⎪⎨⎪⎧14,n =1,12×3n -1,n ≥2,∴当n ≥2时,T n =1a 1+1a 2+1a 3+…+1a n =14+12×13⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n -11-13=12-14×3n -1,当n =1时T 1=14也符合上式,综上,T n =12-14×3n -1.一、基本技能练1.已知等比数列{a n }满足a 1=2,a 3a 5=4a 26,则a 3的值为( ) A.1 B.2C.1或-1D.2答案 A解析 由题意得a 3a 5=a 24=4a 26,又在等比数列中偶数项同号, ∴a 4=2a 6,∴q 2=12,∴a 3=a 1q 2=1,故选A.2.设数列{a n }是等差数列,S n 是数列{a n }的前n 项和,a 3+a 5=10,S 5=15,则S 6=( ) A.18 B.24 C.30 D.36 答案 B解析 由等差数列的性质知a 4=a 3+a 52=5,而S 5=a 1+a 52×5=5a 3=15,则a 3=3,等差数列{a n }的公差d =a 4-a 3=2, 所以a 1=a 3-2d =-1,则S 6=6a 1+6×(6-1)2·d =-6+30=24.3.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块.向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A.3 699块B.3 474块C.3 402块D.3 339块答案 C解析设每一层有n环,由题意可知,从内到外每环之间构成公差为d=9,首项为a1=9的等差数列.由等差数列的性质知S n,S2n-S n,S3n-S2n成等差数列,且(S3n-S2n)-(S2n-S n)=n2d,则9n2=729,解得n=9,则三层共有扇面形石板S3n=S27=27×9+27×262×9=3 402(块).4.若等差数列{a n}的前n项和为S n,则“S2 022>0,S2 023<0”是“a1 011a1 012<0”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案 B解析因为S2 022>0,S2 023<0,所以(a1+a2 022)×2 0222>0,(a1+a2 023)×2 0232<0,即a1+a2 022=a1 011+a1 012>0,a1+a2 023=2a1 012<0,所以a1 011>0,a1 012<0,且a1 011>|a1 012|,所以a1 011a1 012<0,充分性成立;而当a1 011a1 012<0时,a1 011>0,a1 012<0或a1 011<0,a1 012>0,则S2 022>0,S2 023<0不一定成立.故“S2 022>0,S2 023<0”可以推出“a1 011a1 012<0”,但“a1 011a1 012<0”不能推出“S2 022>0,S2 023<0”,所以“S2 022>0,S2 023<0”是“a1 011a1 012<0”的充分不必要条件.故选B.5.(多选)已知等比数列{a n}的公比为q,且a5=1,则下列选项正确的是( )A.a3+a7≥2B.a4+a6≥2C.a7-2a6+1≥0D.a3-2a4-1≥0答案AC解析因为等比数列{a n}的公比为q,且a5=1,所以a3=1q2,a4=1q,a6=q,a7=q2,因为a3+a7=1q2+q2≥2,当且仅当q2=1时等号成立,故A正确;因为a4+a6=1q+q,当q<0时式子为负数,故B错误;因为a7-2a6+1=q2-2q+1=(q-1)2≥0,故C正确;因为a3-2a4-1=1q2-2q-1=⎝⎛⎭⎪⎫1q-12-2,则a3-2a4-1≥0不成立,故D错误.6.(多选)(2022·张家口质检)已知数列{a n}的前n项和为S n,下列说法正确的是( )A.若S n=n2+1,则{a n}是等差数列B.若S n=3n-1,则{a n}是等比数列C.若{a n }是等差数列,则S 9=9a 5D.若{a n }是等比数列,且a 1>0,q >0,则S 1·S 3>S 22 答案 BC解析 若S n =n 2+1,当n ≥2时,a n =2n -1,a 1=2不满足a n =2n -1, 故A 错误;若S n =3n -1,当n ≥2时,a n =S n -S n -1=2·3n -1, 由于a 1=S 1=31-1=2, 满足a n =2·3n -1,所以{a n }是等比数列,故B 正确; 若{a n }是等差数列,则S 9=9(a 1+a 9)2=9a 5,故C 正确;当q =1时,S 1·S 3-S 22=a 21(1+q +q 2)-a 21(1+q )2=-a 21q <0,故D 错误, 综上,选BC.7.写出一个公差为2,且前3项和小于第3项的等差数列a n =________. 答案 2n -4(n ∈N *)(答案不唯一) 解析 依题意得⎩⎨⎧a 1+a 2+a 3<a 3,d =2,解得a 1<-1,不妨令a 1=-2,∴a n =2n -4.8.(2022·菏泽模拟)已知数列{a n }的前n 项和是S n ,且S n =2a n -1,若a n ∈(0,2 022),则称项a n 为“和谐项”,则数列{a n }的所有“和谐项”的和为________. 