金属材料学(第二版)课后答案
金属材料学第7-11章课后习题答案
金属材料学习题与思考题第七章铸铁1、铸铁与碳钢相比,在成分、组织和性能上有什么区别?(1)白口铸铁:含碳量约2.5%,硅在1%以下白口铸铁中的碳全部以渗透碳体(Fe3c)形式存在,因断口呈亮白色。
故称白口铸铁,由于有大量硬而脆的Fe3c,白口铸铁硬度高、脆性大、很难加工。
因此,在工业应用方面很少直接使用,只用于少数要求耐磨而不受冲击的制件,如拔丝模、球磨机铁球等。
大多用作炼钢和可锻铸铁的坯料(2)灰口铸铁;含碳量大于4.3%,铸铁中的碳大部或全部以自由状态片状石墨存在。
断口呈灰色。
它具有良好铸造性能、切削加工性好,减磨性,耐磨性好、加上它熔化配料简单,成本低、广泛用于制造结构复杂铸件和耐磨件。
(3)钢的成分要复杂的多,而且性能也是各不相同钢是含碳量在0.04%-2.3%之间的铁碳合金。
我们通常将其与铁合称为钢铁,为了保证其韧性和塑性,含碳量一般不超过1.7%。
钢的主要元素除铁、碳外,还有硅、锰、硫、磷等,而且钢还根据品质分类为①普通钢(P≤0.045%,S≤0.050%)②优质钢(P、S均≤0.035%)③高级优质钢(P≤0.035%,S≤0.030%)按照化学成分又分①碳素钢:.低碳钢(C≤0.25%).中碳钢(C≤0.25~0.60%).高碳钢(C≤0.60%)。
②合金钢:低合金钢(合金元素总含量≤5%).中合金钢(合金元素总含量>5~10%).高合金钢(合金元素总含量>10%)。
2、C、Si、Mn、P、S元素对铸铁石墨化有什么影响?为什么三低(C、Si、Mn低)一高(S高)的铸铁易出现白口?(1)合金元素可以分为促进石墨化元素和阻碍石墨化元素,顺序为:Al、C、Si、Ti、Ni、P、Co、Zr、Nb、W、Mn、S、Cr、V、Fe、Mg、Ce、B等。
其中,Nb为中性元素,向左促进程度加强,向右阻碍程度加强。
C和Si是铸铁中主要的强烈促进石墨化元素,为综合考虑它们的影响,引入碳当量CE = C% + 1/3Si%,一般CE≈4%,接近共晶点。
金属材料学课后答案(较全)
第一章1.为什么说钢中的S、P杂质元素在一般情况下总是有害的?答:S、P会导致钢的热脆和冷脆,并且容易在晶界偏聚,导致合金钢的第二类高温回火脆性,高温蠕变时的晶界脆断。
S能形成FeS,其熔点为989℃,钢件在大于1000℃的热加工温度时FeS会熔化,所以易产生热脆;P能形成Fe3P,性质硬而脆,在冷加工时产生应力集中,易产生裂纹而形成冷脆。
2.钢中的碳化物按点阵结构分为哪两大类?各有什么特点?答:简单点阵结构和复杂点阵结构简单点阵结构的特点:硬度较高、熔点较高、稳定性较好;复杂点阵结构的特点:硬度较低、熔点较低、稳定性较差。
3.简述合金钢中碳化物形成规律。
答:①当r C/r M>0.59时,形成复杂点阵结构;当r C/r M<0.59时,形成简单点阵结构;②相似者相溶:完全互溶:原子尺寸、电化学因素均相似;有限溶解:一般K都能溶解其它元素,形成复合碳化物。
③N M/N C比值决定了碳化物类型④碳化物稳定性越好,溶解越难,析出难越,聚集长大也越难;⑤强碳化物形成元素优先与碳结合形成碳化物。
4.合金元素对Fe-C相图的S、E点有什么影响?这种影响意味着什么?答:A形成元素均使S、E点向_____移动,F形成元素使S、E点向_____移动。
S点左移意味着_____减小,E点左移意味着出现_______降低。
(左下方;左上方)(共析碳量;莱氏体的C量)5.试述钢在退火态、淬火态及淬火-回火态下,不同合金元素的分布状况。
答:退火态:非碳化物形成元素绝大多数固溶于基体中,而碳化物形成元素视C和本身量多少而定。
优先形成碳化物,余量溶入基体。
淬火态:合金元素的分布与淬火工艺有关。
