概率论与数理统计全套精品课件(PPT)
合集下载
概率论与数理统计ppt课件
04
理解基本概念和原理
做大量练习题,培养解题能力
05
06
阅读相关书籍和论文,拓宽知识面
02
概率论基础
概率的基本概念
试验
一个具有有限个或无限个 可能结果的随机试验。
事件
试验中的某些结果的总称 。
概率
衡量事件发生可能性的数 值,通常表示为0到1之间 的实数。
必然事件
概率等于1的事件。
不可能事件
概率等于0的事件。
01 点估计
用样本统计量估计总体参数,如用样本均值估计 总体均值。
02 区间估计
给出总体参数的估计区间,如95%置信区间。
03 估计量的性质
无偏性、有效性和一致性。
假设检验
假设检验的基本思想
先假设总体参数具有某种 特性,然后通过样本信息 来判断这个假设是否合理 。
双侧检验
当需要判断两个假设是否 相等时,如总体均值是否 等于某个值。
连续型随机变量
取值无限的随机变 量。
方差
衡量随机变量取值 分散程度的数值。
03
数理统计基础
总体与样本
总体
研究对象的全体。
抽样方法
简单随机抽样、分层抽样、系统抽样等。
样本
从总体中随机抽取的一部分个体,用于估 计和推断总体的特性。
样本大小
样本中包含的个体数量,需要根据研究目 的和资源来确定。
参数估计
单因素方差分析
单因素方差分析的定义
单因素方差分析是方差分析的一种形式,它只涉及一个实验因素。通过对不同组的均值进行比 较,可以确定这个因素对实验结果的影响是否显著。
单因素方差分析的步骤
单因素方差分析通常包括以下步骤:首先,对实验数据进行分组;其次,计算每组的均值;接 着,计算总的均值和总的变异性;然后,计算组间变异性和组内变异性;最后,通过比较这两 种变异,得出因素的显著性。
《概率论与数理统计》全套课件PPT(完整版)
m?????若对于一随机试验每个样本点出现是等可能的样本空间所含的样本点个数为无穷多个且具有非零的有限的几何度量即则称这一随机试验是一几何概型的20义定义当随机试验的样本空间是某个区域并且任量意一点落在度量长度面积体积相同的子区域是等可能的则事件a的概率可定义为?mamap??说明当古典概型的试验结果为连续无穷多个时就归结为几何概率
P(B| A) P(AB) P(A)
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即
10 对于每一个事件B, 有 1 P(B | A) 0.
20 P(S | A) 1.
30 设B1 , B2 ,两两互不相容, 则
P( Bi | A) P(B i | A).
i1
i1
此外, 条件概率具有无条件概率类似性质.例如:
(1) P( | A) 0.
(2) 设B1 ,B2 ,, Bn两两互不相容,则
n
n
P( Bi | A) P(B i | A).
30
i1
i1
(3) P(B | A) 1 P(B | A).
(4) P(B C | A) P(B | A) P(C | A) - P(BC | A).
在其中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条 件下, 第2次取到奇数的概率.
32
(二) 乘法公式: 由条件概率定义, 立即可得P(A) 0, 则有 P(AB) P(A)P(B | A).
注 当A=S时, P(B|S)=P(B), 条件概率化为无 条件概率, 因此无条件概率可看成条件概率.
P(B| A) P(AB) P(A)
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即
10 对于每一个事件B, 有 1 P(B | A) 0.
20 P(S | A) 1.
30 设B1 , B2 ,两两互不相容, 则
P( Bi | A) P(B i | A).
i1
i1
此外, 条件概率具有无条件概率类似性质.例如:
(1) P( | A) 0.
(2) 设B1 ,B2 ,, Bn两两互不相容,则
n
n
P( Bi | A) P(B i | A).
30
i1
i1
(3) P(B | A) 1 P(B | A).
(4) P(B C | A) P(B | A) P(C | A) - P(BC | A).
在其中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条 件下, 第2次取到奇数的概率.
32
(二) 乘法公式: 由条件概率定义, 立即可得P(A) 0, 则有 P(AB) P(A)P(B | A).
注 当A=S时, P(B|S)=P(B), 条件概率化为无 条件概率, 因此无条件概率可看成条件概率.
概率论与数理统计课件(PPT)
随机现象:不确定性与统计规律性
概率论——研究和揭示随机现象 的统计规律性的科学
目录
• • • • • • 第一章 随机事件及其概率 第二章 随机变量 第三章 随机变量的数字特征 第四章 样本及抽样分布 第五章 参数估计 第六章 假设检验
第一章 随机事件及其概率
• 随机事件及其运算 • 概率的定义及其运算 • 条件概率 • 事件的独立性
注意到不论是对概率的直观理 解,还是频率定义方式,作为事件 的概率,都应具有前述三条基本性 质,在数学上,我们就可以从这些 性质出发,给出概率的公理化定义
1.定义(p8) 若对随机试验E所对应的样本空间中 的每一事件A,均赋予一实数P(A),集合函数
P(A)满足条件:
(1) P(A) ≥0;
(2) P()=1;
历史上曾有人做过试验,试图证明抛掷匀质硬币时 ,出现正反面的机会均等。
实验者
De Morgan Buffon K. Pearson K. Pearson
n
2048 4040 12000 24000
nH
1061 2048 6019 12012
fn(H)
0.5181 0.5069 0.5016 0.5005
N ( A) P( A) N ()
P(A)具有如下性质(P7)
(1) 0 P(A) 1;
(2) P()=1; P( )=0 (3) AB=,则 P( A B )= P(A) +P(B)
例:有三个子女的家庭,设每个孩子是男是女的概率 相等,则至少有一个男孩的概率是多少?