答案 2 047解析当n≥2时,a n=S n-S n-1=2a n-1-(2a n-1-1)=2a n-2a n-1,∴a n=2a n-1,又由a1=S1=2a1-1,得a1=1,∴{a n}是公比为2,首项为1的等比数列,∴a n=2n-1,由a n=2n-1<2 022,得n-1≤10,即n≤11,∴所求和为S11=1-2111-2=2 047.9.已知数列{a n}满足a1=1,(a n+a n+1-1)2=4a n a n-1,且a n+1>a n(n∈N*),则数列{a n}的通项公式a n=________.答案n2解析因为a1=1,a n+1>a n≥a1>0,所以a n+1>a n.由(a n+a n+1-1)2=4a n a n+1得a n+1+a n-1=2a n a n+1,所以(a n+1-a n)2=1,所以a n+1-a n=1,所以数列{a n}是首项为1,公差为1的等差数列,所以a n=n,即a n=n2.10.(2022·福州模拟)已知数列{a n}是各项均为正数的等比数列,S n为数列{a n}的前n项和,若S2+a2=S3-3,则a4+3a2的最小值为________.答案18解析由S2+a2=S3-3得a2=S3-S2-3=a3-3,所以a 1q =a 1q 2-3⇒a 1=3q 2-q>0⇒q >1,所以a 4+3a 2=a 1q 3+3a 1q =3(q 3+3q )q 2-q =3(q 2+3)q -1=3×(q -1)2+2(q -1)+4q -1=3⎣⎢⎡⎦⎥⎤(q -1)+4q -1+6 ≥3×2(q -1)·4q -1+6=18,当且仅当q -1=4q -1, 即q =3时等号成立,故a 4+3a 2的最小值为18. 11.设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8. (1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3(m ∈N *),求m . 解 (1)设{a n }的公比为q ,则a n =a 1qn -1.由已知得⎩⎨⎧a 1+a 1q =4,a 1q 2-a 1=8,解得⎩⎨⎧a 1=1,q =3.所以{a n }的通项公式为a n =3n -1(n ∈N *). (2)由(1)知log 3a n =n -1, 故S n =n (n -1)2(n ∈N *).由S m +S m +1=S m +3,得m (m -1)+(m +1)m =(m +3)(m +2), 即m 2-5m -6=0.解得m =-1(舍去)或m =6.12.(2022·新高考Ⅱ卷)已知{a n }是等差数列,{b n }是公比为2的等比数列,且a 2-b 2=a3-b3=b4-a4.(1)证明:a1=b1;(2)求集合{k|b k=a m+a1,1≤m≤500}中元素的个数.(1)证明设等差数列{a n}的公差为d,由a2-b2=a3-b3得a1+d-2b1=a1+2d-4b1,即d=2b1,由a2-b2=b4-a4得a1+d-2b1=8b1-(a1+3d),即a1=5b1-2d,将d=2b1代入,得a1=5b1-2×2b1=b1,即a1=b1.(2)解由(1)知a n=a1+(n-1)d=a1+(n-1)×2b1=(2n-1)a1,b n=b1·2n-1,由b k=a m+a1,得b1·2k-1=(2m-1)a1+a1,由a1=b1≠0得2k-1=2m,由题知1≤m≤500,所以2≤2m≤1 000,所以k=2,3,4,…,10,共9个数,即集合{k|b k=a m+a1,1≤m≤500}={2,3,4,…,10}中元素的个数为9.二、创新拓展练13.(多选)(2022·济南质检)在等比数列{a n}中,公比为q,其前n项积为T n,并且满足a 1>1,a99·a100-1>0,a99-1a100-1<0,下列结论中正确的是( )A.0<q<1B.a99·a101-1<0C.T100的值是T n中最大的D.使T n>1成立的最大自然数n值等于198 答案ABD解析对于A,∵a99·a100-1>0,∴a 21·q 197>1,∴(a 1·q 98)2·q >1. ∵a 1>1,∴q >0. 又∵a 99-1a 100-1<0, ∴a 99>1,且a 100<1, ∴0<q <1,故A 正确;对于B ,∵a 2100=a 99·a 101,a 100<1, ∴0<a 99·a 101<1,即a 99·a 101-1<0,故B 正确; 对于C ,由于T 100=T 99·a 100, 而0<a 100<1,故有T 100<T 99,故C 错误;对于D ,T 198=a 1·a 2·…·a 198=(a 1·a 198)(a 2·a 197)·…·(a 99·a 100)=(a 99·a 100)99>1,T 199=a 1·a 2·…·a 199=(a 1·a 199)·(a 2·a 198)…(a 99·a 101)·a 100=(a 100)100<1,故D 正确. 故选ABD.14.(多选)(2022·石家庄模拟)已知数列{a n }满足a 1=10,a 5=2,且a n +2-2a n +1+a n =0(n ∈N *),则下列结论正确的是( ) A.a n =12-2nB.|a 1|+|a 2|+|a 3|+…+|a n |=⎩⎨⎧30,n ≤5,n 2+5,n >5C.|a n |的最小值为0D.