溶入A体的因素淬火后存在于M、B中或残余A 中,未溶者仍在K中。
回火态:低温回火,置换式合金元素基本上不发生重新分布;>400℃,Me开始重新分布。
非K形成元素仍在基体中,K形成元素逐步进入析出的K中,其程度取决于回火温度和时间。
材料力学性能-第2版课后习题答案
第一章 单向静拉伸力学性能1、 解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面.6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶.8。
河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂.沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂.11。
韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。
弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等2、 说明下列力学性能指标的意义。
答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
金材二版习题答案(高职)
“十二五”高等职业教育规划教材《金属材料及热处理》实训题及模拟试卷答案主编王英杰械工业出版社内容简介《金属材料及热处理》思考与复习题及模拟试卷答案是与机械工业出版社出版的王英杰、金升主编的《金属材料及热处理》(第二版)相配套的教学辅助资料。
本教学辅助资料将主教材《金属材料及热处理》(第二版)中的全部思考与复习题进行了解答或提示。
同时,为了帮助教师评估教学情况和学生评估自己的学习情况,还根据教学需要组织编写了两套模拟试卷及标准答案,供师生选用。
模拟试卷所涉及的考核内容基本上覆盖各章主要内容的知识点和基本的教学要求,题型种类多,考题数量合理,没有难题和怪题,针对性强,便于学生复习和自学考核,也便于教师根据教学要求进行组卷。
《金属材料及热处理》(第二版)教材共14章,内容涉及:金属材料与机械制造过程、金属的性能、金属的晶体结构与结晶、铁碳合金相图、非合金钢、钢的热处理、低合金钢与合金钢、铸铁、非铁金属及其合金、粉末冶金、非金属材料、金属腐蚀及防护方法、新材料简介、材料选择与分析等内容。
《金属材料及热处理》(第二版)主要面向高等职业技术教育院校。
此外,还可作为中等职业教育和职工培训用教材。
《金属材料及热处理》(第二版)思考与复习题及模拟试卷答案由王英杰主编,杜力和王雪婷参编。
由于编写时间及编者水平有限,《金属材料及热处理》(第二版)思考与复习题及模拟试卷答案中难免有错误和不妥之处,恳请广大读者批评指正。
同时,本书在编写过程中参考了大量的文献资料,在此向文献资料的作者致以诚挚的谢意。
《金属材料及热处理》(第二版)编写组2012年06月目录第一部分思考与复习题及答案绪论第一章金属材料与机械制造过程概述第二章金属的性能第三章金属的晶体结构与结晶第四章铁碳合金相图第五章非合金钢第六章钢的热处理第七节低合金钢与合金钢第八章铸铁第九章非铁金属及其合金第十章粉末冶金第十一章非金属材料第十二章金属腐蚀及防护方法第十三章新材料简介第十四章材料选择及分析第二部分模拟试卷及答案模拟试卷A及答案模拟试卷B及答案第一部分思考与复习题及答案第一章金属材料与机械制造过程概述复习与思考一、名词解释1.金属材料答:金属材料是由金属元素或以金属元素为主,其他金属或非金属元素为辅构成的,并具有金属特性的工程材料。
金属材料学第二版戴起勋第一章课后题标准答案
第一章1.为什么说钢中的S、P杂质元素在一般情况下总是有害的?答:S、P会导致钢的热脆和冷脆,并且容易在晶界偏聚,导致合金钢的第二类高温回火脆性,高温蠕变时的晶界脆断。
