概率论与数理统计课件ppt
合集下载
概率论与数理统计ppt课件
04
理解基本概念和原理
做大量练习题,培养解题能力
05
06
阅读相关书籍和论文,拓宽知识面
02
概率论基础
概率的基本概念
试验
一个具有有限个或无限个 可能结果的随机试验。
事件
试验中的某些结果的总称 。
概率
衡量事件发生可能性的数 值,通常表示为0到1之间 的实数。
必然事件
概率等于1的事件。
不可能事件
概率等于0的事件。
01 点估计
用样本统计量估计总体参数,如用样本均值估计 总体均值。
02 区间估计
给出总体参数的估计区间,如95%置信区间。
03 估计量的性质
无偏性、有效性和一致性。
假设检验
假设检验的基本思想
先假设总体参数具有某种 特性,然后通过样本信息 来判断这个假设是否合理 。
双侧检验
当需要判断两个假设是否 相等时,如总体均值是否 等于某个值。
连续型随机变量
取值无限的随机变 量。
方差
衡量随机变量取值 分散程度的数值。
03
数理统计基础
总体与样本
总体
研究对象的全体。
抽样方法
简单随机抽样、分层抽样、系统抽样等。
样本
从总体中随机抽取的一部分个体,用于估 计和推断总体的特性。
样本大小
样本中包含的个体数量,需要根据研究目 的和资源来确定。
参数估计
单因素方差分析
单因素方差分析的定义
单因素方差分析是方差分析的一种形式,它只涉及一个实验因素。通过对不同组的均值进行比 较,可以确定这个因素对实验结果的影响是否显著。
单因素方差分析的步骤
单因素方差分析通常包括以下步骤:首先,对实验数据进行分组;其次,计算每组的均值;接 着,计算总的均值和总的变异性;然后,计算组间变异性和组内变异性;最后,通过比较这两 种变异,得出因素的显著性。
概率论与数理统计完整ppt课件
化学
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
概率论与数理统计课件(共199张PPT)
P(An|A1A2…An-1).
33
例3. r只红球○ t只白球○
每次任取一只球观 察颜色后, 放回, 再 放回a只同色球
在袋中连续取球4次, 试求第一、二次取到红球且 第三、四次取到白球的概率.
34
(三) 全概率公式和贝叶斯公式:
1. 样本空间的划分
定:义 若 B 1,B 2, ,B n一组事 : 件
计算条件概率有两种方法:
1. 公式法:
先计P算(A)P, (AB然 ), 后按公式计算
P(B| A) P(AB.) P(A)
31
2. 缩减样本空间法:
在A发生的前提下, 确定B的缩减样本空间, 并在其 中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取 后不放回, 连取两次, 求在第1次取到偶数的条件下, 第2
B
A S
(1) AB
8
2.和事件:
AB{x|xA或xB}称 为 A与B的 和 事 . 件
即AB,中 至 少 有 一 ,称个 为 A与 发 B的生,和 记AB.
可 列 个A1事 , A2,件 的 和 事 件 记 Ak. 为
k1
3.积事件: 事件A B={x|x A 且 x B}称A与B的积,
即事件A与B同时发A生. A B 可简记为AB.
i1
1i jn
P(A i A j Ak )
1i jkn
(1)n1 P(A1 A 2 A n ).
27
例4. 设P(A)=p, P(B)=q, P(AB)=r, 用p, q, r表示下列事 件的概率:
( 1 ) P ( A B ) (; P ( 2 A B ) ( ) ; P ( 3 A B ) ) (; ( 4 A B )
33
例3. r只红球○ t只白球○
每次任取一只球观 察颜色后, 放回, 再 放回a只同色球
在袋中连续取球4次, 试求第一、二次取到红球且 第三、四次取到白球的概率.
34
(三) 全概率公式和贝叶斯公式:
1. 样本空间的划分
定:义 若 B 1,B 2, ,B n一组事 : 件
计算条件概率有两种方法:
1. 公式法:
先计P算(A)P, (AB然 ), 后按公式计算
P(B| A) P(AB.) P(A)
31
2. 缩减样本空间法:
在A发生的前提下, 确定B的缩减样本空间, 并在其 中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取 后不放回, 连取两次, 求在第1次取到偶数的条件下, 第2
B
A S
(1) AB
8
2.和事件:
AB{x|xA或xB}称 为 A与B的 和 事 . 件
即AB,中 至 少 有 一 ,称个 为 A与 发 B的生,和 记AB.