解:设A--至少有一个男孩,以H表示某个孩子是男孩 ={HHH,HHT,HTH,THH,HTT,TTH,THT,TTT}
1.1随机事件及其概率
概率论——研究和揭示随机现象 的统计规律性的科学
目录
• • • • • • 第一章 随机事件及其概率 第二章 随机变量 第三章 随机变量的数字特征 第四章 样本及抽样分布 第五章 参数估计 第六章 假设检验
第一章 随机事件及其概率
• 随机事件及其运算 • 概率的定义及其运算 • 条件概率 • 事件的独立性
注意到不论是对概率的直观理 解,还是频率定义方式,作为事件 的概率,都应具有前述三条基本性 质,在数学上,我们就可以从这些 性质出发,给出概率的公理化定义
1.定义(p8) 若对随机试验E所对应的样本空间中 的每一事件A,均赋予一实数P(A),集合函数
P(A)满足条件:
(1) P(A) ≥0;
(2) P()=1;
历史上曾有人做过试验,试图证明抛掷匀质硬币时 ,出现正反面的机会均等。
实验者
De Morgan Buffon K. Pearson K. Pearson
n
2048 4040 12000 24000
nH
1061 2048 6019 12012
fn(H)
0.5181 0.5069 0.5016 0.5005
N ( A) P( A) N ()
P(A)具有如下性质(P7)
(1) 0 P(A) 1;
(2) P()=1; P( )=0 (3) AB=,则 P( A B )= P(A) +P(B)
例:有三个子女的家庭,设每个孩子是男是女的概率 相等,则至少有一个男孩的概率是多少?
解:设A--至少有一个男孩,以H表示某个孩子是男孩 ={HHH,HHT,HTH,THH,HTT,TTH,THT,TTT}
1.1随机事件及其概率
概率论与数理统计完整ppt课件
化学
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
概率论与数理统计书ppt课件
条件概率与独立性
CHAPTER
随机变量及其分布
02
随机变量的概念与性质
定义随机变量为在样本空间中的实值函数,其取值依赖于随机试验的结果。
随机变量
讨论随机变量的可数性、可加性、正态性等性质。
随机变量的性质
离散型随机变量的概念
定义离散型随机变量为只能取可数个值的随机变量。
离散型随机变量的分布
讨论离散型随机变量的概率分布,如二项分布、泊松分布等。
应用
中心极限定理及其应用
CHAPTER
贝叶斯推断与决策分析
07
贝叶斯推断的基本原理
金融风险管理
贝叶斯推断在金融风险管理领域有着广泛的应用,如信用风险评估、投资组合优化等。
医疗诊断
贝叶斯推断在医疗诊断方面也有着重要的应用,如疾病诊断、预后评估等。
机器学习与人工智能
贝叶斯推断在机器学习算法和人工智能领域中也有着广泛的应用,如朴素贝叶斯分类器、高斯混合模型等。
参数估计与置信区间
01
点估计
用单一的数值估计参数的值。
02
区间估计
给出参数的一个估计区间,通常包括一个置信水平。
比较两个或多个组的均值差异,确定因素对结果的影响。
方差分析
检验两个或多个组的方差是否相等。
方差齐性检验
研究变量之间的关系,并预测结果。
回归分析
假设检验与方差分析
CHAPTER
回归分析与线性模型
应用
在现实生活中,大数定律被广泛应用于保险、赌博、金融等领域,通过统计数据来预测未来的趋势和风险。
大数定律及其应用
在独立随机变量序列中,它们的和的分布近似于正态分布,即中心极限定理。这意味着,当样本量足够大时,样本均值近似于正态分布。
概率论与数理统计ppt课件
称这种试验为等可能概型(或古典概型)。
*
例1:一袋中有8个球,其中3个为红球,5个为黄球,设摸到每一球的可能性相等,从袋中不放回摸两球, 记A={恰是一红一黄},求P(A). 解:
(注:当L>m或L<0时,记 )
例2:有N件产品,其中D件是次品,从中不放 回的取n件, 记Ak={恰有k件次品},求P(Ak). 解:
*
第四章 随机变量的数字特征 4.1 数学期望 4.2 方差 4.3 协方差及相关系数 4.4 矩、协方差矩阵 第五章 大数定律和中心极限定理 5.1 大数定律 5.2 中心极限定理 第六章 数理统计的基本概念 6.1 总体和样本 6.2 常用的分布
*
第七章 参数估计 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计 第八章 假设检验 8.1 假设检验 8.2 正态总体均值的假设检验 8.3 正态总体方差的假设检验 8.4 置信区间与假设检验之间的关系 8.5 样本容量的选取 8.6 分布拟合检验 8.7 秩和检验 第九章 方差分析及回归分析 9.1 单因素试验的方差分析 9.2 双因素试验的方差分析 9.3 一元线性回归 9.4 多元线性回归
解: 设 Ai={ 这人第i次通过考核 },i=1,2,3 A={ 这人通过考核 },
亦可:
*
例:从52张牌中任取2张,采用(1)放回抽样,(2)不放 回抽样,求恰是“一红一黑”的概率。
利用乘法公式
与 不相容
(1)若为放回抽样:
(2)若为不放回抽样:
解: 设 Ai={第i次取到红牌},i=1,2 B={取2张恰是一红一黑}
①
②
①
1 2 N
①
②
1 2 N
……
高等数学概率论与数理统计课件PPT大全
(AB)C=A(BC) 3、分配律:(AB)C=(AC)(BC),
(AB)C=(AC)(BC) 4、对偶(De Morgan)律:
A B A B, AB A B
可推广 Ak Ak , Ak Ak .