S能形成FeS,其熔点为989℃,钢件在大于1000℃的热加工温度时FeS会熔化,所以易产生热脆;P能形成Fe3P,性质硬而脆,在冷加工时产生应力集中,易产生裂纹而形成冷脆。
2.钢中的碳化物按点阵结构分为哪两大类?各有什么特点?答:简单点阵结构和复杂点阵结构简单点阵结构的特点:硬度较高、熔点较高、稳定性较好;复杂点阵结构的特点:硬度较低、熔点较低、稳定性较差。
3.简述合金钢中碳化物形成规律。
答:①当rC/r M>0.59时,形成复杂点阵结构;当rC/r M<0.59时,形成简单点阵结构;②相似者相溶:完全互溶:原子尺寸、电化学因素均相似;有限溶解:一般K都能溶解其它元素,形成复合碳化物。
③NM/N C比值决定了碳化物类型④碳化物稳定性越好,溶解越难,析出难越,聚集长大也越难;⑤强碳化物形成元素优先与碳结合形成碳化物。
4.合金元素对Fe-C相图的S、E点有什么影响?这种影响意味着什么?答:A形成元素均使S、E点向_____移动,F形成元素使S、E点向_____移动。
S点左移意味着_____减小,E点左移意味着出现_______降低。
(左下方;左上方)(共析碳量;莱氏体的C量)5.试述钢在退火态、淬火态及淬火-回火态下,不同合金元素的分布状况。
答:退火态:非碳化物形成元素绝大多数固溶于基体中,而碳化物形成元素视C和本身量多少而定。
优先形成碳化物,余量溶入基体。
淬火态:合金元素的分布与淬火工艺有关。
溶入A体的因素淬火后存在于M、B中或残余A 中,未溶者仍在K中。
回火态:低温回火,置换式合金元素基本上不发生重新分布;>400℃,Me开始重新分布。
非K形成元素仍在基体中,K形成元素逐步进入析出的K中,其程度取决于回火温度和时间。
(完整版)金属学材料学课后习题答案全
(完整版)金属学材料学课后习题答案全1-1. 为什么说钢中的S、P 杂质元素在一般情况下是有害的?答:S容易和Fe结合形成熔点为989C的FeS相,会使钢在热加工过程中产生热脆性;P与Fe 结合形成硬脆的F&P相,使钢在冷变形加工过程中产生冷脆性。
1-2. 钢中的碳化物按点阵结构分为哪两大类?各有什么特点?答:可以分为简单点阵结构和复杂点阵结构,简单点阵结构的特点:硬度较高、熔点较高、稳定性较好;复杂点阵结构的特点:硬度较低、熔点较低、稳定性较差。
1-3. 简述合金钢中碳化物形成规律。
答:①当r C r M>0.59时,形成复杂点阵结构;当r C r x0.59时,形成简单点阵结构;② 相似者相溶:完全互溶:原子尺寸、电化学因素均相似;有限溶解:一般K 都能溶解其它元素,形成复合碳化物。
③强碳化合物形成元素优先与碳结合形成碳化物。
④N M N C 比值决定了碳化物类型⑤碳化物稳定性越好,溶解越难,析出难越,聚集长大也越难。
1-4.合金元素对Fe - F&C相图的S、E点有什么影响?这种影响意味着什么?答:凡是扩大Y 相区的元素均使S、E点向左下方移动;凡是封闭丫相区的元素均使S E 点向左上方移动。
S 点左移,意味着共析碳量减少; E 点左移,意味着出现莱氏体的碳含量减少。
1-19. 试解释40Cr13 已属于过共析钢,而Cr12 钢中已经出现共晶组织,属于莱氏体钢。
答:①因为Cr属于封闭y相区的元素,使S点左移,意味着共析碳量减小,所以钢中含有Cr12%寸,共析碳量小于0.4%,所以含0.4%C 13%Cr的40Cr13不锈钢就属于过共析钢。
②Cr使E点左移,意味着出现莱氏体的碳含量减小。
在Fe-C相图中,E点是钢和铁的分界线,在碳钢中是不存在莱氏体组织的。
但是如果加入了12%的Cr,尽管含碳量只有2%左右,钢中却已经出现了莱氏体组织。