当且仅当n =5时,a 1+a 2+a 3+…+a n 取得最大值30 答案 AC解析 由a n +2-2a n +1+a n =0, 可得a n +2-a n +1=a n +1-a n ,所以数列{a n }是等差数列,设公差为d , 因为a 1=10,a 5=2, 所以d =a 5-a 15-1=-2,所以a n =10-2(n -1)=12-2n , 故A 正确;当n =6时,a n =0,所以当n ≤5时,a n >0, 当n >5时,a n ≤0,所以当n ≤5时,|a 1|+|a 2|+|a 3|+…+|a n |=a 1+a 2+a 3+…+a n =n (10+12-2n )2=11n -n 2.当n >5时,|a 1|+|a 2|+|a 3|+…+|a n | =a 1+a 2+…+a 5-a 6-…-a n=-(a 1+a 2+a 3+…+a n )+2(a 1+a 2+…+a 5) =-S n +2S 5 =-(11n -n 2)+60 =n 2-11n +60,所以|a 1|+|a 2|+|a 3|+…+|a n |=⎩⎨⎧11n -n 2,n ≤5,n 2-11n +60,n >5,故B 错误;|a n |=|12-2n |,当n =6时,|a n |取得最小值为0,故C 正确; 当n =5或n =6时,a 1+a 2+a 3+…+a n 取最大值30,故D 错误.15.(多选)已知S n 是数列{a n }的前n 项和,且a 1=a 2=1,a n =a n -1+2a n -2(n ≥3),则下列结论正确的是( ) A.数列{a n +1+a n }为等比数列 B.数列{a n +1-2a n }为等比数列 C.a n =2n +1+(-1)n3D.S 20=23(410-1)答案 ABD解析 因为a n =a n -1+2a n -2(n ≥3), 所以a n +a n -1=2a n -1+2a n -2 =2(a n -1+a n -2), 又a 1+a 2=2≠0,所以{a n +a n +1}是等比数列,A 正确;同理a n -2a n -1=a n -1+2a n -2-2a n -1=-a n -1+2a n -2=-(a n -1-2a n -2),而a 2-2a 1=-1, 所以{a n +1-2a n }是等比数列,B 正确; 若a n =2n +1+(-1)n3,则a 2=23+(-1)23=3,但a 2=1≠3,C 错误;由A 知{a n +a n +1}是等比数列,且公比为2,因此数列a 1+a 2,a 3+a 4,a 5+a 6,…仍然是等比数列,公比为4,其前10项和为T 10, 则S 20=T 10=2(1-410)1-4=23(410-1),故D 正确.16.(多选)(2022·泰州调研)若正整数m ,n 只有1为公约数,则称m ,n 互质,对于正整数k ,φ(k )是不大于k 的正整数中与k 互质的数的个数,函数φ(k )以其首名研究者欧拉命名,称为欧拉函数,例如:φ(2)=1,φ(3)=2,φ(6)=2,φ(8)=4.已知欧拉函数是积性函数,即如果m ,n 互质,那么φ(mn )=φ(m )φ(n ),例如:φ(6)=φ(2)φ(3),则( ) A.φ(5)=φ(8)B.数列{φ(2n )}是等比数列C.数列{φ(6n )}不是递增数列D.数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1φ(6n )的前n 项和小于35 答案 ABD解析 ∵φ(5)=4,φ(8)=4, ∴φ(5)=φ(8),A 对.∵φ(2n )=2n -1,∴{φ(2n )}是等比数列,B 对.∵φ(6n )=2·6n -1,∴{φ(6n )}一定是单调递增数列,故C 错.φ(6n )=2·6n -1,⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1φ(6n)的前n 项和S n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫16n1-16=35⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫16n<35,D 对,选ABD. 17.已知数列{a n }的前n 项和为S n ,a 1=12,S n +1·(2-S n )=1.(1)求证:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1S n -1是等差数列; (2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 中最接近2 023的数.(1)证明1S 1-1=1a 1-1=-2.由S n +1·(2-S n )=1,得S n +1=12-S n. 因为1S n +1-1-1S n -1=112-S n-1-1S n -1=2-S n S n -1-1S n -1=-1,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1S n -1是以-2为首项,-1为公差的等差数列.(2)解 由(1)得1S n -1=-2+(n -1)×(-1)=-(n +1),即S n =nn +1,则a n =S n -S n -1=nn +1-n -1n =1n (n +1)(n ≥2),当n =1时,a 1=12满足上式,所以a n =1n (n +1)(n ∈N *),则1a n=n (n +1).由f (x )=x (x +1)=⎝⎛⎭⎪⎫x +122-14在(0,+∞)上单调递增, 当n =44时,1a 44=44×45=1 980;当n =45时,1a 45=45×46=2 070.所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 中最接近2 023的数是1 980.。