k
k
k
k
例:甲、乙、丙三人各向目标射击一发子弹,以A、 B、C分别表示甲、乙、丙命中目标,试用A、B、C
定义:(p8) 事件A在n次重复试验中出现nA次,则 比值nA/n称为事件A在n次重复试验中 出现的频率,记为fn(A). 即 fn(A)= nA/n.
历史上曾有人做过试验,试图证明抛掷匀质硬币时 ,出现正反面的机会均等。
实验者
De Morgan Buffon
K. Pearson K. Pearson
随机事件
二、样本空间(p2)
1、样本空间:试验的所有可能结果所
组成的集合称为样本空间,记为={e};
2、样本点: 试验的单个结果或样本空间 的单元素称为样本点,记为e. 3.由样本点组成的单点集 称为基本事件, 也记为e.
幻灯片 6
随机事件
1.定义 样本空间的任意一个子集称为随机事件, 简称“ 事件”.记作A、B、C等
P( AB) P( AC) P(BC) P( ABC )
30% 3 10% 0 0 0 80%
例1.3.2.在110这10个自然数中任取一数,求
(1)取到的数能被2或3整除的概率,
(2)取到的数即不能被2也不能被3整除的概率,
(3)取到的数能被2整除而不能被3整除的概率。
解:设A—取到的数能被2整除; P(A) 1 P(B) 3
的概率有多大?
3.分组问题
例3:30名学生中有3名运动员,将这30名学生平均 分成3组,求: (1)每组有一名运动员的概率; (2)3名运动员集中在一个组的概率。 解:设A:每组有一名运动员;B: 3名运动员集中在一组
(AB)C=(AC)(BC) 4、对偶(De Morgan)律:
A B A B, AB A B
可推广 Ak Ak , Ak Ak .
k
k
k
k
例:甲、乙、丙三人各向目标射击一发子弹,以A、 B、C分别表示甲、乙、丙命中目标,试用A、B、C
定义:(p8) 事件A在n次重复试验中出现nA次,则 比值nA/n称为事件A在n次重复试验中 出现的频率,记为fn(A). 即 fn(A)= nA/n.
历史上曾有人做过试验,试图证明抛掷匀质硬币时 ,出现正反面的机会均等。
实验者
De Morgan Buffon
K. Pearson K. Pearson
随机事件
二、样本空间(p2)
1、样本空间:试验的所有可能结果所
组成的集合称为样本空间,记为={e};
2、样本点: 试验的单个结果或样本空间 的单元素称为样本点,记为e. 3.由样本点组成的单点集 称为基本事件, 也记为e.
幻灯片 6
随机事件
1.定义 样本空间的任意一个子集称为随机事件, 简称“ 事件”.记作A、B、C等
P( AB) P( AC) P(BC) P( ABC )
30% 3 10% 0 0 0 80%
例1.3.2.在110这10个自然数中任取一数,求
(1)取到的数能被2或3整除的概率,
(2)取到的数即不能被2也不能被3整除的概率,
(3)取到的数能被2整除而不能被3整除的概率。
解:设A—取到的数能被2整除; P(A) 1 P(B) 3
的概率有多大?
3.分组问题
例3:30名学生中有3名运动员,将这30名学生平均 分成3组,求: (1)每组有一名运动员的概率; (2)3名运动员集中在一个组的概率。 解:设A:每组有一名运动员;B: 3名运动员集中在一组
概率论与数理统计教程ppt课件
1. 确定性现象
• 每天早晨太阳从东方升起; • 水在标准大气压下加温到100oC沸腾;
2. 随机现象
• 掷一枚硬币,正面朝上?反面朝上? • 一天内进入某超市的顾客数; • 某种型号电视机的寿命;
16 March 2020
华东师范大学
第一章 随机事件与概率
第3页
1.1.1 随机现象
• 随机现象:在一定的条件下,并不总出现相 同结果的现象称为随机现象.
16 March 2020
华东师范大学
第一章 随机事件与概率
例1.2.1 六根草,头两两相接、
尾两两相接。求成环的概率.
解:用乘法原则直接计算 所求概率为
644221 8 6 5 4 3 2 1 15
第30页
16 March 2020
华东师范大学
第一章 随机事件与概率
3. 若 AnF ,n=1, 2, …, 则
UFA.n
n 1
16 March 2020
华东师范大学
第一章 随机事件与概率
第21页
§1.2 概率的定义及其确定方法
• 直观定义 —— 事件A 出现的可能性大小.