可 列 个A1事 , A2,件 的 和 事 件 记 Ak. 为
k1
3.积事件: 事件A B={x|x A 且 x B}称A与B的积,
即事件A与B同时发A生. A B 可简记为AB.
i1
1i jn
P(A i A j Ak )
1i jkn
(1)n1 P(A1 A 2 A n ).
27
例4. 设P(A)=p, P(B)=q, P(AB)=r, 用p, q, r表示下列事 件的概率:
( 1 ) P ( A B ) (; P ( 2 A B ) ( ) ; P ( 3 A B ) ) (; ( 4 A B )
概率论与数理统计全套精品课件(PPT)
概率论与数理统计
河南工业大学理学院
教材:《概率论与数理统计》第三版 王松桂 等编 科学出版社
参考书:1.《概率论与数理统计》 浙江大学 盛骤等 编 高等教育出版社
2. 《概率论与数理统计》 魏振军 编
中国统计出版社
序言
概率论是研究什么的?
人们所观察到的现象大体上分成两类: 1.确定性现象或必然现象 事前可以预知结果的:即在某些确定的条 件满足时,某一确定的现象必然会发生,或根 据它过去的状态,完全可以预知其将来的发展 状态。 2.偶然性现象或随机现象 事前不能预知结果:即在相同的条件下重 复进行试验时,每次所得到的结果未必相同, 或即使知道它过去的状态,也不能肯定它将来 的状态。
写出样本空间,指出哪些是基本事件,表示B ,C,D。
解: {1, 2,..., 6} Ai {i},i 1,..., 6 为基本事件
B {2, 4, 6} C {1,3,5} D {4,5, 6}
既然事件是一个集合,因此有关事件 间的关系、运算及运算规则也就按集合 间的关系、运算及运算规则来处理。
1.1.1 随机试验与事件
随机试验(试验)的特点: 1.可在相同条件下重复进行; 2.每次试验之前无法确定具体是哪种结果出 现,但能确定所有的可能结果。
试验常用“E”表示
(随机)试验的例子
E1: 掷一颗骰子,观察所掷的点数是几; E2 :工商管理部门抽查产品是否合格; E3: 观察某城市某个月内交通事故发生的次数; E4 :已知物体长度在a和b之间,测量其长度; E5: 对某只灯泡做试验,观察其使用寿命; E6: 对某只灯泡做试验,观察其使用寿命是否小
于200小时。
样本空间:试验的所有可能结果所组成
的集合称为样本空间。记为:
河南工业大学理学院
教材:《概率论与数理统计》第三版 王松桂 等编 科学出版社
参考书:1.《概率论与数理统计》 浙江大学 盛骤等 编 高等教育出版社
2. 《概率论与数理统计》 魏振军 编
中国统计出版社
序言
概率论是研究什么的?
人们所观察到的现象大体上分成两类: 1.确定性现象或必然现象 事前可以预知结果的:即在某些确定的条 件满足时,某一确定的现象必然会发生,或根 据它过去的状态,完全可以预知其将来的发展 状态。 2.偶然性现象或随机现象 事前不能预知结果:即在相同的条件下重 复进行试验时,每次所得到的结果未必相同, 或即使知道它过去的状态,也不能肯定它将来 的状态。
写出样本空间,指出哪些是基本事件,表示B ,C,D。
解: {1, 2,..., 6} Ai {i},i 1,..., 6 为基本事件
B {2, 4, 6} C {1,3,5} D {4,5, 6}
既然事件是一个集合,因此有关事件 间的关系、运算及运算规则也就按集合 间的关系、运算及运算规则来处理。
1.1.1 随机试验与事件
随机试验(试验)的特点: 1.可在相同条件下重复进行; 2.每次试验之前无法确定具体是哪种结果出 现,但能确定所有的可能结果。
试验常用“E”表示
(随机)试验的例子
E1: 掷一颗骰子,观察所掷的点数是几; E2 :工商管理部门抽查产品是否合格; E3: 观察某城市某个月内交通事故发生的次数; E4 :已知物体长度在a和b之间,测量其长度; E5: 对某只灯泡做试验,观察其使用寿命; E6: 对某只灯泡做试验,观察其使用寿命是否小
于200小时。
样本空间:试验的所有可能结果所组成
的集合称为样本空间。记为:
同济大学《概率论与数理统计》PPT课件
随机事件 D=“出现的点数超过 6”= ,即一定不会发生的不可能事件。
同济大学数学系 & 人民邮电出版社
四、随机事件之间的关系与运算
第1章 随机事件与概率 10
(1)事件的包含
若事件 A 的发生必然导致事件 B 的发生, 则称事件A 包含在事件 B 中. 记作 A B .