高中数学专题练习《等差数列的概念》含详细解析

高中数学专题练习《等差数列的概念》含详细解析

4.2 等差数列4.2.1 等差数列的概念基础过关练题组一 等差数列的概念及其应用1.下列数列不是等差数列的是( )A.1,1,1,1,1B.4,7,10,13,16C.13,23,1,43,53D.-3,-2,-1,1,22.给出下列命题:①数列6,4,2,0是公差为2的等差数列;②数列a,a-1,a-2,a-3是公差为-1的等差数列;③等差数列的通项公式一定能写成a n =kn+b 的形式(k,b 为常数);④数列{2n+1}(n ∈N *)是等差数列.其中正确命题的序号是( )A.①②B.①③C.②③④ D.③④题组二 等差中项3.若a=13+2,b=13-2,则a,b 的等差中项为( )A.3B.2C.32 D.224.已知在△ABC 中,三个内角A,B,C 成等差数列,则角B 等于( )A.30° B.60° C.90° D.120°5.已知m 和2n 的等差中项是4,2m 和n 的等差中项是5,则m 和n 的等差中项是( )6.若5,x,y,z,21成等差数列,则x+y+z的值为( )A.26B.29C.39D.52题组三 等差数列的通项公式及其应用7.已知{a n}为等差数列,若a1=1,公差d=2,a n=15,则n的值为( )A.5B.6C.7D.88.(2020山东淄博一中高二上期中)在数列{a n}中,a1=1,a n+1-a n=2,n∈N*,则a25的值为( )A.49B.50C.89D.999.(2020天津耀华中学高二上期中)已知数列{a n}是等差数列,若a1=2,a4=2a3,则公差d=( )A.0B.2C.-1 D.-210.(2020河南郑州高二上期末)设数列{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为 .11.在-3和6之间插入两个数a,b,使这四个数成等差数列,则公差为 .12.已知数列{a n}是等差数列,且a n=an2+n(n∈N*),则实数a= . 题组四 等差数列的性质及其应用13.在等差数列{a n}中,若a3+a4+a5+a6+a7=450,则a2+a8的值等于( )A.45B.75C.180D.30014.(2020河南新乡高二上期末)在等差数列{a n}中,a2+a6=3,a3+a7=7,则公差d=( )15.(2019河南商丘九校高二期末联考)在单调递增的等差数列{a n}中,若a3=1,a2a4=34,则a1=( )A.-1B.0C.14D.1216.已知等差数列{a n}的公差为d(d≠0),且a3+a6+a10+a13=32,若a m=8,则m的值为( )A.12B.8C.6D.417.设数列{a n},{b n}都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5= .18.首项为a1,公差为d(d∈N*)的等差数列{a n}满足下列两个条件:①a3+a5+a7=93;②满足a n>100的n的最小值是15.试求公差d和首项a1的值.能力提升练题组一 等差数列的通项公式及其应用1.()在数列{an}中,a1=3,且对任意大于1的正整数n,点(a n,a n-1)在直线x-y-3=0上,则( )A.a n=3nB.a n=3nC.a n=n-3D.a n=3n22.()已知等差数列{an }的首项为a,公差为1,b n=a n+1a n,若对任意的正整数n都有b n≥b5,则实数a的取值范围是( )A.(-∞,-4)∪(-3,+∞)B.(-4,-3)C.(-∞,-5)∪(-4,+∞)D.(-5,-4)3.()已知数列{an}中,a1=1,a n-1-a n=a n a n-1(n≥2,n∈N*),则a10= .4.(2020辽宁沈阳东北育才实验学校高二上月考,)已知数列{a n}满足a n+1=6a n-4a n+2,且a1=3(n∈N*).(1)证明:;(2)求数列{a n}的通项公式.题组二 等差数列的性质及其应用}中,a1+a4+a7=39,a2+a5+a8=33,则a6=( )5.()在等差数列{aA.10B.9C.8D.76.(2020山东招远一中高二上月考,)在一个首项为23,公差为整数的等差数列中,前6项均为正数,从第7项起为负数,则公差为( )A.-2B.-3C.-4D.-5}满足a1+a2+a3+…+a101=0,则7.(多选)()已知单调递增的等差数列{a下列各式一定成立的有( )A.a1+a101>0B.a2+a100=0C.a3+a100≤0D.a51=08.(2020河南濮阳高二上期末,)已知各项都为正数的等差数列{a n}中,a5=3,则a3a7的最大值为 .题组三 等差数列的综合应用9.(2020山东日照高二上期末,)我国古代著名的著作《周髀算经》中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷长一丈三尺五寸;夏至晷长一尺六寸.意思是:一年有二十四个节气,每相邻两个节分;且“冬至”时日影长度最大,为1350气之间的日影长度差为9916分;“夏至”时日影长度最小,为160分.则“立春”时日影长度为( )A.9531分3B.10521分2C.11512分3D.12505分610.(多选)()已知数列{a}的前n项和为S n(S n≠0),且满足a n+4S n-1S n=0(n≥2,n∈N*),a1=1,则下列说法中正确的是( )4A.数列{a n}的前n项和为S n=14nB.数列{a n}的通项公式为a n=14n(n+1)C.数列{a n}为递增数列D.11.(2020天津一中高二上期中,)已知数列{a n}满足a1=15,且3a n+1=3a n-2(n∈N*),若a k a k+1<0,则正整数k= .12.(2020山东青岛高三上期末,)在下面的数表中,已知每行、每列中的数都成等差数列.第1列第2列第3列…第1行123…第2行246…第3行369………………那么位于表中的第n行第(n+1)列的数是 .13.()数列{a}满足a1=1,a n+1=(n2+n-λ)a n(n∈N*),λ是常数.(1)当a2=-1时,求λ及a3的值;(2)判断是否存在实数λ使得数列{a n}为等差数列,并说明理由.14.(2019四川成都七中高二期中,)已知正项数列{a n}满足a2n=(2n-1)a n+2n(n∈N*).(1)求证:数列{a n}是等差数列;(2)若数列{b n}满足b n=a n-40,且数列{b n}的最大项为b p,最小项为b q,n-11求p+q的值.15.()在数列{a}中,a1=1,3a n a n-1+a n-a n-1=0(n≥2,n∈N*).