1-21. 什么叫钢的内吸附现象?其机理和主要影响因素是什么?答:合金元素溶入基体后,与晶体缺陷产生交互作用,使这些合金元素发生偏聚或内吸附,使偏聚元素在缺陷处的浓度大于基体中的平均浓度,这种现象称为内吸附现象。
《金属学与热处理》(第二版)课后习题参考答案教学内容
金属学与热处理第一章习题1.作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6] 等晶向3.某晶体的原子位于正方晶格的节点上,其晶格常数a=b≠c,c=2/3a。
今有一晶面在X、Y、Z坐标轴上的截距分别是5个原子间距,2个原子间距和3个原子间距,求该晶面的晶面参数。
解:设X方向的截距为5a,Y方向的截距为2a,则Z方向截距为3c=3X2a/3=2a,取截距的倒数,分别为1/5a,1/2a,1/2a化为最小简单整数分别为2,5,5故该晶面的晶面指数为(2 5 5)4.体心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的晶面间距,并指出面间距最大的晶面解:(1 0 0)面间距为a/2,(1 1 0)面间距为√2a/2,(1 1 1)面间距为√3a/3三个晶面晶面中面间距最大的晶面为(1 1 0)7.证明理想密排六方晶胞中的轴比c/a=1.633证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内的原子相切,成正四面体,如图所示则OD=c/2,AB=BC=CA=CD=a因△ABC是等边三角形,所以有OC=2/3CE由于(BC)2=(CE)2+(BE)2则有(CD)2=(OC)2+(1/2c)2,即因此c/a=√8/3=1.6338.试证明面心立方晶格的八面体间隙半径为r=0.414R解:面心立方八面体间隙半径r=a/2-√2a/4=0.146a面心立方原子半径R=√2a/4,则a=4R/√2,代入上式有R=0.146X4R/√2=0.414R9.a)设有一刚球模型,球的直径不变,当由面心立方晶格转变为体心立方晶格时,试计算其体积膨胀。
b)经X射线测定,在912℃时γ-Fe的晶格常数为0.3633nm,α-Fe的晶格常数为0.2892nm,当由γ-Fe转化为α-Fe时,求其体积膨胀,并与a)比较,说明其差别的原因。
金属材料学课后答案(较全)
金属材料学课后答案(较全)第一章1.为什么说钢中的S、P杂质元素在一般情况下总是有害的?答:S、P会导致钢的热脆和冷脆,并且容易在晶界偏聚,导致合金钢的第二类高温回火脆性,高温蠕变时的晶界脆断。
S能形成FeS,其熔点为989℃,钢件在大于1000℃的热加工温度时FeS会熔化,所以易产生热脆;P能形成Fe3P,性质硬而脆,在冷加工时产生应力集中,易产生裂纹而形成冷脆。
2.钢中的碳化物按点阵结构分为哪两大类?各有什么特点?答:简单点阵结构和复杂点阵结构简单点阵结构的特点:硬度较高、熔点较高、稳定性较好;复杂点阵结构的特点:硬度较低、熔点较低、稳定性较差。
3.简述合金钢中碳化物形成规律。
答:①当rC/rM>0.59时,形成复杂点阵结构;当rC/rM<0.59时,形成简单点阵结构;②相似者相溶:完全互溶:原子尺寸、电化学因素均相似;有限溶解:一般K都能溶解其它元素,形成复合碳化物。
③NM/NC比值决定了碳化物类型④碳化物稳定性越好,溶解越难,析出难越,聚集长大也越难;⑤强碳化物形成元素优先与碳结合形成碳化物。
4.合金元素对Fe-C相图的S、E点有什么影响?这种影响意味着什么?答:A形成元素均使S、E点向_____移动,F形成元素使S、E点向_____移动。
S点左移意味着_____减小,E点左移意味着出现_______降低。
(左下方;左上方)(共析碳量;莱氏体的C量)5.试述钢在退火态、淬火态及淬火-回火态下,不同合金元素的分布状况。