BA
A B
同济大学数学系 & 人民邮电出版社
3
某快餐店一天内接到的订单量;
4
航班起飞延误的时间;
5
一支正常交易的A股股票每天的涨跌幅。
二、样本空间
第1章 随机事件与概率 6
一个随机试验,每一个可能出现的结果称为一个样本点,记为
全体样本点的集合称为样本空间, 记为 , 也即样本空间是随机试验的一切可能结果组成
的集合, 集合中的元素就是样本点. 样本空间可以是有限集, 可数集, 一个区间(或若干区间的并集).
01 在相同的条件下试验可以重复进行;
OPTION
02 每次试验的结果不止一个, 但是试验之前可以明确;
OPTION
03 每次试验将要发生什么样的结果是事先无法预知的.
OPTION
一、随机试验
例1
随机试验的例子
第1章 随机事件与概率 5
1 抛掷一枚均匀的硬币,有可能正面朝上,也有可能反面朝上;
2
抛掷一枚均匀的骰子,出现的点数;
(互斥).
同济大学数学系 & 人民邮电出版社
2、随机事件之间的运算
第1章 随机事件与概率 12
(1)事件的并
事件 A 或 B至少有一个发生时, 称事件 A 与事件B 的并事件发生, 记为 A U B .
(2)事件的交(积)
同济大学数学系 & 人民邮电出版社
四、随机事件之间的关系与运算
第1章 随机事件与概率 10
(1)事件的包含
若事件 A 的发生必然导致事件 B 的发生, 则称事件A 包含在事件 B 中. 记作 A B .
BA
A B
同济大学数学系 & 人民邮电出版社
3
某快餐店一天内接到的订单量;
4
航班起飞延误的时间;
5
一支正常交易的A股股票每天的涨跌幅。
二、样本空间
第1章 随机事件与概率 6
一个随机试验,每一个可能出现的结果称为一个样本点,记为
全体样本点的集合称为样本空间, 记为 , 也即样本空间是随机试验的一切可能结果组成
的集合, 集合中的元素就是样本点. 样本空间可以是有限集, 可数集, 一个区间(或若干区间的并集).
01 在相同的条件下试验可以重复进行;
OPTION
02 每次试验的结果不止一个, 但是试验之前可以明确;
OPTION
03 每次试验将要发生什么样的结果是事先无法预知的.
OPTION
一、随机试验
例1
随机试验的例子
第1章 随机事件与概率 5
1 抛掷一枚均匀的硬币,有可能正面朝上,也有可能反面朝上;
2
抛掷一枚均匀的骰子,出现的点数;
(互斥).
同济大学数学系 & 人民邮电出版社
2、随机事件之间的运算
第1章 随机事件与概率 12
(1)事件的并
事件 A 或 B至少有一个发生时, 称事件 A 与事件B 的并事件发生, 记为 A U B .
