河南省郑州一中2017--2018学年下期期末考试-七年级数学试题

合集下载

2017-2018学年郑州北师大七年级下期末考试数学试卷(有答案)

2017-2018学年郑州北师大七年级下期末考试数学试卷(有答案)

2017—2018学年郑州七年级下期期末考试数学试卷及参考答案注意:本试卷分试超和答题卡两部分,考试时同90分,满分100分,考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效,交卷时只交答题卡时光飞逝,转题间乐乐七年级学习生活即将结束,在这一年中,乐乐收获满满,我们一起来分享一下吧!一、选择题(每小题3分,共30分)1乐乐看到妈妈手机上有好多图标,在下列图标中可看作轴对称图形的是()2.乐乐所在的四人小组做了下列运算,其中正确的是()A.(-3)-2=-9 B.(-2a3)2=4a6 C.a6÷a2=a3 D.2a2·3a3=6a63.乐乐很喜欢清代诗人靠枚的诗《苔》:“白日不到处,青春恰自来,苔花如米小,也学牡丹开。

“其实苔御植物属于孢子植物,不开花,袁枚看到的“苔花”,很可能是苔类的孢子体的苞某种苔藓的苞商的直径约为0.7毫米,则0.7毫米用科学记数法可表示为()A.0.7×10-4米B.7×10-3米C.7×10-4米D.7×10-5米4.如图,乐乐将△ABC沿DE,EF分别翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=139°,∠C为()A.38°B.39°C.40°D.41°5.在一个不透明的布袋中,红色、那色,白色的小球共有50个,除颜色外其他完全相同乐乐通过多次摸球试验后发现,摸到红色球,黑色球的频率分别稳定在27%和43%,则口袋中白色球的个数很可能是()A.20B.15C.10D.56.乐乐和科学小组的同学们在网上获取了声音在空气中传播的速度与空气温度之间关系的一些数据(如下表)下列说法中错误的是()A.在这个变化过程中,当温度为10℃时,声速是336m/sB温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s7.乐乐观察“抖空竹“时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE=92°,∠DCE=115°,则∠E的度数是()A.32°B.28°C.26°D.23°8.如图,乐乐用边长为1的正方形做了一副七巧板,并将这副七巧板拼成一只小猫,则阴影都分的面积为()A. 14 B.12 C.25 D.239.乐乐发现等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形底角的度数为()A.50°B.65°C.65°或25°D.50°或40°10.如图是乐乐的五子棋棋盘的一部分(5×5的正方形网格) 以点D,E为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC全等,这样的格点三角形最多可以画出()A.2个B.4个C.6个D.8个二、填空题(每小题3分,共1511.乐乐在作业上写到(a+b)2=a2+b2,同学英树认为不对,并且他利用下面的图形做出了直观的解释,根据这个图形的总面积可以得到正确的完全平方公式(a+b)2=12.乐乐同学有两根长度为4cm,7cm的木棒,母亲节时他想自已动手给妈妈钉一个角形相框,桌上有五根木棒,从中任选一根,使三根木棒首尾顺次相连,则能钉成三角形相框的概率是13.如图,△ABC的边BC长12cm,乐乐观察到当顶点A沿着BC边上的高AD所线向上运动时,三角形的面积发生变化.在这个变化过程中,如果三角形的高为x(cm),那么△ABC的面积y(cm2)与x(cm)的关系式是14.乐乐发现三个大小相同的球可以恰好放在一个圆柱形盒子里(底和盖的厚度均忽略不计),如图所示,则三个球的体积之和占整个盒子容积的 (球的体积计算公式为V=43πr 2)15.在研究“数字黑洞”这节课中,乐乐任意写下了一个四位数(四数字完全相同的除外).重新排列各位数字,使其组成一个最大的数和一个最小的数,然后用最大的数减去最小的数,得到差;重复这个过程,……,乐乐发现最后将变成一个固定的数,则这个固定的数是 三、解答题(本大题共7个小题,共55分)16.(6分)乐乐对化简求值题掌握良好,请你也来试试吧!先化简,再求值:[(ab+4)(ab-4)-5a 2b 2+16]÷(ab),其中a=10,b=- 1517.(6分)乐乐觉得轴对称图形很有意思.如图是4个完全相同的小正方形组成的L 形图,请你用三种方法分别在图中添画一个小正方形,使添画后的图形成为轴对称图形18.(8分)乐乐家附近的商场为了吸引顾客,设立了一个可以自由转动的转盘,AB 为转盘直径,如图所示,并规定:顾客消费50元(含50元)以上,就能获得一次转盘的机会,如果转盘停止后,指针正好对准9折、8折、7折区域,顾客就可以获得相应的优惠(1)某顾客消费40元,是否可以获得转盘的机会?(2)某顾客正好消费66元,他转一次转盘,获得三种打折优惠的概率分别是多少?19.(8分)尺规作图是理论上接近完美的作图方式,乐乐很喜欢用尺规画出要求的图形.在下面的△ABC中,请你也按要求用尺规作出下列图形(不写作法,但要保留作图痕迹)并填空(1)作出∠BAC的平分线交BC边于点D;(2)作出AC边上的垂直平分线l交AD于点G;(3)连接GC,若∠B=55°,∠BCA=60°,则∠AGC的度数为20.(8分)如图是乐乐设计的暂力拼图玩具的一部分,现在乐乐遇到了两个问题,请你帮助解决:已知:如图,AB∥CD,(1)若∠APC=60°,∠A=40°,求∠C的度数请填空解:(1)过点P作直线PE∥AB(如图所示)因为AB∥CD(已知)所以EP∥CD(平行于同一条直线的两条直线平行)因为∠A=∠APE=40∠C=∠CPE()又因为∠APC=∠APE+∠CPE=∠A+ =60°(等量代换)所以∠C= °(等式性质)2)直接写出∠B、∠D与∠BFD之间的数量关系21.(9分)人的大脑所能记忆的内容是有限的,随着时间的推移,记忆的东四会逐渐被遗忘,教乐乐数学的马老师调查了自己班学生的学习遗忘规律,并根据调查数据描绘了一条曲线(如图所示),其中纵轴表示学习中的记忆保持量,横轴表示时间,观察图象并回答下列(1)观察图象,1h后,记忆保持量约为;8h后,记忆保持量约为(2)图中的A点表示的意义是什么?A点表示的意义是在以下哪个时间段内遗忘的速度最快?填序号①0-2h ②2-4h;③4-6h ④6-8h(3)马老师每节课结束时都会对本节课进行总结回顾,并要求学生每天晚上临睡前对当课堂上所记的课盒笔记进行复习,据调查这样一天后记忆量能保持98%如果学生一天不复习,结果又会怎样?由此,你能根据上述曲线规律制定出两条今年暑假的学习计划吗?22.(10分)乐乐和数学小组的同学们研究了如下问题,请你也来试一下吧点C是直线l1上一点,在同一平面内,乐乐他们把一个等直角三角板ABC任意放,其中直角顶点C与点C重合,过点A作直线l2⊥l1,垂足为点M,过点B作l3⊥l1, 垂足为点N(1)当直线l2,l3位于点C的异侧时,如图1,线段BN,AM与MN之间的数量关系(不必说明理由)2)当直线l2,l3位于点C的右侧时,如图2,判断线段BN,AM与MN之间的数量系,并说明理由3)当直线l2,l3位于点C的左侧时,如图3,请你补全图形,并直接写出线段BN,A MN之间的数量关系2017—2018学年下期期末考试七年级 数学 参考答案 (时间:90分钟,满分:100分) 一、选择题(每小题3分,共30分)1. A 2. B 3. C 4. D 5. B 6. C 7. D 8. A 9. C 10. B 二、填空题(每小题3分,共15分) 11.a 2+2ab+b 2 12. 0.4(52或) 13. y =6x 14.32 15. 6174三、解答题(本大题共7个小题,共55分)16.(6分) 解:)(]165)4)(4[(22ab b a ab ab ÷+--+ =)(]16516[(2222ab b a b a ÷+--…………………………(2分) =)()4(22ab b a ÷-=ab 4-…………………………………………………(4分) 当51,10-==b a 时,原式=)51(104-⨯⨯-=8……………………(6分)17.(6分) 解: 如图.……………………(6分)18.(8分)解:(1)根据规定消费50元(含50元)以上才能获得一次转盘的机会,而40元小于50元,故不能获得转盘的机会; ………………(2分) (2)某顾客正好消费66元,超过50元,可以获得转盘的的机会.若获得9折优惠,则概率;………………………(4分) 若获得8折优惠,则概率;………………………(6分)若获得7折优惠,则概率.………………………(8分)19.(8分)解:(1)图略(可以不下结论);……………………(3分)4136090)9(==折P 6136060)8(==折P 12136030)7(==折P(2)图略(可以不下结论);……………………(6分) (3)115°. ……………………(8分)20.(8分)解:(1)两直线平行,内错角相等;……………………(2分) ∠C ;…………………………………………………………(4分) 20;…………………………………………………………(6分)(2)∠B +∠D +∠BFD =360°. ………………………………(8分)21.(9分)解:(1)50%(50%3±%均算正确);30%(30%3±%均算正确);……(4分) (2)点A 表示2h 大约记忆量保持了40%;…………………………(6分) ①;…………………(7分)(3)如果一天不复习,记忆量只能保持不到30%(答案不唯一); 暑假的学习计划两条略(合理即可)………(9分)22. 解:(1)MN = AM +BN ;………………(2分)(2)MN = BN -AM ;………………………………(4分) 理由如下:如图2. 因为l 2⊥l 1,l 3⊥l 1.所以∠BNC =∠CMA =90°. 所以∠ACM +∠CAM =90°. 因为∠ACB =90°,所以∠ACM +∠BCN =90°. 所以∠CAM =∠BCN .在△CBN 和△ACM 中,{∠BNC =∠CMA∠CAM =∠BCN BC =AC所以△CBN ≌△ACM (AAS ). 所以BN =CM ,NC =AM .所以MN =CM ﹣CN =BN ﹣AM .…………………………(8分) (3)补全图形,如图3.………(9分)结论:MN =AM ﹣BN .………(10分)l 1。

河南郑州2018年下期期末考试七年级数学试卷7

河南郑州2018年下期期末考试七年级数学试卷7

下期期末考试七年级数学试题卷注意:本试卷分试题卷和答题卡两部分.考试时间90分钟,满分100分.考生应首先阅读试题卷上的文字信息,然后在答题卡上作答,在试题卷上作答无效.交卷时只交答题卡.一、选择题(每小题3分,共24分)下列各小题均有四个选项,其中只有一个是正确的.1.下列标志可以看作是轴对称图形的是A. B. C. D.2.下列计算正确的是A.4312()x x = B.2510a a a = C.22(3)6a a = D.623a a a ÷=3.下列事件中,是确定事件的是A.打开电视,它正在播郑州新闻 B.抛掷一枚一元的硬币,正面朝上 C.367人中有,两人的生日相同 D.打雷后会下雨4. 如图,直线AB ∥CD ,直线EF 与AB ,CD 分别交于点E ,F ,EG ⊥EF ,垂足为E ,若160∠=,则2∠的度数为A.15 B.30 C.45 D.60(第4题图) (第5题图) (第7题图)5. 请仔细观察用直尺和圆规作一个角A O B '''∠等于已知角AOB ∠的示意图,请你根据所学的知识,说明画出A O B AOB '''∠=∠的依据是A.SAS B.ASA C.AAS D.SSS6.下列能用平方差公式计算的是A.()()x y x y -+- B.(1)(1)y y ---C.(2)(2)x y -+ D.(2)(2)x y y x +-7. 用边长为1的正方形纸板制成一副七巧板(如图①),将它拼成“小天鹅”图案(如图②),则图②中ABC GEB ∠+∠=A.360 B.270 C.225 D.1808. 如图1,在矩形ABCD 中,动点P 从点B 出发,以每秒2个单位长度,沿BC -CD -DA 运动至点A 停止,设点P 运动的时间x 秒,△ABP 的面积为y .如果y 关于x 的函数图象如图2所示,则△ABC 的面积A.10 B.20 C.40 D.80(第8题图) (第10题图) (第12题图)二、填空题(每小题3分,共21分)9.计算:12-= .10.如图所示,一艘船从A 点出发,沿东北方向航行至B 点,再从B 点出发沿南偏东15方向航行至C 点,则ABC ∠等于 度.11.生物具有遗传多样性,遗传信息大多储存在DNA 分子上.一个DNA 分子的直径约为0.0000002cm .这个数用科学计数法可表示为 cm .12.如图,从给出的四个条件中随机抽取一个:(1)34∠=∠;(2)12∠=∠;(3)A DCE ∠=∠;(4)180D ABD ∠+∠=. 恰能判断AB ∥CD 的概率是 .13.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+ ,你认为染黑这一项应该是 .14.如图是叠放在一起的两张长方形卡片,图中有1∠、2∠、3∠,则其中一定相等的是 .15.如图,△ABC 中,AB AC >,延长CA 至点G ,边BC 的垂直平分线DF 与BAG ∠的角平分线交于点D ,与AB 交于点H ,F 为垂足,DE ⊥AB 于点E .下列说法正确的是.(填序号)①BH FC =;②1()2GAD HCB ACB ∠=∠+∠;③BE AC AE -=;④B ADE ∠=∠.(第14题图) (第15题图)三、解答题(本大题共7小题,共55分)16.(6分)先化简,在求值:2(2)(8)x x x ---,其中12x =. 17.(7分)将一副直角三角尺BAC 和ADE 如图放置,其中30BCA ∠=,45AED ∠=,若75AFD ∠=,试判断AE 和BC 的位置关系,并说明理由.18.(7分)如图,在正方形网格上有一个△DEF .(1)画出△DEF 关于直线HG 对称图形△D E F ''';(2)画出△DEF 的EF 边上的高(不写作法);(3)若网格上的最小正方形边长为1,则△DEF 的面积为 .19.(8分)端午节期间,某商场为了吸引顾客,设立了一个可以自由转动的转盘(转盘被平均分成16份),并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、黄或绿色区域,顾客就可以分别获得奖品玩具熊、童话书、水彩笔.小明和妈妈购买了125元的商品,请你分析计算:(1)小明获得奖品的概率是多少?(2)小明获得玩具熊、童话书、水彩笔的概率分别是多少?20.(8分)任意写下一个三位数,百位数字乘个位数字的积作为下一个数字的百位数字,百位数字乘十位数字的积作为下一个数的十位数字,十位数字乘个位数字的积作为下一个数的个位数字.在上面每次相乘的过程中,如果积大于9,则将积的个位数字与十位数字相加,若和仍大于9,则继续相加直到得出一位数.重复这个过程......例如,以832开始,运算以上规则依次可得到:832,766,669,999,999,...(1)你选择的三位数是什么?按上述规则进行运算你都得到了哪些数?你得到了什么结论?(2)换个数试试,你有什么进一步的猜想?21.(9分)2016年全国中小学生“安全教育日”主题:“强化安全意识,提升安全素养”. 小刚骑单车去上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校.以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题: (1)小刚家到学校的路程是 米;小刚在书店停留了 分钟;(2)本次上学途中,小刚一共行驶了 米;一共用了 分钟;(3)我们认为骑单车的速度超过300米/分就超过了安全限度.问:在整个上学的途中哪个时间段小刚骑车速度最快,速度在安全限度内吗?请给小刚提一条合理化建议.22.(10分)在四边形ABCD 中,AC AB =,DC DB =,60CAB ∠=,120CDB ∠=,E 是AC 上一点,F 是AB 延长线上一点,且CE BF =.(1)请判断DE DF =吗?说出你的理由;(2)若点G 在AB 上,且60EDG ∠=,是猜想CE 、EG 、BG 之间的数量关系,并说明理由.七年级数学(下)期末试题答案一、选择题(每小题3分,共24分)1.D ; 2.A ; 3.C ; 4.B ; 5.D ; 6.B ; 7.B ; 8.C .二、填空题(每小题3分,共21分)9.21; 10.60°; 11.7102-⨯; 12.43 ; 13.29b ; 14.∠2=∠3; 15.②③.三、解答题(本大题共7个小题,共55分)16. 解:)8()2(2---x x xx x x x 84422+-+-= ………………………………2分.44+=x ………………………………4分.6421421=+⨯==时,原式当x ………………………………6分17. 解:AE ∥BC . ………………………………1分理由如下:因为∠AFD =75°,所以∠CFD =180°-75°=105°.又因为∠BCA =30°,所以∠CDF =180°-105°-30°=45°. …………3分因为∠AED =45°,所以∠CDF =∠AED . ………………………………5分所以AE ∥BC . ………………………………7分(方法不唯一)18.解:(1)如图中的△D ′ E ′ F ′即为所求;………………3分(2)如图中的线段DM 即为所求;………………5分(3)3. …………………7分19. 解:(1)∵转盘被平均分成16份,其中有颜色部分占6份,∴P (获得奖品)=166=83. ………………2分 (2)∵转盘被平均分成16份,其中红色、黄色、绿色部分分别占1份、2份、3份,∴P (获得玩具熊)=161. …………………4分P (获得童话书)=162=81 . …………6分P (获得水彩笔)=163 . ………………8分 20. 解:(1)如选择的三位数是123,运用以上规则依次可得到:123,326,963,999,999,…如选择的三位数是788,运用以上规则依次可得到:788,221,242,488,551,575,788,…如选择的三位数是255,运用以上规则依次可得到:255,117,717,477,114,414,744,117,…评分建议:按运算规则得到的数正确给3分,能总结出具体循环给1分;……………4分(2)按运算规则得到的数正确给3分,能总结出结论给1分无论给出一个什么样的三位数,总能得到重复出现的一组数(只要合理就给分).……8分(答案不唯一)21. 解:(1)1500; 4; ……………………2分(2)2700(2分);14(1分); (5)分(3)12~14分钟时速度最快,不在安全限度内.由图象可知:12~14分钟时,平均速度=12146001500--=450米/分, 所以,12~14分钟时速度最快,不在安全限度内. ……………8分建议合理即可得分.………………………………9分22.解:DE=DF .……………………1分理由:因为∠CAB +∠C +∠CDB +∠ABD =360°,∠CAB =60°,∠CDB =120°,所以∠C +∠ABD =360°﹣60°﹣120°=180°.又因为∠DBF +∠ABD =180°,所以∠C =∠DBF .在△CDE 和△BDF 中,⎪⎩⎪⎨⎧=∠=∠=.,,BF CE DBF C BD CD所以△CDE ≌△BDF (SAS ).所以DE=DF . …………………5分(2)解:猜想CE 、EG 、BG 之间的数量关系为:CE +BG =EG .………6分理由: 如图,连接AD ,在△ABD 和△ACD 中,⎪⎩⎪⎨⎧===.,,AD AD CD BD AC AB所以△ABD ≌△ACD (SSS ).所以∠BDA =∠CDA =21∠CDB=21⨯120°=60°. 又因为∠EDG=60°,所以∠CDE=∠ADG ,∠ADE=∠BDG . 由(1),可得△CDE ≌△BDF ,所以∠CDE=∠BDF .所以∠BDG+∠BDF=60°,即∠FDG=60°. 所以∠EDG=∠FDG . 在△DEG 和△DFG 中,⎪⎩⎪⎨⎧=∠=∠=.,,DG DG FDG EDG FD ED所以△DEG ≌△DFG .所以EG =FG .又因为CE =BF ,FG =BF +BG ,所以CE +BG =EG . …………………………10分 (方法不唯一)。

郑州市第一中学七年级下册数学期末试卷综合测试(Word版 含答案)

郑州市第一中学七年级下册数学期末试卷综合测试(Word版 含答案)