• 统计定义 —— 事件A 在大量重复试验下 出现的频率的稳定值称为该事件的概率.
2. 样本点 —— 随机试验的每一个可能结果.
3. 样本空间(Ω) —— 随机试验的所有样本点构成的集合.
4. 两类样本空间: 离散样本空间 样本点的个数为有限个或可列个. 连续样本空间 样本点的个数为无限不可列个.
16 March 2020
华东师范大学
第一章 随机事件与概率
第5页
1.1.3 随机事件
华东师范大学
第一章 随机事件与概率
• 每天早晨太阳从东方升起; • 水在标准大气压下加温到100oC沸腾;
2. 随机现象
• 掷一枚硬币,正面朝上?反面朝上? • 一天内进入某超市的顾客数; • 某种型号电视机的寿命;
16 March 2020
华东师范大学
第一章 随机事件与概率
第3页
1.1.1 随机现象
• 随机现象:在一定的条件下,并不总出现相 同结果的现象称为随机现象.
16 March 2020
华东师范大学
第一章 随机事件与概率
例1.2.1 六根草,头两两相接、
尾两两相接。求成环的概率.
解:用乘法原则直接计算 所求概率为
644221 8 6 5 4 3 2 1 15
第30页
16 March 2020
华东师范大学
第一章 随机事件与概率
3. 若 AnF ,n=1, 2, …, 则
UFA.n
n 1
16 March 2020
华东师范大学
第一章 随机事件与概率
第21页
§1.2 概率的定义及其确定方法
• 直观定义 —— 事件A 出现的可能性大小.
• 统计定义 —— 事件A 在大量重复试验下 出现的频率的稳定值称为该事件的概率.
2. 样本点 —— 随机试验的每一个可能结果.
3. 样本空间(Ω) —— 随机试验的所有样本点构成的集合.
4. 两类样本空间: 离散样本空间 样本点的个数为有限个或可列个. 连续样本空间 样本点的个数为无限不可列个.
16 March 2020
华东师范大学
第一章 随机事件与概率
第5页
1.1.3 随机事件
华东师范大学
第一章 随机事件与概率
概率论与数理统计(最新完整版)ppt课件
(1) 试验可以在相同的条件下重复地进行;
.
(2) 试验的所有可能结果:
正面,反面; (3) 进行一次试验之前不能
确定哪一个结果会出现.
故为随机试验.
同理可知下列试验都为随机试验
1.“抛掷一枚骰子,观察出现的点数”.
2.“从一批产品中,依次任选三件, 记 录出现正品与次品的件数”.
.
3. 记录某公共汽车站 某日上午某时刻的等 车人 数.
(3)分 配 律
A(BC)(A B)(AC)AB AC ,
A (BC)AB AC
( A B ) C ( A C ) ( B C ) ( A C ) B C ( )
(对 4律 ):偶 A B A B ,A B A B .
n
n
Ai Ai,
i1
i1
.
n
n
Ai Ai
i1
i1
三 完备事件组
4. 考察某地区 10 月 份的平均气温.
5. 从一批灯泡中任取 一只,测试其寿命.
.
四、概率的统计定义
1、随机事件:在试验的结果中,可能发生、也可能不发 生的事件。比如,抛硬币试验中,”徽花向上”是随机事 件;掷一枚骰子中,”出现奇数点”是一个随机事件等。
2、频率:设A为实验E中的一个随机事件,将E重复n次, A发生m次,称f(A)=m/n为事件A的频率. 随着实验次数n的增加,频率将处于稳定状态.比如投 硬币实验,频率将稳定在1/2附近.
B A
.
6. 事件的互逆(对立)
若事件 A 、B 满足 A B 且 A B .
则称 A 与B 为互逆(或对立)事件. A 的逆记作 A .
实例 “骰子出现1点”对立 “骰子不出现1点”
.
(2) 试验的所有可能结果:
正面,反面; (3) 进行一次试验之前不能
确定哪一个结果会出现.
故为随机试验.
同理可知下列试验都为随机试验
1.“抛掷一枚骰子,观察出现的点数”.
2.“从一批产品中,依次任选三件, 记 录出现正品与次品的件数”.
.
3. 记录某公共汽车站 某日上午某时刻的等 车人 数.
(3)分 配 律
A(BC)(A B)(AC)AB AC ,
A (BC)AB AC
( A B ) C ( A C ) ( B C ) ( A C ) B C ( )
(对 4律 ):偶 A B A B ,A B A B .
n
n
Ai Ai,
i1
i1
.
n
n
Ai Ai
i1
i1
三 完备事件组
4. 考察某地区 10 月 份的平均气温.
5. 从一批灯泡中任取 一只,测试其寿命.
.
四、概率的统计定义
1、随机事件:在试验的结果中,可能发生、也可能不发 生的事件。比如,抛硬币试验中,”徽花向上”是随机事 件;掷一枚骰子中,”出现奇数点”是一个随机事件等。
2、频率:设A为实验E中的一个随机事件,将E重复n次, A发生m次,称f(A)=m/n为事件A的频率. 随着实验次数n的增加,频率将处于稳定状态.比如投 硬币实验,频率将稳定在1/2附近.
B A
.
6. 事件的互逆(对立)
若事件 A 、B 满足 A B 且 A B .