(2)事件的交(积)
概率论与数理统计教学PPT浙大第三版
数据挖掘
02
通过对大量数据进行挖掘和分析,发现数据间的关联和规律,
为人工智能系统的决策提供依据。
自然语言处理
03
自然语言处理中需要进行文本分类、情感分析等任务,需要概
率论与数理统计的知识进行模型训练和优化。
05
概率论与数理统计的未来发展
概率论与数理统计与其他学科的交叉发展
概率论与数理统计与计算机科学的交叉
概率论与数理统计的应用领域
金融
风险评估、投资组合优化、保 险精算等。
科学研究
物理、生物、化学、医学等领 域的数据分析和实验设计。
工程
可靠性工程、质量控制、系统 优化等。
人工智能和机器学习
数据挖掘、模型训练和评估等 。
概率论与数理统计的发展历程
概率论的起源
可以追溯到17世纪中叶,当时赌 博游戏引发了对概率计算的兴趣。
掌握点估计的概念和方法, 如矩估计和最大似然估计。
区间估计
了解区间估计的概念,掌 握单个和多个参数的区间 估计方法。
估计量的评价准则
了解无偏性、有效性和一 致性等评价估计量的准则。
假设检验
假设检验的基本原理
理解假设检验的基本思想、假设的设定和检验步骤。
单个总体参数的检验
掌握单个总体均值、比例和方差的假设检验方法。
概率论与数理统计教学 ppt浙大第三版
• 概率论与数理统计简介 • 概率论基础 • 数理统计基础 • 概率论与数理统计的应用 • 概率论与数理统计的未来发展
01
概率论与数理统计简介
概率论与数理统计的定义
概率论
研究随机现象的数学学科,通过 概率模型和随机变量描述随机事 件和随机结果。
数理统计
概率论与数理统计基本概念及抽样分布PPT课件
~
2 (n1 ),
2 2
~
2 (n2 ), 且它们相互独立,
则
2 1
2 2
~
2 (n1
n2 )
《概率统计》
返回
下页
结束
4. 2分布的百分位点
对给定的α(0<α<1)
(1)称满足
P{ 2
2
(n)}
,即
f ( y)dy
x2 ( n)
的点为 2分布的上100α百分位点。
f(y)
(2)称满足
注:在研究中,往往关心每个个体的一个(或几个)数量指标和 该数量指标在总体中的分布情况. 这时,每个个体具有的数量 指标的全体就是总体.
或,总体:研究对象的某项数量指标的值的全体.
《概率统计》
某批 灯泡的 寿命
该批灯泡寿命的 全体就是总体
返回
下页
结束
为推断总体分布及各种特征,按一定规则从总体中抽取若 干个体进行观察试验,以获得有关总体的信息,这一抽取过程 为 “抽样”.
( x)
(1)称满足条件 P{X>Xα} =α,
α
即
( x)dx
X
的点Xα为N(0,1)分布的上100α百分位点.
X1-α
0
由于 P{X X } 1 记 -Xα= X1-α
(2)称满足条件 P {| X | X }
2
2
的点 X 为N(0,1)分布的双侧100α百分位点.
X
2
则
E(X )
E(1 n
n i 1
Xi)
1 n
n i 1
E(Xi )
1 n
n
D(X ) D(1 n
n i1
Xi)
概率论与数理统计书ppt课件
条件概率与独立性
CHAPTER
随机变量及其分布
02
随机变量的概念与性质
定义随机变量为在样本空间中的实值函数,其取值依赖于随机试验的结果。
随机变量
讨论随机变量的可数性、可加性、正态性等性质。
随机变量的性质
离散型随机变量的概念
定义离散型随机变量为只能取可数个值的随机变量。
离散型随机变量的分布
讨论离散型随机变量的概率分布,如二项分布、泊松分布等。
应用
中心极限定理及其应用
CHAPTER
贝叶斯推断与决策分析
07
贝叶斯推断的基本原理
金融风险管理
贝叶斯推断在金融风险管理领域有着广泛的应用,如信用风险评估、投资组合优化等。
医疗诊断
贝叶斯推断在医疗诊断方面也有着重要的应用,如疾病诊断、预后评估等。
机器学习与人工智能
贝叶斯推断在机器学习算法和人工智能领域中也有着广泛的应用,如朴素贝叶斯分类器、高斯混合模型等。
参数估计与置信区间
01
点估计
用单一的数值估计参数的值。
02
区间估计
给出参数的一个估计区间,通常包括一个置信水平。
比较两个或多个组的均值差异,确定因素对结果的影响。
方差分析
检验两个或多个组的方差是否相等。
方差齐性检验
研究变量之间的关系,并预测结果。
回归分析
假设检验与方差分析
CHAPTER
回归分析与线性模型
应用
在现实生活中,大数定律被广泛应用于保险、赌博、金融等领域,通过统计数据来预测未来的趋势和风险。
大数定律及其应用