郑州市第一中学七年级下册数学期末试卷综合测试(Word 版 含答案) 一、解答题1.已知直线AB //CD ,点P 、Q 分别在AB 、CD 上,如图所示,射线PB 按逆时针方向以每秒12°的速度旋转至PA 便立即回转,并不断往返旋转;射线QC 按逆时针方向每秒3°旋转至QD 停止,此时射线PB 也停止旋转.(1)若射线PB 、QC 同时开始旋转,当旋转时间10秒时,PB '与QC '的位置关系为 ; (2)若射线QC 先转15秒,射线PB 才开始转动,当射线PB 旋转的时间为多少秒时,PB ′//QC ′.2.如图①,将一张长方形纸片沿EF 对折,使AB 落在''A B 的位置;(1)若1∠的度数为a ,试求2∠的度数(用含a 的代数式表示); (2)如图②,再将纸片沿GH 对折,使得CD 落在''C D 的位置.①若//'EF C G ,1∠的度数为a ,试求3∠的度数(用含a 的代数式表示); ②若''B F C G ⊥,3∠的度数比1∠的度数大20︒,试计算1∠的度数.3.已知:直线AB ∥CD ,M ,N 分别在直线AB ,CD 上,H 为平面内一点,连HM ,HN . (1)如图1,延长HN 至G ,∠BMH 和∠GND 的角平分线相交于点E .求证:2∠MEN ﹣∠MHN =180°;(2)如图2,∠BMH 和∠HND 的角平分线相交于点E . ①请直接写出∠MEN 与∠MHN 的数量关系: ;②作MP 平分∠AMH ,NQ ∥MP 交ME 的延长线于点Q ,若∠H =140°,求∠ENQ 的度数.(可直接运用①中的结论)4.如图,已知直线//AB 射线CD ,110CEB ∠=︒.P 是射线EB 上一动点,过点P 作//PQ EC 交射线CD 于点Q ,连接CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠.(1)若点P ,F ,G 都在点E 的右侧. ①求PCG ∠的度数;②若30EGC ECG ∠-∠=︒,求CPQ ∠的度数.(不能使用“三角形的内角和是180︒”直接解题)(2)在点P 的运动过程中,是否存在这样的偕形,使:3:2EGC EFC ∠∠=?若存在,直接写出CPQ ∠的度数;若不存在.请说明理由.5.直线AB ∥CD ,点P 为平面内一点,连接AP ,CP .(1)如图①,点P 在直线AB ,CD 之间,当∠BAP =60°,∠DCP =20°时,求∠APC 的度数;(2)如图②,点P 在直线AB ,CD 之间,∠BAP 与∠DCP 的角平分线相交于K ,写出∠AKC 与∠APC 之间的数量关系,并说明理由;(3)如图③,点P 在直线CD 下方,当∠BAK =23∠BAP ,∠DCK =23∠DCP 时,写出∠AKC 与∠APC 之间的数量关系,并说明理由.二、解答题6.如图,直线//PQ MN ,一副三角板(90ABC CDE ∠=∠=︒,30ACB ∠=︒,60,45EAC DCE DEC ∠=︒∠=∠=︒)按如图①放置,其中点E 在直线PQ 上,点,B C 均在直线MN 上,且CE 平分ACN ∠.(1)求DEQ ∠的度数.(2)如图②,若将三角形ABC 绕B 点以每秒5︒的速度按逆时针方向旋转(,A C 的对应点分别为,F G ).设旋转时间为t 秒(036)t ≤≤. ①在旋转过程中,若边//BG CD ,求t 的值;②若在三角形ABC 绕B 点旋转的同时,三角形CDE 绕E 点以每秒4︒的速度按顺时针方向旋转(,C D 的对应点分别为,H K ).请直接写出当边//BG HK 时t 的值. 7.如图1,//AB CD ,在AB 、CD 内有一条折线EPF .(1)求证:AEP CFP EPF ∠+∠=∠;(2)在图2中,画BEP ∠的平分线与DFP ∠的平分线,两条角平分线交于点Q ,请你补全图形,试探索EQF ∠与EPF ∠之间的关系,并证明你的结论;(3)在(2)的条件下,已知BEP ∠和DFP ∠均为钝角,点G 在直线AB 、CD 之间,且满足1BEG BEP n ∠=∠,1DFG DFP n∠=∠,(其中n 为常数且1n >),直接写出EGF ∠与EPF ∠的数量关系. 8.阅读下面材料:小颖遇到这样一个问题:已知:如图甲,//,AB CD E 为,AB CD 之间一点,连接,,35,37BE DE B D ∠=︒∠=︒,求BED ∠的度数.她是这样做的: 过点E 作//,EF AB则有,BEF B ∠=∠ 因为//,AB CD 所以//.EF CD ① 所以,FED D ∠=∠所以,BEF FED B D ∠+∠=∠+∠ 即BED ∠=_ ; 1.小颖求得BED ∠的度数为__ ; 2.上述思路中的①的理由是__ ; 3.请你参考她的思考问题的方法,解决问题:已知:直线//,a b 点,A B 在直线a 上,点,C D 在直线b 上,连接,,AD BC BE 平分,ABC DE ∠平分,ADC ∠且,BE DE 所在的直线交于点E .(1)如图1,当点B 在点A 的左侧时,若,ABC ADC αβ∠=∠=,则BED ∠的度数为 ;(用含有,αβ的式子表示).(2)如图2,当点B 在点A 的右侧时,设,ABC ADC αβ∠=∠=,直接写出BED ∠的度数(用含有,αβ的式子表示).9.如图1,O 为直线AB 上一点,过点O 作射线,30OC AOC ︒∠=,将一直角三角板(30M ︒∠=)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方,将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周.(1)几秒后ON 与OC 重合?(2)如图2,经过t 秒后,//MN AB ,求此时t 的值.(3)若三角板在转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC 与OM 重合?请画图并说明理由.(4)在(3)的条件下,求经过多长时间OC 平分MOB ∠?请画图并说明理由. 10.问题情境(1)如图1,已知//AB CD ,125PBA ︒∠=,155PCD ︒∠=,求BPC ∠的度数.佩佩同学的思路:过点P 作PG//AB ,进而//PG CD ,由平行线的性质来求BPC ∠,求得BPC ∠=________. 问题迁移(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,90ACB ︒∠=,//DF CG ,AB 与FD 相交于点E ,有一动点P 在边BC 上运动,连接PE ,PA ,记PED α∠=∠,PAC β∠=∠.①如图2,当点P 在C ,D 两点之间运动时,请直接写出AOE ∠与α∠,β∠之间的数量关系;②如图3,当点P 在B ,D 两点之间运动时,APE ∠与α∠,β∠之间有何数量关系?请判断并说明理由;拓展延伸(3)当点P 在C ,D 两点之间运动时,若PED ∠,PAC ∠的角平分线EN ,AN 相交于点N ,请直接写出ANE ∠与α∠,β∠之间的数量关系.三、解答题11.如图,直线m 与直线n 互相垂直,垂足为O 、A 、B 两点同时从点O 出发,点A 沿直线m 向左运动,点B 沿直线n 向上运动.(1)若∠BAO 和∠ABO 的平分线相交于点Q ,在点A ,B 的运动过程中,∠AQB 的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由.(2)若AP 是∠BAO 的邻补角的平分线,BP 是∠ABO 的邻补角的平分线,AP 、BP 相交于点P ,AQ 的延长线交PB 的延长线于点C ,在点A ,B 的运动过程中,∠P 和∠C 的大小是否会发生变化?若不发生变化,请求出∠P 和∠C 的度数;若发生变化,请说明理由.12.在ABC 中,射线AG 平分BAC ∠交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作//DE AC 交AB 于点E .(1)如图1,点D 在线段CG 上运动时,DF 平分EDB ∠.①若100BAC ︒∠=,30C ︒∠=,则AFD ∠=_____;若40B ︒∠=,则AFD ∠=_____; ②试探究AFD ∠与B 之间的数量关系?请说明理由;(2)点D 在线段BG 上运动时,BDE ∠的角平分线所在直线与射线AG 交于点F .试探究AFD ∠与B 之间的数量关系,并说明理由.13.如图1,CE 平分ACD ∠,AE 平分BAC ∠,90EAC ACE ∠+∠=()1请判断AB 与CD 的位置关系并说明理由;()2如图2,当90E ∠=且AB 与CD 的位置关系保持不变,移动直角顶点E ,使MCE ECD ∠=∠,当直角顶点E 点移动时,问BAE ∠与MCD ∠否存在确定的数量关系?并说明理由.()3如图3,P 为线段AC 上一定点,点Q 为直线CD 上一动点且AB 与CD 的位置关系保持不变,①当点Q 在射线CD 上运动时(点C 除外),CPQ CQP ∠+∠与BAC ∠有何数量关系?猜想结论并说明理由.②当点Q 在射线CD 的反向延长线上运动时(点C 除外),CPQ CQP ∠+∠与BAC ∠有何数量关系?直接写出猜想结论,不需说明理由.14.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒;(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠=n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.15.已知,//AB CD ,点E 为射线FG 上一点.(1)如图1,写出EAF ∠、AED ∠、EDG ∠之间的数量关系并证明; (2)如图2,当点E 在FG 延长线上时,求证:EAF AED EDG ∠=∠+∠;(3)如图3,AI 平分BAE ∠,DI 交AI 于点I ,交AE 于点K ,且EDI ∠:2:1CDI ∠=,20AED ∠=︒,30I ∠=︒,求EKD ∠的度数.【参考答案】一、解答题1.(1)PB′⊥QC′;(2)当射线PB 旋转的时间为5秒或25秒或45秒时,PB′∥QC′ 【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O ,过O 作OE ∥AB ,根解析:(1)PB ′⊥QC ′;(2)当射线PB 旋转的时间为5秒或25秒或45秒时,PB ′∥QC ′ 【分析】(1)求出旋转10秒时,∠BPB ′和∠CQC ′的度数,设PB ′与QC ′交于O ,过O 作OE ∥AB ,根据平行线的性质求得∠POE 和∠QOE 的度数,进而得结论;(2)分三种情况:①当0<t ≤15时,②当15<t ≤30时,③当30<t <45时,根据平行线的性质,得出角的关系,列出t 的方程便可求得旋转时间. 【详解】解:(1)如图1,当旋转时间30秒时,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,过O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案为:PB′⊥QC′;(2)①当0<t≤15时,如图,则∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②当15<t≤30时,如图,则∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③当30<t≤45时,如图,则∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;综上,当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.2.(1);(2)① ;②【分析】(1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE,再根据平角的定义求解即可;(2) ①由(1)知,,根据平行线的性质得到,再由折叠的性质及平角的定义解析:(1)1902a︒-;(2)①1454a︒+;②50︒【分析】(1)由平行线的性质得到4'B FC a∠=∠=,由折叠的性质可知,∠2=∠BFE,再根据平角的定义求解即可;(2) ①由(1)知,1902BFE a ∠=︒-,根据平行线的性质得到1BFE C'GB 902a ∠=∠=︒- ,再由折叠的性质及平角的定义求解即可;②由(1)知,∠BFE = 19012EFB '∠=︒-∠,由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,再根据条件和折叠的性质得到''11402190B FC FGC +=∠+∠=∠︒-∠︒,即可求解.【详解】解:(1)如图,由题意可知'//'A E B F , ∴14a ∠=∠=, ∵//AD BC , ∴4'B FC a ∠=∠=, 180BFB a '∴∠=︒-,∴由折叠可知1129022BFE BFB a '∠=∠=∠=︒-.(2)①由题(1)可知1902BFE a ∠=︒- ,∵//'EF C G ,1902BFE C'GB a ∴∠=∠=︒-,再由折叠可知:113180*********HGC C GB a a ⎛⎫∠+∠=︒-∠=︒-︒-=︒+ ⎪⎝⎭',13454HGC a ∴∠=∠=︒+;②由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,由(1)知19012BFE ∠=︒-∠,11802180290112B FC BFE ⎛⎫'∴∠=︒-∠=︒-︒-∠=∠ ⎪⎝⎭,又3∠的度数比1∠的度数大20︒,∴3=1+20∠∠︒,()18023180212014021FGC '∴∠=︒-∠=︒-∠+︒=︒-∠,''11402190B FC FGC +=∴∠+∠=∠︒-∠︒,1=50∴∠︒.【点睛】此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键.3.(1)见解析;(2)①2∠MEN +∠MHN =360°;②20°【分析】(1)过点E 作EP ∥AB 交MH 于点Q ,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即解析:(1)见解析;(2)①2∠MEN +∠MHN =360°;②20°【分析】(1)过点E 作EP ∥AB 交MH 于点Q ,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即可得证.(2)①过点H 作GI ∥AB ,利用(1)中结论2∠MEN ﹣∠MHN =180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH +∠HNC =360°﹣(∠BMH +∠HND ),进而用等量代换得出2∠MEN +∠MHN =360°. ②过点H 作HT ∥MP ,由①的结论得2∠MEN +∠MHN =360°,∠H =140°,∠MEN =110°.利用平行线性质得∠ENQ +∠ENH +∠NHT =180°,由角平分线性质及邻补角可得∠ENQ +∠ENH +140°﹣12(180°﹣∠BMH )=180°.继续使用等量代换可得∠ENQ 度数.【详解】解:(1)证明:过点E 作EP ∥AB 交MH 于点Q .如答图1∵EP ∥AB 且ME 平分∠BMH ,∴∠MEQ =∠BME =12∠BMH .∵EP ∥AB ,AB ∥CD ,∴EP ∥CD ,又NE 平分∠GND ,∴∠QEN =∠DNE =12∠GND .(两直线平行,内错角相等)∴∠MEN =∠MEQ +∠QEN =12∠BMH +12∠GND =12(∠BMH +∠GND ).∴2∠MEN=∠BMH+∠GND.∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.∴∠GND+∠BMH﹣∠MHN=180°,即2∠MEN﹣∠MHN=180°.(2)①:过点H作GI∥AB.如答图2由(1)可得∠MEN=12(∠BMH+∠HND),由图可知∠MHN=∠MHI+∠NHI,∵GI∥AB,∴∠AMH=∠MHI=180°﹣∠BMH,∵GI∥AB,AB∥CD,∴GI∥CD.∴∠HNC=∠NHI=180°﹣∠HND.∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,∴∠BMH+∠HND=360°﹣∠MHN.即2∠MEN+∠MHN=360°.故答案为:2∠MEN+∠MHN=360°.②:由①的结论得2∠MEN+∠MHN=360°,∵∠H=∠MHN=140°,∴2∠MEN=360°﹣140°=220°.∴∠MEN=110°.过点H作HT∥MP.如答图2∵MP∥NQ,∴HT∥NQ.∴∠ENQ+∠ENH+∠NHT=180°(两直线平行,同旁内角互补).∵MP平分∠AMH,∴∠PMH=12∠AMH=12(180°﹣∠BMH).∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.∴∠ENQ+∠ENH+140°﹣12(180°﹣∠BMH)=180°.∵∠ENH=12∠HND.∴∠ENQ+12∠HND+140°﹣90°+12∠BMH=180°.∴∠ENQ+12(HND+∠BMH)=130°.∴∠ENQ+12∠MEN=130°.∴∠ENQ=130°﹣110°=20°.【点睛】本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强.4.(1)①35°;(2)55°;(2)存在,或【分析】(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°解析:(1)①35°;(2)55°;(2)存在,52.5︒或7.5︒【分析】(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=60°;(2)设∠EGC=3x,∠EFC=2x,则∠GCF=3x-2x=x,分两种情况讨论:①当点G、F在点E 的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.【详解】解:(1)①∵AB∥CD,∴∠CEB+∠ECQ=180°,∵∠CEB=110°,∴∠ECQ=70°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=12∠QCF+12∠FCE=12∠ECQ=35°;②∵AB∥CD,∴∠QCG=∠EGC,∵∠QCG+∠ECG=∠ECQ=70°,∴∠EGC+∠ECG=70°,又∵∠EGC-∠ECG=30°,∴∠EGC=50°,∠ECG=20°,∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=12(70°−40°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.(2)52.5°或7.5°,设∠EGC=3x°,∠EFC=2x°,①当点G、F在点E的右侧时,∵AB∥CD,∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,则∠GCF=∠QCG-∠QCF=3x°-2x°=x°,∴∠PCF=∠PCQ=12∠FCQ=12∠EFC=x°,则∠ECG=∠GCF=∠PCF=∠PCD=x°,∵∠ECD=70°,∴4x=70°,解得x=17.5°,∴∠CPQ=3x=52.5°;②当点G、F在点E的左侧时,反向延长CD到H,∵∠EGC=3x°,∠EFC=2x°,∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°,∴∠ECG=∠GCF=∠GCH-∠FCH=x°,∵∠CGF=180°-3x°,∠GCQ=70°+x°,∴180-3x=70+x,解得x=27.5,∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°,∴∠PCQ=12∠FCQ=62.5°,∴∠CPQ=∠ECP=62.5°-55°=7.5°,【点睛】本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.5.(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠解析:(1)80°;(2)∠AKC=12∠APC,理由见解析;(3)∠AKC=23∠APC,理由见解析【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC=∠APE+∠CPE=∠BAP+∠DCP进行计算即可;(2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,进而得到∠AKC=12∠APC;(3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据已知得出∠BAK﹣∠DCK=23∠BAP﹣23∠DCP=23∠APC,进而得到∠BAK﹣∠DCK=23∠APC.【详解】(1)如图1,过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=12∠APC.理由:如图2,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP与∠DCP的角平分线相交于点K,∴∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,∴∠AKC=12∠APC;(3)∠AKC=23∠APC理由:如图3,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠BAK=∠AKE,∠DCK=∠CKE,∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP﹣∠DCP,∵∠BAK=23∠BAP,∠DCK=23∠DCP,∴∠BAK﹣∠DCK=23∠BAP﹣23∠DCP=23(∠BAP﹣∠DCP)=23∠APC,∴∠AKC=23∠APC.【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算.二、解答题6.(1)60°;(2)①6s;②s或s【分析】(1)利用平行线的性质角平分线的定义即可解决问题.(2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题.②分两种情形:如图③中,当解析:(1)60°;(2)①6s;②103s或703s【分析】(1)利用平行线的性质角平分线的定义即可解决问题.(2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题.②分两种情形:如图③中,当BG∥HK时,延长KH交MN于R.根据∠GBN=∠KRN构建方程即可解决问题.如图③-1中,当BG∥HK时,延长HK交MN于R.根据∠GBN+∠KRM=180°构建方程即可解决问题.【详解】解:(1)如图①中,∵∠ACB=30°,∴∠ACN=180°-∠ACB=150°,∵CE平分∠ACN,∴∠ECN=12∠ACN=75°,∵PQ∥MN,∴∠QEC+∠ECN=180°,∴∠QEC=180°-75°=105°,∴∠DEQ=∠QEC-∠CED=105°-45°=60°.(2)①如图②中,∵BG∥CD,∴∠GBC=∠DCN,∵∠DCN=∠ECN-∠ECD=75°-45°=30°,∴∠GBC=30°,∴5t=30,∴t=6s.∴在旋转过程中,若边BG∥CD,t的值为6s.②如图③中,当BG∥HK时,延长KH交MN于R.∵BG∥KR,∴∠GBN=∠KRN,∵∠QEK=60°+4t,∠K=∠QEK+∠KRN,∴∠KRN=90°-(60°+4t)=30°-4t,∴5t=30°-4t,∴t=10s.3如图③-1中,当BG∥HK时,延长HK交MN于R.∵BG ∥KR ,∴∠GBN +∠KRM =180°,∵∠QEK =60°+4t ,∠EKR =∠PEK +∠KRM ,∴∠KRM =90°-(180°-60°-4t )=4t -30°,∴5t +4t -30°=180°,∴t =703s . 综上所述,满足条件的t 的值为103s 或703s . 【点睛】本题考查几何变换综合题,考查了平行线的性质,旋转变换,角平分线的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.7.(1)见解析;(2);见解析;(3)【分析】(1)过点作,根据平行线性质可得;(2)由(1)结论可得:,,再根据角平分线性质可得;(3)由(2)结论可得:.【详解】(1)证明:如图1,过解析:(1)见解析;(2)2360EPF EQF ∠+∠=︒;见解析;(3)360EPF n EGF ∠+∠=︒【分析】(1)过点P 作//PG AB ,根据平行线性质可得;(2)由(1)结论可得:EPF AEP CFP ∠=∠+∠,EQF BEQ DFQ ∠=∠+∠,再根据角平分线性质可得EQF BEQ DFQ ∠=∠+∠()13602EPF =︒-∠; (3)由(2)结论可得:()1EGF BEG DFG BEP DFP n ∠=∠+∠=∠+∠()1360EPF n =︒-∠. 【详解】(1)证明:如图1,过点P 作//PG AB ,∵//AB CD ,∴//PG CD ,∴1AEP ∠=∠,2CFP ∠=∠,又∵12EPF ∠+∠=∠,∴AEP CFP EPF ∠+∠=∠;(2)如图2,由(1)可得:EPF AEP CFP ∠=∠+∠,EQF BEQ DFQ ∠=∠+∠,∵BEP ∠的平分线与DFP ∠的平分线相交于点Q , ∴1()2EQF BEQ DFQ BEP DFP ∠=∠+∠=∠+∠ []()11360()36022AEP CFP EPF =︒-∠+∠=︒-∠, ∴2360EPF EQF ∠+∠=︒;(3)由(2)可得:EPF AEP CFP ∠=∠+,EGF BEG DFG ∠=∠+∠,∵1BEG BEP n ∠=∠,1DFG DFP n∠=∠, ∴1()EGF BEG DF nG BEP DFP ∠=∠+∠=∠+∠ []()11360()360AEP CFP EPF n n=︒-∠+∠=︒-∠, ∴360EPF n EGF ∠+∠=︒;【点睛】考核知识点:平行线性质和判定的综合运用.熟练运用平行线性质和判定是关键. 8.;2.平行于同一条直线的两条直线平行;3.(1);(2).【分析】1、根据角度和计算得到答案;2、根据平行线的推论解答;3、(1)根据角平分线的性质及1的结论证明即可得到答案;(2)根据B解析:1.72;2.平行于同一条直线的两条直线平行;3.(1)1122αβ+;(2)1118022αβ-+. 【分析】1、根据角度和计算得到答案;2、根据平行线的推论解答;3、(1)根据角平分线的性质及1的结论证明即可得到答案;(2)根据BE 平分,ABC DE ∠平分,ADC ∠求出11,22ABE CDE αβ∠=∠=,过点E 作EF ∥AB ,根据平行线的性质求出∠BEF =12α,11801802DEF CDE β∠=︒-∠=︒-,再利用周角求出答案.【详解】1、过点E 作//,EF AB则有,BEF B ∠=∠因为//,AB CD所以//.EF CD ①所以,FED D ∠=∠所以,BEF FED B D ∠+∠=∠+∠即BED ∠=72;故答案为:72;2、过点E 作//,EF AB则有,BEF B ∠=∠因为//,AB CD所以EF ∥CD (平行于同一条直线的两条直线平行),故答案为:平行于同一条直线的两条直线平行;3、(1)∵BE 平分,ABC DE ∠平分,ADC ∠∴1111,2222ABE ABC CDE ADC αβ∠=∠=∠=∠=, 过点E 作EF ∥AB ,由1可得∠BED =BEF FED ABE CDE ∠+∠=∠+∠,∴∠BED =1122αβ+,故答案为:1122αβ+;(2)∵BE 平分,ABC DE ∠平分,ADC ∠∴1111,2222ABE ABC CDE ADC αβ∠=∠=∠=∠=, 过点E 作EF ∥AB ,则∠ABE =∠BEF =12α, ∵//,AB CD∴EF ∥CD ,∴180CDE DEF ∠+∠=︒,∴11801802DEF CDE β∠=︒-∠=︒-, ∴11360360(180)22BED DEF BEF βα∠=︒-∠-∠=︒-︒--=1118022αβ-+.【点睛】此题考查平行线的性质:两直线平行内错角相等,两直线平行同旁内角互补,平行线的推论,正确引出辅助线是解题的关键.9.(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出∠AON=60°,结合旋转速度可得时间t ;(3)设∠AON=3解析:(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)703秒,画图见解析 【分析】(1)用角的度数除以转动速度即可得;(2)求出∠AON=60°,结合旋转速度可得时间t;(3)设∠AON=3t,则∠AOC=30°+6t,由题意列出方程,解方程即可;(4)根据转动速度关系和OC平分∠MOB,由题意列出方程,解方程即可.【详解】解:(1)∵30÷3=10,∴10秒后ON与OC重合;(2)∵MN∥AB∴∠BOM=∠M=30°,∵∠AON+∠BOM=90°,∴∠AON=60°,∴t=60÷3=20∴经过t秒后,MN∥AB,t=20秒.(3)如图3所示:∵∠AON+∠BOM=90°,∠BOC=∠BOM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON=3t,则∠AOC=30°+6t,∵OC与OM重合,∵∠AOC+∠BOC=180°,可得:(30°+6t)+(90°-3t)=180°,解得:t=20秒;即经过20秒时间OC与OM重合;(4)如图4所示:∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON=3t,∠AOC=30°+6t,∵∠BOM+∠AON=90°,∴∠BOC=∠COM=12∠BOM=12(90°-3t),由题意得:180°-(30°+6t)=12( 90°-3t),解得:t=703秒,即经过703秒OC 平分∠MOB . 【点睛】 此题考查了平行线的判定与性质,角的计算以及方程的应用,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.10.(1);(2)①,②,理由见解析;(3)【分析】(1)过点作,则,由平行线的性质可得的度数;(2)①过点作的平行线,依据平行线的性质可得与,之间的数量关系; ②过作,依据平行线的性质可得,,即解析:(1)80︒;(2)①APE αβ∠=∠+∠,②APE βα∠=∠-∠,理由见解析;(3)1()2ANE αβ∠=∠+∠ 【分析】(1)过点P 作//PG AB ,则//PG CD ,由平行线的性质可得BPC ∠的度数; (2)①过点P 作FD 的平行线,依据平行线的性质可得APE ∠与α∠,β∠之间的数量关系;②过P 作//PQ DF ,依据平行线的性质可得QPA β∠=∠,QPE α∠=∠,即可得到APE APQ EPQ βα∠=∠-∠=∠-∠;(3)过P 和N 分别作FD 的平行线,依据平行线的性质以及角平分线的定义,即可得到ANE ∠与α∠,β∠之间的数量关系为1()2ANE αβ∠=∠+∠. 【详解】解:(1)如图1,过点P 作//PG AB ,则//PG CD ,由平行线的性质可得180B BPG ︒∠+∠=,180C CPG ︒∠+∠=,又∵125PBA ︒∠=,155PCD ︒∠=,∴36012515580BPC ︒︒︒︒∠=--=,故答案为:80︒;(2)①如图2,APE ∠与α∠,β∠之间的数量关系为APE αβ∠=∠+∠;过点P 作PM ∥FD ,则PM ∥FD ∥CG ,∵PM ∥FD ,∴∠1=∠α,∵PM ∥CG ,∴∠2=∠β,∴∠1+∠2=∠α+∠β,即:APE αβ∠=∠+∠,②如图,APE ∠与α∠,β∠之间的数量关系为APE βα∠=∠-∠;理由:过P 作//PQ DF ,∵//DF CG ,∴//PQ CG ,∴QPA β∠=∠,QPE α∠=∠,∴APE APQ EPQ βα∠=∠-∠=∠-∠;(3)如图,由①可知,∠N=∠3+∠4,∵EN 平分∠DEP ,AN 平分∠PAC ,∴∠3=12∠α,∠4=12∠β, ∴1()2ANE αβ∠=∠+∠,∴ANE ∠与α∠,β∠之间的数量关系为1()2ANE αβ∠=∠+∠. 【点睛】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.三、解答题11.(1)∠AQB的大小不发生变化,∠AQB=135°;(2)∠P和∠C的大小不变,∠P=45°,∠C=45°.【分析】第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BA 解析:(1)∠AQB的大小不发生变化,∠AQB=135°;(2)∠P和∠C的大小不变,∠P=45°,∠C=45°.【分析】第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BAQ与∠ABQ 的和,最后在△ABQ中,根据三角形的内角各定理可求∠AQB的大小.第(2)题求∠P的大小,用邻补角、角平分线、平角、直角和三角形内角和定理等知识求解.【详解】解:(1)∠AQB的大小不发生变化,如图1所示,其原因如下:∵m⊥n,∴∠AOB=90°,∵在△ABO中,∠AOB+∠ABO+∠BAO=180°,∴∠ABO+∠BAO=90°,又∵AQ、BQ分别是∠BAO和∠ABO的角平分线,∴∠BAQ=12∠BAC,∠ABQ=12∠ABO,∴∠BAQ+∠ABQ=12 (∠ABO+∠BAO)=190452⨯=又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°,∴∠AQB=180°﹣45°=135°.(2)如图2所示:①∠P的大小不发生变化,其原因如下:∵∠ABF+∠ABO=180°,∠EAB+∠BAO=180°∠BAQ+∠ABQ=90°,∴∠ABF+∠EAB=360°﹣90°=270°,又∵AP、BP分别是∠BAE和∠ABP的角平分线,∴∠PAB=12∠EAB,∠PBA=12∠ABF,∴∠PAB+∠PBA=12 (∠EAB+∠ABF)=12×270°=135°,又∵在△PAB中,∠P+∠PAB+∠PBA=180°,∴∠P=180°﹣135°=45°.②∠C的大小不变,其原因如下:∵∠AQB=135°,∠AQB+∠BQC=180°,∴∠BQC=180°﹣135°,又∵∠FBO=∠OBQ+∠QBA+∠ABP+∠PBF=180°∠ABQ=∠QBO=12∠ABO,∠PBA=∠PBF=∠ABF,∴∠PBQ=∠ABQ+∠PBA=90°,又∵∠PBC=∠PBQ+∠CBQ=180°,∴∠QBC=180°﹣90°=90°.又∵∠QBC+∠C+∠BQC=180°,∴∠C=180°﹣90°﹣45°=45°【点睛】本题考查三角形内角和定理,垂直,角平分线,平角,直角和角的和差等知识点,同时,也是一个以静求动的一个点型题目,有益于培养学生的思维几何综合题.12.(1)①115°,110°;②,证明见解析;(2),证明见解析.【解析】【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②1902AFD B︒∠=+∠,证明见解析;(2)1902AFD B ︒∠=-∠,证明见解析. 【解析】【分析】(1)①根据角平分线的定义求得∠CAG=12∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的内角和定理求得∠AFD 的度数即可;已知AG 平分∠BAC ,DF 平分∠EDB ,根据角平分线的定义可得∠CAG=12∠BAC ,∠FDM=12∠EDG ;由DE//AC ,根据平行线的性质可得∠EDG=∠C ,∠FMD=∠GAC ;即可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C )=12×140°=70°;再由三角形的内角和定理可求得∠AFD=110°;②∠AFD=90°+12∠B ,已知AG 平分∠BAC ,DF 平分∠EDB ,根据角平分线的定义可得∠CAG=12∠BAC ,∠FDM=12∠EDG ;由DE//AC ,根据平行线的性质可得∠EDG=∠C ,∠FMD=∠GAC ;由此可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C )=12×(180°-∠B )=90°-12∠B ;再由三角形的内角和定理可得∠AFD=90°+12∠B ; (2)∠AFD=90°-12∠B ,已知AG 平分∠BAC ,DF 平分∠EDB ,根据角平分线的定义可得∠CAG=12∠BAC ,∠NDE=12∠EDB ,即可得∠FDM=∠NDE=12∠EDB ;由DE//AC ,根据平行线的性质可得∠EDB=∠C ,∠FMD=∠GAC ;即可得到∠FDM=∠NDE=12∠C ,所以∠FDM +∠FMD =12∠C+12∠BAC=12(∠BAC+∠C )=12×(180°-∠B )=90°-12∠B ;再由三角形外角的性质可得∠AFD=∠FDM +∠FMD=90°-12∠B. 【详解】(1)①∵AG 平分∠BAC ,∠BAC=100°,∴∠CAG=12∠BAC=50°; ∵//DE AC ,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF 平分∠EDB ,∴∠FDM=12∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×140°=70°;∴∠AFD=180°-(∠FDM +∠FMD)=180°-70°=110°;故答案为115°,110°;②∠AFD=90°+12∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=180°-(∠FDM +∠FMD)=180°-(90°-12∠B)=90°+12∠B;(2)∠AFD=90°-12∠B,理由如下:如图,射线ED交AG于点M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠NDE=12∠EDB,∴∠FDM=∠NDE=12∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=12∠C,∴∠FDM +∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=∠FDM +∠FMD=90°-12∠B.【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.13.(1)详见解析;(2)∠BAE+∠MCD=90°,理由详见解析;(3)详见解析. 【详解】试题分析:(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再解析:(1)详见解析;(2)∠BAE+12∠MCD=90°,理由详见解析;(3)详见解析.【详解】试题分析:(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出结论;(2)过E作EF∥AB,根据平行线的性质可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出结论;(3)根据AB∥CD可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故∠BAC=∠PQC+∠QPC.试题解析:证明:(1)∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE.∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180,∴AB∥CD;(2)∠BAE+12∠MCD=90°.证明如下:过E作EF∥AB.∵AB∥CD,∴EF∥∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE.∵∠E=90°,∴∠BAE+∠ECD=90°.∵∠MCE =∠ECD ,∴∠BAE +12∠MCD =90°; (3)①∠BAC =∠PQC +∠QPC .理由如下:如图3:∵AB ∥CD ,∴∠BAC +∠ACD =180°.∵∠QPC +∠PQC +∠PCQ =180°,∴∠BAC =∠PQC +∠QPC ;②∠PQC +∠QPC +∠BAC =180°.理由如下:如图4:∵AB ∥CD ,∴∠BAC =∠ACQ .∵∠PQC +∠PCQ +∠ACQ =180°,∴∠PQC +∠QPC +∠BAC =180°.点睛:本题考查了平行线的性质,根据题意作出平行线是解答此题的关键. 14.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O 作OP//MN ,由MN//OP//GH 得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n =3.【分析】(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ; (2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641n n ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得144606411n n n n ︒︒︒⨯=+⨯++,即可求n . 【详解】解:(1)如图:过O 作OP //MN ,∵MN //GHl∴MN //OP //GH∴∠NAO +∠POA =180°,∠POB +∠OBH =180°∴∠NAO +∠AOB +∠OBH =360°∵∠NAO =116°,∠OBH =144°∴∠AOB =360°-116°-144°=100°;(2)分别延长AC 、CD 交GH 于点E 、F ,∵AC 平分NAO ∠且116NAO ∠=︒,∴58NAC ∠=︒,又∵MN //GH ,∴58CEF ∠=︒;∵144OBH ∠=︒,36OBG ∠=︒∵BD 平分OBG ∠,∴18DBF ∠=︒,又∵,CDB ∠=︒35∴351817DFB CDB DBF ∠=∠-∠=-=︒;∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒;(3)设FB 交MN 于K ,∵116NAO ∠=︒,则MAO ∠=︒64; ∴641n MAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601n BKA FKA F n ∠=∠+∠=⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.经检验:3n =是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.15.(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H∠+∠=∠,证明见解析;(2)证明见解析;(3)解析:(1)EAF EDG AEDEKD∠=︒.80【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG;α+5°,再根(3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=12α+5°+α+10°+20°,求得据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=12α=70°,即可根据三角形内角和定理,得到∠EKD的度数.【详解】解:(1)∠AED=∠EAF+∠EDG.理由:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明:如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,如图3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=12∠EDK=12α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=12α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80°-20°=80°.【点睛】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.。