答:退火态:非碳化物形成元素绝大多数固溶于基体中,而碳化物形成元素视C和本身量多少而定。
优先形成碳化物,余量溶入基体。
淬火态:合金元素的分布与淬火工艺有关。
溶入A体的因素淬火后存在于M、B中或残余A中,未溶者仍在K中。
回火态:低温回火,置换式合金元素基本上不发生重新分布;>400℃,Me开始重新分布。
非K形成元素仍在基体中,K形成元素逐步进入析出的K中,其程度取决于回火温度和时间。
金属材料学第二版戴起勋第二章课后题答案汇编
学习-----好资料第二章工程结构钢1.叙述构件用钢一般的服役条件、加工特点和性能要求。
答:服役条件:①工程结构件长期受静载;②互相无相对运动受大气(海水)的侵蚀;③有些构件受疲劳冲击;④一般在-50〜100C范围内使用;加工特点:焊接是构成金属结构的常用方法;一般都要经过如剪切、冲孔、热弯、深冲等成型工艺。
性能要求:①足够的强度与韧度(特别是低温韧度);②良好的焊接性和成型工艺性;③良好的耐腐蚀性;2.低碳钢中淬火时效和应变时效的机理是什么?对构件有何危害?答:构件用钢加热到Ac1以上淬火或塑性变形后,在放置过程中,强度、硬度上升,塑性、韧性下降,韧脆转变温度上升,这种现象分别称为淬火时效和应变时效。
产生的原因:C N等间隙原子偏聚或内吸附于位错等晶体缺陷处。
提高硬度、降低塑性和韧度。
危害:在生产中的弯角、卷边、冲孔、剪裁等过程中产生局部塑形变形的工艺操作,由于应变时效会使局部地区的断裂抗力降低,增加构件脆断的危险性。
应变时效还给冷变形工艺造成困难,往往因为裁剪边出现裂缝而报废。
3.为什么普低钢中基本上都含有不大于 2.0%w(Mn)?答:加入Mn有固溶强化作用,每1%Mn能够使屈服强度增加33MPa。
但是由于Mn能降低A3温度,使奥氏体在更低的温度下转变为铁素体而有轻微细化铁素体晶粒的作用。
Mn的含量过多时,可大为降低塑韧性,所以Mn控制在<2.0%。
4.为什么贝氏体型普低钢多采用0.5%w(Mo)和微量B作为基本合金化元素?答:钢中的主要合金元素是保证在较宽的冷却速度范围内获得以贝氏体为主的组织。
当Mo大于0.3%时,能显著推迟珠光体的转变,而微量的B在奥氏体晶界上有偏析作用,可有效推迟铁素体的转变,并且对贝氏体转变推迟较少。
因此Mo、B是贝氏体钢中必不可少的元素。
学习-----好资料5.什么是微合金化钢?微合金化元素的主要作用是什么?答:微合金化钢是指化学成分规范上明确列入需加入一种或几种碳氮化物形成元素的钢中。
金属材料学戴起勋第二版课后题答案
颜色不同的是课件和课后题都有的题目,水平有限,大家参考哦3-1在结构钢的部颁标准中,每个钢号的力学性能都注明热处理状态和试样直径或钢材厚度,为什么有什么意义这个实在不会也查不到,大家集思广益吧3-2为什么说淬透性是评定钢结构性能的重要指标结构钢一般要经过淬火后才能使用;淬透性好坏直接影响淬火后产品质量3-3调质钢中常用哪些合金元素这些合金元素各起什么作用Mn:↑↑淬透性,但↑过热倾向,↑回脆倾向;Cr:↑↑淬透性,↑回稳性,但↑回脆倾向;Ni:↑基体韧度, Ni-Cr复合↑↑淬透性,↑回脆;Mo:↑淬透性,↑回稳性,细晶,↓↓回脆倾向;V:有效细晶,↑淬透性 ,↓↓过热敏感性;3-4机械制造结构钢和工程结构钢对使用性能和工艺性能上的要求有什么不同工程结构钢:1、足够的强度与韧度特别是低温韧度;2、良好的焊接性和成型工艺性;3、良好的耐腐蚀性;4、低的成本机械制造结构钢:1具有良好的力学性能不同零件,对钢强、塑、韧、疲劳、耐磨性等有不同要求2具有良好冷热加工工艺性如锻造、冲压、热处理、车、铣、刨、磨等3-5低碳马氏体钢在力学性能和工艺性上有哪些优点在应用上应注意些什么问题力学性能:抗拉强度σb ,1150~1500MPa ;屈服强度σs , 950~1250 MPaψ≥40% ;伸长率δ,≥10% ;冲击韧度A K≥6J ;这些性能指标和中碳合金调质钢性能相当,常规的力学性能甚至优于调质钢;工艺性能:锻造温度淬火加自回火局限性:工作温度<200℃;强化后难以进行冷加工\焊接等工序; 只能用于中小件;淬火时变形大,要求严格的零件慎用.3-6某工厂原来使用45MnNiV生产直径为8mm高强度调质钢筋,要求Rm>1450Mpa,ReL>1200Mpa,A>%,热处理工艺是920±20℃油淬,470±10℃回火;因该钢缺货,库存有25MnSi钢;请考虑是否可以代用;热处理工艺如何调整能代替,900℃油淬或水淬,200℃回火3-7试述弹簧的服役条件和对弹簧钢的主要性能要求;为什么低合金弹簧钢中碳含量一般在%~%质量分数之间服役条件:储能减振、一般在动负荷下工作即在冲击、振动和长期均匀的周期改变应力下工作、也会在动静载荷作用下服役;性能要求:高的弹性极限及弹性减退抗力好,较高的屈服比;高的疲劳强度、足够的塑性和韧度;工艺性能要求有足够的淬透性;在某些环境下,还要求弹簧具有导电、无磁、耐高温和耐蚀等性能,良好的表面质量和冶金质量总的来说是为了保证弹簧不但具有高的弹性极限﹑高的屈服极限和疲劳极限弹簧钢含碳量要比调质钢高,还要有一定的塑性和韧性含碳量太高必然影响塑性和韧性了;3-8弹簧为什么要求较高的冶金质量和表面质量弹簧的强度极限高是否也意味着弹簧的疲劳极限高,为什么要严格控制弹簧钢材料的内部缺陷,要保证具有良好的冶金质量和组织均匀性;因为弹簧工作时表面承受的应力为最大,所以不允许表面缺陷,表面缺陷往往会成为应力高度集中的地方和疲劳裂纹源,显着地降低弹簧的疲劳强度不一定高;强度极限是在外力作用下进一步发生形变.是保持构件机械强度下能承受的最大应力,包括拉伸、压缩和剪切强度,不一定指弹性极限3-9有些普通弹簧冷卷成型后为什么进行去应力退火车辆用板簧淬火后,为什么要用中温回火去应力退火的目的是:a消除金属丝冷拔加工和弹簧冷卷成形的内应力;b稳定弹簧尺寸,利用去应力退火来控制弹簧尺寸;c提高金属丝的抗拉强度和弹性极限;回火目的:1减少或消除淬火内应力,防止工件变形或开裂;2获得工艺要求的力学性能;3稳定工件尺寸回火工艺选择的依据是弹性参数和韧性参数的平衡和配合3-10大型弹簧为什么要先成形后强化,小型弹簧先强化后成形为了方便成型,大弹簧强化后就很难改变形状了,所以要先成型再强化;反之小弹簧就可以先强化再成型3-11 直径为25mm的40CrNiMo钢棒料,经正火后难切削为什么40CrNiMo属于调质钢,正火得到的应该是珠光体组织;由于该钢的淬透性较好,空冷就能得到马氏体,不一定是全部,只要部分马氏体就会使硬度提高很多,而变得难以切削;3-12钢的切削加工型与材料的组织和硬度之间有什么关系为获得良好的切削性,中碳钢和高碳钢各自经过怎样的热处理,得到什么样的金相组织硬度由高到低的组织:马氏体、珠光体和铁素体,硬度高切削性能差;中碳钢:淬火加高温回火,回火后得回火索氏体高碳钢:淬火加低温回火,回火后得回火马氏体少量碳化物和残余奥氏体3-13用低淬钢做中、小模数的中、高频感应加热淬火齿轮有什么特点不改变表面化学成分,表面硬化而心部仍然保持较高的塑性和韧度;表面局部加热,零件的淬火变形小;加热速度快,可消除表面脱碳和氧化现象;在表面形成残余压应力,提高疲劳强度;小齿轮:得到沿着轮廓分布硬化层→“仿形硬化”关键3-14滚动轴承钢常含哪些元素、为什么含Cr量限制在一定范围①高碳、铬、硅、锰等合金元素②它可以提高淬透性、回火稳定性、硬度、耐磨性、耐蚀性;但如果质量分数过大大于%会使残余奥氏体增加,使钢的硬度、尺寸稳定性降低,同时增加碳化物的不均匀性,降低钢的韧性3-15滚动轴承钢对