则称 A 与B 为互逆(或对立)事件. A 的逆记作 A .
实例 “骰子出现1点”对立 “骰子不出现1点”
《概率论于数理统计》PPT课件
这里固然有把哪个假设作为原假设从而引起检验结果不同这一原因;除此外还有一个根本的原因,即样本容量不够大.
若样本容量足够大,则不论把哪个假设作为原假设所得检验结果基本上应该是一样的.否则假设检验便无意义了!
由于假设检验是控制犯第一类错误的概率, 使得拒绝原假设 H0 的决策变得比较慎重, 也就是 H0 得到特别的保护. 因而, 通常把有把握的, 经验的结论作为原假设, 或者尽量使后果严重的错误成为第一类错误.
查表得 F0.05( 17, 12 ) = 2.59,
F0.95( 17, 12 ) =
拒绝外,故接受原假设, 即认为内径的稳定程度相同.
8.2.4 样本容量的选取
虽然当样本容量 n 固定时, 我们不能同时控制犯两类错误的概率, 但可以适当选取 n 的值, 使犯取伪错误的概率 控制在预先给定的限度内.
8.2 正态总体的参数检验
8.2.1 单个正态总体情况
1. 方差 已知,关于 的检验(u检验法)
(2) 选取检验统计量
~ N(0,1)
(1)
(3) 对给定的显著性水平 ,可以在N(0,1)表中查到分位点的值 ,使
得拒绝域为
W:
(4) 由样本观察值算出统计量的实测值
假设检验与置信区间对照
接受域
置信区间
检验统计量及其在 H0为真时的分布
枢轴量及其分布
0
0
( 2 已知)
( 2 已知)
原假设 H0
备择假设 H1
待估参数
接受域
置信区间
检验统计量及其在 H0为真时的分布
枢轴量及其分布
原假设 H0
备择假设 H1
待估参数
0
0
0
0
0
若样本容量足够大,则不论把哪个假设作为原假设所得检验结果基本上应该是一样的.否则假设检验便无意义了!
由于假设检验是控制犯第一类错误的概率, 使得拒绝原假设 H0 的决策变得比较慎重, 也就是 H0 得到特别的保护. 因而, 通常把有把握的, 经验的结论作为原假设, 或者尽量使后果严重的错误成为第一类错误.
查表得 F0.05( 17, 12 ) = 2.59,
F0.95( 17, 12 ) =
拒绝外,故接受原假设, 即认为内径的稳定程度相同.
8.2.4 样本容量的选取
虽然当样本容量 n 固定时, 我们不能同时控制犯两类错误的概率, 但可以适当选取 n 的值, 使犯取伪错误的概率 控制在预先给定的限度内.
8.2 正态总体的参数检验
8.2.1 单个正态总体情况
1. 方差 已知,关于 的检验(u检验法)
(2) 选取检验统计量
~ N(0,1)
(1)
(3) 对给定的显著性水平 ,可以在N(0,1)表中查到分位点的值 ,使
得拒绝域为
W:
(4) 由样本观察值算出统计量的实测值
假设检验与置信区间对照
接受域
置信区间
检验统计量及其在 H0为真时的分布
枢轴量及其分布
0
0
( 2 已知)
( 2 已知)
原假设 H0
备择假设 H1
待估参数
接受域
置信区间
检验统计量及其在 H0为真时的分布
枢轴量及其分布
原假设 H0
备择假设 H1
待估参数
0
0
0
0
0
《概率论与数理统计》课件
条件概率与独立性
条件概率
在某个事件B已经发生的条件下,另 一事件A发生的概率,记为P(A|B)。
独立性
两个事件A和B如果满足 P(A∩B)=P(A)P(B),则称事件A和B是 独立的。
随机变量及其分布
01
随机变量
随机变量是定义在样本空间上的 一个实值函数,表示随机试验的 结果。
02
离散型随机变量
03
连续型随机变量
离散型随机变量的取值可以一一 列举出来,其概率分布可以用概 率质量函数或概率函数表示。
连续型随机变量的取值范围是一 个区间或半开区间,其概率分布 可以用概率密度函数表示。
数理统计初步
02
统计数据的描述
01
统计数据的收集
描述如何通过调查、试验或观测 等方法,获取用于统计分析的数
据。
03
夫链
随机过程的基本概念
随机过程
随机过程是一组随机变量,每个随机 变量对应于时间或空间的一个点。
有限维分布
描述随机过程在有限个时间点上的联 合分布。
独立性
如果随机过程在不相交的时间区间上 的随机变量是独立的,则该随机过程
是独立的。
马尔科夫链及其性质
马尔科夫性
在已知现在状态下,未来与过去独立,即“未来 只取决于现在”。
03
数据的可视化
介绍如何使用图表(如直方图、 散点图等)将数据可视化,以便 更直观地理解数据分布和关系。
02
数据的整理
介绍如何对数据进行分类、排序 和分组,以便更好地理解和分析
。
04
数据的数字特征
介绍如何使用均值、中位数、众 数、方差等统计量来描述数据的
中心趋势和离散程度。
参数估计与置信区间
概率论与数理统计PPT课件
24
例6: (抽签问题)一袋中有a个红球,b个白球,记a+b=n. 设每次摸到各球的概率相等,每次从袋中摸一球, 不放回地摸n次。 设 { 第k次摸到红球 },k=1,2,…,n.求 解1:
号球为红球,将n个人也编号为1,2,…,n.