2017-2018学年河南省郑州一中七年级(下)期末数学试卷

2017-2018学年河南省郑州一中七年级(下)期末数学试卷

2017-2018学年河南省郑州一中七年级(下)期末数学试卷1.(单选题,3分)下列交通标志图案是轴对称图形的是()A.B.C.D.2.(单选题,3分)下列计算正确的是()A.2a•a2="2a"2B.a8÷a2="a"4C.(-2a)2="4a"2D.(a3)2="a"53.(单选题,3分)在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是()A.24B.18C.16D.64.(单选题,3分)PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10-5B.0.25×10-6C.2.5×10-5D.2.5×10-65.(单选题,3分)下列四个图形中,线段AD是△ABC的高的是()A.B.C.D.6.(单选题,3分)如图,为估计池塘岸边A,B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.25米B.15米C.10米D.6米7.(单选题,3分)如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带① 去B.带② 去C.带③ 去D.带① ② 去8.(单选题,3分)下列运算正确的是()A.(-x-y)(-x+y)=-x2-y2B.x-1+x=0C.(x-2)2+1="x"2-4x+3D.(x2+x)÷ 1x=2x+229.(单选题,3分)下列事件中是必然事件的是()A.两直线被第三条直线所截,同位角相等B.等腰直角三角形的锐角等于45°C.相等的角是对顶角D.等腰三角形的一个角是80°,则它的顶角是80°10.(单选题,3分)小亮每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分30米的速度行走了450米,为了不迟到他加快了速度,以每分45米的速度行走完剩下的路程,那么小亮行走过的路程S(米)与他行走的时间t(分)之间的函数关系用图象表示正确的是()A.B.C.D.11.(填空题,3分)计算:(-3)0=___ .12.(填空题,3分)将直尺和直角三角板按如图方式摆放,已知∠1=25°,则∠2=___ .13.(填空题,3分)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画MN的长为半径画弧,两弧弧分别交AB,AC于点M和N,再分别以点M,N为圆心,大于12交于点P,连接AP并延长交BC于点D,则下列说法① AD平分∠BAC;② ∠ADC=60°;③ 点D在AB的垂直平分线上;④ 连接DM,DN,DM=DN,其中正确的是___ .(填序号)14.(填空题,3分)某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为 ___ .15.(填空题,3分)已知,在长方形ABCD中,AB=6,AD=10,延长BC至E,使CE=4,连接DE,动点F从B出发,以每秒2个单位长度的速度沿BC-CD-DA向终点A运动,设点F 的运动时间为t秒,当t的值为___ 时,△ABF和△DCE全等.16.(问答题,9分)(1)计算:197×203+10;.(2)先化简,再求值:(x-4)2-3x(x-3)+2(x+2)(x-2),其中x=- 3417.(问答题,9分)如图,AB || CD,CB平分∠ABD,∠C="40"°.求:(1)∠CBD的度数;(2)∠D的度数.18.(问答题,9分)如图,AD、BC相交于点O,OA=OC,OB=OD,那么∠ABD与∠CDB相等吗?请说明理由.19.(问答题,9分)把弹簧的上端固定,在其下端挂物体,下表是测得的弹簧长度y(cm)与所挂物体的质量x(g)的一组对应值:x/g 1 2 3 4 5 …y/cm 15 15.5 16 16.5 17 17.5 …(2)弹簧的原长是___ cm,物体每增加1g,弹簧的长度增加___ cm.(3)请你估测一下当所挂物体为8g时,弹簧的长度是___ cm.20.(问答题,9分)同学们,概率是刻画随机事件发生可能性大小的重要模型,也就是说我们可通过概率的大小去衡量事件发生可能性的大小.在下列四个转盘中,③ ,④ 转盘分成8等分,若让四个转盘均自由转动一次,停止后,通过计算说明指针落在阴影区域内的可能性最大的转盘是哪个?21.(问答题,9分)要围成如图所示一边靠墙的长方形封闭式菜园ABCD,已知墙长8米,用篱笆围成的另外三边总长为20米,设BC边的长为x米,AB边的长为y米.(1)求y与x之间的关系式;(2)能围成AB=5米的菜园吗?说说你的理由.22.(问答题,9分)如图,△ABC中,AB=AC,DE是AB的垂直平分线,若△ABC的周长为16cm,且△ABC一边长6cm,求△BEC的周长.23.(问答题,12分)已知C是AB上的一个动点,(1)问题发现如图1,当点C在线段AB上运动时,过点C作DC⊥AB,垂足为点C,过点A作EA⊥AB,垂足为点A,且DC="AB",AE=BC.① △ABE与△CDB是全等三角形吗?请说明理由② 连接DE,试猜想△BDE的形状,并说明理由;(2)类比探究如图2,当C在线段AB的延长线上时,过点C作DC⊥AB,垂足为点C,过点A作EA⊥AB,垂足为点A,且DC="AB",AE=BC,试直接写出△BDE的形状.。