冶金质量、表面质量和原始组织有那些要求,为什么要求:纯净和组织均匀,不允许缺陷存在原因:1轴承钢的接触疲劳寿命随钢中的氧化物级别增加而降低;非金属夹杂物可破坏基体的连续性,容易引起应力集中,可达很高数值;2碳化物的尺寸和分布对轴承的接触疲劳寿命也有很大影响:大颗粒碳化物具有高的硬度和脆性、密集的碳化物影响钢的冷热加工性,降低钢的冲击韧度3-16滚动轴承钢原始组织中碳化物的不均匀性有哪几种情况应如何改善或消除液析碳化物、带状碳化物和网状碳化物消除措施:液析碳化物:采用高温扩散退火,一般在1200℃进行扩散退火带状碳化物:需要长时间退火网状碳化物:控制中扎或终锻温度、控制轧制后冷速或正火3-17在使用状态下,的最佳组织是什么在工艺上应如何保证组织特点:细小均匀的奥氏体晶粒度5~8级;M中含~%C;隐晶M基体上分布细小均匀的粒状K,体积分数约7~8%, 一般可有少量A R热处理工艺:球化退火→为最终淬火作组织准备;淬回火工艺参数对疲劳寿命有很大影响;一般采用保护气氛加热或真空加热;160℃保温3h 或更长回火,硬度62~66HRC;如要求消除A R → 淬火后立即冷处理,而后立即低温回火;3-18分析机床主轴的服役条件、性能要求;按最终热处理工艺分类机床主轴有哪几种每种主轴可选用那些钢号其冷热加工工艺路线是怎样的服役条件:①传递扭矩,交变性,有时会承受弯曲、拉压负荷;②都有轴承支承,轴颈处受磨损,需要较高的硬度,耐磨性好;③大多数承受一定的冲击和过载性能要求:足够的强度;一定的韧度和耐磨性分类:轻载主轴:采用45钢,整体经正火或调质处理,轴颈处高频感应加热淬火;中载主轴:一般用40Cr等制造,进行调质处理,轴颈处高频感应加热淬火;如冲击力较大,也可用20Cr等钢进行渗碳淬火重载主轴:可用20CrMnTi钢制造,渗碳淬火高精度主轴:一般可用38CrMoAlA氮化钢制造,经调质后氮化处理,可满足要求冷热加工工艺路线:毛坯→预先热处理→机械粗加工→最终热处理淬火回火或渗碳淬火等→精加工;3-19分析齿轮的服役条件、性能要求;在机床、汽车拖拉机及重型机械上,常分别采用哪些材料做齿轮应用那些热处理工艺服役条件:机床齿轮:载荷不大,工作平稳,一般无大的冲击力,转速也不高汽车、拖拉机上的变速箱齿轮属于重载荷齿轮;航空发动机齿轮和一些重型机械上的齿轮承受高速和重载性能要求:较高的弯曲疲劳强度、高的接触疲劳抗力、足够的塑性和韧度、耐磨性好机床齿轮:常选用调质钢制造,如45、40Cr、42SiMn等钢,热处理工艺为正火或调质,高频感应加热淬火汽车、拖拉机上的变速箱齿轮:一般都采用渗碳钢,如20Cr、20CrMnTi等,进行渗碳热处理;航空发动机齿轮和一些重型机械上的齿轮:一般多采用高淬透性渗碳钢,如12CrNi3A、18Cr2Ni4WA等钢;3-20高锰耐磨钢有什么特点,如何获得这些特点,在什么情况下适合使用这类钢特点:高碳、高锰;铸件使用;特点获得手段:1材质方面:控制碳含量、锰含量、加入适量合金元素2热处理方面:①水韧处理加热T应>Acm,一般为1050 ~1100℃,在一定保温时间下,K全部溶入A中②缓慢加热、避免产生裂纹③铸件出炉至入水时间应尽量缩短,以避免碳化物析出;冷速要快,常采用水冷;水冷前水温不宜超过30℃,水冷后水温应小于60℃④水韧处理后不宜再进行250~350℃的回火处理,也不宜在250~350℃以上温度环境中使用;应用:广泛应用于承受大冲击载荷、强烈磨损的工况下工作的零件,如各式碎石机的衬板、颚板、磨球,挖掘机斗齿、坦克的履带板等3-21为什么ZGMn13型高锰耐磨钢咋淬火时能得到全部奥氏体组织,而缓冷却得到了大量的马氏体①由于高锰钢的铸态组织为奥氏体,碳化物及少量的相变产物珠光体所组成;沿奥氏体晶界析出的碳化物降低钢的韧性,为消除碳化物,将钢加热至奥