(1)证明:;(2)求数列{a n}的通项公式;(3)若λa n+1≥λ对任意的n≥2,n∈N*恒成立,求实数λ的取值范围.a n16.()已知无穷等差数列{a},首项a1=3,公差d=-5,依次取出项数能被4除余3的项组成数列{b n}.(1)求b1和b2;(2)求{b n}的通项公式;(3){b n}中的第503项是{a n}中的第几项?答案全解全析基础过关练1.D 根据等差数列的定义可知,选项D中的数列不是等差数列.故选D.2.C 根据等差数列的定义可知,数列6,4,2,0的公差为-2,①错误;易知②③④均正确.3.A 设a,b的等差中项为x,则2x=a+b=13+2+13-2=23,所以x=3.4.B 因为A,B,C成等差数列,所以B是A,C的等差中项,则有A+C=2B,又因为A+B+C=180°,所以3B=180°,即B=60°.5.B 由已知得m+2n=8,2m+n=10,解得m=4, n=2,所以m和n的等差中项为m+n2=3.6.C ∵5,x,y,z,21成等差数列,∴y既是5和21的等差中项也是x和z的等差中项.∴5+21=2y,x+z=2y,∴y=13,x+z=26,∴x+y+z=39.7.D ∵a1=1,d=2,∴a n=a1+(n-1)d=1+2n-2=15,解得n=8.故选D.8.A 由a n+1-a n =2得数列{a n }是公差为d=2的等差数列,又a 1=1,所以a 25=a 1+24d=1+24×2=49.故选A.9.D 依题意得a 1+3d=2(a 1+2d),将a 1=2代入,得2+3d=2(2+2d),解得d=-2.故选D.10.答案 a n =6n-3(n ∈N *)解析 设等差数列{a n }的公差为d,由a 1=3,a 2+a 5=36,得a 1=3,a 1+d +a 1+4d =36,解得d=6,∴a n =a 1+(n-1)d=3+(n-1)×6=6n-3(n ∈N *).即{a n }的通项公式为a n =6n-3(n ∈N *).11.答案 3解析 设该等差数列为{a n },其首项为a 1,公差为d,由题知,a 1=-3,a 4=6,即a 1=―3,a 1+3d =6,解得d=3.12.答案 0解析 ∵{a n }是等差数列,且a n =an 2+n,∴a n 是关于n 的一次函数,∴a=0.13.C 由题意得,a 3+a 7=a 4+a 6=2a 5,∴a 3+a 4+a 5+a 6+a 7=(a 3+a 7)+(a 4+a 6)+a 5=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180.14.B 解法一:∵(a 3+a 7)-(a 2+a 6)=2d,且a 3+a 7=7,a 2+a 6=3,∴d=7―32=2.故选B.解法二:∵a 3+a 7=2a 5=7,a 2+a 6=2a 4=3,∴a 5=72,a 4=32,∴d=a 5-a 4=2.故选B.15.B 设等差数列{a n }的公差为d.由已知得a 3=1,a 2a 4=(a 3-d)(a 3+d)=34,解得d=±12.∵{a n }为单调递增的等差数列,∴d=12,又∵a 3=a 1+2d=1,∴a 1=0.故选B.16.B 由等差数列的性质,得a 3+a 6+a 10+a 13=(a 3+a 13)+(a 6+a 10)=2a 8+2a 8=4a 8=32,∴a 8=8,∴a m =a 8,又d ≠0,∴m=8.17.答案 35解析 由{a n },{b n }都是等差数列可知{a n +b n }也是等差数列,设{a n +b n }的公差为d,则a 3+b 3=(a 1+b 1)+2d,则2d=21-7,即d=7.所以a 5+b 5=(a 1+b 1)+4d=35.18.解析 ∵a 3+a 5+a 7=93,∴3a 5=93,∴a 5=31,由②知a n >100,即a n =a 5+(n-5)d>100,∴n>69d +5.∵满足a n >100的n 的最小值是15,∴14≤69d +5<15,∴6910<d ≤233,又d ∈N *,∴d=7,∴a 1=a 5-4d=3.能力提升练1.D ∵点(a n ,a n -1)在直线x-y-3=0上,∴a n -a n -1=3,∴数列{a n }是首项为3,公差为3的等差数列.∴数列{a n }的通项公式为a n =3+(n-1)3=3n,∴a n =3n 2.故选D.2.D 解法一:依题意得,a n =a+(n-1)×1=n+a-1,∴b n =n +an +a -1=1+1n +a -1.设函数y=1x +a -1+1,画出图象,如图.结合题意知,1-a ∈(5,6),∴5<1-a<6,解得-5<a<-4,故选D.解法二:∵等差数列{a n }的首项为a,公差为1,∴a n =a+n-1,∴b n =a n +1a n =1+1a n =1+1a +n -1,若对任意的正整数n 都有b n ≥b 5,则有(b n )min =b 5=1+1a +4,结合数列{b n }的单调性可知,b 5<b 4,b 5<b 6,即1+1a +4<1+1a +3,1+1a +4<1+1a +5,解得-5<a<-4.故选D.3.答案 110解析 易知a n ≠0,∵数列{a n }满足a n-1-a n =a n a n-1(n ≥2,n ∈N *),∴1an-1a n -1=1(n ≥2,n ∈N *),1,公差为1的等差数列,∴1a 10=1+(10-1)×1=10,∴a 10=110.4.解析 (1)证明:由已知得,1a 1-2=13―2=1,1a n +1-2=16a n -4a n +2-2=a n +2(6a n -4)-2(a n +2)=a n +24a n -8=(a n -2)+44(a n -2)=1a n -2+14,因此1a n +1-2-1a n -2=14,n ∈N *,1,公差为14的等差数列.(2)由(1)知1a n -2=1a 1-2+(n-1)×14=n +34,所以a n =2n +10n +3,n ∈N *.5.B 设等差数列{a n }的公差为d,∵在等差数列{a n }中,a 1+a 4+a 7=3a 4=39,a 2+a 5+a 8=3a 5=33,∴a 4=13,a 5=11,∴d=a 5-a 4=-2,∴a 6=a 5+d=11-2=9,故选B.6.C 设该等差数列为{a n },公差为d(d ∈Z),则a 1=23,a n =23+(n-1)d,由题意可知a 6>0,a 7<0,即23+(6―1)d >0,23+(7―1)d <0,解得-235<d<-236.