《试卷3份集锦》河南省名校2017-2018年七年级下学期期末经典数学试题

《试卷3份集锦》河南省名校2017-2018年七年级下学期期末经典数学试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.若x >y ,则下列式子中错误的是( )A .x+3>y+3B .x-2<y-2C .5x >5yD .-2x <-2y 【答案】B【解析】利用不等式的性质即可解答.【详解】A. x+3>y+3,正确;B. x-2>y-2,故B 选项错误;C.55x y ,正确; D. -2x <-2y ,正确;故选B【点睛】本题考查了不等式的性质,熟练掌握不等式的性质是解题关键.2.为了考察某市初中3 500名毕业生的数学成绩,从中抽取20本试卷,每本30份,在这个问题中,样本容量是( )A .3500B .20C .30D .600【答案】D【解析】根据样本容量则是指样本中个体的数目,可得答案.【详解】解:为了考察某市初中3500名毕业生的数学成绩,从中抽取20本试卷,每本30份,在这个问题中,样本容量是30×20=600,故选:D .【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3.下列命题是假命题的是( )A .同角的余角相等B .同旁内角互补C .对顶角相等D .平行于同一条直线的两条直线平行【答案】B【解析】利用平行线的性质、对顶角的性质及余角的性质分别判断后即可确定正确的选项.【详解】解:A 、同角的余角相等,正确,是真命题,不符合题意;B 、同旁内角互补,错误,是假命题,符合题意;C 、对顶角相等,正确,是真命题,不符合题意;D 、平行于同一条直线的两条直线平行,正确,是真命题,不符合题意;故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质及余角的定义等知识,难度不大.4.若a b <,则下列结论中正确的是( )A .22am bm ≤B .am bm >C .a b m m <D .am bm < 【答案】A【解析】根据不等式的性质,结合举反例逐项分析即可.【详解】A. ∵a b <,m 2≥0,∴ 22am bm ≤,正确;B. 当m=0时,=am bm ,故错误;C. 当m<0时,∴a b m m>,故错误; D. 当m<0时,∴am bm >,故错误;故选A.【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.5.如图,在平面直角坐标系中,,,,,,,按照的顺序,分别将这六个点的横、纵坐标依次循环排列下去,形成一组数1,1,-1,2,2,3,-2,4,3,5,-3,6,1,1,-1,2,…,第一个数记为,第二个数记为,…,第个数记为(为正整数),那么和的值分别为( )A .0,3B .0,2C .6,3D .6,2【答案】A 【解析】观察不难发现,所给一组数是以1,1,-1,2,2,3,-2,4,3,5,-3,6这12个数一循环,可推出和的值.【详解】根据题意可得,所给一组数是以1,1,-1,2,2,3,-2,4,3,5,-3,6这12个数一循环, ∴a 9=3,a 11=-3, ∴=3+(-3)=0;∵2022÷12=168⋯⋯6, ∴=3.故选A.【点睛】本题考查规律型:点的坐标,解题的关键是学会探究规律,利用规律解决问题.6.某山区有一种土特产品,若加工后出售,单价可提高20%,但重量会减少10%.现有该种土特产品300千克,全部加工后可以比不加工多卖240元,设加工前单价是x 元/kg ,加工后的单价是y 元/kg ,由题意,可列出关于x ,y 的方程组是( )A .()()120%300110%300240y x y x =-⎧⎪--=⎨⎪⎩B .()()120%300110%300240y x y x =-⎧⎪+-=⎨⎪⎩C .()()120%300110%300240y x y x =+⎧⎪+-=⎨⎪⎩D .()()120%300110%300240y x y x =+⎧⎪--=⎨⎪⎩【答案】D【解析】根据题意可以列出相应的方程组,从而可以解答本题.【详解】解:由题意可得,()()120%300110%300240y x y x ⎧=+⎪⎨--=⎪⎩, 故选:D .【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.7.下列各组线段能构成直角三角形的一组是()A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,6【答案】A【解析】试题分析:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.解:A、∵302+402=502,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确;B、∵72+122≠132,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;C、∵52+92≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;D、∵32+42≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;故选A.8.下列说法正确的是()A.有一边对应相等的两个等边三角形全等B.角平分线上任意一点到角的两边的线段长相等C.三角形的三条高线交于一点D.相等的两个角是对顶角【答案】A【解析】A、根据全等三角形的判定定理进行分析即可.B、根据角平分线的性质进行分析即可.C、分别分析锐角三角形,直角三角形,钝角三角形的高线解答.D、根据对顶角的定义,得出对顶角相等,但相等的两个角不一定是对顶角.【详解】A、有一边对应相等的两个等边三角形全等,可以用SSS定理判定全等,故本选项正确;B、角平分线上任意一点到角的两边的距离相等,故本选项错误;C、锐角三角形的三条高线所在的直线交于一点,故本选项错误;D、相等的两个角不一定是对顶角,故本选项错误;故选A.【点睛】此题考查了全等三角形的判定,线段垂直平分线的性质以及角平分线的性质.此题难度不大,注意熟记定理是解此题的关键.9.小明和同学约好周末去公园游玩,他从学校出发,全程2.1千米,此时距他和同学的见面时间还有18分钟,已知他每分钟走90米,途中发现自己可能迟到,于是改骑共享单车,速度为每分钟210米,如果小明不迟到,至少骑车多少分钟?设骑车x分钟,则列出的不等式为()A.210x+90(18﹣x)<2.1 B.210x+90(18﹣x)≥2100C .210x+90(18﹣x )≤2100D .210x+90(18﹣x )≥2.1【答案】B 【解析】设骑车x 分钟,根据题意列出不等式解答即可.【详解】解;设骑车x 分钟,可得:210x+90(18﹣x )≥2100,故选:B .【点睛】此题考查一元一次不等式的应用,关键是根据题意找出不等关系列出不等式.10.9的平方根是( )A .3B .±3C .D .【答案】B【解析】根据平方根的定义直接求解即可.【详解】解:∵(±1)2=9,∴9的平方根为±1.故选:B .【点睛】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.二、填空题题 11.132的五次方根是__________________; 【答案】12 【解析】根据五次方根的概念求解. 【详解】因为511()232=, 所以132的五次方根是12. 故答案是:12. 【点睛】考查了分数指数幂,用到的知识点是开方的知识,属于基础题,注意掌握开方的运算.12.若4x 2+(a ﹣1)xy+9y 2是完全平方式,则a =_____.【答案】13或﹣1【解析】根据完全平方公式得出(a ﹣1)xy =±2×2x×3y ,即可解答【详解】∵4x 2+(a ﹣1)xy+9y 2=(2x)2+(a ﹣1)xy+(3y)2,∴(a ﹣1)xy =±2×2x×3y ,解得a ﹣1=±12,∴a=13,a=﹣1.故答案为13或﹣1.【点睛】此题考查完全平方公式,解题关键在于利用完全平方公式求出(a﹣1)xy=±2×2x×3y13.在直角坐标系中,已知A(2,-1),B(1,3)将线段AB平移后得线段CD,若C的坐标是(-1,1),则D的坐标为____________;【答案】(-2,5)或(0,-3)【解析】分析:根据点的坐标平移的定义即可解答.详解:若点A平移后对应点C,则点B平移后对应点D,由点A坐标(2.-1)平移后得到点C的坐标(-1,1)可知线段AB向左平移了3个单位,向上平移了2个单位,因此点D的坐标为(-2,5);若点B平移后对应点C,则点B平移后对应点D,由点B坐标(1,3)平移后得到点C的坐标(-1,1)可知线段AB向左平移了2个单位,向下平移了2个单位,因此点D的坐标为(0,-3);点睛:本题考查了直角坐标系-平移问题,“上加下减,右加左减”是解决本题的关键.另外需要注意C可能是A点平移所得,也可能是B点平移所得.14.若222--的值为0,则2x x-的值是__________.x x36【答案】6【解析】由已知代数式的值求出x2−2x的值,原式变形后代入计算即可求出值.【详解】解:由x2−2x−2=0,得到x2−2x=2,则原式=3(x2−2x)=6,故答案为:6.【点睛】此题考查了代数式求值,熟练掌握整体思想的应用是解本题的关键.15.写出命题“若2a=4b,则a=2b”的逆命题:______.【答案】若a=2b,则2a=4b【解析】解:命题“若2a=4b,则a=2b”的逆命题是:“若a=2b,则2a=4b”.故答案为:若a=2b,则2a=4b.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.16.如图,是用大小相等的小正方形按一定规律拼成的,则第10个图形是_________个小正方形,第n 个图形是___________个小正方形.【答案】120 (n 2+2n )【解析】由第1个图形中小正方形的个数是22-1、第2个图形中小正方形的个数是32-1、第3个图形中小正方形的个数是42-1,可知第n 个图形中小正方形的个数是(n+1)2-1,再将n=10代入求得第10个图形中小正方形的个数.【详解】∵第1个图形中,小正方形的个数是:22-1=3;第2个图形中,小正方形的个数是:32-1=8;第3个图形中,小正方形的个数是:42-1=15;…∴第n 个图形中,小正方形的个数是:(n+1)2-1=n 2+2n+1-1=n 2+2n ,第10个图形中小正方形的个数是:102+2×10=120;故答案为120,(n 2+2n ).【点睛】本题主要考查图形的变化规律,解决此类题目的方法是:从变化的图形中发现不变的部分和变化的部分及变化部分的特点是解题的关键.17.已知()(2)10a b a b ++-+=,则+a b 的值为__________.【答案】1.【解析】先把()(2)1a b a b ++-+化成完全平方式,然后直接开平方,即可求解.【详解】∵()(2)10a b a b ++-+=,∴2()2()10a b a b +-++=,∴2(1)0a b +-=,∴10a b +-=,∴1a b +=.故答案为1.【点睛】本题考查用直接开平方法解一元二次方程和完全平方公式,本题中对已知等式进行变形时,应把+a b 看成一个整体进行计算.三、解答题18.已知x+y=3,(x+3)(y+3)=1.(1)求xy 的值;(2)求x 2+y 2+4xy 的值.【答案】 (1)2 (2)13【解析】(1)把(x+3)(y+3)展开即可求出;(2)利用完全平方公式的变形即可求出x 2+y 2+2xy 的值,即可计算求解.【详解】(1)∵(x+3)(y+3)=xy+3(x+y)+9=1,又x+y=3,∴xy=2(2)x 2+y 2+4xy=x 2+y 2+2xy+2xy=(x+y )2+2xy=32+2×2=13【点睛】此题主要考查整式的运算求解,解题的关键是熟知完全平方公式的变形计算.19.如图,一个长方形中剪下两个大小相同的正方形(有关线段的长如图所示),留下一个“T ”型的图形(阴影部分).(1)用含x ,y 的代数式表示“T ”型图形的面积并化简.(2)若321y x ==米,“T ”型区域铺上价格为每平方米20元的草坪,请计算草坪的造价.【答案】(1)225x xy +;(2)造价为:16660元.【解析】(1)根据割补法即可求出“T ”型图形的面积;(2)代入x,y 即可进行求解.【详解】解:(1)“T ”型图形的面积=(2x+y)(2y+x)-2y 2=4xy+2x 2+2y 2+xy-2y 2=225x xy +;(2)7x =,21y =代入原式=2275721833⨯+⨯⨯=.∴造价为:833×20=16660元.【点睛】此题主要考查整式乘法的应用,解题的关键是熟知整式乘法的运算.20.如图在直角坐标系中,ABC 的顶点都在网格点上,其中C 点坐标为(1,2)(1)点A 的坐标是 ,点B 的坐标是 ; (2)将ABC 先向左平移2个单位长度,再向上平移1个单位长度,得到A B C ''',请画出平移后的图形并写出A B C '''的三个顶点坐标;(3)求ABC 的面积【答案】(1)(2,1)- (4,3);(2)(0,0),A '(2,4)B ',(1,3)C '-;(3)5【解析】(1)直接根据直角坐标系及点C 的坐标即可得出A,B 的坐标;(2)根据平移方式画出平移后的图形,从而确定三个顶点的坐标即可;(3)利用长方形的面积减去三个三角形的面积即可求出答案.【详解】(1)A (2,1)- B (4,3)故答案为:(2,1)-;(4,3)(2)如图,A B C '''即为所作.(0,0),A '(2,4)B ',(1,3)C '-.(3)ABC 的面积为111342431315222⨯-⨯⨯-⨯⨯-⨯⨯=. 【点睛】 本题主要考查平移后的图形及坐标,能够画出平移后的图形是解题的关键.21.图书馆与学校相距600m ,明明从学校出发步行去图书馆,亮亮从图书馆骑车去学校两人同时出发,匀速相向而行,他们与学校的距离S (m )与时间t (s )的图象如图所示:根据图象回答:(1)明明步行的速度为 m/s ;亮亮骑车的速度为 m/s .(2)分別写出明明、亮亮与学校的距离S 1、S 2与时间t 的关系式.(3)通过计算求出a 的值.【答案】(1)2;3;(2)S 1=2t ,S 2=﹣3t+600;(3)a 的值为1.【解析】(1)根据图象可知亮亮用200秒骑车从图书馆到学校,而明明用300秒从学校到图书馆,于是可求出二人的速度;(2)用待定系数法分别求出函数关系式即可;(3)当S 1=S 2时,求出t 的值就是a 的值.【详解】解:(1)由图象可知:亮亮用200秒骑车从图书馆到学校,而明明用300秒从学校到图书馆, ∴亮亮的速度为:600÷200=3米/秒,明明的速度为600÷300=2米/秒,故答案为:2,3;(2)设S 1与t 的关系式为S 1=k 1t ,把(300,600)代入得:600=300k 1,解得:k 1=2,∴S 1=2t ,设S 2与t 的关系式为S 2=k 2t+b ,把(0,600)(200,0)代入得:26002000b k b =⎧⎨+=⎩, 解得:k 2=﹣3,b =600,∴S 2=﹣3t+600,答:明明、亮亮与学校的距离S 1、S 2与时间t 的关系式分别为S 1=2t ,S 2=﹣3t+600;(3)当S 1=S 2时,即2t =﹣3t+600,解得t =1,即a =1.答:a 的值为1.【点睛】本题考查待定系数法求一次函数的关系式以及一次函数图象上点的坐标特征,从图象中获取有用的数据是解决问题的关键.22.郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)郑老师有1000元,他计划为全班40位同学每人购买一件学习用品(一个书包或一本词典)后,余下不少于100元且不超过120元的钱购买体育用品,共有哪几种购买书包和词典的方案?【答案】(1)每个书包和每本词典的价格分别是2元和3元;(2)共有以下三种购买书包和词典的方案,分别是购买书包10个,词典30本,购买书包11个,词典29本,购买书包5个,词典2本.【解析】(1)设每个书包的价格为x元,则每本词典的价格为(x-8)元.根据题意,得3x+2(x-8)=1.解得x=2.∴x-8=3.答:每个书包的价格为2元,每本词典的价格为3元.(2)设购买书包y个,则购买词典(40-y)本.根据题意,得1000[2820(40)]100, {1000[2820(40)]120,y yy y-+-≥-+-≤解得10≤y≤5.4.因为y取整数,所以y的值为10或11或5.所以有三种购买方案,分别是:①书包10个,词典30本;②书包11个,词典29本;③书包5个,词典2本.23.(1)请在横线上填写适当的内容,完成下面的解答过程:如图①,如果∠ABE+∠BED+∠CDE=360°,试说明AB∥CD.理由:过点E作EF∥AB所以∠ABE+∠BEF=°()又因为∠ABE+∠BED+∠CDE=360°所以∠FED+∠CDE=°所以EF∥.又因为EF∥AB,所以AB∥CD.(2)如图②,如果AB∥CD,试说明∠BED=∠B+∠D.(3)如图③,如果AB∥CD,∠BEC=α,BF平分∠ABE,CF平分∠DCE,则∠BFC的度数是(用含α的代数式表示).【答案】(1)180,两直线平行,同旁内角互补,180,CD;(2)见解析;(3)180°﹣12α.【解析】(1)先判断出∠FED+∠CDE=180°得出EF∥CD,即可得出结论;(2)先判断出∠BEH=∠B,再判断出EH∥CD,得出∠DEH=∠D,即可的得出结论;(3)先判断出∠ABE+∠DCE=360°-α,进而判断出∠ABF+∠DCF=180°-12α,借助(2)的结论即可得出结论.【详解】解:(1)过点E作EF∥AB∴∠ABE+∠BEF=180°(两直线平行,同旁内角互补)∵∠ABE+∠BED+∠CDE=360°∴∠FED+∠CDE=180°∴EF∥CD∵EF∥AB∴AB∥CD;故答案为:180,两直线平行,同旁内角互补,180,CD;(2)如图2,过点E作EH∥AB,∴∠BEH=∠B,∵EH∥AB,AB∥CD,∴EH∥CD,∴∠DEH=∠D,∴∠BED=∠BEH+∠DEH=∠B+∠D;(3)如图3,过点E作EG∥AB,∴∠ABE+∠BEG=180°,∵EG∥AB,CD∥AB,∴EG∥CD,∴∠DCE+∠CEG=180°∴∠ABE+∠BEG+∠CEG+∠DCE=360°,∴∠ABE+∠BEC+∠DCE=360°,∴∠ABE+∠DCE=360°﹣∠BEC,∵∠BEC=α,∴∠ABE+∠CCE=360°﹣α,∵BF,CF分别平分∠ABE,∠DCE,∴∠ABE=2∠ABF,∠DCF=2∠ECF,∴∠ABF+∠DCF=180°﹣12α,过点F作作FH∥AB,同(2)的方法得,∠BFC=∠ABF+∠DCF=180°﹣12α,故答案为:180°﹣12α.【点睛】此题主要考查了平行线的性质和判定,角平分线的意义,正确作出辅助线是解本题的关键.24.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系,(1)点A的坐标为______,点C的坐标为______.(2)将△ABC先向左平移3个单位长度,再向下平移6个单位长度,请画出平移后的△A1B1C1.(3)连接A1B,A1C,求△A1BC的面积.【答案】 (1) A(2,7), C(6,5) (2)图形见解析(3)△A1BC的面积等于12【解析】(1)观察图形可得:A(2,7), C(6,5)(2)如图所示;(3)△A 1BC 的面积等于164122⨯⨯= 25.如图1,在ABC ∆和ADE ∆中90BAC DAE ∠=∠=︒,AB AC =,AD AE =,连接BD ,CE ,ADE ∆绕点A 自由旋转.(1)当D 在AC 边上时,①线段BD 和线段CE 的关系是____________________;②若AD AB BC +=,则ADB ∠的度数为____________;(2)如图2,点D 不在AC 边上,BD ,CE 相交于点F ,(l )问中的线段BD 和线段CE 的关系是否仍然成立?并说明理由.【答案】(1)①BD=CE ,BD ⊥CE ,②67.5°;(2)(1)问中的线段BD 和线段CE 的关系仍然成立【解析】(1)①延长BD 交CE 于H ,证明△ABD ≌△ACE ,根据全等三角形的性质得到BD=CE ,∠ABD=∠ACE ,求出∠CHD=90°,得到BD ⊥CE ,得到答案;②根据等腰三角形的性质得到∠ABC=∠ACB=45°,根据等腰三角形的性质、三角形的外角性质计算即可;(2)仿照(1)①的作法证明即可.【详解】解:(1)①延长BD 交CE 于H ,在△ABD 和△ACE 中,AD AE BAD CAE AB AC ⎪∠⎪⎩∠⎧⎨===∴△ABD ≌△ACE (SAS )∴BD=CE ,∠ABD=∠ACE ,∵∠ABD+∠ADB=90°,∠ADB=∠CDH ,∴∠DCH+∠CDH=90°,即∠CHD=90°,∴BD ⊥CE ,故答案为:BD=CE ,BD ⊥CE ;②BC=AD+AB=AE+AB=BE ,∴∠BEC=∠BCE ,∵∠BAC=90°,AB=AC ,∴∠ABC=∠ACB=45°,∴∠BEC=∠BCE=67.5°,∵BE=BC ,BH ⊥CE ,∴∠CBH=∠EBH=∠ACE ,∴∠ADB=∠DBC+∠DCB=∠ACE+∠DCB=67.5°,故答案为:67.5°;(2)(1)问中的线段BD 和线段CE 的关系仍然成立,∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC ,即∠BAD=∠CAE理由如下:在△ABD 和△ACE 中,AD AE BAD CAE AB AC ⎪∠⎪⎩∠⎧⎨===∴△ABD ≌△ACE (SAS )∴BD=CE ,∠ABD=∠ACE ,∵∠ABD+∠ANB=90°,∠ANB=∠FNC ,∴∠ACF+∠DNC=90°,即∠CFN=90°,∴BD ⊥CE ,综上所述,BD=CE ,BD ⊥CE .【点睛】本题考查的是全等三角形的判定和性质、等腰三角形的性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,阴影部分的面积()A.B.C.D.【答案】A【解析】阴影部分的面积即两个矩形的面积和.【详解】根据长方形面积计算公式:.故选A【点睛】注意大长方形的长的计算.熟练运用合并同类项的法则.2.现定义一种运算“⊕”,对任意有理数m、n,规定:m⊕n=mn(m−n),如1⊕2=1×2(1−2)=−2,则(a+b) ⊕(a−b)的值是( )A.2ab2−2b2B.2ab2+2b2C.2a2b−2b3D.2ab−2ab2【答案】C【解析】根据题目中的新运算可以求得(a+b)⊕(a-b)的值,本题得以解决.【详解】∵m⊕n=mn(m−n),∴(a+b) ⊕(a−b)=(a+b)(a−b)[(a+b)−(a−b)]=(a2−b2)×2b=2a2b−2b3,故选C.【点睛】本题考查整式的混合运算和有理数的混合运算,解题的关键是掌握整式的混合运算和有理数的混合运算. 3.如图是测量嘉琪跳远成绩的示意图,直线l是起跳线,以下线段的长度能作为嘉琪跳远成绩的是()A.BP B.CP C.AP D.AO【答案】D【解析】利用垂线最短的性质,找出与起跳线垂直的线段即可.【详解】嘉琪的跳远成绩的依据是垂线段最短,符合题意的垂线段是AO.故选:D.【点睛】此题主要考查垂线的性质,熟练掌握,即可解题.4.解方程组x 2y-3{2y-3x 9==①②时,把①代入②,得( )A .2(2y ﹣3)﹣3x =9B .2y ﹣3(2y+3)=9C .(3y ﹣2)﹣3x =9D .2y ﹣3(2y ﹣3)=9 【答案】D【解析】根据二元一次方程组解法中的代入消元法求解.【详解】把①代入②得:2y-3(2y-3)=9,故选D .【点睛】此题考查了解二元一次方程组,利用了消元的思想.5.如图,150,a b ∠=︒∕∕,则2ACB ∠+∠=( )A .240°B .230°C .220°D .200°【答案】B 【解析】过C 作CD ∥a ,依据平行线的性质,即可得到∠2+∠ACD=180°,∠BCD+∠3=180°,再根据∠3=130°,即可得到∠ACB+∠2的度数.【详解】如图,过C 作CD ∥a ,∵a ∥b ,∴∠2+∠ACD=180°,∠BCD+∠3=180°,∴∠2+∠ACB+∠3=360°,又∵∠1=50°,∴∠3=130°,∴∠2+∠ACD=360°-130°=230°,故选:B.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.6.在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩“抢凳子”游戏,要求的在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在ABC ()A.三边中垂线的交点B.三边中线的交点C.三条角平分线的交点D.三边上高的交点【答案】A【解析】为使游戏公平,则凳子到三个人的距离相等,根据线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.【详解】解:∵三角形的三条边的垂直平分线的交点到三角形三个顶点距离相等,∴凳子应放在△ABC的三边中垂线的交点.故选:A.【点睛】本题主要考查了线段垂直平分线的性质的应用,利用所学的数学知识解决实际问题是一种能力,要注意培养.7.如果多边形的每一个内角都是150°,那么这个多边形的边数是()A.8 B.10 C.12 D.16【答案】C【解析】设这个多边形的边数为n,根据多边形的外角和是360度求出n的值即可.【详解】解:∵多边形的各个内角都等于150°,∴每个外角为30°,设这个多边形的边数为n,则30°×n=360°,解得n=1.故选:C.本题考查的是多边形的内角与外角,解答此类问题时要找到不变量,即多边形的外角和是360°这一关键.8.用加减法解方程组235327x y x y -=⎧⎨-=⎩①②,下列解法错误的是( ) A .()23⨯-⨯-①②,消去yB .23⨯-⨯①②,消去yC .()32⨯-⨯①+②,消去xD .32⨯-⨯①②,消去x 【答案】A【解析】根据加减消元法判断即可.【详解】解:A 选项,2①×得4610x y -=,()3⨯-②得9621x y -+=-,()23⨯-⨯-①②得131231x y -=,没有消去y ,故A 错误;B 选项,2①×得4610x y -=,3⨯②得9621x y -=,23⨯-⨯①②得511x -=-,消去y ,故B 正确;C 选项,(3)⨯-①得6915x y -+=-,2⨯②得6414x y -=,()32⨯-⨯①+②得51y =-,消去x ,故C 正确;D 选项,3⨯①得6915x y -=,2⨯②得6414x y -=,32⨯-⨯①②得51y -=,消去x ,故D 正确. 故选:A【点睛】本题考查了加减消元法,灵活运用加减消元是解题的关键.9.如图所示,∠1=∠2,∠3=∠4,若证得BD=CD ,则所用的判定两三角形全等的依据是( )A .角角角B .角边角C .边角边D .角角边【答案】D 【解析】:∵∠1=∠2,∠3=∠4,BD=CD∴△ABD ≌△ACD .(AAS )故选D .10.如图,BC//DE ,∠1=105°,∠AED=65°.则∠A 的大小是 ( )A .25 °B .35 °C .40 °D .60 °【答案】C 【解析】∵BC ∥DE ,∴∠C=∠AED=65°,根据三角形外角的性质得,∠A=∠1-∠C=105°-65°=40°故选C .二、填空题题11.对于X 、Y 定义一种新运算“¤”:¤X Y aX bY =+,其中a 、b 为常数,等式右边是通常的加法和乘法的运算.已知:1¤16=,2 ()¤19-=,那么2¤3=_____________. 【答案】1【解析】先根据题意列出关于a 、b 的二元一次方程组,求出a 、b 的值,代入代数式进行计算即可.【详解】∵¤X Y aX bY =+,1¤16=,2 ()¤19-=,∴629a b a b +=⎧⎨-=⎩①②,①+②得,3a =15,解得a =5;把a =5代入①得,5+b =6,解得b =1, ∴2¤325+31=⨯⨯=1.故答案为:1.【点睛】本题考查解二元一次方程组,熟知解二元一次方程组的加减消元法是解答此题的关键.12.如图,ABC ∆中,∠BAC 75=︒,7BC =,ABC ∆的面积为14,D 为BC 边上一动点(不与B ,C 重合),将ABD ∆和ACD ∆分别沿直线AB ,AC 翻折得到ABE ∆和ACF ∆,那么△AEF 的面积的最小值为____.【答案】4.【解析】过E 作EG ⊥AF ,交FA 的延长线于G ,由折叠可得∠EAG =30°,而当AD ⊥BC 时,AD 最短,依据BC =7,△ABC 的面积为14,即可得到当AD ⊥BC 时,AD =4=AE =AF ,进而得到△AEF 的面积最小值为:12AF×EG =12×4×2=4. 【详解】解:如图,过E 作EG ⊥AF ,交FA 的延长线于G ,由折叠可得,AF =AE =AD ,∠BAE =∠BAD ,∠DAC =∠FAC ,∵∠BAC =75°,∴∠EAF =150°,∴∠EAG =30°,∴EG =12AE =12AD , 当AD ⊥BC 时,AD 最短,∵BC =7,△ABC 的面积为14,∴当AD ⊥BC 时,1142BC AD ⋅=, 即:14274AD =⨯÷=AF AE ==, ∴114222EG AE ==⨯=. ∴△AEF 的面积最小值为:12AF×EG =12×4×2=4, 故答案为:4.【点睛】本题主要考查了折叠问题,解题的关键是利用对应边和对应角相等.13.若x 3=8,则x=___.【答案】1【解析】试题分析:根据立方根的定义,求数a 的立方根,也就是求一个数x ,使得x 3=a ,则x 就是a 的一个立方根:∵13=8,∴8的立方根是1.14.在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x 名,二等奖的学生有y 名,根据题意可列方程组为__________________.【答案】30{?2016528x y x y +=+=【解析】设获得一等奖的学生有x名,二等奖的学生有y名,由题意得30 2016528 x yx y+=⎧⎨+=⎩.故答案为30 2016528 x yx y+=⎧⎨+=⎩.15.某班体育委员对本班40名学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是________________小时.【答案】1【解析】根据统计图中的数据可以得到一共多少人,然后根据中位数的定义即可求得这组数据的中位数.【详解】解:由统计图可知,一共有:6+9+10+8+7=40(人),∴该班这些学生一周锻炼时间的中位数是第20个和21个学生对应的数据的平均数,∴该班这些学生一周锻炼时间的中位数是1,故答案为:1.【点睛】本题考查折线统计图、中位数,解答本题的关键是明确中位数的定义,利用数形结合的思想解答.16.点P在第四象限,到x轴的距离为3,到y轴的距离为2,则P点坐标为________.【答案】(2,﹣3)【解析】根据第四象限的点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【详解】解:∵点P在第四象限,到x轴的距离为3,到y轴的距离为2,∴点P的横坐标为2,纵坐标为-3,∴点P的坐标为(2,﹣3).故答案为: (2,﹣3).【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).17.已知:如图,点M、N分别在直线AB、CD上,且AB∥CD,若在同一平面内存在一点O,使∠OMB=20°,∠OND=50°,则∠MON=_____.【答案】70°或30°【解析】分两种情况:点O在AB,CD之间,点O在AB上方,过O作OP∥AB,依据平行线的性质,即可得到∠MON的度数.【详解】解:分两种情况:当点O在AB,CD之间时,过O作OP∥AB,则OP∥CD,∴∠OMB=∠POM=20°,∠OND=∠PON=50°,∴∠MON=∠POM+∠PON=20°+50°=70°;当点O在AB上方时,过O作OP∥AB,则OP∥CD,∴∠OMB=∠POM=20°,∠OND=∠PON=50°,∴∠MON=∠PON﹣∠POM=50°﹣20°=30°;故答案为:70°或30°.【点睛】本题主要考查了平行线的性质,解决问题的关键是作平行线,利用平行线的性质以及角的和差关系进行计算.三、解答题18.如图,在□ABCD中,AC,BD相交于点O,点E在AB上,点F在CD上,EF经过点O.求证:四边形BEDF是平行四边形.【答案】见解析【解析】根据平行四边形性质,先证△ODF ≌△OBE ,得OF=OE ,又 OD=OB ,可证四边形BEDF 是平行四边形.【详解】∵在□ABCD 中,AC ,BD 相交于点O ,∴DC ∥AB ,OD=OB .∴∠FDO=∠EBO ,∠DFO=∠BEO .∴△ODF ≌△OBE .∴OF=OE .∴四边形BEDF 是平行四边形.【点睛】本题考核知识点:平行四边形的性质和判定. 解题关键点:熟记平行四边形的性质和判定.19.目前LED 节能灯在城市已基本普及,为面向乡镇市场,苏宁电器分店决定用76000元购进室内用、室外用节能灯,已知这两种类型的节能灯进价、售价如下:(1)若该分店共购进节能灯1700盏,问购进的室内用、室外用节能灯各多少盏?(2)若该分店将进货全部售完后获利要不少于32000元,问至少需要购进多少盏室内用节能灯?(3)挂职锻炼的大学生村官王祥自酬了4650元在该分店购买这两种类型的节能灯若干盏,分发给村民使用,其中室内用节能灯盏数不少于室内用节能灯盏数的2倍,问王祥最多购买室外用节能灯多少盏?【答案】(1)设室内用灯900盏,室外用灯800盏;(2)购进800盏室内节能灯;(3)35.【解析】(1)利用甲,乙两种节能灯的价格,结合图表中数据得出等式求出即可;(2)利用该分店将进货全部售完后获利要不少于32000元,进而得出不等式求出即可;(3)利用4650元在该分店购买这两种类型的节能灯若干盏,其中室内用节能灯盏数不少于室内用节能灯盏数的2倍,进而得出等式求出即可.【详解】解:(1)设室内用灯x 盏,室外用灯y 盏1700405076000x y x y +=⎧⎨+=⎩,解得900x =,800y =. (2)设购进m 盏室内节能灯760018204003200050m m -+⨯≥,解得800m ≥. (3)设需要n 盏室外灯。

2017-2018学年度第二学期期末考试初一数学试题及答案

2017-2018学年度第二学期期末考试初一数学试题及答案

2017—2018学年度第二学期期末考试初一数学试题一、填空题(每空1分,共22分)1、如果下降5米,记作-5米,那么上升4米记作()米;如果+2千克表示增加2千克,那么-3千克表示()。