在独立随机变量序列中,它们的和的分布近似于正态分布,即中心极限定理。这意味着,当样本量足够大时,样本均值近似于正态分布。
概率论与数理统计ppt课件
称这种试验为等可能概型(或古典概型)。
*
例1:一袋中有8个球,其中3个为红球,5个为黄球,设摸到每一球的可能性相等,从袋中不放回摸两球, 记A={恰是一红一黄},求P(A). 解:
(注:当L>m或L<0时,记 )
例2:有N件产品,其中D件是次品,从中不放 回的取n件, 记Ak={恰有k件次品},求P(Ak). 解:
*
第四章 随机变量的数字特征 4.1 数学期望 4.2 方差 4.3 协方差及相关系数 4.4 矩、协方差矩阵 第五章 大数定律和中心极限定理 5.1 大数定律 5.2 中心极限定理 第六章 数理统计的基本概念 6.1 总体和样本 6.2 常用的分布
*
第七章 参数估计 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计 第八章 假设检验 8.1 假设检验 8.2 正态总体均值的假设检验 8.3 正态总体方差的假设检验 8.4 置信区间与假设检验之间的关系 8.5 样本容量的选取 8.6 分布拟合检验 8.7 秩和检验 第九章 方差分析及回归分析 9.1 单因素试验的方差分析 9.2 双因素试验的方差分析 9.3 一元线性回归 9.4 多元线性回归
解: 设 Ai={ 这人第i次通过考核 },i=1,2,3 A={ 这人通过考核 },
亦可:
*
例:从52张牌中任取2张,采用(1)放回抽样,(2)不放 回抽样,求恰是“一红一黑”的概率。
利用乘法公式
与 不相容
(1)若为放回抽样:
(2)若为不放回抽样:
解: 设 Ai={第i次取到红牌},i=1,2 B={取2张恰是一红一黑}
①
②
①
1 2 N
①
②
1 2 N
……
概率论与数理统计课件(完整)
人们在长期的实践中总结得到“概率很小的事件在一次 试验中实际上几乎是不发生的”(称之为实际推断原理)。 现在概率很小的事件在一次试验中竟然发生了,因此有理由 怀疑假设的正确性,从而推断接待站不是每天都接待来访者, 即认为其接待时间是有规定的。
1.3 频率与概率
某人向目标射击, 以A表示事件“命中目标”, P( A) =? 定义:(p8) 事件A在n次重复试验中出现nA次,则 比值nA/n称为事件A在n次重复试验中
(1) P(A) ≥0;
(2) P()=1;
(3) 可列可加性:设A1,A2,…, 是一列两两互不 相容的事件,即AiAj=,(ij), i , j=1, 2, …, 有 P( A1 A2 … )= P(A1) +P(A2)+…. 则称P(A)为事件A的概率。 (1.1)
2.概率的性质 P(8-9) (1) 有限可加性:设A1,A2,…An , 是n个两两互 不相容的事件,即AiAj= ,(ij), i , j=1, 2, …, n ,则有 P( A1 A2 … An)= P(A1) +P(A2)+… P(An); (2) 单调不减性:若事件AB,则 P(A)≥P(B) (3)事件差 A、B是两个事件, 则 P(A-B)=P(A)-P(AB)
种取法.
1、抽球问题
例1:设合中有3个白球,2个红球,现从合中 任抽2个球,求取到一红一白的概率。 解:设A-----取到一红一白
N () C
2 5
1 1 N ( A) C3 C2
CC 3 P( A) 2 C5 5
1 3
1 2
答:取到一红一白的概率为3/5
一般地,设盒中有N个球,其中有M个白 球,现从中任抽n个球,则这n个球中恰有
1.3 频率与概率
某人向目标射击, 以A表示事件“命中目标”, P( A) =? 定义:(p8) 事件A在n次重复试验中出现nA次,则 比值nA/n称为事件A在n次重复试验中
(1) P(A) ≥0;
(2) P()=1;
(3) 可列可加性:设A1,A2,…, 是一列两两互不 相容的事件,即AiAj=,(ij), i , j=1, 2, …, 有 P( A1 A2 … )= P(A1) +P(A2)+…. 则称P(A)为事件A的概率。 (1.1)
2.概率的性质 P(8-9) (1) 有限可加性:设A1,A2,…An , 是n个两两互 不相容的事件,即AiAj= ,(ij), i , j=1, 2, …, n ,则有 P( A1 A2 … An)= P(A1) +P(A2)+… P(An); (2) 单调不减性:若事件AB,则 P(A)≥P(B) (3)事件差 A、B是两个事件, 则 P(A-B)=P(A)-P(AB)
种取法.