因为d 是整数,所以d=-4.7.BD 设等差数列{a n }的公差为d,易知d>0,∵等差数列{a n }满足a 1+a 2+a 3+…+a 101=0,且a 1+a 101=a 2+a 100=…=a 50+a 52=2a 51,∴a 1+a 2+a 3+…+a 101=(a 1+a 101)+(a 2+a 100)+…+(a 50+a 52)+a 51=101a 51=0,∴a 51=0,a 1+a 101=a 2+a 100=2a 51=0,故B,D 正确,A 错误.又∵a 51=a 1+50d=0,∴a 1=-50d,∴a 3+a 100=(a 1+2d)+(a 1+99d)=2a 1+101d=2×(-50d)+101d=d>0,故C 错误.故选BD.8.答案 9解析 因为等差数列{a n }的各项都为正数,所以a 3>0,a 7>0,所以a 3a 7=(a 5)2=9,当且仅当a 3=a 7=3时等号成立.所以a 3a 7的最大值为9.9.B 由题意可知,从“冬至”到“夏至”,每个节气的日影长度依次构成等差数列,设该等差数列为{a n },公差为d,又知“冬至”时日影长度最大,设为a 1=1 350;“夏至”时日影长度最小,设为a 13=160.则a 13=1 350+12d=160,解得d=-1 19012=-9916,∴“立春”时日影长度为a4=1 350+-9905212(分).故选B.10.AD 由a n =S n -S n-1,a n +4S n-1S n =0,n ≥2,n ∈N *,得S n -S n-1=-4S n-1S n,n ≥2,n ∈N *,又S n ≠0,∴1S n -1S n -1=4(n ≥2,n ∈N *).∵a 1=14,∴1S1=4,4为首项,4为公差的等差数列,∴1S n =4+4(n-1)=4n,n ∈N *,,S n =14n ,n ∈N *,∴当n ≥2时,a n =S n -S n-1=14n -14(n -1)=-14n (n -1),经检验,当n=1时,不符合上式,∴a n ,n =1,14n(n -1),n≥2,n ∈N *,综上可知AD 正确.故选AD.11.答案 23解析 解法一:∵3a n+1=3a n -2,∴a n+1-a n =-23,∴数列{a n }是以15为首项,-23为公差的等差数列.设公差为d,则a n =a 1+(n-1)d=15-23(n-1)=-23n+473.∴a k a k+1=-23k +-23(k +1)+=-23k +-23k +即(2k-47)(2k-45)<0,解得452<k<472,又∵k ∈N *,∴k=23.解法二:同解法一可得a n =-23n+473,∵d=-23<0,∴数列{a n }为单调递减数列,∴由a k a k+1<0可得a k >0,a k +1<0,即-23k +473>0,-23(k +1)+473<0,解得452<k<472,又∵k ∈N *,∴k=23.12.答案 n 2+n解析 由题意可得,第n 行的第一个数是n,第n 行的数构成以n 为首项,n 为公差的等差数列,其中第(n+1)项为n+n ·n=n 2+n.所以题表中的第n 行第(n+1)列的数是n 2+n.13.解析 (1)因为a n+1=(n 2+n-λ)a n (n ∈N *),且a 1=1,所以当a 2=-1时,得-1=2-λ,解得λ=3.从而a 3=(22+2-3)×(-1)=-3.(2)不存在实数λ使得{a n }为等差数列.理由如下:由a 1=1,a n+1=(n 2+n-λ)a n ,得a 2=2-λ,a 3=(6-λ)(2-λ),a 4=(12-λ)(6-λ)(2-λ).若存在实数λ,使得{a n }为等差数列,则a 3-a 2=a 2-a 1,即(5-λ)(2-λ)=1-λ,解得λ=3.于是a 2-a 1=1-λ=-2,a 4-a 3=(11-λ)(6-λ)(2-λ)=-24,a 2-a 1≠a 4-a 3,这与{a n }为等差数列矛盾.所以不存在实数λ使得{a n }为等差数列.14.解析 (1)证明:∵a 2n =(2n-1)a n +2n,∴a 21=a 1+2,解得a 1=2或a 1=-1.又∵a n >0,∴a 1=2.由a 2n =(2n-1)a n +2n,得a 2n-(2n-1)a n -2n=(a n -2n)(a n +1)=0,∵a n >0,n ∈N *,∴a n =2n,∴a n+1-a n =2(n+1)-2n=2,∴数列{a n }是以2为首项,2为公差的等差数列.(2)结合(1)可得b n =a n -40n -11=2n -40n -11=2×n -10n -11=21+∴当n ≤3,n ∈N *时,{b n }单调递减,且b n <2;当n ≥4,n ∈N *时,{b n }单调递减,且b n >2.∴当n=4时,b n 最大;当n=3时,b n 最小.故p=4,q=3,∴p+q=7.15.解析 (1)证明:由3a n a n-1+a n -a n-1=0(n ≥2,n ∈N *),得1a n -1a n -1=3(n ≥2,n ∈N *),又1a 1=1,1为首项,3为公差的等差数列.(2)由(1)可得1a n =1+3(n-1)=3n-2,所以a n =13n -2(n ∈N *).(3)因为λa n +1a n ≥λ对任意的n ≥2,n ∈N *恒成立,即λ3n -2+3n-2≥λ对任意的n ≥2,n ∈N *恒成立,所以只需λ≤(3n -2)23n -3对任意的n ≥2,n ∈N *恒成立即可.令f(n)=(3n -2)23n -3(n ≥2,n ∈N *),则只需满足λ≤f(n)min 即可.因为f(n+1)-f(n)=(3n +1)23n -(3n -2)23n -3=9n 2-9n -13n (n -1)=3-13n (n -1),所以当n ≥2时, f(n+1)-f(n)>0,即f(2)<f(3)<f(4)<…,所以f(n)min =f(2).又f(2)=163,所以λ≤163.所以实数λ的取值范围为-∞,16.解析 (1)∵a 1=3,d=-5,∴a n =8-5n.数列{a n}中项数被4除余3的项是{a n}中的第3项,第7项,第11项,…,∴b1=a3=-7,b2=a7=-27.(2)设{a n}中的第m项是{b n}中的第n项,即b n=a m,则m=3+4(n-1)=4n-1,∴b n=a m=a4n-1=8-5×(4n-1)=13-20n,即{b n}的通项公式为b n=13-20n.(3)b503=13-20×503=-10047,设它是{a n}的第s项,则-10047=8-5s,解得s=2011,即{b n}中的第503项是{a n}中的第2011项.。