2、从80减少到50,减少了()%;从50增加到80,增加了()%。

3、某班有60人,缺席6人,出勤率是()%。

4、如果3a=5b(a、b≠0),那么a:b=()。

5、一个圆锥的体积12dm3 ,高3dm,底面积是()。

6、甲、乙两数的比是5:8,甲数是150,乙数是()。

7、比较大小:-7○-5 1.5○5 20○-2.4 -3.1○3.18、某服装店一件休闲装现价200元,比原价降低了50元,相当于打()折。

照这样的折扣,原价800元的西装,现价()元。

9、一个圆柱和一个圆锥的体积相等,底面积也相等,圆柱的高是4米,圆锥的是高()米。

10、一桶油连桶称7.5千克,用去一半油后,连桶称还重4.5千克。

桶重()千克,油重()千克。

11、13只鸡放进4个鸡笼里,至少有()只鸡要放进同一个笼子里。

12、一个圆柱形的木料,底面半径是3厘米,高是8厘米,这个圆柱体的表面积是()平方厘米。

如果把它加工成一个最大的圆锥体,削去部分的体积是()立方厘米。

13、找出规律,填一填。

3,11,20,30,(),53,()。

二、判断题:对的在括号打√,错的打×。

(每小题1分共5分)1、0是负数。

()2、书店以50元卖出两套不同的书,一套赚10%,一套亏本10%,书店是不亏也不赚。

()3、时间一定,路程和速度成正比例。

()4、栽120棵树,都成活了,成活率是120%。

()5、圆柱的体积大于与它等底等高的圆锥的体积。

()三、选择题(每题3分,共15分)1、规定10吨记为0吨,11吨记为+1吨,则下列说法错误的是()A、9吨记为-9吨B、12吨记为+2吨C、6吨记为-4吨D、+3吨表示重量为13吨2、在a12=13中,a的值是()A、12B、4C、6D、83、把长1.2米的圆柱形钢材按2:3:7截成三段,表面积比原来增加56平方厘米,这三段圆钢中最长的一段比最短的一段体积多()A、700立方厘米B、800立方厘米C、840立方厘米D、980立方厘米4、小刚把1000元钱按年利率2.4%存入银行,存期为两年,那么计算到期时她可以从银行取回多少钱(不计利息税),列式正确的是()。

2017-2018学年人教版初一(下学期)期末数学测试卷及答案

2017-2018学年人教版初一(下学期)期末数学测试卷及答案

2017-2018学年人教版初一(下学期)期末数学测试卷及答案2017-2018学年七年级(下学期)期末数学试卷一、选择题(每题2分)1.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1002.(-6)^2的平方根是()A.-6B.36C.±6D.±3.已知a<b,则下列不等式中不正确的是()A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-44.若点A(m,n),点B(n,m)表示同一点,则这一点一定在()A.第二、四象限的角平分线上B.第一、三象限的角平分线上C.平行于x轴的直线上D.平行于y轴的直线上5.过点A(-3,2)和点B(-3,5)作直线,则直线AB()A.平行于y轴B.平行于x轴C.与y轴相交D.与y轴垂直6.不等式组A.xB.-1<x<1C.x≥-1D.x≤1的解集是()7.已知A.1B.2C.3D.4是二元一次方程组的解,则m-n的值是()8.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°9.如图,所提供的信息正确的是()A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多10.若a^2=4,b^2=9,且ab<0,则a-b的值为()A.-2B.±5C.5D.-511.若|3x-2|=2-3x,则()A.x=1B.x=2/3C.x≤1/3D.x≥2/312.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.3x+2y=52,x+y=20B.2x+3y=52,x+y=20C.3x+2y=20,x+y=52D.2x+3y=20,x+y=52二、填空题(每题3分)13.14.计算:2/3)^2÷(4/9) = ______.1/4)^-2×(1/2)^-3 = ______.15.(-5)的立方根是______.16.某校初中三年级共有学生400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于100%,若某一小组的人数为4人,则该小组的百分比为20%.17.若方程mx+ny=6的两个解是(2,0)和(0,3),则m=______,n=______.18.已知关于x的不等式组的整数解有5个,则a的取值范围是什么?19.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标是什么?20.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=多少度?21.求下列式子中的x:28x²-63=0.22.求下列式子中的x:(x-1)³=125.23.解方程组:24.解方程组:25.已知方程组,当m为何值时,x>y?26.解不等式。

2017-2018年河南省郑州市七年级(下)期末数学试卷(解析版)

2017-2018年河南省郑州市七年级(下)期末数学试卷(解析版)

2017-2018学年河南省郑州市七年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)乐乐看到妈妈手机上有好多图标,在下列图标中可看作轴对称图形的是()A.B.C.D.2.(3分)乐乐所在的四人小组做了下列运算,其中正确的是()A.(﹣3)﹣2=﹣9B.(﹣2a3)2=4a6C.a6÷a2=a3D.2a2•3a3=6a63.(3分)乐乐很喜欢清代诗人靠枚的诗《苔》:“白日不到处,青春恰自来,苔花如米小,也学牡丹开.“其实苔御植物属于孢子植物,不开花,袁枚看到的“苔花”,很可能是苔类的孢子体的苞某种苔藓的苞商的直径约为0.7毫米,则0.7毫米用科学记数法可表示为()A.0.7×10﹣4米B.7×10﹣3米C.7×10﹣4米D.7×10﹣5米4.(3分)如图,乐乐将△ABC沿DE,EF分别翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=139°,∠C为()A.38°B.39°C.40°D.41°5.(3分)在一个不透明的布袋中,红色、黑色、白色的小球共有50个,除颜色外其他完全相同,乐乐通过多次摸球试验后发现,摸到红色球、黑色球的频率分别稳定在27%和43%,则口袋中白色球的个数很可能是()A.20B.15C.10D.56.(3分)某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s7.(3分)乐乐观察“抖空竹“时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE=92°,∠DCE=115°,则∠E的度数是()A.32°B.28°C.26°D.23°8.(3分)如图,乐乐用边长为1的正方形做了一副七巧板,并将这副七巧板拼成一只小猫,则阴影都分的面积为()A.B.C.D.9.(3分)乐乐发现等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形底角的度数为()A.50°B.65°C.65°或25°D.50°或40°10.(3分)如图是5×5的正方形网格,以格点D、E为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC全等,这样的格点三角形最多可以作出()A.2个B.4个C.6个D.8个二、填空题(每小题3分,共1511.(3分)乐乐在作业上写到(a+b)2=a2+b2,同学英树认为不对,并且他利用如图的图形做出了直观的解释,根据这个图形的总面积可以得到正确的完全平方公式(a+b)2=12.(3分)乐乐同学有两根长度为4cm,7cm的木棒,母亲节时他想自已动手给妈妈钉一个角形相框,桌上有五根木棒,从中任选一根,使三根木棒首尾顺次相连,则能钉成三角形相框的概率是.13.(3分)如图,△ABC的边BC长12cm,乐乐观察到当顶点A沿着BC边上的高AD所在直线上运动时,三角形的面积发生变化.在这个变化过程中,如果三角形的高为x(cm),那么△ABC的面积y(cm2)与x(cm)的关系式是.14.(3分)乐乐发现三个大小相同的球可以恰好放在一个圆柱形盒子里(底和盖的厚度均忽略不计),如图所示,则三个球的体积之和占整个盒子容积的(球的体积计算公式为V=πr3)15.(3分)在研究“数字黑洞”这节课中,乐乐任意写下了一个四位数(四数字完全相同的除外).重新排列各位数字,使其组成一个最大的数和一个最小的数,然后用最大的数减去最小的数,得到差;重复这个过程,……,乐乐发现最后将变成一个固定的数,则这个固定的数是.三、解答题(本大题共7个小题,共55分)16.(6分)先化简,再求值:[(ab+4)(ab﹣4)﹣5a2b2+16]÷(ab),其中a=10,b=﹣.17.(6分)如图,由小正方形组成的L型图中,请你用三种方法分别在下图中添画一个小正方形,使它成为轴对称图形.18.(8分)乐乐家附近的商场为了吸引顾客,设立了一个可以自由转动的转盘,AB为转盘直径,如图所示,并规定:顾客消费50元(含50元)以上,就能获得一次转盘的机会,如果转盘停止后,指针正好对准9折、8折、7折区域,顾客就可以获得相应的优惠(1)某顾客消费40元,是否可以获得转盘的机会?(2)某顾客正好消费66元,他转一次转盘,获得三种打折优惠的概率分别是多少?19.(8分)尺规作图是理论上接近完美的作图方式,乐乐很喜欢用尺规画出要求的图形.在下面的△ABC中,请你也按要求用尺规作出下列图形(不写作法,但要保留作图痕迹)并填空.(1)作出∠BAC的平分线交BC边于点D;(2)作出AC边上的垂直平分线l交AD于点G;(3)连接GC,若∠B=55°,∠BCA=60°,则∠AGC的度数为20.(8分)如图是乐乐设计的暂力拼图玩具的一部分,现在乐乐遇到了两个问题,请你帮助解决:已知:如图,AB∥CD,(1)若∠APC=60°,∠A=40°,求∠C的度数.请填空解:(1)过点P作直线PE∥AB(如图所示)因为AB∥CD(已知)所以EP∥CD(平行于同一条直线的两条直线平行)因为∠A=∠APE=40∠C=∠CPE()又因为∠APC=∠APE+∠CPE=∠A+=60°(等量代换)所以∠C=°(等式性质)(2)直接写出∠B、∠D与∠BFD之间的数量关系.21.(9分)人的大脑所能记忆的内容是有限的,随着时间的推移,记忆的东西会逐渐被遗忘,教乐乐数学的马老师调查了自己班学生的学习遗忘规律,并根据调查数据描绘了一条曲线(如图所示),其中纵轴表示学习中的记忆保持量,横轴表示时间,观察图象并回答下列问题:(1)观察图象,1h后,记忆保持量约为;8h后,记忆保持量约为(2)图中的A点表示的意义是什么?A点表示的意义是在以下哪个时间段内遗忘的速度最快?填序号①0﹣2h②2﹣4h;③4﹣6h④6﹣8h(3)马老师每节课结束时都会对本节课进行总结回顾,并要求学生每天晚上临睡前对当课堂上所记的课盒笔记进行复习,据调查这样一天后记忆量能保持98%如果学生一天不复习,结果又会怎样?由此,你能根据上述曲线规律制定出两条今年暑假的学习计划吗?22.(10分)乐乐和数学小组的同学们研究了如下问题,请你也来试一下吧.点C是直线l1上一点,在同一平面内,乐乐他们把一个等直角三角板ABC任意放,其中直角顶点C与点C重合,过点A作直线l2⊥l1,垂足为点M,过点B作l3⊥l1,垂足为点N.(1)当直线l2,l3位于点C的异侧时,如图1,线段BN,AM与MN之间的数量关系(不必说明理由).(2)当直线l2,l3位于点C的右侧时,如图2,判断线段BN,AM与MN之间的数量系,并说明理由;(3)当直线l2,l3位于点C的左侧时,如图3,请你补全图形,并直接写出线段BN,AM,MN之间的数量关系.2017-2018学年河南省郑州市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)乐乐看到妈妈手机上有好多图标,在下列图标中可看作轴对称图形的是()A.B.C.D.【解答】解:A、可以看作是轴对称图形,故本选项正确;B、不可以看作是轴对称图形,故本选项错误;C、不可以看作是轴对称图形,故本选项错误;D、不可以看作是轴对称图形,故本选项错误.故选:A.2.(3分)乐乐所在的四人小组做了下列运算,其中正确的是()A.(﹣3)﹣2=﹣9B.(﹣2a3)2=4a6C.a6÷a2=a3D.2a2•3a3=6a6【解答】解:A、原式=.故本选项错误;B、原式=4a6.故本选项正确;C、原式=a4.故本选项错误;D、原式=6a5.故本选项错误;故选:B.3.(3分)乐乐很喜欢清代诗人靠枚的诗《苔》:“白日不到处,青春恰自来,苔花如米小,也学牡丹开.“其实苔御植物属于孢子植物,不开花,袁枚看到的“苔花”,很可能是苔类的孢子体的苞某种苔藓的苞商的直径约为0.7毫米,则0.7毫米用科学记数法可表示为()A.0.7×10﹣4米B.7×10﹣3米C.7×10﹣4米D.7×10﹣5米【解答】解:0.7毫米=0.0007=7×10﹣4.故选:C.4.(3分)如图,乐乐将△ABC沿DE,EF分别翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=139°,∠C为()A.38°B.39°C.40°D.41°【解答】解:∵将△ABC沿DE,EF翻折,∴∠A=∠DOE,∠B=∠FOE,∴∠DOF=∠DOE+∠EOF=∠A+∠B=139°,∴∠C=180°﹣∠A﹣∠B=180°﹣139°=41°,故选:D.5.(3分)在一个不透明的布袋中,红色、黑色、白色的小球共有50个,除颜色外其他完全相同,乐乐通过多次摸球试验后发现,摸到红色球、黑色球的频率分别稳定在27%和43%,则口袋中白色球的个数很可能是()A.20B.15C.10D.5【解答】解:∵多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.27和0.43,∴摸到红色球、黑色球的概率分别为0.27和0.43,∴摸到白球的概率为1﹣0.27﹣0.43=0.3,∴口袋中白色球的个数可能为0.3×50=15.故选:B.6.(3分)某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s【解答】解:∵在这个变化中,自变量是温度,因变量是声速,∴选项A正确;∵根据数据表,可得温度越高,声速越快,∴选项B正确;∵342×5=1710(m),∴当空气温度为20℃时,声音5s可以传播1710m,∴选项C错误;∵324﹣318=6(m/s),330﹣324=6(m/s),336﹣330=6(m/s),342﹣336=6(m/s),348﹣342=6(m/s),∴当温度每升高10℃,声速增加6m/s,∴选项D正确.故选:C.7.(3分)乐乐观察“抖空竹“时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE=92°,∠DCE=115°,则∠E的度数是()A.32°B.28°C.26°D.23°【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=92°,∴∠CFE=92°,又∵∠DCE=115°,∴∠E=∠DCE﹣∠CFE=115°﹣92°=23°,故选:D.8.(3分)如图,乐乐用边长为1的正方形做了一副七巧板,并将这副七巧板拼成一只小猫,则阴影都分的面积为()A.B.C.D.【解答】解:小猫的头部的图形是①⑤⑥,在右图中三角形⑦的一半与⑥相等,则图中①+⑤+⑥正好是正方形的四分之一,即阴影部分的面积是原正方形面积的.故选:A.9.(3分)乐乐发现等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形底角的度数为()A.50°B.65°C.65°或25°D.50°或40°【解答】解:在等腰△ABC中,AB=AC,BD为腰AC上的高,∠ABD=40°,当BD在△ABC内部时,如图1,∵BD为高,∴∠ADB=90°,∴∠BAD=90°﹣40°=50°,∵AB=AC,∴∠ABC=∠ACB=(180°﹣50°)=65°;当BD在△ABC外部时,如图2,∵BD为高,∴∠ADB=90°,∴∠BAD=90°﹣40°=50°,∵AB=AC,∴∠ABC=∠ACB,而∠BAD=∠ABC+∠ACB,∴∠ACB=∠BAD=25°,综上所述,这个等腰三角形底角的度数为65°或25°.故选:C.10.(3分)如图是5×5的正方形网格,以格点D、E为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC全等,这样的格点三角形最多可以作出()A.2个B.4个C.6个D.8个【解答】解:如图所示:,最多可以画出4个.故选:B.二、填空题(每小题3分,共1511.(3分)乐乐在作业上写到(a+b)2=a2+b2,同学英树认为不对,并且他利用如图的图形做出了直观的解释,根据这个图形的总面积可以得到正确的完全平方公式(a+b)2=a2+2ab+b2【解答】解:这个图形的总面积为(a+b)2或a2+2ab+b2,∴根据这个图形的总面积可以得到正确的完全平方公式:(a+b)2=a2+2ab+b2,故答案为:a2+2ab+b2.12.(3分)乐乐同学有两根长度为4cm,7cm的木棒,母亲节时他想自已动手给妈妈钉一个角形相框,桌上有五根木棒,从中任选一根,使三根木棒首尾顺次相连,则能钉成三角形相框的概率是.【解答】解:设第三根木棒的长度为xcm,若要构成三角形,则7﹣4<x<7+4,即3<x<11,而在3、6、10、12、15这5根木棒中,满足3<x<11的只有6、10这2根,所以能钉成三角形相框的概率是,故答案为:.13.(3分)如图,△ABC的边BC长12cm,乐乐观察到当顶点A沿着BC边上的高AD所在直线上运动时,三角形的面积发生变化.在这个变化过程中,如果三角形的高为x(cm),那么△ABC的面积y(cm2)与x(cm)的关系式是y=6x.【解答】解:∵△ABC的面积=BC•x=×12•x=6x,∴y与x的关系式为:y=6x.故答案为:y=6x.14.(3分)乐乐发现三个大小相同的球可以恰好放在一个圆柱形盒子里(底和盖的厚度均忽略不计),如图所示,则三个球的体积之和占整个盒子容积的(球的体积计算公式为V=πr3)【解答】解:设小球的半径为r,由题意可得圆柱的半径为r,高度为6r,则圆柱的体积为:πr2×6r=6πr3,三个小球的体积和为:3×πr3=4πr3,故三个球的体积之和占整个盒子容积的:=.故答案为:.15.(3分)在研究“数字黑洞”这节课中,乐乐任意写下了一个四位数(四数字完全相同的除外).重新排列各位数字,使其组成一个最大的数和一个最小的数,然后用最大的数减去最小的数,得到差;重复这个过程,……,乐乐发现最后将变成一个固定的数,则这个固定的数是6174.【解答】解:任选四个不同的数字,组成一个最大的数和一个最小的数,用大数减去小数,用所得的结果的四位数重复上述的过程.最多七步必得6174,如1234,4321﹣1234=3087,8730﹣378=8352,8532﹣2358=6174,这一现象在数学上被称之为卡普耶卡(Kaprekar)猜想.故答案为:6174三、解答题(本大题共7个小题,共55分)16.(6分)先化简,再求值:[(ab+4)(ab﹣4)﹣5a2b2+16]÷(ab),其中a=10,b=﹣.【解答】解:[(ab+4)(ab﹣4)﹣5a2b2+16]÷(ab)=[(a2b2﹣16﹣5a2b2+16]÷(ab)=(﹣4a2b2)÷(ab)=﹣4ab,当a=10,b=﹣时,原式=8.17.(6分)如图,由小正方形组成的L型图中,请你用三种方法分别在下图中添画一个小正方形,使它成为轴对称图形.【解答】解:如图所示:18.(8分)乐乐家附近的商场为了吸引顾客,设立了一个可以自由转动的转盘,AB为转盘直径,如图所示,并规定:顾客消费50元(含50元)以上,就能获得一次转盘的机会,如果转盘停止后,指针正好对准9折、8折、7折区域,顾客就可以获得相应的优惠(1)某顾客消费40元,是否可以获得转盘的机会?(2)某顾客正好消费66元,他转一次转盘,获得三种打折优惠的概率分别是多少?【解答】解:(1)∵规定消费50元(含50元)以上才能获得一次转盘的机会,40<50,∴某顾客消费40元,不能获得转盘的机会;(2)某顾客正好消费66元,超过50元,可以获得转盘的机会,若获得9折优惠,则概率:若获得8折优惠,则概率:若获得7折优惠,则概率:.19.(8分)尺规作图是理论上接近完美的作图方式,乐乐很喜欢用尺规画出要求的图形.在下面的△ABC中,请你也按要求用尺规作出下列图形(不写作法,但要保留作图痕迹)并填空.(1)作出∠BAC的平分线交BC边于点D;(2)作出AC边上的垂直平分线l交AD于点G;(3)连接GC,若∠B=55°,∠BCA=60°,则∠AGC的度数为115°【解答】解:(1)∠BAC的平分线AD如图所示;(2)线段AC的垂直平分线l如图所示,(3)∵∠BAC=180°﹣∠B﹣∠BCA=65°,∵AD平分∠BAC,∴∠CAG=×65°,∵直线l垂直平分线段AC,∴GA=GC,∴∠GAC=∠GCA,∴∠AGC=180°﹣65°=115°故答案为115°.20.(8分)如图是乐乐设计的暂力拼图玩具的一部分,现在乐乐遇到了两个问题,请你帮助解决:已知:如图,AB∥CD,(1)若∠APC=60°,∠A=40°,求∠C的度数.请填空解:(1)过点P作直线PE∥AB(如图所示)因为AB∥CD(已知)所以EP∥CD(平行于同一条直线的两条直线平行)因为∠A=∠APE=40∠C=∠CPE(两直线平行,内错角相等)又因为∠APC=∠APE+∠CPE=∠A+∠C=60°(等量代换)所以∠C=20°(等式性质)(2)直接写出∠B、∠D与∠BFD之间的数量关系∠B+∠D+∠BFD=360°.【解答】解:(1)因为AB∥CD(已知)所以EP∥CD(平行于同一条直线的两条直线平行)因为∠A=∠APE=40∠C=∠CPE(两直线平行,内错角相等)又因为∠APC=∠APE+∠CPE=∠A+∠C=60°(等量代换)所以∠C=20°(等式性质)故答案为:两直线平行,内错角相等;∠C;20.(2)过点F作FQ∥AB,∴∠B+∠BFQ=180°①,因为AB∥CD(已知)所以FQ∥CD(平行于同一条直线的两条直线平行)∴∠D+∠DFQ=180°②,①+②,得:∠B+∠BFQ+∠D+∠DFQ=360°,即∠B+∠D+∠BFD=360°,故答案为:∠B+∠D+∠BFD=360°.21.(9分)人的大脑所能记忆的内容是有限的,随着时间的推移,记忆的东西会逐渐被遗忘,教乐乐数学的马老师调查了自己班学生的学习遗忘规律,并根据调查数据描绘了一条曲线(如图所示),其中纵轴表示学习中的记忆保持量,横轴表示时间,观察图象并回答下列问题:(1)观察图象,1h后,记忆保持量约为50%;8h后,记忆保持量约为30%(2)图中的A点表示的意义是什么?A点表示的意义是2h大约记忆量保持了40%在以下哪个时间段内遗忘的速度最快?填序号①①0﹣2h②2﹣4h;③4﹣6h④6﹣8h(3)马老师每节课结束时都会对本节课进行总结回顾,并要求学生每天晚上临睡前对当课堂上所记的课盒笔记进行复习,据调查这样一天后记忆量能保持98%如果学生一天不复习,结果又会怎样?由此,你能根据上述曲线规律制定出两条今年暑假的学习计划吗?【解答】解:(1)由图可得,1h后,记忆保持量约为50%(50%±3%均算正确);8h后,记忆保持量约为30%(30%±3%均算正确);故答案为:50%,30%;(2)由题可得,点A表示:2h大约记忆量保持了40%;由图可得,0﹣2h内记忆保持量下降60%,故0﹣2h内内遗忘的速度最快,故答案为:2h大约记忆量保持了40%;①;(3)如果一天不复习,记忆量只能保持不到30%(答案不唯一);暑假的学习计划两条:①每天上午、下午、晚上各复习10分钟;②坚持每天复习,劳逸结合.22.(10分)乐乐和数学小组的同学们研究了如下问题,请你也来试一下吧.点C是直线l1上一点,在同一平面内,乐乐他们把一个等直角三角板ABC任意放,其中直角顶点C与点C重合,过点A作直线l2⊥l1,垂足为点M,过点B作l3⊥l1,垂足为点N.(1)当直线l2,l3位于点C的异侧时,如图1,线段BN,AM与MN之间的数量关系MN =AM+BN(不必说明理由).(2)当直线l2,l3位于点C的右侧时,如图2,判断线段BN,AM与MN之间的数量系,并说明理由;(3)当直线l2,l3位于点C的左侧时,如图3,请你补全图形,并直接写出线段BN,AM,MN之间的数量关系.【解答】解:(1)MN=AM+BN.理由如下:∵∠BNC=∠BCA=90°,∴∠NBC=∠MCA,在△NBC和△MCA中,,∴△NBC≌△MCA,∴BN=CM,CN=AM,∴MN=CN+CM=AM+BN,故答案为:MN=AM+BN;(2)MN=BN﹣AM,理由如下:如图2.∵l2⊥l1,l3⊥l1.∴∠BNC=∠CMA=90°.∴∠ACM+∠CAM=90°.∵∠ACB=90°,∴∠ACM+∠BCN=90°.∴∠CAM=∠BCN.在△CBN和△ACM中,,∴△CBN≌△ACM(AAS).∴BN=CM,NC=AM,∴MN=CM﹣CN=BN﹣AM;(3)补全图形,如图3.由(2)得,△CBN≌△ACM(AAS).∴BN=CM,NC=AM结论:MN=CN﹣CM=AM﹣BN.第21页(共21页)。