1、抽球问题
例1:设合中有3个白球,2个红球,现从合中 任抽2个球,求取到一红一白的概率。 解:设A-----取到一红一白
N () C
2 5
1 1 N ( A) C3 C2
CC 3 P( A) 2 C5 5
1 3
1 2
答:取到一红一白的概率为3/5
一般地,设盒中有N个球,其中有M个白 球,现从中任抽n个球,则这n个球中恰有
概率论与数理统计教程ppt课件
1. 确定性现象
• 每天早晨太阳从东方升起; • 水在标准大气压下加温到100oC沸腾;
2. 随机现象
• 掷一枚硬币,正面朝上?反面朝上? • 一天内进入某超市的顾客数; • 某种型号电视机的寿命;
16 March 2020
华东师范大学
第一章 随机事件与概率
第3页
1.1.1 随机现象
• 随机现象:在一定的条件下,并不总出现相 同结果的现象称为随机现象.
16 March 2020
华东师范大学
第一章 随机事件与概率
例1.2.1 六根草,头两两相接、
尾两两相接。求成环的概率.
解:用乘法原则直接计算 所求概率为
644221 8 6 5 4 3 2 1 15
第30页
16 March 2020
华东师范大学
第一章 随机事件与概率
3. 若 AnF ,n=1, 2, …, 则
UFA.n
n 1
16 March 2020
华东师范大学
第一章 随机事件与概率
第21页
§1.2 概率的定义及其确定方法
• 直观定义 —— 事件A 出现的可能性大小.
• 统计定义 —— 事件A 在大量重复试验下 出现的频率的稳定值称为该事件的概率.
2. 样本点 —— 随机试验的每一个可能结果.
3. 样本空间(Ω) —— 随机试验的所有样本点构成的集合.
4. 两类样本空间: 离散样本空间 样本点的个数为有限个或可列个. 连续样本空间 样本点的个数为无限不可列个.
16 March 2020
华东师范大学
第一章 随机事件与概率
第5页
1.1.3 随机事件
华东师范大学
第一章 随机事件与概率
• 每天早晨太阳从东方升起; • 水在标准大气压下加温到100oC沸腾;
2. 随机现象
• 掷一枚硬币,正面朝上?反面朝上? • 一天内进入某超市的顾客数; • 某种型号电视机的寿命;
16 March 2020
华东师范大学
第一章 随机事件与概率
第3页
1.1.1 随机现象
• 随机现象:在一定的条件下,并不总出现相 同结果的现象称为随机现象.
16 March 2020
华东师范大学
第一章 随机事件与概率
例1.2.1 六根草,头两两相接、
尾两两相接。求成环的概率.
解:用乘法原则直接计算 所求概率为
644221 8 6 5 4 3 2 1 15
第30页
16 March 2020
华东师范大学
第一章 随机事件与概率
3. 若 AnF ,n=1, 2, …, 则
UFA.n
n 1
16 March 2020
华东师范大学
第一章 随机事件与概率
第21页
§1.2 概率的定义及其确定方法
• 直观定义 —— 事件A 出现的可能性大小.
• 统计定义 —— 事件A 在大量重复试验下 出现的频率的稳定值称为该事件的概率.
2. 样本点 —— 随机试验的每一个可能结果.
3. 样本空间(Ω) —— 随机试验的所有样本点构成的集合.
4. 两类样本空间: 离散样本空间 样本点的个数为有限个或可列个. 连续样本空间 样本点的个数为无限不可列个.
16 March 2020
华东师范大学
第一章 随机事件与概率
第5页
1.1.3 随机事件
华东师范大学
第一章 随机事件与概率
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第26页
例3.1.5
6e(2x3y), x0,y0
若 (X, Y) ~ p(x,y)
0,
其它
试求 P{(X, Y)D}, 其中D为 2x+3y≤6.