----------与k无关
可设想将n个球进行编号: 其中
18
性质:
19
§4 等可能概型(古典概型)
定义:若试验E满足:S中样本点有限(有限性)出现每一样本点的概率相等(等可能性)
称这种试验为等可能概型(或古典概型)。
20
例1:一袋中有8个球,编号为1-8,其中1-3 号为红球,4-8号为黄球,设摸到每一 球的可能性相等,从中随机摸一球, 记A={ 摸到红球 },求P(A).
31
三、全概率公式与Bayes公式
定义:设S为试验E的样本空间,B1,B2,…,Bn 为E的一组事件。若: 则称B1,B2,…,Bn为S的一个划分,或称为一组完备事件组。
即:B1,B2,…,Bn至少有一发生是必然的,两两同时发生又是不可能的。
32
定理:设试验E的样本空间为S,A为E的事件。B1,B2,…,Bn为S的一个划分,P(Bi)>0,i=1,2,…,n; 则称:
试验序号
n =5
n =50
n =500
nH
fn(H)
nH
fn(H)
nH
fn(H)
12345678910
2315124233
0.40.60.21.00.20.40.80.40.60.6
22252125242118242731
0.440.500.420.500.480.420.360.480.540.62
例6: (抽签问题)一袋中有a个红球,b个白球,记a+b=n. 设每次摸到各球的概率相等,每次从袋中摸一球, 不放回地摸n次。 设 { 第k次摸到红球 },k=1,2,…,n.求 解1:
号球为红球,将n个人也编号为1,2,…,n.
----------与k无关
可设想将n个球进行编号: 其中
18
性质:
19
§4 等可能概型(古典概型)
定义:若试验E满足:S中样本点有限(有限性)出现每一样本点的概率相等(等可能性)
称这种试验为等可能概型(或古典概型)。
20
例1:一袋中有8个球,编号为1-8,其中1-3 号为红球,4-8号为黄球,设摸到每一 球的可能性相等,从中随机摸一球, 记A={ 摸到红球 },求P(A).
31
三、全概率公式与Bayes公式
定义:设S为试验E的样本空间,B1,B2,…,Bn 为E的一组事件。若: 则称B1,B2,…,Bn为S的一个划分,或称为一组完备事件组。
即:B1,B2,…,Bn至少有一发生是必然的,两两同时发生又是不可能的。
32
定理:设试验E的样本空间为S,A为E的事件。B1,B2,…,Bn为S的一个划分,P(Bi)>0,i=1,2,…,n; 则称:
试验序号
n =5
n =50
n =500
nH
fn(H)
nH
fn(H)
nH
fn(H)
12345678910
2315124233
0.40.60.21.00.20.40.80.40.60.6
22252125242118242731
0.440.500.420.500.480.420.360.480.540.62
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计
河南工业大学理学院
教材:《概率论与数理统计》第三版 王松桂 等编 科学出版社
参考书:1.《概率论与数理统计》 浙江大学 盛骤等 编 高等教育出版社
2. 《概率论与数理统计》 魏振军 编
中国统计出版社
序言
概率论是研究什么的?
人们所观察到的现象大体上分成两类: 1.确定性现象或必然现象 事前可以预知结果的:即在某些确定的条 件满足时,某一确定的现象必然会发生,或根 据它过去的状态,完全可以预知其将来的发展 状态。 2.偶然性现象或随机现象 事前不能预知结果:即在相同的条件下重 复进行试验时,每次所得到的结果未必相同, 或即使知道它过去的状态,也不能肯定它将来 的状态。
写出样本空间,指出哪些是基本事件,表示B ,C,D。
解: {1, 2,..., 6} Ai {i},i 1,..., 6 为基本事件
B {2, 4, 6} C {1,3,5} D {4,5, 6}
既然事件是一个集合,因此有关事件 间的关系、运算及运算规则也就按集合 间的关系、运算及运算规则来处理。
1.1.1 随机试验与事件
随机试验(试验)的特点: 1.可在相同条件下重复进行; 2.每次试验之前无法确定具体是哪种结果出 现,但能确定所有的可能结果。
试验常用“E”表示
(随机)试验的例子
E1: 掷一颗骰子,观察所掷的点数是几; E2 :工商管理部门抽查产品是否合格; E3: 观察某城市某个月内交通事故发生的次数; E4 :已知物体长度在a和b之间,测量其长度; E5: 对某只灯泡做试验,观察其使用寿命; E6: 对某只灯泡做试验,观察其使用寿命是否小
于200小时。
样本空间:试验的所有可能结果所组成
的集合称为样本空间。记为:
样本点: 试验的单个结果或样本空间的 单元素称为样本点。
(随机)试验的例子
E1: 掷一颗骰子,观察所掷的点数是几; 1 {1, 2,..., 6} E2 :工商管理部门抽查产品是否合格;2 {合格品,不合格品} E3: 观察某市某月内交通事故发生的次数; 3 {0,1, 2,...} E4 :物体长度在a和b之间,测量其长度;4 {l; a l b} E5: 对某只灯泡做试验,观察其使用寿命; 5 {t; t 0}
k
kkkFra bibliotek例:甲、乙、丙三人各向目标射击一发子弹,以A、 B、C分别表示甲、乙、丙命中目标,试用A、B、C
的运算关系表示下列事件:
A1 :“至少有一人命中目标”: A B C A2 :“恰有一人命中目标”: ABC ABC ABC A3 :“恰有两人命中目标”: ABC ABC ABC A4 :“最多有一人命中目标”: BC AC AB
推广:n个事件A1, A2,…, An同时发生,记作 A1A2…An
互斥的事件(也称互不相容事件): 即事件A与 事件B不可能同时发生。AB=
4.差事件 :A-B称为A与B的差事件,表示事件A发 生而事件B不发生
A去除A和B的公共部分
互逆的事件: AB= , 且AB=
记作B A,称为A的对立事件 ; 易见A B AB
注意:对立一定互斥,互斥不一定对立
事件的运算
1、交换律:AB=BA,AB=BA 2、结合律:(AB)C=A(BC),
(AB)C=A(BC) 3、分配律:(AB)C=(AC)(BC),
(AB)C=(AC)(BC) 4、对偶(De Morgan)律:
A B A B, AB A B
可推广 Ak Ak , Ak Ak .