2017---2018学年度第二学期期末考试七年级数学试卷含答案

2017---2018学年度第二学期期末考试七年级数学试卷含答案

2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0≤< 0.48x200<0.53200≤x400x>0.78400七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:2218x -如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。

郑州市2017-2018学年度下期期末考试七年级数学试题(含答案)

郑州市2017-2018学年度下期期末考试七年级数学试题(含答案)

(2)某顾客正好消费 66 元,超过 50 元,可以获得转盘的的机会. 若获得 9 折优惠,则概率 P( 9折 )
90 1 ;………………………(4 分) 360 4
若获得 8 折优惠,则概率 P(8折 ) 若获得 7 折优惠,则概率 P( 7 折 )
60 1 ;………………………(6 分) 360 6 30 1 .………………………(8 分) 360 12
11.a2+2ab+b2 12. 0.4( 或
2 ) 5
13. y= 6174
三、解答题(本大题共 7 个小题,共 55 分) 16.(6 分) 解: [( ab 4)( ab 4) 5a b 16] ( ab) = [( a b 16 5a b 16] ( ab) …………………………(2 分) = ( 4a b ) ( ab) = 4ab …………………………………………………(4 分) 当 a 10, b
22. 解: (1)MN= AM+BN;………………(2 分) (2)MN= BN-AM;………………………………(4 分) 理由如下:如图 2. 因为 l2⊥l1,l3⊥l1. 所以∠BNC=∠CMA=90°. 所以∠ACM+∠CAM=90°. 因为∠ACB=90°, 所以∠ACM+∠BCN=90°. 所以∠CAM=∠BCN .
21.(9 分)解: (1)50%(50% 3 %均算正确) ;30%(30% 3 %均算正确) ;……(4 分) (2)点 A 表示 2h 大约记忆量保持了 40%;…………………………(6 分)
①;…………………(7 分)
(3)如果一天不复习,记忆量只能保持不到 30%(答案不唯一) ; 暑假的学习计划两条略(合理即可)………(9 分)

郑州市2017—2018下期期末考试数学试卷及参考答案

郑州市2017—2018下期期末考试数学试卷及参考答案

2017—2018学年下期期末考试七年级数学试题卷注意:本试卷分试题卷和答题卡两部分,考试时间90分钟,满分100分,考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效,交卷时只交答题卡。

时光飞逝,转眼间乐乐七年级学习生活即将结束,在这一年中,乐乐收获满满,我们一起来分享一下吧!一、选择题(每小题3分,共30分)1.乐乐看到妈妈手机上有好多图标,在下列图标中可看作轴对称图形的是( )2.乐乐所在的四人小组做了下列运算,其中正确的是( )A .9)31(2-=-- B.6234)2(a a =- C .326a a a =÷ D.632632a a a =⋅3.乐乐很喜欢清代诗人袁枚的诗《苔》:“白日不到处,青春恰自来,苔花如米小,也学牡丹开。

“其实苔御植物属于孢子植物,不开花,袁枚看到的“苔花”,很可能是苔类的孢子体的苞蒴,某种苔藓的苞蒴的直径约为0.7毫米,则0.7毫米用科学记数法可表示为( )A.4107.0-⨯米B.3107-⨯米C.4107-⨯米D.5107-⨯米5.在一个不透明的布袋中,红色、黑色,白色的小球共有50个,除颜色外其他完全相同,乐乐通过多次摸球试验后发现,摸到红球,黑球的频率分别稳定在27%和43%,则口袋中白球的个数很可能是( )A.20B.15C.10D.56. 乐乐和科学小组的同学们在网上获取了声音在空气中传播的速度与空气温度之间关系的一些数据(如下表)下列说法中错误的是( )A. 在这个变化过程中,当温度为10℃时,声速是336m/s9.乐乐发现等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形底角的度数为( )A.50°B.65°C.65°或25°D.50°或40°二、填空题(每小题3分,共15分)11.乐乐在作业上写到222)(b a b a +=+,同学英树认为不对,并且他利用下面的图形做出了直观的解释,根据这个图形的总面积可以得到正确的完全平方公式=+2)(b a .12. 乐乐同学有两根长度为4cm,7cm 的木棒,母亲节时他想自已动手给妈妈钉一个角形相框,桌上有五根木棒,从中任选一根,使三根木棒首尾顺次相连,则能钉成三角形相框的概率是13.如图,△ABC 的边BC 长12cm,乐乐观察到当顶点A 沿着BC 边上的高AD 所在直线向上运动时,三角形的面积发生变化.在这个变化过程中,如果三角形的高为)(cm x ,那么△ABC 的面积)(2cm y 与)(cm x 的关系式是14.乐乐发现三个大小相同的球可以恰好放在一个圆柱形盒子里(底和盖的厚度均忽略不计),如图所示,则三个球的体积之和占整个盒子容积的 (球的体积计算公式为V=43 πr 2)15.在研究“数字黑洞”这节课中,乐乐任意写下了一个四位数(四数字完全相同的除外).重新排列各位数字,使其组成一个最大的数和一个最小的数,然后用最大的数减去最小的数,得到差;重复这个过程,……,乐乐发现最后将变成一个固定的数,则这个固定的数是 .三、解答题(本大题共7个小题,共55分)16.(6分)乐乐对化简求值题掌握良好,请你也来试试吧!先化简,再求值:)(]165)4)(4[(22ab b a ab ab ÷+--+,其中.51,10-==b a17.(6分)乐乐觉得轴对称图形很有意思.如图是4个完全相同的小正方形组成的L 形图,请你用三种方法分别在图中添画一个小正方形,使添画后的图形成为轴对称图形。

2017-2018学年第二学期七年级数学期末试题(含答案)

2017-2018学年第二学期七年级数学期末试题(含答案)

2017—2018学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列叙述中,正确的是 A .相等的两个角是对顶角 B .一条直线有且只有一条垂线C .连接直线外一点与这条直线上各点的所有线段中,垂线段最短D .同旁内角互补2.如图所示,直线a ,b 被直线c 所截,∠1与∠2是A .同位角B .内错角C .同旁内角D .邻补角3.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度 4.下列语言是命题的是A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC =OAD .两直线平行,内错角相等(第2题图) (第3题图)A .9B .±9C .3D .±36.下列计算结果正确的是A6± B3.6- CD .7.如果12x y =⎧⎨=-⎩和14x y =-⎧⎨=-⎩都是某个二元一次方程的解,则这个二元一次方程是A .x +2y =-3B .2x -y =2C .x -y =3D .y =3x -58.用加减法解方程组时,若要消去y ,则应A .①×3+②×2B .①×3-②×2C .①×5+②×3D .①×5-②×3 9.如果x ≤y ,那么下列结论中正确的是 A .4x ≥4y B .-2x +1≥-2y +1 C .x -2≥y +2D .2-x ≤2-y10.利用数轴求不等式组103x x -≤⎧⎨>-⎩的解集时,下列画图表示正确的是A .B .C .D .11.在调查收集数据时,下列做法正确的是A .电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人B .在医院里调查老年人的健康状况C .抽样调查选取样本时,所选样本可按自己的喜好选取D .检测某城市的空气质量,适宜采用抽样调查的方式12.小宁同学根据全班同学的血型情况绘制了如图所示的扇形统计图,已知该班血型为A 型的有20人,那么该班血型为AB 型的人数为A .2人B .5人C .8人D .10人第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分. 13.命题“对顶角相等”的题设是 .14.为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有 只. 15.一个容量为89的样本中,最大值是153,最小值是60,取组距为10,则可分成 组.16.-1.4144,2220.373π-g,,, 2.12112.其中 是无理数.(第12题图)17.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.18.如图,若棋盘的“将”位于点(0,0),“车”位于点(-4,0),则“马”位于点 .19.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲.设甲的速度为x 千米/时,乙的速度为y 千米/时,列出的二元一次方程组为 .20.某花店设计了若干个甲、乙两种造型的花篮,一个甲种花篮由15朵红花、25朵黄花和20朵紫花搭配而成;一个乙种花篮由10朵红花、20朵黄花和15朵紫花搭配而成.若这些花篮一共用了2900朵红花,4000朵紫花,则黄花一共用了 朵.21.不等式组10324x x x ->⎧⎨>-⎩的非负整数解是 .22.船在静水中的速度是24千米/小时,水流速度是2千米/小时,如果从一个码头逆流而上后,再顺流而下,那么这船最多开出 千米就应返回才能在6小时内回到码头. 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.请先阅读以下内容:,即23, ∴11<2,1的整数部分为1,12. 根据以上材料的学习,解决以下问题:已知a3的整数部分,b3的小数部分,求32()(4)a b -++的平方根. 24.解下列方程组(不等式组): (1)4(1)3(1)2,2;23x y y x y --=--⎧⎪⎨+=⎪⎩ (2)12(1)5;32122x x x --≤⎧⎪⎨-<+⎪⎩.25.某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图(如图),解答下列问题:(1)这次抽取了 名学生的竞赛成绩进行统计,其中m = ,n = ; (2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?(第17题图)(第18题图)26.某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[注:毛利润=(售价-进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,问该商场最多减少购进多少部国外品牌手机?27.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O →C →B →A →O 的线路移动. (1)a = ,b = ,点B 的坐标为 ; (2)求移动4秒时点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.28.如图,已知直线AB∥CD ,∠A =∠C =100°,点E ,F 在CD 上,且满足∠DBF =∠ABD ,BE 平分∠CBF . (1)求证:AD ∥BC ; (2)求∠DBE 的度数;(3)若平移AD 使得∠ADB =∠BEC ,请直接写出此时∠ADB 的度数是 .(第28题图)(第27题图)2017—2018学年第二学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13. 两个角是对顶角;14.120;15. 10;16.23π-,;17.110;18. (3,3);19.6642,141442x yy x+=⎧⎨-=⎩;20.5100 ;21.0;22.71.5.三、解答题:(共74分)23. 解:∵<<,……………………………………………………1分∴4<<5,…………………………………………………………………2分∴1<﹣3<2,…………………………………………………………………3分∴a=1,…………………………………………………………………………4分b=﹣4,………………………………………………………………………6分∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17 …………………………………………………………………………8分=16,…………………………………………………………………………9分∴(﹣a)3+(b+4)2的平方根是±4.………………………………………10分24. (1)解:化简,得………………………………………2分①×2+②得1122,x=③………………………………………3分2x=,………………………………………4分②①把2x =代入③,得3.y = ……………………………………5分所以这个方程组的解是23.x y =⎧⎨=⎩,……………………………………6分 (2)解:由①得:1﹣2x +2≤5 ………………………………………7分∴2x ≥﹣2即x ≥﹣1 ………………………………………8分 由②得:3x ﹣2<2x +1 ………………………………………9分∴x <3. ………………………………………10分∴原不等式组的解集为:﹣1≤x <3. ……………………………………12分25. 解:(1)200, ………………………………………3分70;0.12; ………………………………………7分(2)如图,…………………………………9分(3)1500×(0.08+0.2)=420, ……………………………………11分 所以该校安全意识不强的学生约有420人. …………………………………12分 26. 解:(1)设商场计划购进国外品牌手机x 部,国内品牌手机y 部,由题意得 0.440.214.8,0.060.05 2.7,x y x y +=⎧⎨+=⎩…………………………………4分解得 20,30.x y =⎧⎨=⎩…………………………………6分答:商场计划购进国外品牌手机20部,国内品牌手机30部. ………7分(2)设国外品牌手机减少a部,由题意得-++≤15.6 …………………………………10分a a0.44(20)0.2(303)解得a≤5 …………………………………12分答:该商场最多减少购进5部国外品牌手机. ……………………………13分27. (1)a= 4 ,b= 6 ,点B的坐标为(4,6);………………6分(2)∵P从原点出发以每秒2个单位长度的速度沿O→C→B→A→O的线路移动,∴2×4=8,……………………………………7分∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是8﹣6=2,…………8分∴点P的坐标是(2,6);……………………………………9分(3)由题意可知存在两种情况:第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,……………………………………11分第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,……………………………………12分故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.……………………………………13分28. 证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,……………………………………2分又∵∠A=∠C∴∠ADC+∠C=180°,……………………………………4分∴AD∥BC;……………………………………6分(2)∵AB∥CD,∴∠ABC+∠C=180°………………………………8分又∠C=100°,∴∠ABC=180°﹣100°=80°,………………………………9分∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBF=∠ABF,∠EBF=∠CBF,…………………10分∴∠DBE=∠ABF+∠CBF=∠ABC=40°;……………12分(3)∠ADB=60°.……………………………………14分。

郑州市七年级下学期数学期末考试试卷

郑州市七年级下学期数学期末考试试卷

郑州市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共13题;共26分)1. (2分)在﹣中,负数有()A . 1个B . 2个C . 3个D . 4个2. (2分) (2017七下·黔南期末) 已知坐标平面内点A(m,n)在第四象限,那么点B(n,m)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分) (2017七下·黔南期末) 下列方程组是二元一次方程组的是()A .B .C .D .4. (2分) (2017七下·平塘期末) 如图,在数轴上表示不等式组的解集,其中正确的是()A .B .C .D .5. (2分) (2017七下·黔南期末) 在﹣,0. ,,,0.80108中,无理数的个数为()A . 1B . 2C . 3D . 46. (2分) (2017七下·黔南期末) 如图,下列条件中能判定直线l1∥l2的是()A . ∠1=∠2B . ∠1=∠5C . ∠1+∠3=180°D . ∠3=∠57. (2分)下列命题:①两点确定一条直线;②两点之间,线段最短;③对顶角相等;④内错角相等;其中真命题的个数是()A . 1个B . 2个C . 3个D . 4个8. (2分) (2017七下·黔南期末) 为了解某地区初一年级7000名学生的体重情况,现从中抽测了500名学生的体重,就这个问题来说,下面的说法中正确的是()A . 7000名学生是总体B . 每个学生是个体C . 500名学生是所抽取的一个样本D . 样本容量是5009. (2分) (2017七下·黔南期末) 已知|a+b﹣1|+ =0,则(a﹣b)2017的值为()A . 1B . ﹣1C . 2015D . ﹣201510. (2分)已知点M(3,﹣2)与点M′(x,y)在同一条平行于x轴的直线上,且M′到y轴的距离等于4,那么点M′的坐标是()A . (4,2)或(﹣4,2)B . (4,﹣2)或(﹣4,﹣2)C . (4,﹣2)或(﹣5,﹣2)D . (4,﹣2)或(﹣1,﹣2)11. (2分) (2017七下·黔南期末) 如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是()A . 50°B . 45°C . 35°D . 30°12. (2分) (2017七下·黔南期末) 某中学计划租用若干辆汽车运送七年级学生外出进行社会实践活动,如果一辆车乘坐45人,那么有35名学生没有车坐;如果一辆车乘坐60人,那么有一辆车只坐了35人,并且还空出一辆车.设计划租用x辆车,共有y名学生.则根据题意列方程组为()A .B .C .D .13. (2分) (2017七下·黔南期末) 已知关于x的不等式组有且只有1个整数解,则a的取值范围是()A . a>0B . 0≤a<1C . 0<a≤1D . a≤1二、填空题 (共6题;共6分)14. (1分)如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有________个.15. (1分) (2020七下·吴兴期中) 在边长为的正方形中,放入两张边长为的正方形纸片(),如图①所示,阴影部分面积记为;若放入三张边长为的正方形纸片,如图②所示,阴影部分面积和记为 .若,则的数量关系为________.16. (1分) (2018·辽阳) 如图,等边三角形ABC的边长为1,顶点B与原点O重合,点C在x轴的正半轴上,过点B作BA1⊥AC于点A1,过点A1作A1B1∥OA,交OC于点B1;过点B1作B1A2⊥AC于点A2 ,过点A2作A2B2∥OA,交OC于点B2;……,按此规律进行下去,点A2020的坐标是________.17. (1分) (2018七上·武威期末) 如果数轴上的点A对应有理数为-2,那么与A点相距3个单位长度的点所对应的有理数为________.18. (1分) (2017七下·黔南期末) 点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,则m=________.19. (1分) (2017七下·黔南期末) 如图,∠1=∠2,∠2=∠C,则图中互相平行的直线有________三、解答题 (共5题;共50分)20. (10分)(2020·安徽) 某超市有线上和线下两种销售方式.与2019年4月份相比.该超市2020年4月份销售总额增长其中线上销售额增长.线下销售额增长,(1)设2019年4月份的销售总额为元.线上销售额为x元,请用含的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);(2)求2020年4月份线上销售额与当月销售总额的比值.21. (10分)(2016·岳阳) 已知不等式组(1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率.22. (15分)(2012·杭州) 有一组互不全等的三角形,它们的边长均为整数,每个三角形有两条边的长分别为5和7.(1)请写出其中一个三角形的第三边的长;(2)设组中最多有n个三角形,求n的值;(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率.23. (5分) (2017七下·平塘期末) 如图,已知∠A=∠C,∠1+∠2=180°,试猜想AB与CD之间有怎样的位置关系?并说明理由.24. (10分) (2017七下·黔南期末) 为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题 (共13题;共26分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、二、填空题 (共6题;共6分)14-1、15-1、16-1、17-1、18-1、19-1、三、解答题 (共5题;共50分)20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、24-1、24-2、。

七年级下册郑州数学期末试卷试卷(word版含答案)

七年级下册郑州数学期末试卷试卷(word版含答案)