3/8/2020
华东师范大学
第三章 多维随机变量及其分布
解:
P{(X,Y)D}
p(x, y)dxdy
2x3y6
其中SD为D的面积.
则称 (X, Y) 服从 D 上的均匀分布, 记为 (X, Y) U (D) .
3/8/2020
华东师范大学
第三章 多维随机变量及其分布
第20页
四、二维正态分布
若二维连续随机变量 (X, Y) 的联合密度为:
1 p(x,y)
212 12
exp2(112)(x121)2 (y222)2 2(x11)(y22)
3/8/2020
华东师范大学
第三章 多维随机变量及其分布
列表为:
XY 0 1 2 3 4
0
0 0 0 0 1/16
1
0 0 0 1/4 0
2
0 0 6/16 0 0
3
0 1/4 0 0 0
4 1/16 0 0 0 0
第11页
3/8/2020
华东师范大学
第三章 多维随机变量及其分布
第12页
例3.1.2 设随机变量 Y ~ N(0, 1),
3/8/2020
华东师范大学
第三章 多维随机变量及其分布
第10页
例3.1.1 将一枚均匀的硬币抛掷4次,X表示正面向上
的次数,Y表示反面朝上次数。求 (X, Y) 的联合分布列.
解:概率非零的(X,Y) 可能取值对为: X Y 其对应的概率分别为: 0 4 P(X=0, Y=4)= 0.54=1/16 1 3 P(X=1, Y=3)= C410.50.53 =1/4 2 2 P(X=2, Y=2)= C420.520.52 =6/16 3 1 P(X=3, Y=1)= C430.530.51 =1/4 4 0 P(X=4, Y=0)= 0.54 =1/16
3/8/2020
华东师范大学
第三章 多维随机变量及其分布
列表为:
X1 X2 0 1
0
0.0455 0
1
0.2719 0.6826
第13页
3/8/2020
华东师范大学
第三章 多维随机变量及其分布
课堂练习
第14页
设随机变量 X 在 1,2,3 , 4 四个整数中等可 能地取值,另一个随机变量 Y 在 1到X 中等可能 地取一整数值。试求(X, Y)的联合分布列.
第三章 多维随机变量及其分布
注 意 点 (1)
第33页
➢ 由联合分布可以求出边际分布. ➢ 但由边际分布一般无法求出联合分布. ➢ 所以联合分布包含更多的信息.
3/8/2020Biblioteka 华东师范大学第三章 多维随机变量及其分布
第34页
注 意 点 (2)
➢ 二维正态分布的边际分布是一维正态:
若 (X, Y) N ( 1,2,12,22, ),
§3.2 边际分布与随机变量的独立性
问题:已知二维随机变量 (X, Y) 的分布, 如何求出 X 和 Y 各自的分布?
3/8/2020
华东师范大学
第三章 多维随机变量及其分布
3.2.1 边际分布函数
第29页
巳知 (X, Y) 的联合分布函数为 F(x, y),
则 X FX (x) = F(x, +),
3/8/2020
华东师范大学
第三章 多维随机变量及其分布
第18页
二、多维超几何分布
口袋中有 N 只球,分成 r 类 。
第 i 种球有 Ni 只, N1+N2+……+Nr = N. 从中任取 n 只,
记 Xi 为取出的n 只球中,第i 种球的只数.
则 (X1, X2, ……, Xr)的联合分布列为:
3/8/2020
华东师范大学
第三章 多维随机变量及其分布
第15页
3.1.4 联合密度函数
设二维随机变量(X, Y) 的分布函数为 F(x, y),若存在 非负可积函数 p(x, y),使得
xy
F(x,y)= p(u,v)dvdu --
则称 (X, Y) 为二维连续型随机变量。 称p(x, y) 为联合密度函数。
3.3.1 多维随机变量 ➢ 定义3.1.1
若X, Y是两个定义在同一个样本空间上的 随机变量,则称(X, Y) 是两维随机变量.
➢ 同理可定义 n 维随机变量 (随机向量).