【高考第一轮复习数学】数列专题

【高考第一轮复习数学】数列专题

专题三、数列一、等差数列:1、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.2、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差中项.若2a c b +=,则称b 为a 与c 的等差中项. 3、若等差数列{}n a 的首项是1a ,公差是d ,则()11n a a n d =+-.()n m a a n m d =+-4、等差数列的前n 项和的公式:①()12n n n a a S +=;②()112n n n S na d -=+. 5、等差数列的性质:(1)m n p q +=+(m 、n 、p 、*q ∈N ),则m np q a a a a +=+; 特别地,若2n p q =+(n 、p 、*q ∈N ),则2n p q a a a =+.(2)n S ,2n n S S -,32n n S S -成等比数列.(3)若项数为()*2n n ∈N ,则S S nd -=偶奇,.(4)若项数为()*21n n -∈N ,则()2121n n S n a -=-,1S n S n =-奇偶 二、等比数列:1、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.2、在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则G 称为a 与b 的等比中项.若2G ab =,则称G 为a 与b 的等比中项.3、若等比数列{}n a 的首项是1a ,公比是q ,则11n n a a q -=.n m n m a a q -=4、等比数列{}n a 的前n 项和的公式:()()()11111111n n n na q S a q a a q q qq =⎧⎪=-⎨-=≠⎪--⎩ 5、等比数列的前n 项和的性质:(1)m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a ⋅=⋅;若{}n a 是等比数列,且2n p q =+(n 、p 、*q ∈N ),则2n p q a a a =⋅.(2)n S ,2n n S S -,32n n S S -成等比数列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【学习目标】
1.理解等差数列的概念,掌握等差数列的递推公式、通项公式及运用。

2.掌握等差数列的性质,能灵活运用等差数列的性质解决问题。

3.掌握等差数列前n 项和公式及其应用,能灵活应用等差数列前n 项和的性质解题。

4会求等差数列前n 项和的最值。

【知识要点】
1.定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示。

2.递推公式:a n +1-a n =d (d 为常数,n ∈N +)。

3.通项公式:以a 1为首项,d 为公差的等差数列{a n }的通项公式a n =a 1+(n -1)d 。

4.等差数列通项公式可以看作特殊的一次函数,a n =nd +(a 1-d ),一次项系数为d 。

5.等差中项:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项,满足的关系式是
a +
b =2A .
6.常用性质: (1)n
m a a d n
m --=
(2){a n }是等差数列,若正整数m ,n ,p ,q 满足m +n =p +q ,则a m +a n =a p +a q 。

特别地,当m +n =2k (m ,
n ,k ∈N +)时,a m +a n =2a k .
(3)等差数列{a n }中,若序号成等差数列,那么对应项也成等差数列。