七年级下册郑州数学期末试卷试卷(word版含答案)一、选择题1.如图,A点在直线DE上,在∠BAD,∠BAE,∠BAC,∠CAE,∠C中,∠B的同旁内角有()A.2个B.3个C.4个D.5个2.下列四幅名车标志设计中能用平移得到的是()A.奥迪B.本田C.奔驰D.铃木3.在平面直角坐标系中,点(-1,-3)位于()A.第一象限B.第二象限C.第三象限D.第四象限4.下列命题是假命题的是()A.对顶角相等B.两条直线被第三条直线所截,同位角相等C.在同一平面内,垂直于同一条直线的两条直线互相平行D.在同一平面内,过直线外一一点有且只有一条直线与已知直线平行5.如图,AB∥CD,∠1=∠2,∠3=130°,则∠2等于()A.30°B.25°C.35°D.40°6.下列说法错误的是()A.33B.﹣1的立方根是﹣1C.0.1是0.01的一个平方根D.算术平方根是本身的数只有0和17.如图,将直尺与含45°角的三角尺叠放在一起,其两边与直尺相交,若∠1=25°,则∠2的度数为()A .120°B .135°C .150°D .160°8.在平面直角坐标系xOy 中,对于点(,)P x y ,我们把点(1,1)P y x -++叫做点P 的伴随点,已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得点A 1,A 2,A 3,…,n A ,…,若点1A 的坐标为(3)1,,则点A 2021的坐标为( ) A .(0,2)- B .(0)4, C .(3)1, D .(3,1)-二、填空题9.324-=________.10.已知点P (3,﹣1)关于x 轴的对称点Q 的坐标是(a +b ,1﹣b ),则a =___,b =___.11.如图,已知AB //DE ,BC ⊥CD ,∠ABC 和∠CDE 的角平分线交于点F ,∠BFD =__________°.12.如图,把一块三角板的直角顶点放在一直尺的一边上,若∠1=50°,则∠2的度数为_____.13.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图2中115AEF ∠=︒,则图3中CFE ∠的度数为_______.14.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.15.在平面直角坐标系中,已知()()()0,,,0,,6A a B b C b 三点,其中a ,b 满足关系式()2340a b -+-=,若在第二象限内有一点(),1P m ,使四边形ABOP 的面积与三角形ABC的面积相等,则点P 的坐标为________.16.如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点O 出发,按图中箭头所示的方向运动,第1次从原点运动到点()1,2,第2次接着运动到点()2,0,第3次接着运动到点()2,2-,第4次接着运动到点()4,2-,第5次接着运动到点()4,0,第6次接着运动到点()5,2.…按这样的运动规律,经过2021次运动后,电子蚂蚁运动到的位置的坐标是_________.三、解答题17.计算: (1)3840.04---(2)23(2)279-+-18.求下列各式中的x 值:(1)(x ﹣1)2=4;(2)(2x +1)3+64=0;(3)x 3﹣3=38.19.如图,已知∠AED =∠C ,∠DEF =∠B ,试说明∠EFG +∠BDG =180∘,请完成下列填空:∵∠AED =∠C (_________)∴ED ∥BC (_________)∴∠DEF =∠EHC (___________)∵∠DEF =∠B (已知)∴_______(等量代换)∴BD ∥EH (同位角相等,两直线平行)∴∠BDG =∠DFE (两直线平行,内错角相等)∵_________________(邻补角的意义)∴∠EFG +∠BDG =180∘(___________)20.已知点P (﹣3a ﹣4,a +2).(1)若点P 在y 轴上,试求P 点的坐标;(2)若M (5,8),且PM //x 轴,试求P 点的坐标;(3)若点P 到x 轴,y 轴的距离相等,试求P 点的坐标.21.已知:31a +的立方根是2-,21b -的算术平方根3,c 是43的整数部分. (1)求,,a b c 的值;(2)求922a b c -+的平方根. 二十二、解答题22.如图是一块正方形纸片.(1)如图1,若正方形纸片的面积为1dm 2,则此正方形的对角线AC 的长为 dm . (2)若一圆的面积与这个正方形的面积都是2πcm 2,设圆的周长为C 圆,正方形的周长为C 正,则C 圆 C 正(填“=”或“<”或“>”号)(3)如图2,若正方形的面积为16cm 2,李明同学想沿这块正方形边的方向裁出一块面积为12cm 2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?二十三、解答题23.已知:AB ∥CD ,截线MN 分别交AB 、CD 于点M 、N .(1)如图①,点B 在线段MN 上,设∠EBM =α°,∠DNM =β°,且满足30-a +(β﹣60)2=0,求∠BEM 的度数;(2)如图②,在(1)的条件下,射线DF 平分∠CDE ,且交线段BE 的延长线于点F ;请写出∠DEF 与∠CDF 之间的数量关系,并说明理由;(3)如图③,当点P 在射线NT 上运动时,∠DCP 与∠BMT 的平分线交于点Q ,则∠Q 与∠CPM 的比值为 (直接写出答案).24.如图1,O 为直线AB 上一点,过点O 作射线,30OC AOC ︒∠=,将一直角三角板(30M ︒∠=)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方,将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周.(1)几秒后ON 与OC 重合?(2)如图2,经过t 秒后,//MN AB ,求此时t 的值.(3)若三角板在转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC 与OM 重合?请画图并说明理由.(4)在(3)的条件下,求经过多长时间OC 平分MOB ∠?请画图并说明理由. 25.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在ABC ∆中,BD 、CD 分别平分ABC ∠和ACB ∠,请直接写出A ∠和D ∠的关系 ;②如图4,A B C D E F ∠+∠+∠+∠+∠+∠= .(4)如图5,BAC ∠与BDC ∠的角平分线相交于点F ,GDC ∠与CAF ∠的角平分线相交于点E ,已知26B ∠=︒,54C ∠=︒,求F ∠和E ∠的度数.26.(1)如图1所示,△ABC 中,∠ACB 的角平分线CF 与∠EAC 的角平分线AD 的反向延长线交于点F ;①若∠B =90°则∠F = ;②若∠B =a ,求∠F 的度数(用a 表示);(2)如图2所示,若点G 是CB 延长线上任意一动点,连接AG ,∠AGB 与∠GAB 的角平分线交于点H ,随着点G 的运动,∠F +∠H 的值是否变化?若变化,请说明理由;若不变,请求出其值.【参考答案】一、选择题1.B解析:B【分析】根据同旁内角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行求解.【详解】解:∠B的同旁内角有∠BAE,∠BAC和∠C,共有3个,故选:B.【点睛】本题考查了同旁内角的定义,能熟记同旁内角的定义的内容是解此题的关键.2.A【分析】根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解.【详解】解:A、是经过平移得到的,故符合题意;B、不是经过平移得解析:A【分析】根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解.【详解】解:A、是经过平移得到的,故符合题意;B、不是经过平移得到的,故的符合题意;C、不是经过平移得到的,故不符合题意;D、不是经过平移得到的,故不符合题意;故选A.【点睛】本题主要考查了图形的平移,解题的关键在于能够熟练掌握图形平移的概念.3.C【分析】根据平面直角坐标系中象限内点的特征判断即可;【详解】∵10-<,30-<,∴点(-1,-3)位于第三象限;故选C .【点睛】本题主要考查了平面直角坐标系中象限内点的特征,准确分析判断是解题的关键. 4.B【分析】根据对顶角的性质、直线的性质、平行线的性质进行判断,即可得出答案.【详解】A 、对顶角相等;真命题;B 、两条直线被第三条直线所截,同位角相等;假命题;只有两直线平行时同位角才相等;C 、在同一平面内,垂直于同一条直线的两条直线互相平行真命题;D 、在同一平面内,过直线外一一点有且只有一条直线与已知直线平行;真命题; 故选:B .【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.正确的命题叫做真命题,错误的命题叫做假命题.5.B【分析】根据AB ∥CD ,∠3=130°,求得∠GAB =∠3=130°,利用平行线的性质求得∠BAE =180°﹣∠GAB =180°﹣130°=50°,由∠1=∠2 求出答案即可.【详解】解:∵AB ∥CD ,∠3=130°,∴∠GAB =∠3=130°,∵∠BAE +∠GAB =180°,∴∠BAE =180°﹣∠GAB =180°﹣130°=50°,∵∠1=∠2,∴∠2=12∠BAE =12×50°=25°.故选:B .【点睛】此题考查平行线的性质:两直线平行同位角相等,两直线平行同旁内角互补,熟记性质定理是解题的关键.6.A【分析】根据平方根、立方根、算术平方根的概念进行判断即可.【详解】解:A、3的平方根是±3,原说法错误,故此选项符合题意;B、﹣1的立方根是﹣1,原说法正确,故此选项不符合题意;C、0.1是0.01的一个平方根,原说法正确,故此选项不符合题意;D、算术平方根是本身的数只有0和1,原说法正确,故此选项不符合题意.故选:A.【点睛】本题考查了平方根、立方根、算术平方根的概念,掌握平方根、立方根、算术平方根的概念是解题的关键.7.D【分析】如图,利用三角形的外角的性质求出∠3,再利用平行线的性质可得结论.【详解】解:如图,∵∠4=45°,∠1=25°,∠4=∠1+∠3,∴∠3=45°-25°=20°,∵a∥b,∴∠2+∠3=180°,∴∠2=180°-20°=160°,故选:D.【点睛】本题考查三角形外角的性质,平行线的性质等知识,解题的关键是学会添加常用辅助线,利用平行线的性质解决问题.8.C【分析】根据“伴随点”的定义依次求出各点,得出每4个点为一个循环组依次循环,用2021除以4,根据余数的情况确定点A2021的坐标即可.【详解】解:∵点的坐标为,∴点的伴随点的坐标为,即解析:C【分析】根据“伴随点”的定义依次求出各点,得出每4个点为一个循环组依次循环,用2021除以4,根据余数的情况确定点A2021的坐标即可.解:∵点1A 的坐标为(3)1,, ∴点1A 的伴随点2A 的坐标为(11,31)-++,即(0,4) ,同理得:345(3,1),(0,2),(3,1),A A A --∴每4个点为一个循环组依次循环,∵202145051÷=,∴A 2021的坐标与1A 的坐标相同,即A 2021的坐标为(3)1,, 故选:C .【点睛】本题主要考查平面直角坐标系中探索点的变化规律问题,解题关键是读懂题目,理解“伴随点”的定义,并能够得出每4个点为一个循环组依次循环.二、填空题9.6【分析】根据算术平方根、有理数的乘方运算即可得.【详解】故答案为:6.【点睛】本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键. 解析:6【分析】根据算术平方根、有理数的乘方运算即可得.【详解】32826-=故答案为:6.【点睛】本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键.10.0【分析】根据题意结合关于x 轴对称点的性质得出关于a ,b 的等式,进而求出答案.【详解】解:∵点P (3,-1)关于x 轴的对称点Q 的坐标是(a+b ,1-b ),∴a+b=3,1-b=1,解析:0根据题意结合关于x轴对称点的性质得出关于a,b的等式,进而求出答案.【详解】解:∵点P(3,-1)关于x轴的对称点Q的坐标是(a+b,1-b),∴a+b=3,1-b=1,解得:a=3,b=0,故答案为:3,0.【点睛】此题主要考查了关于x轴对称点的性质,正确得出a,b的值是解题关键.11.135;【分析】连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°解析:135;【分析】连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°,故∠CBD+∠CDB+∠ABD+∠BDE =270°,再由∠ABC和∠CDE的平分线交于点F可得出∠CBF+∠CDF的度数,由四边形内角和定理即可得出结论.【详解】解:连接BD,∵∠C+∠CBD+∠CDB=180°,BC⊥CD,∴∠C=90°,∴∠CBD+∠CDB=90°.∵AB∥DE,∴∠ABD+∠BDE=180°,∴∠CBD+∠CDB+∠ABD+∠BDE=90°+180°=270°,即∠ABC+∠CDE=270°.∵∠ABC和∠CDE的平分线交于点F,∴∠CBF+∠CDF=1×270°=135°,2∴∠BFD=360°-90°-135°=135°.故答案为135.【点睛】本题考查平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.12.40°【分析】利用平行线的性质求出∠3即可解决问题.【详解】解:∵直尺的两边互相平行,∴∠1=∠3=50°,∵∠2+∠3=90°,∴∠2=90°﹣∠3=40°,故答案为:40°.解析:40°【分析】利用平行线的性质求出∠3即可解决问题.【详解】解:∵直尺的两边互相平行,∴∠1=∠3=50°,∵∠2+∠3=90°,∴∠2=90°﹣∠3=40°,故答案为:40°.【点睛】本题考查了平行线的性质,直角三角形两锐角互余等知识,解题的关键是灵活运用所学知识解决问题.13.15°【分析】利用“两直线平行,同旁内角互补”可求出∠BFE,利用折叠的性质求出∠BFC的度数,再利用角的和差求出∠CFE.【详解】解:∵AE∥BF,∴∠BFE=180°-∠AEF=65°解析:15°【分析】利用“两直线平行,同旁内角互补”可求出∠BFE ,利用折叠的性质求出∠BFC 的度数,再利用角的和差求出∠CFE .【详解】解:∵AE ∥BF ,∴∠BFE =180°-∠AEF =65°,∵2∠BFE +∠BFC =180°,∴∠BFC =180°-2∠BFE =50°,∴∠CFE =∠BFE -∠BFC =15°,故答案为:15°.【点睛】本题考查了平行线的性质、折叠的性质以及角的计算,通过角的计算,求出∠BFE 的度数是解题的关键.14.或.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:4※(-2)=;(-1)※1=[(-1)※1]※m=解析:6m =-或38m =.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:42>-∴4※(-2)=()42=16-; 11-<∴(-1)※1=()11=2--∴[(-1)※1]※m=2※m=36当2m ≥时,原式可化为236m =解得:6m =±6m ∴=-;当2m <时,原式可化为:236m -=解得:38m =;综上所述,m 的值为:6m =-或38m =;故答案为:16;6m =-或38m =.【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键.15.(-4,1)【分析】根据非负数的性质分别求出a 、b ,根据三角形的面积公式列式计算得到答案.【详解】解:∵,∴a=3,b=4,∴A (0,3),B (4,0),C (4,6),∴△ABC 的面积解析:(-4,1)【分析】根据非负数的性质分别求出a 、b ,根据三角形的面积公式列式计算得到答案.【详解】解:∵()2340a b -+-=,∴a =3,b =4,∴A (0,3),B (4,0),C (4,6),∴△ABC 的面积=12×6×4=12, 四边形ABOP 的面积=△AOP 的面积+△AOB 的面积=12×3×(-m )+12×3×4=6-32m , 由题意得,6-32m =12, 解得,m =-4,∴点P 的坐标为(-4,1),故答案为:(-4,1).【点睛】本题考查的是坐标与图形性质,非负数的性质,掌握点的坐标与图形的关系是解题的关键.16.(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-解析:(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-2,-2,0,…,每5次一轮这一规律,进而求出即可.【详解】解:前五次运动横坐标分别为:1,2,2,4,4,第6到10次运动横坐标分别为:4+1,4+2,4+2,4+4,4+4,…∴第5n+1到5n+5次运动横坐标分别为:4n+1,4n+2,4n+2,4n+4,4n+4,前五次运动纵坐标分别2,0,-2,-2,0,第6到10次运动纵坐标分别为2,0,-2,-2,0,…∴第5n+1到5n+5次运动纵坐标分别为2,0,-2,-2,0,∵2021÷5=404…1,∴经过2021次运动横坐标为=4×404+1=1617,经过2021次运动纵坐标为2,∴经过2021次运动后,电子蚂蚁运动到的位置的坐标是(1617,2).故答案为:(1617,2).【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.三、解答题17.(1);(2).【分析】直接利用立方根以及算术平方根的定义化简得出答案.【详解】(1)(2)【点睛】此题主要考查了实数运算,正确化简各数是解题关键.-;(2)2.解析:(1) 4.2【分析】直接利用立方根以及算术平方根的定义化简得出答案.【详解】(1=---220.2=-4.2(2=+-2332【点睛】此题主要考查了实数运算,正确化简各数是解题关键.18.(1)x=3或x=﹣1;(2)x=﹣2.5;(3)x=1.5.【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答.(3)先移项,系数化为1,再开平方法进行解答【详解】解:(解析:(1)x=3或x=﹣1;(2)x=﹣2.5;(3)x=1.5.【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答.(3)先移项,系数化为1,再开平方法进行解答【详解】解:(1)开方得:x﹣1=2或x﹣1=﹣2,解得:x=3或x=﹣1;(2)方程整理得:(2x+1)3=﹣64,开立方得:2x+1=﹣4,解得:x=﹣2.5;(3)方程整理得:x3=278,开立方得:x=1.5.【点睛】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.19.已知;同位角相等,两直线平行;两直线平行,内错角相等;∠EHC=∠B;∠DFE+∠EFG =180∘;等量代换【分析】根据同位角相等,两直线平行推出ED∥BC,通过两直线平行,内错角相等推出∠解析:已知;同位角相等,两直线平行;两直线平行,内错角相等;∠EHC =∠B;∠DFE+∠EFG =180∘;等量代换【分析】根据同位角相等,两直线平行推出ED∥BC,通过两直线平行,内错角相等推出∠DEF=∠EHC,再运用等量代换得到∠EHC =∠B,最后推出BD∥EH,∠BDG=∠DFE,再利用邻补角的意义推出结论,据此回答问题.【详解】解:∵∠AED =∠C (已知)∴ED ∥BC (同位角相等,两直线平行)∴∠DEF =∠EHC (两直线平行,内错角相等)∵∠DEF =∠B (已知)∴∠EHC =∠B (等量代换)∴BD ∥EH (同位角相等,两直线平行)∴∠BDG =∠DFE (两直线平行,内错角相等)∵∠DFE +∠EFG =180∘(邻补角的意义)∴∠EFG +∠BDG =180∘(等量代换).【点睛】本题主要考查平行线的判定和性质,属于综合题,难度一般,熟练掌握平行线的判定和性质是解题关键.20.(1)P (0,);(2)P (-22,8);(3)P (,)或P (-1,1).【分析】(1)根据y 轴上的点的坐标特征:横坐标为0列方程求出a 值即可得答案; (2)根据平行于x 轴的直线上的点的纵坐标相解析:(1)P (0,23);(2)P (-22,8);(3)P (12,12)或P (-1,1). 【分析】(1)根据y 轴上的点的坐标特征:横坐标为0列方程求出a 值即可得答案;(2)根据平行于x 轴的直线上的点的纵坐标相等列方程求出a 值即可得答案;(3)根据点P 到x 轴,y 轴的距离相等可得|34||2|a a --=+,解方程求出a 值即可得答案.【详解】(1)∵点P 在y 轴上,∴340a --=, ∴43a =-, ∴422233a +=-+= ∴P (0,23). (2)∵PM //x 轴,∴28a +=,∴6a =,此时,3422a --=-,∴P (-22,8)(3)∵若点P 到x 轴,y 轴的距离相等,∴|34||2|a a --=+,∴342a a --=+或34(2)a a --=-+, 解得:32a =-或1a =-, 当32a =-时,﹣3a ﹣4=12,a +2=12, ∴P (12,12),当1a =-时,﹣3a ﹣4=-1,a +2=1,∴P (-1,1),综上所述:P (12,12)或P (-1,1).【点睛】本题主要考查了点的坐标性质,用到的知识点为:点到坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及在坐标轴上的点的性质. 21.(1);(2)其平方根为.【分析】(1)根据立方根,算术平方根,无理数的估算即可求出的值;(2)将(1)题求出的值代入,求出值之后再求出平方根.【详解】解:(1)由题得..又,解析:(1)3,5,6a b c =-==;(2)其平方根为4±.【分析】(1)根据立方根,算术平方根,无理数的估算即可求出,,a b c 的值;(2)将(1)题求出的值代入922a b c -+,求出值之后再求出平方根. 【详解】解:(1)由题得318,219a b +=--=.3,5a b ∴=-=.<67∴<.6c ∴=.3,5,6a b c ∴=-==.(2)当3,5,6a b c =-==时,()99223561622a b c -+=⨯--+⨯=. ∴其平方根为4±.【点睛】本题考查了立方根,平方根,无理数的估算.正确把握相关定义是解题的关键. 二十二、解答题22.(1);(2)<;(3)不能;理由见解析.【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法; (3)采解析:(12)<;(3)不能;理由见解析.【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法; (3)采用方程思想求出长方形的长边,与正方形边长比较大小即可.【详解】解:(1)由已知AB 2=1,则AB =1,由勾股定理,AC ;(2,周长为2.1C C <圆正;即C 圆<C 正; 故答案为:<(3)不能;由已知设长方形长和宽为3xcm 和2xcm∴长方形面积为:2x •3x =12解得x∴长方形长边为>4∴他不能裁出.【点睛】本题主要考查了算术平方根在正方形、圆、长方形面积中的应用,灵活的进行算术平方根的计算与无理数大小比较是解题的关键.二十三、解答题23.(1)30°;(2)∠DEF+2∠CDF =150°,理由见解析;(3)【分析】(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解; (2)过点E 作直线EH ∥AB ,由角平分线的性质和平行解析:(1)30°;(2)∠DEF +2∠CDF =150°,理由见解析;(3)12【分析】(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;(2)过点E作直线EH∥AB,由角平分线的性质和平行线的性质可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的数量可求解;(3)由平行线的性质和外角性质可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.【详解】解:(1)∵30α-+(β﹣60)2=0,∴α=30,β=60,∵AB∥CD,∴∠AMN=∠MND=60°,∵∠AMN=∠B+∠BEM=60°,∴∠BEM=60°﹣30°=30°;(2)∠DEF+2∠CDF=150°.理由如下:过点E作直线EH∥AB,∵DF平分∠CDE,∴设∠CDF=∠EDF=x°;∵EH∥AB,∴∠DEH=∠EDC=2x°,∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;∴∠DEF=150°﹣2∠CDF,即∠DEF+2∠CDF=150°;(3)如图3,设MQ与CD交于点E,∵MQ平分∠BMT,QC平分∠DCP,∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,∵AB∥CD,∴∠BME=∠MEC,∠BMP=∠PND,∵∠MEC=∠Q+∠DCQ,∴2∠MEC=2∠Q+2∠DCQ,∴∠PMB=2∠Q+∠PCD,∵∠PND=∠PCD+∠CPM=∠PMB,∴∠CPM=2∠Q,∴∠Q与∠CPM的比值为12,故答案为:12.【点睛】本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键.24.(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出∠AON=60°,结合旋转速度可得时间t;(3)设∠AON=3解析:(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)703秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出∠AON=60°,结合旋转速度可得时间t;(3)设∠AON=3t,则∠AOC=30°+6t,由题意列出方程,解方程即可;(4)根据转动速度关系和OC平分∠MOB,由题意列出方程,解方程即可.【详解】解:(1)∵30÷3=10,∴10秒后ON与OC重合;(2)∵MN∥AB∴∠BOM=∠M=30°,∵∠AON+∠BOM=90°,∴∠AON=60°,∴t=60÷3=20∴经过t秒后,MN∥AB,t=20秒.(3)如图3所示:∵∠AON+∠BOM=90°,∠BOC=∠BOM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON=3t,则∠AOC=30°+6t,∵OC与OM重合,∵∠AOC+∠BOC=180°,可得:(30°+6t)+(90°-3t)=180°,解得:t=20秒;即经过20秒时间OC与OM重合;(4)如图4所示:∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON=3t,∠AOC=30°+6t,∵∠BOM+∠AON=90°,∴∠BOC=∠COM=12∠BOM=12(90°-3t),由题意得:180°-(30°+6t)=12( 90°-3t),解得:t=703秒,即经过703秒OC平分∠MOB.【点睛】此题考查了平行线的判定与性质,角的计算以及方程的应用,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.25.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1)D A B C∠=∠+∠+∠,理由详见解析;(2)A D B C∠+∠=∠+∠,理由详见解析:(3)①1902D A∠=︒+∠;②360°;(4)124E∠=︒;=14F∠︒.【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)①根据角平分线的定义及三角形内角和定理即可得出结论;②连结BE,由(2)的结论及四边形内角和为360°即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.【详解】(1)D A B C∠=∠+∠+∠.理由如下:如图1,BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,BDC B BAD C CAD B BAC C ∴∠=∠+∠+∠+∠=∠+∠+∠,D A B C ∴∠=∠+∠+∠;(2)A D B C ∠+∠=∠+∠.理由如下:在ADE ∆中,180AED A D ∠=︒-∠-∠,在BCE ∆中,180BEC B C ∠=︒-∠-∠,AED BEC ∠=∠,A D B C ∴∠+∠=∠+∠;(3)①180A ABC ACB ∠=︒-∠-∠,180D DBC DCB ∠=︒-∠-∠,BD 、CD 分别平分ABC∠和ACB ∠,∴1122ABC ACB DBC DCB ∠+∠=∠+∠,1111180()180(180)902222D ABC ACB A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠. 故答案为:1902D A ∠=︒+∠.②连结BE .∵C D CBE DEB ∠+∠=∠+∠,360A B C D E F A ABE F BEF ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒. 故答案为:360︒;(4)由(1)知,BDC B C BAC ∠=∠+∠+∠,26B ∠=︒,54C ∠=︒,80BDC BAC ∴∠=︒+∠,402CDF CAE ∴∠=︒+∠,4BAC CAE ∠=∠,2BDC CDF ∠=∠,1902GDE CDF ∴∠=︒-∠,26180AGD B GDB CDF ∠=∠+∠=︒+︒-∠,3GAE CAE ∠=∠,3336064(2)644012422E GAE AGD GDE CAE CDF ∴∠=︒-∠-∠-∠=︒-∠-∠=︒+⨯︒=︒; 180180(206)2262264014F AGF GAF CDF CAE CDF CAE ∠=︒-∠-∠=︒-︒-∠-∠=-︒+∠-∠=-︒+︒=︒.【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.26.(1)①45°;②∠F =a ;(2)∠F+∠H 的值不变,是定值180°.【分析】(1)①②依据AD 平分∠CAE ,CF 平分∠ACB ,可得∠CAD=∠CAE ,∠ACF=∠ACB ,依据∠CAE 是△ABC解析:(1)①45°;②∠F =12a ;(2)∠F +∠H 的值不变,是定值180°. 【分析】(1)①②依据AD 平分∠CAE ,CF 平分∠ACB ,可得∠CAD=12∠CAE ,∠ACF=12∠ACB ,依据∠CAE是△ABC的外角,可得∠B=∠CAE-∠ACB,再根据∠CAD是△ACF的外角,即可得到∠F=∠CAD-∠ACF=12∠CAE-12∠ACB=12(∠CAE-∠ACB)=12∠B;(2)由(1)可得,∠F=12∠ABC,根据角平分线的定义以及三角形内角和定理,即可得到∠H=90°+12∠ABG,进而得到∠F+∠H=90°+12∠CBG=180°.【详解】解:(1)①∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=12∠CAE,∠ACF=12∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=12∠CAE﹣12∠ACB=12(∠CAE﹣∠ACB)=12∠B=45°,故答案为45°;②∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=12∠CAE,∠ACF=12∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=12∠CAE﹣12∠ACB=12(∠CAE﹣∠ACB)=12∠B=12a;(2)由(1)可得,∠F=12∠ABC,∵∠AGB与∠GAB的角平分线交于点H,∴∠AGH=12∠AGB,∠GAH=12∠GAB,∴∠H=180°﹣(∠AGH+∠GAH)=180°﹣12(∠AGB+∠GAB)=180°﹣12(180°﹣∠ABG)=90°+12∠ABG,∴∠F+∠H=12∠ABC+90°+12∠ABG=90°+12∠CBG=180°,∴∠F+∠H的值不变,是定值180°.【点睛】本题主要考查了三角形内角和定理、三角形外角性质的综合运用,熟练运用定理是解题的关键.。

2017-2018学年河南省 郑州市 七年级下期末考试 数学试卷及答案

2017-2018学年河南省 郑州市 七年级下期末考试 数学试卷及答案

12017—2018学年郑州七年级下期期末考试数学试卷及参考答案注意:本试卷分试超和答题卡两部分,考试时同90分,满分100分,考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效,交卷时只交答题卡时光飞逝,转题间乐乐七年级学习生活即将结束,在这一年中,乐乐收获满满,我们一起来分享一下吧! 一、选择题(每小题3分,共30分)1乐乐看到妈妈手机上有好多图标,在下列图标中可看作轴对称图形的是( )2.乐乐所在的四人小组做了下列运算,其中正确的是( ) A .(-3)-2=-9 B.(-2a 3)2=4a 6 C .a 6÷a 2=a 3 D.2a 2·3a 3=6a 63.乐乐很喜欢清代诗人靠枚的诗《苔》:“白日不到处,青春恰自来,苔花如米小,也学牡丹开。