A5 :“三人均命中目标”: ABC
A6 :“三人均未命中目标”: A B C
1.2 事件的概率
某人向目标射击, 以A表示事件“命中目标”,
P(A)=?
考虑事件在一次试验中发生可能性的大小的数 字度量—概率。
1.2.1 事件的频率
定义1.2.1 在相同条件下,事件A在n次重复试验 中发生m次,则称比值m/n称为事件A在n次试验 中发生的频率,记为fn(A).
两个特殊事件:
1. 必然事件 :样本空间包含了所有的样本点,
且是自身的一个子集,在每次试验中总是发生。
2. 不可能事件 :不包含任何的样本点,也是样本 空间的一个子集,在每次试验中总不发生。
注意:样本点和基本事件的区别。
例1.1.1 掷一颗色子,用 Ai {i},i 1,..., 6 表
示所掷点数。B表示“偶数点”,C表示“奇数点 ”,D表示“四点或四点以上”。
E6: 对某只灯泡做试验,观察其使用寿命是否小
于200小时。6 {小于200小时,不小于200小时}
随机事件:样本空间的任意一个子集称为随机事件, 简称“事件”.记作A、B、C。
任何事件均可表示为样本空间的某个子集.
基本事件:一个随机事件只含有一个试验结果。 事件A发生当且仅当试验的结果是子集A中的元素。
随机现象特点:不确定性与统计规律性
概率论——研究和揭示随机现象的统 计规律性的科学
研究方式:从数量的侧面研究随机现象统计规律 (通过数据去研究)
“八月十五云遮月,正月十五雪打灯”
概率论起源
概率统计是一门古老的学科,它起源于十七世 纪资本主义上升的初期。物质生活的丰富,人们开 始重视精神娱乐。在桥牌活动中,经常要判断某种 花色在对方手中的分配;在掷色子中,要判断哪点 出现的次数最多。概率论与数理统计正是从研究这 类问题开始的。
1.1.2、事件的关系与运算
是试验E的样本空间,A,B,C 是事件
1.包含关系:“ 事件 A发生必有事件B发生” 记为 AB,称 A包含于B。
A=B AB且BA.
2.和事件: “事件A与事件B至少有一个发生”,记作 AB
n
推广:n个事件A1, A2,…, An至少有一个发生,记作
Ai
i1
3.积事件:事件A与事件B同时发生,记作 AB=AB A和B的公共部分
尽管发展较早,但形成一门严谨的学科是在本 世纪三十年代,前苏联数学家柯尔莫奇洛夫给出了 概率的公理化定义后,才得以迅速发展。随着计算 机的问世,六十年代后,形成了许多新的统计分支: 时间序列分析,统计推断等等。目前它几乎遍及所 有的学科技术领域。
第一章 随机事件
1.1基本概念 1.1.1 随机试验与事件 1.1.2 随机事件及其运算
河南工业大学理学院
教材:《概率论与数理统计》第三版 王松桂 等编 科学出版社
参考书:1.《概率论与数理统计》 浙江大学 盛骤等 编 高等教育出版社
2. 《概率论与数理统计》 魏振军 编
中国统计出版社
序言
概率论是研究什么的?