3/8/2020
华东师范大学
第三章 多维随机变量及其分布
第3页
3.1.2 联合分布函数
定义3.1.2 (以下仅讨论两维随机变量)
=A/6
所以, A=6
3/8/2020
华东师范大学
第三章 多维随机变量及其分布
第24页
例3.1.4
6e(2x3y), x0,y0
若
(X,
Y)
~
p(x,y)
0,
其它
试求 P{ X< 2, Y< 1}.
3/8/2020
华东师范大学
第三章 多维随机变量及其分布
第25页
y
解: P{ X<2, Y<1} p(x,y)dxdy
第三章 多维随机变量及其分布
第1页
第三章 多维随机变量及其分布
§3.1 多维随机变量及其联合分布 §3.2 边际分布与随机变量的独立性 §3.3 多维随机变量函数的分布 §3.4 多维随机变量的特征数 §3.5 条件分布与条件期望
3/8/2020
华东师范大学
第三章 多维随机变量及其分布
第2页
§3.1 多维随机变量及其联合分布
求
X1 1 0,,
|Y|1, |Y|1
X2 1 0,, ||Y Y|| 2 2的联合分布列.
解: (X1, X2) 的可能取值数对及相应的概率如下:
P(X1=0, X2=0) = P(|Y|≥1, |Y|≥2) = P(|Y|≥2) = 2 2Φ(2) = 0.0455
第三章 多维随机变量及其分布
第5页
联合分布函数的基本性质
(1) F(x, y) 关于 x 和 y 分别单调增. (单调性)
(2) 0 F(x, y) 1,且 (有界性) F(, y) = F(x, ) =0, F(+, +) = 1.
(3) F(x, y) 关于 x 和 y 分别右连续. (右连续性)
第17页
3.1.5 常用多维分布
一、多项分布
若每次试验有r 种结果:A1, A2, ……, Ar
记 P(Ai) = pi ,
i = 1, 2, ……, r
记 Xi 为 n 次独立重复试验中 Ai 出现的次数.
则 (X1, X2, ……, Xr)的联合分布列为: P ( X 1 n 1 ,X 2 n 2 ,......,X r n r )= n 1 ! n 2 n ! L !n r !p 1 n 1 p 2 n 2 L L p r n r
华东师范大学
第三章 多维随机变量及其分布
第8页
联合分布列的基本性质
(1) pij 0, i, j = 1, 2,… (非负性)
(2) pij = 1. (正则性)
3/8/2020
华东师范大学
第三章 多维随机变量及其分布
第9页
确定联合分布列的方法
(1) 确定随机变量 (X, Y) 的所有取值数对. (2) 计算取每个数值对的概率. (3) 列出表格.
(4) 当a<b, c<d 时,有 (非负性) F(b, d) F(b, c) F(a, d) + F(a, c) 0.
注意:上式左边 = P(a<Xb, c<Y d).
3/8/2020
华东师范大学
第三章 多维随机变量及其分布
第6页
3.1.3 联合分布列
二维离散随机变量
若(X, Y) 的可能取值为有限对、或可列对, 则称(X, Y)为二维离散随机变量.
P(X1n1, X2 n2, ......,Xr nr)=N n11N n22N LLnNr n
3/8/2020
华东师范大学
第三章 多维随机变量及其分布
第19页
三、二维均匀分布
若二维连续随机变量 (X, Y) 的联合密度为:
p(x, y)S1D, (x, y)D 0, 其它
则称 (X, Y) 服从二维正态分布,
记为 (X, Y) N ( 1,2,12,22,) .
3/8/2020
华东师范大学
第三章 多维随机变量及其分布
第21页
3/8/2020
华东师范大学
第三章 多维随机变量及其分布
第22页
例3.1.3
若 (X, Y) ~
Ae(2x3y), p(x,y)
任对实数 x 和 y, 称 F(x, y) = P( X x, Y y)
为(X, Y) 的联合分布函数.
注意:
F(x, y)为(X, Y)落在点(x, y)的左下区域的概率.
3/8/2020
华东师范大学
第三章 多维随机变量及其分布
X2 x2
第4页
(x1, x2)
x1
X1
3/8/2020
华东师范大学
P(X1=0, X2=1) = P(|Y|≥1, |Y|<2) = P(1≤|Y|<2) = 2[Φ(2) Φ(1)] = 0.2719
P(X1=1, X2=0) = P(|Y|<1, |Y|≥2) = 0