“其实苔御植物属于孢子植物,不开花,袁枚看到的“苔花”,很可能是苔类的孢子体的苞某种苔藓的苞商的直径约为0.7毫米,则0.7毫米用科学记数法可表示为( ) A.0.7×10-4米B.7×10-3米C.7×10-4米D.7×10-5米4.如图,乐乐将△ABC 沿DE,EF 分别翻折,顶点A,B 均落在点O 处,且EA 与EB 重合于线段EO,若∠DOF=139°,∠C 为( ) A.38° B.39° C.40° D.41°5.在一个不透明的布袋中,红色、那色,白色的小球共有50个,除颜色外其他完全相同乐乐通过多次摸球试验后发现,摸到红色球,黑色球的频率分别稳定在27%和43%,则口袋中白色球的个数很可能是( ) A.20 B.15 C.10 D.56.乐乐和科学小组的同学们在网上获取了声音在空气中传播的速度与空气温度之间关系的一些数据(如下表)下列说法中错误的是( )A.在这个变化过程中,当温度为10℃时,声速是336m/s B 温度越高,声速越快C.当空气温度为20℃时,声音5s 可以传播1740mD.当温度每升高10℃,声速增加6m/s7.乐乐观察“抖空竹“时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB ∥CD,∠BAE=92°,∠DCE=115°,则∠E 的度数是( ) A.32° B.28° C.26° D.23°28.如图,乐乐用边长为1的正方形做了一副七巧板,并将这副七巧板拼成一只小猫,则阴影都分的面积为( )A. 14B. 12C. 25D. 239.乐乐发现等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形底角的 度数为( ) A.50° B.65° C.65°或25° D.50°或40° 10.如图是乐乐的五子棋棋盘的一部分(5×5的正方形网格) 以点D,E 为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC 全等,这样的格点三角形最多可以画出( ) A.2个B.4个C.6个D.8个二、填空题(每小题3分,共1511.乐乐在作业上写到(a+b)2=a 2+b 2,同学英树认为不对,并且他利用下面的图形做出了直观的解释,根据这个图形的总面积可以得到正确的完全平方公式(a+b)2=12.乐乐同学有两根长度为4cm,7cm 的木棒,母亲节时他想自已动手给妈妈钉一个角形相框,桌上有五根木棒,从中任选一根,使三根木棒首尾顺次相连,则能钉成三角形相框的概率是313.如图,△ABC 的边BC 长12cm,乐乐观察到当顶点A 沿着BC 边上的高AD 所线向上运动时,三角形的面积发生变化.在这个变化过程中,如果三角形的高为x(cm),那么△ABC 的面积y(cm2)与x(cm)的关系式是14.乐乐发现三个大小相同的球可以恰好放在一个圆柱形盒子里(底和盖的厚度均忽略不计),如图所示,则三个球的体积之和占整个盒子容积的 (球的体积计算公式为V=43πr 2)15.在研究“数字黑洞”这节课中,乐乐任意写下了一个四位数(四数字完全相同的除外).重新排列各位数字,使其组成一个最大的数和一个最小的数,然后用最大的数减去最小的数,得到差;重复这个过程,……,乐乐发现最后将变成一个固定的数,则这个固定的数是三、解答题(本大题共7个小题,共55分)16.(6分)乐乐对化简求值题掌握良好,请你也来试试吧!先化简,再求值:[(ab+4)(ab-4)-5a 2b 2+16]÷(ab),其中a=10,b=- 1517.(6分)乐乐觉得轴对称图形很有意思.如图是4个完全相同的小正方形组成的L 形图,请你用三种方法分别在图中添画一个小正方形,使添画后的图形成为轴对称图形418.(8分)乐乐家附近的商场为了吸引顾客,设立了一个可以自由转动的转盘,AB 为转盘直径,如图所示,并规定:顾客消费50元(含50元)以上,就能获得一次转盘的机会,如果转盘停止后,指针正好对准9折、8折、7折区域,顾客就可以获得相应的优惠(1)某顾客消费40元,是否可以获得转盘的机会?(2)某顾客正好消费66元,他转一次转盘,获得三种打折优惠的概率分别是多少?19.(8分)尺规作图是理论上接近完美的作图方式,乐乐很喜欢用尺规画出要求的图形.在下面的△ABC 中,请你也按要求用尺规作出下列图形(不写作法,但要保留作图痕迹) 并填空(1)作出∠BAC 的平分线交BC 边于点D;(2)作出AC 边上的垂直平分线l 交AD 于点G ; (3)连接GC,若∠B=55°,∠BCA=60°,则∠AGC 的度数为20.(8分)如图是乐乐设计的暂力拼图玩具的一部分,现在乐乐遇到了两个问题,请你 帮助解决:已知:如图,AB ∥CD, (1)若∠APC=60°,∠A=40°,求∠C 的度数 请填空解:(1)过点P 作直线PE ∥AB(如图所示) 因为AB ∥CD(已知)所以EP ∥CD(平行于同一条直线的两条直线平行) 因为∠A=∠APE=40∠C=∠CPE ( )又因为∠APC=∠APE+∠CPE=∠A+ =60°(等量代换) 所以∠C= ° (等式性质)2)直接写出∠B 、∠D 与∠BFD 之间的数量关系21.(9分)人的大脑所能记忆的内容是有限的,随着时间的推移,记忆的东四会逐渐被遗忘,教乐乐数学的马老师调查了自己班学生的学习遗忘规律,并根据调查数据描绘了一条曲线(如图所示),其中纵轴表示学习中的记忆保持量,横轴表示时间,观察图象并回答下列(1)观察图象,1h后,记忆保持量约为;8h后,记忆保持量约为(2)图中的A点表示的意义是什么?A点表示的意义是在以下哪个时间段内遗忘的速度最快?填序号①0-2h ②2-4h;③4-6h ④6-8h(3)马老师每节课结束时都会对本节课进行总结回顾,并要求学生每天晚上临睡前对当课堂上所记的课盒笔记进行复习,据调查这样一天后记忆量能保持98%如果学生一天不复习,结果又会怎样?由此,你能根据上述曲线规律制定出两条今年暑假的学习计划吗?22.(10分)乐乐和数学小组的同学们研究了如下问题,请你也来试一下吧点C是直线l1上一点,在同一平面内,乐乐他们把一个等直角三角板ABC任意放,其中直角顶点C与点C重合,过点A 作直线l2⊥l1,垂足为点M,过点B作l3⊥l1, 垂足为点N(1)当直线l2,l3位于点C的异侧时,如图1,线段BN,AM与MN之间的数量关系(不必说明理由)2)当直线l2,l3位于点C的右侧时,如图2,判断线段BN,AM与MN之间的数量系,并说明理由3)当直线l2,l3位于点C的左侧时,如图3,请你补全图形,并直接写出线段BN,A MN之间的数量关系562017—2018学年下期期末考试七年级 数学 参考答案(时间:90分钟,满分:100分) 一、选择题(每小题3分,共30分)1. A 2. B 3. C 4. D 5. B 6. C 7. D 8. A 9. C 10. B 二、填空题(每小题3分,共15分) 11.a 2+2ab+b 2 12. 0.4(52或) 13. y =6x 14.32 15. 6174三、解答题(本大题共7个小题,共55分)16.(6分) 解:)(]165)4)(4[(22ab b a ab ab ÷+--+ =)(]16516[(2222ab b a b a ÷+--…………………………(2分) =)()4(22ab b a ÷-=ab 4-…………………………………………………(4分) 当51,10-==b a 时,原式=)51(104-⨯⨯-=8……………………(6分)17.(6分) 解: 如图.7……………………(6分)18.(8分)解:(1)根据规定消费50元(含50元)以上才能获得一次转盘的机会,而40元小于50元,故不能获得转盘的机会; ………………(2分)(2)某顾客正好消费66元,超过50元,可以获得转盘的的机会.若获得9折优惠,则概率;………………………(4分) 若获得8折优惠,则概率;………………………(6分)若获得7折优惠,则概率.………………………(8分)19.(8分)解:(1)图略(可以不下结论);……………………(3分) (2)图略(可以不下结论);……………………(6分) (3)115°. ……………………(8分)20.(8分)解:(1)两直线平行,内错角相等;……………………(2分) ∠C ;…………………………………………………………(4分) 20;…………………………………………………………(6分)(2)∠B +∠D +∠BFD =360°. ………………………………(8分)21.(9分)解:(1)50%(50%3±%均算正确);30%(30%3±%均算正确);……(4分) (2)点A 表示2h 大约记忆量保持了40%;…………………………(6分) ①;…………………(7分)(3)如果一天不复习,记忆量只能保持不到30%(答案不唯一); 暑假的学习计划两条略(合理即可)………(9分)22. 解:(1)MN = AM +BN ;………………(2分)(2)MN = BN -AM ;………………………………(4分) 理由如下:如图2. 因为l 2⊥l 1,l 3⊥l 1.所以∠BNC =∠CMA =90°. 所以∠ACM +∠CAM =90°. 因为∠ACB =90°,所以∠ACM +∠BCN =90°. 所以∠CAM =∠BCN .在△CBN 和△ACM 中,{∠BNC =∠CMA∠CAM =∠BCN BC =AC所以△CBN ≌△ACM (AAS ). 所以BN =CM ,NC =AM .所以MN =CM ﹣CN =BN ﹣AM .…………………………(8分) (3)补全图形,如图3.4136090)9(==折P 6136060)8(==折P 12136030)7(==折P8………(9分)结论:MN =AM ﹣BN .………(10分)l 1。

河南省郑州一中2017-2018学年度七年级下期末考试数学模拟试卷(A卷)(word版-无答案)

河南省郑州一中2017-2018学年度七年级下期末考试数学模拟试卷(A卷)(word版-无答案)

河南省郑州一中2017-2018学年度七年级下期末考试数学模拟试卷(A卷)(word版-无答案)河南省郑州一中2017-2018学年度七年级下期末考试数学模拟试卷(A卷)(word版-无答案)七年级下学期期末考试数学模拟试卷(A 卷)(北师版)(满分100 分,考试时间90 分钟)学校班级姓名一、选择题(每小题3分,共30 分)1. 下列四个图形中,不是轴对称图形的是()A.B.C.D.2. 下列各式计算正确的是()A.(a3 )3 =a6B.2a2 -a2 = 2C.-a2 ⋅(-a)4 =a6D.a5 ÷a3 =a2 3. 如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=35°,则∠2等于()A.35°B.45°C.55°D.65°第3题图第5题图4. 下列事件为必然事件的是()A.小王参加本次数学考试,成绩是150 分B.若两个角相等,则这两个角是一组对顶角C.若a∥b,c∥d,则b∥dD.口袋中装有两个红球和一个白球,从中摸出2个球,其中必有红球5. 尺规作图作∠AOB 的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB 于C,D,再分别以点C,D 为圆心,以大于12CD 长为半径画弧,两弧在∠AOB 内部交于点P,作射线O P.由作法得△OCP≌△ODP 的根据是()A.SAS B.ASA C.AAS D.SSS6. 已知 A D 是△ABC 中 B C 边上的中线,若 A B =3,AD =2,则 AC 的长可以是( ) A .6 B .7 C .8 D .9 7. 若 a - b = 1 ,则 a 2 - 2ab + b 2 的值为( ) A .1 B .-1 C .±1 D .无法确定8. 均匀地向一个容器注水,最后把容量注满,在注水过程中,水面高度随时间t 的变化规律如图所示(图中 O ABC 为折线),则这个容器的形状可以是( )A .B .C .D .9. 如图,在四边形 A BCD 中,AB =CD ,BA 和 C D 的延长线交于点 E ,若点 P使得 S △PAB = S △PCD ,则满足此条件的点 P ()A .有且只有 1 个B .有且只有 2 个C .组成∠E 的角平分线D .组成∠E 的角平分线所在的直线(E 点除外)第 9 题图 第 10 题图 10. 如图,用一张边长为 10 cm 的正方形纸片剪成七巧板,并将七巧板拼成了一柄宝剑,其中阴影部分的面积是( ) A .15 cm 2 B .20 cm 2 C .25cm 2 D .30 cm 2二、填空题(每小题3分,共15 分)11. 实验表明,人体内某种细胞的形状可近似地看作球,它的直径约为0.000 001 56米,则0.000 001 56 米用科学记数法可表示为米.12. 如果m是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,a≠0,那么代数式m2018 ⋅a0 + 2017n +c2016 的值为.13. 如图,正方形网格中,5 个阴影小正方形是一个正方体表面展开图的一部分,现从其余空白小正方形中任取一个涂上阴影,则六个阴影小正方形能构成这个正方体的表面展开图的概率是.第13 题图第14 题图第15 题图14. 如图,在△ABC 中,AB=AC,BD 平分∠ABC,交A C 于点D,点E在B C 边上,且B D=BE.若∠A=84°,则∠DEC=.15. 有两个正方形A,B,现将B放在A内部得图甲,将A,B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B 的面积之和为.三、解答题(本大题共7小题,满分55 分)16. (6 分)化简求值:-(3x -y)(-3x +y) -(-4x) 2 -(-2x -y)(2x -y) ,其中x=-2,y=12.17. (6 分)(1)工程建筑中经常采用三角形的结构,如屋顶的钢架,输电线的支架等,这里运用的三角形的性质是;(2)下列图形具有稳定性的有个:正方形、长方形、直角三角形、平行四边形;(3)已知四边形的四边长分别为2,3,4,5,这个四边形的四个内角的大小能否确定?(4)要使五边形木架(用5根木条钉成)不变形,工人准备再钉上两根木条,如图的两种钉法中正确的是;(5)要使四边形木架(用4根木条钉成)不变形,至少需要加1根木条固定;要使五边形木架不变形,至少需要加2根木条固定;要使六边形木架不变形,至少需要加3根木条固定;……;则要使一个n边形木架不变形,至少需要加根木条固定.18. (9 分)(1)如图1,已知任意△ABC,过点C 作D E∥AB,求证:△ABC的三个内角(即∠A,∠B,∠ACB)之和等于180°;(2)如图2,求证:∠AGF=∠AEF+∠F;(3)如图3,AB∥CD,∠CDE=119°,GF 交∠DEB 的角平分线E F 于点F,∠AGF=150°,求∠F 的度数.19. (7 分)小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60 次实验,实验的结果如下:朝上的点数 1 2 3 4 5 6出现的次数7 9 6 8 20 10(1)计算“3 点朝上”的频率和“5 点朝上”的频率.(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600 次,那么出现6点朝上的次数正好是100 次.”小颖和小红的说法正确吗?为什么?(3)小颖投掷一枚骰子,求骰子朝上的点数大于等于3的概率.20. (8 分)如图,将边长为6的等边三角形纸片A BC 按如下顺序进行两次折叠,,点O 为其交点.展开后,得折痕A D,BE(如图1)(1)探求A O 与OD 的数量关系,并说明理由.(2)如图2,若P为B E 上一动点,N 为B D 的中点.在B E 上找到点P的位置,使P N PD 的长度取得最小值,并简要描述作图过程.21. (9“龟兔赛跑”的故事同学们都非常熟悉,图中的线段 O D 和折线 O ABC 表示“龟兔赛跑”时路程与时间的关系.请你根据图中给出的信息,解决下 列问题. (1)填空:折线 O ABC 表示赛跑过程中 的路程与时间的关系,线段 O D 表示赛跑过程中 的路程与时间的关系;赛跑的全程是 米. (2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米? (3)乌龟用了多少分钟追上了正在睡觉的兔子? (4)兔子醒来,以 48 千米/时的速度跑向终点,结果还是比乌龟晚到了 0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?22. (10 分)如图1,在△ABC 中,∠ACB 为锐角,点D为射线B C 上一动点,连接A D,以A D 为直角边且在A D 的上方作等腰直角三角形A DF,连接C F.(1)若A B=AC,∠BAC=90°.,试探讨C F 与B D 的数量关系和位①当点D在线段B C 上时(与点B不重合)置关系;②当点D在线段B C 的延长线上时,①中的结论是否仍然成立,请在图2中画出相应图形并直接写出你的猜想.(2)如图3,若A B≠AC,∠BAC≠90°,∠BCA=45°,点D 在线段B C 上运动,试探究C F 与B C 的位置关系.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017—2018学年下学期期末考试试卷七年级数学注意事项:1.本试卷共4页,三个大题,满分120分,考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上.答在试卷上的答案无效.一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.下列交通标志图案中是轴对称图形的是( )A .B .C .D .2.下列计算正确的是( )A .2222a a a ⋅=B .824a a a ÷=C .22(2)4a a -=D .()235a a =3.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是( )A .24B .18C .16D .64. 2.5PM 是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为( )A .50.2510-⨯B .60.2510-⨯C .52.510-⨯D .62.510-⨯ 5.下列四个图形中,线段BE 是ABC △的高的是( )A .B .C .D .6.如图,为估计池塘岸边,A B 的距离,小方在池塘的一侧选取一点O ,测得15OA =米,10OB =间的距离不可能是( )A .25米B .15米C .10米D .6米7.如图,一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A .带①去B .带②去C .带③去D .带①和②去8.下列运算正确的是( )A .22()()x y x y x y ---+=--B .10x x -+=C .22(2)143x x x -+=-+D .()21222x x x x +÷=+ 9.下列事件中是必然事件的是( )A .两直线被第三条直线所截,同位角相等B .等腰直角三角形的锐角等于45°C .相等的角是对顶角D .等腰三角形的一个角是80°,则它的顶角是80°10.小亮每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分钟30米的速度行走了450米,为了不迟到他加快了速度,以每分钟45米的速度行走完剩下的路程,那么小亮走过的路程s (米)与他行走的时间t (分钟)之间的函数关系用图象表示正确的是( ) A . B .C .D .二、填空题(每小题3分,共15分)11.计算03-=________.12.将直尺和直角三角板按如图方式摆放,已知125∠=︒,则2∠=________.13.如图,在ABC △中,90,30C B ∠=︒∠=︒,以A 为圆心,任意长为半径画弧分别交,AB AC 于点M 和N ,再分别以点,M N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列说法①AD 平分BAC ∠;②60ADC ∠=︒;③点D 在AB 的垂直平分线上;④连接,DM DN ,DM DN =,其中正确的是__________.(填序号)14.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你到该十字路口时,刚好是绿灯的概率是________.15.已知:如图,在长方形ABCD 中,6,10AB AD ==延长BC 到点E ,使4CE =,连接DE ,动点F 从点B 出发,以每秒2个单位长度的速度沿BC CD DA --向终点A 运动,设点F 的运动时间为t 秒,当t 的值为_______时,ABF △和DCE △全等.三、解答题(本大题共8个小题,满分75分)16.(1)计算:19720310⨯+;(2)先化简,再求值:2(4)3(3)2(2)(2)x x x x x ---++-,其中34x =-. 17.如图,,AB CD CB ∥平分,40ABD C ∠∠=︒.求:(1)CBD ∠的度数;(2)D ∠的度数.18.如图,,AD BC 相交于点O ,,OA OC OB OD ==.那么ABD ∠与CDB ∠相等吗?请说明理由.19.把弹簧的上端固定,在其下端挂物体,下表是测得的弹簧长度()y cm 与所挂物体的质量()x g 的一组对应值:(1)表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)弹簧的原长是_______cm ,物体每增加1g ,弹簧的长度增加_________cm .(3)请你估测一下当所挂物体为8g 时,弹簧的长度是______cm .20.同学们,概率是刻画随机事件发生可能性大小的重要模型,也就是说我们可通过概率的大小去衡量事件发生可能性的大小.在下列四个转盘中,③,④转盘分成8等分,若让四个转盘均自由转动一次,停止后,通过计算说明指针落在阴影区域内的可能性最大的转盘是哪个?21.要围成如图所示一边靠墙的长方形封闭式菜园ABCD ,已知墙长8米,用篱笆围成的另外三边总长为20米,设BC 边的长为x 米,AB 边的长为y 米.(1)求y 与x 之间的关系式;(2)能围成5AB =米的菜园吗?说说你的理由.22.如图,ABC △中,,AB AC DE =是AB 的垂直平分线,若ABC △的周长为16cm ,且ABC △一边长6cm ,求BEC △的周长.23.已知C 是AB 上的一个动点,(1)问题发现如图1,当点C 在线段AB 上运动时,过点C 作DC AB ⊥,垂足为点C ,过点A 作EA AB ⊥,垂足为点A ,且,DC AB AE BC ==.①ABE △与CDB △是全等三角形吗?请说明理由②连接DE ,试猜想BDE △的形状,并说明理由;(2)类比探究如图2,当C 在线段AB 的延长线上时,过点C 作DC AB ⊥,垂足为点C ,过点A 作EA AB ⊥,垂足为点A ,且,DC AB AE BC ==,试直接写出BDE △的形状.参考答案2017—2018学年下学期期末考试试卷七年级数学说明:1.评分标准中,如无特殊说明,均为累计给分;2.评分过程中,只给整数分数;3.如果考生的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分;4.要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅,如果考生的解答在某一步出现错误,影响后继部分而未改变本題的内容和难度,视影响的程度决定对后面给分的多少,但原则上不超过后继部分应得分数之半.一、选择题(每小题3分,共30分)1.B2.C3.C4.D5.D6.A7.C8.D9.B 10.D二、填空题(每小题3分,共15分)(说明:13、15见错不给分)11.1- 12.65° 13.①②③④ 14.51215.2或11 三、解答题(本大题共8个小题,满分75分)16.(1)解:原式(2003)(2003)10=-++22200310=-+4000091040001=-+=.(2)解:原式2228163928x x x x x =-+-++- 8x =+. 当34x =-时,原式329844⎛⎫=--+= ⎪⎝⎭. 17.解:(1)∵,40AB CD C ∠=︒∥,∴40ABC C ∠=∠=︒.∵CB 平分ABD ∠,∴40CBD ABC ∠=∠=︒.(2)在BCD △中,180CBD BCD D ∠+∠+∠=︒,∴100D ∠=︒.18.解:ABD CDB ∠=∠,理由如下:在ABO △和CDO △中,,,,OA OC AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩∴ABO CDO △≌△∴ABO CDO ∠=∠.∵OB OD =,∴OBD ODB ∠=∠,∴ABO OBD CDO ODB ∠+∠=∠+∠.即ABD CDB ∠=∠.19.解:(1)表格反映了弹簧长度与所挂物体的质量之间的关系,其中所挂物体的质量是自变量,弹簧长度是因变量;(2)15 0.5(3)1920.解:∵2351,,,3482P P P P ====①②③④, ∴指针落在阴影区域内的可能性最大的是转盘②.21.解:(1)11(20)1022y x x =-=-+. (2)不能,理由如下:∵5AB =, ∴11052x -+=. 解得108x =>.故不能围成5AB =米的菜园.22.解:∵DE 是AB 的垂直平分线,∴AE BE =,∴BEC △的周长BE CE BC AE CE BC AC BC =++=++=+.若6BC =,则1(166)52AB AC ==⨯-=, ∴BEC △的周长6511=+=.若6AB AC ==,则16264BC =-⨯=,∴BEC △的周长6410=+=.综上,BEC △的周长为11cm 或10cm .23.解:(1)①ABE CDB △≌△.理由如下:∵,DC AB EA AB ⊥⊥,∴90EAB BCD ∠=∠=︒.在ABE △和CDB △中,,,,AB DC EAB BCD AE CB =⎧⎪∠=∠⎨⎪=⎩∴ABE CDB △≌△.②BDE △是等腰直角三角形.理由如下: ∵ABE CDB △≌△,∴,BE BD ABE CDB =∠=∠. ∵90CDB CBD ∠+∠=︒, ∴90ABE CBD ∠+∠=︒.即90DBE ∠=︒.故BDE △是等腰直角三角形.(2)BDE △是等腰直角三角形.。

相关文档
最新文档