人们所观察到的现象大体上分成两类: 1.确定性现象或必然现象 事前可以预知结果的:即在某些确定的条 件满足时,某一确定的现象必然会发生,或根 据它过去的状态,完全可以预知其将来的发展 状态。 2.偶然性现象或随机现象 事前不能预知结果:即在相同的条件下重 复进行试验时,每次所得到的结果未必相同, 或即使知道它过去的状态,也不能肯定它将来 的状态。
写出样本空间,指出哪些是基本事件,表示B ,C,D。
解: {1, 2,..., 6} Ai {i},i 1,..., 6 为基本事件
B {2, 4, 6} C {1,3,5} D {4,5, 6}
既然事件是一个集合,因此有关事件 间的关系、运算及运算规则也就按集合 间的关系、运算及运算规则来处理。
1.1.1 随机试验与事件
随机试验(试验)的特点: 1.可在相同条件下重复进行; 2.每次试验之前无法确定具体是哪种结果出 现,但能确定所有的可能结果。
试验常用“E”表示
(随机)试验的例子
E1: 掷一颗骰子,观察所掷的点数是几; E2 :工商管理部门抽查产品是否合格; E3: 观察某城市某个月内交通事故发生的次数; E4 :已知物体长度在a和b之间,测量其长度; E5: 对某只灯泡做试验,观察其使用寿命; E6: 对某只灯泡做试验,观察其使用寿命是否小
于200小时。
样本空间:试验的所有可能结果所组成
的集合称为样本空间。记为:
样本点: 试验的单个结果或样本空间的 单元素称为样本点。
(随机)试验的例子
E1: 掷一颗骰子,观察所掷的点数是几; 1 {1, 2,..., 6} E2 :工商管理部门抽查产品是否合格;2 {合格品,不合格品} E3: 观察某市某月内交通事故发生的次数; 3 {0,1, 2,...} E4 :物体长度在a和b之间,测量其长度;4 {l; a l b} E5: 对某只灯泡做试验,观察其使用寿命; 5 {t; t 0}
k
kkkFra bibliotek例:甲、乙、丙三人各向目标射击一发子弹,以A、 B、C分别表示甲、乙、丙命中目标,试用A、B、C
的运算关系表示下列事件:
A1 :“至少有一人命中目标”: A B C A2 :“恰有一人命中目标”: ABC ABC ABC A3 :“恰有两人命中目标”: ABC ABC ABC A4 :“最多有一人命中目标”: BC AC AB
推广:n个事件A1, A2,…, An同时发生,记作 A1A2…An
互斥的事件(也称互不相容事件): 即事件A与 事件B不可能同时发生。AB=
4.差事件 :A-B称为A与B的差事件,表示事件A发 生而事件B不发生
A去除A和B的公共部分
互逆的事件: AB= , 且AB=
记作B A,称为A的对立事件 ; 易见A B AB
注意:对立一定互斥,互斥不一定对立
事件的运算
1、交换律:AB=BA,AB=BA 2、结合律:(AB)C=A(BC),
(AB)C=A(BC) 3、分配律:(AB)C=(AC)(BC),
(AB)C=(AC)(BC) 4、对偶(De Morgan)律:
A B A B, AB A B
可推广 Ak Ak , Ak Ak .
A5 :“三人均命中目标”: ABC
A6 :“三人均未命中目标”: A B C
1.2 事件的概率
某人向目标射击, 以A表示事件“命中目标”,
P(A)=?
考虑事件在一次试验中发生可能性的大小的数 字度量—概率。
1.2.1 事件的频率
定义1.2.1 在相同条件下,事件A在n次重复试验 中发生m次,则称比值m/n称为事件A在n次试验 中发生的频率,记为fn(A).
两个特殊事件:
1. 必然事件 :样本空间包含了所有的样本点,
且是自身的一个子集,在每次试验中总是发生。
2. 不可能事件 :不包含任何的样本点,也是样本 空间的一个子集,在每次试验中总不发生。
注意:样本点和基本事件的区别。
例1.1.1 掷一颗色子,用 Ai {i},i 1,..., 6 表
示所掷点数。B表示“偶数点”,C表示“奇数点 ”,D表示“四点或四点以上”。
E6: 对某只灯泡做试验,观察其使用寿命是否小
于200小时。6 {小于200小时,不小于200小时}
随机事件:样本空间的任意一个子集称为随机事件, 简称“事件”.记作A、B、C。
任何事件均可表示为样本空间的某个子集.
基本事件:一个随机事件只含有一个试验结果。 事件A发生当且仅当试验的结果是子集A中的元素。
随机现象特点:不确定性与统计规律性
概率论——研究和揭示随机现象的统 计规律性的科学
研究方式:从数量的侧面研究随机现象统计规律 (通过数据去研究)
“八月十五云遮月,正月十五雪打灯”
概率论起源
概率统计是一门古老的学科,它起源于十七世 纪资本主义上升的初期。物质生活的丰富,人们开 始重视精神娱乐。在桥牌活动中,经常要判断某种 花色在对方手中的分配;在掷色子中,要判断哪点 出现的次数最多。概率论与数理统计正是从研究这 类问题开始的。
1.1.2、事件的关系与运算
是试验E的样本空间,A,B,C 是事件
1.包含关系:“ 事件 A发生必有事件B发生” 记为 AB,称 A包含于B。
A=B AB且BA.
2.和事件: “事件A与事件B至少有一个发生”,记作 AB
n
推广:n个事件A1, A2,…, An至少有一个发生,记作
Ai
i1
3.积事件:事件A与事件B同时发生,记作 AB=AB A和B的公共部分
尽管发展较早,但形成一门严谨的学科是在本 世纪三十年代,前苏联数学家柯尔莫奇洛夫给出了 概率的公理化定义后,才得以迅速发展。随着计算 机的问世,六十年代后,形成了许多新的统计分支: 时间序列分析,统计推断等等。目前它几乎遍及所 有的学科技术领域。
第一章 随机事件
1.1基本概念 1.1.1 随机试验与事件 1.1.2 随机事件及其运算