7.等差数列前n 项和公式:
已知量 a 1、a n 与n a 1、d 与n 求和公式
S n =n a 1+a n
2
S n =na 1+n n -1
2
d
8.等差数列前n 项和性质:
(1)等差数列中,S k ,S 2k -S k ,S 3k -S 2k 成等差数列。

(2)若{a n },{b n }均为等差数列,其前n 项和分别为S n ,T n ,则a n b n =
S 2n -1
T 2n -1。

9.等差数列前n 项和公式是特殊的二次函数,因此可以利用此特征求前n 项和的最值。

【题型详解】
类型一:定义法证明等差数列
例1:已知数列{}n a 是等差数列,设13++=n n n a a b .求证:数列{}n b 也是等差数列. 证明:
小结:定义法证明,实际就是利用递推公式得到其公差是与n 无关的常数,来判断是否为等差数列。

类型二:通项公式的应用
例2:等差数列{}n a 中,443=+a a ,675=+a a ,求{}n a 的通项公式。

解:设数列{}n a 的公差为d,
由题意有4521=+d a ,61021=+d a , 解得5
2,11=
=d a , 所以{}n a 的通项公式为5
3
2+=
n a n 小结:等差数列里大部分问题都可以将任意项用a 1和d 来表示,构造方程组解决问题。

类型三:等差中项的应用 例3:如果等差数列
中,
,那么
( )。

A. 14
B. 21
C. 28
D. 35 解析:
本题主要考查等差数列中项的性质。

,。

故。

故本题正确答案为C 。

类型四:等差数列性质的应用
例4:等差数列{}n a 中,465=+a a ,则(
)=⋅10
212
22log 2a a
a
( )
A.10
B.20
C.40
D.5log 22+
解:等差数列{}n a 中,465=+a a ,20101=++a a 则原式=.=20
22
log 20所以B 选项是正确的
类型五:等差数列前n 项和的应用 例5:已知等差数列{a n }中, (1)a 1=1
2
,S 4=20,求S 6;
(2)a 1=32,d =-1
2
,S n =-15,求n 及a n ;
类型六:等差数列前n 项和求最值
例6:已知数列{a n }的通项公式是a n =2n -48,则S n 取得最小值时,n 为________. 【解析】由a n ≤0得,2n -48≤0,n ≤24. ∴当n =23或24时,S n 最小. 类型七:等差数列前n 项和性质应用
例7:在等差数列{a n }中,若S 4=1,S 8=4,则a 17+a 18+a 19+a 20的值为( ) A.9 B.12 C.16
D.17
【解析】(1)法一:由题意知:S 4=1,S 8-S 4=3,
而S 4,S 8-S 4,S 12-S 8,S 16-S 12,S 20-S 16成等差数列. 即1,3,5,7,9,
a17+a18+a19+a20=S20-S16=9.
【复习检测】
1.下列说法中正确的有________.(填序号)
①若{a n}是等差数列,则{|a n|}也是等差数列.
②若{|a n|}是等差数列,则{a n}也是等差数列.
③若{a n}是等差数列,则对任意n∈N+都有2a n+1=a n+a n+2.
④数列{a n}的通项公式为a n=3n+5,则数列{a n}的公差与函数y=3x+5的图象的斜率相等.
【解析】①错误.如-2,-1,0,1,2是等差数列,但其绝对值就不是等差数列.
②错误.如数列-1,2,-3,4,-5,其绝对值为等差数列,但其本身不是等差数列.
③正确.根据等差数列的通项可判定对任意n∈N+都有2a n+1=a n+a n+2成立.
④正确.因为a n=3n+5的公差d=3,而直线y=3x+5的斜率也是3.
2.在等差数列{a n }中,若a 5=6,a 8=15,则a 14=________. 【解析】∵数列{a n }是等差数列,
∴a 5,a 8,a 11,a 14也成等差数列且公差为9, ∴a 14=6+9×3=33.
3.在等差数列 {a n }中,已知a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________. 【解析】因为a 3+a 4+a 5+a 6+a 7=5a 5=450. 所以a 5=90,
a 2+a 8=2a 5=2×90=180.
4.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12=________.
【解析】在等差数列{a n }中,由于a 7+a 9=a 4+a 12,所以a 12=(a 7+a 9)-a 4=16-1=15. 5.三个数成等差数列,其和为9,前两项之积为后一项的6倍,求这三个数.
6.请你根据提供的信息回答问题.
(1)第2年养鸡场的个数及全县出产鸡的总只数;
(2)到第6年这个县的养鸡业规模比第1年是扩大了还是缩小了?请说明理由.
(1)由a 1=1,a 6=2,得⎩⎪⎨
⎪⎧ a 1=1,
a 1+5d 1=2,
∴⎩
⎪⎨
⎪⎧
a 1=1,
d 1=0.2,得a 2=1.2;
由b 1=30,b 6=10,得⎩⎪⎨


b 1=30,b 1+5d 2=10,
∴⎩
⎪⎨
⎪⎧
b 1=30,d 2=-4,得b 2=26.
∴c 2=a 2b 2=1.2×26=31.2,
即第2年养鸡场有26个,全县出产鸡31.2万只.
(2)∵c6=a6b6=2×10=20<c1=a1b1=30,
∴到第6年这个县的养鸡业规模比第1年缩小了.。

相关文档
最新文档