氏体区温度1050-1100℃,视钢中碳化物的细小或粗大而定并保温一段时间每25mm壁厚保温1h,使铸态组织中的碳化物基本上都固溶到奥氏体中,然后在水中进行淬火,从而得到单一的奥氏体组织②Mn元素的存在降低了Ms点,在冷却过程中Mn元素会析出以使Ms点升高;淬火时冷却速度较快Mn来不及析出,所以Ms点较低,得到的是奥氏体组织;缓慢冷却时Mn可以析出,Ms点上升,得到的就是大量马氏体组织;3-22一般说硫S元素在钢中的有害作用是引起热脆性,而在易切削钢中为什么有有意的加入一定量的S元素硫在钢中与锰和铁形成硫化锰夹杂,这类夹杂物能中断基体金属的连续性,在切削时促使断屑形成小而短的卷曲半径,而易于排除,减少刀具磨损,降低加工表面粗糙度,提高刀具寿命;通常钢的被切削性随钢中硫含量的增多而增高;3-23 20Mn2钢渗碳后是否适合直接淬火,为什么不能,原因:20Mn2不是本质细晶粒钢,Mn元素在低碳钢中减小的是珠光体晶粒尺寸,高碳钢中增大的也是珠光体晶粒,而粗晶粒钢是加热时在一定范围内,对本质晶粒钢是在930以下随温度升高晶粒变大,细晶粒钢是变小,或者不易长大,Mn虽然可以细化珠光体,但是却可以增大奥氏体长大的倾向,对20Mn2,含锰较高,这样大大增加奥氏体长大的倾向,所以是本质粗晶粒钢,不能直接淬火;3-24在飞机制造厂中,常用18Cr2Ni4WA钢制造发动机变速箱齿轮;为减少淬火后残余应力和齿轮的尺寸变化,控制心部硬度不致过高,以保证获得必需的冲击吸收能量,采用如下工艺:将渗碳后的齿轮加热到850℃左右,保温后淬入200~220℃的第一热浴中,保温10min左右,取出后立即置于500~570℃的第二热浴中,保持1~2h,去出空冷到室温;问此时钢表、里的组织是什么已知该钢的Ms是310℃,表面渗碳后的Ms约是80℃表层:回火马氏体加少量残余奥氏体心部:回火索氏体3-25某精密镗床主轴用38CrMoAl钢制造,某重型齿轮铣床主轴选择了20CrMnTi制造,某普通车床材料为40Cr钢;试分析说明它们各自采用什么样的热处理工艺及最终的组织和性能特点不必写出热处理工艺具体参数;热处理工艺:38CrMoAlA氮化钢制造某精密镗床主轴,经调质后氮化处理,可满足要求; 20CrMnTi钢制造某重型齿轮铣床主轴,渗碳淬火;40Cr钢制造某普通车床材料,进行调质处理,轴颈处高频感应加热淬火最终组织和性能特点:38CrMoAlA氮化钢含氮层,回火索氏体;有高的表面硬度、耐磨性及疲劳强度,并具有良好的耐热性及腐蚀性,淬透性不高20CrMnTi表面一般是残余奥氏体+马氏体+碳化物有时无的混合组织,心部是低碳马氏体、低碳马氏体+上贝氏体、或低碳马氏体+上贝氏体+铁素体的混合组织;具有较高的强度和韧性,特别是具有较高的低温冲击韧性良好的加工性,加工变形微小,抗疲劳性能相当好40Cr钢表面马氏体,心部回火索氏体;40Cr钢一定的韧性、塑性和耐磨性3-26试述微合金非调质钢的成分、组织及性能特点成分:①微合金非调质钢是通过微合金化、控制轧制锻制和控制冷却等强韧化方法,取消了调质处理达到或接近调质钢力学性能的一类优质或特殊质量结构钢②微合金化元素: Ti、Nb、V 、N等元素,V是主要的;多元适量,复合加入原则组织:主要是F+P+弥散析出K性能特点:①微合金非调质钢获得了晶内析出铁素体IGF组织,细化了晶粒,热锻后的晶粒度可达8级以上;具有高强度、高韧性;②锻后空冷,抗拉强度、冲击韧度都很高3-27材料选用的基本原则有哪些①满足使用性能要求;②满足工艺性能要求③要经济适用④其他因素:考虑外形和尺寸特点;合金化基本原则:多元适量,复合加入;3-28论述选择材料的基本思路和方法;分析材料的工作条件、尺寸形状和应力状态,科学合理的确定零件的技术要求;通过分析分析或实验,结合同类型零件失效分析结果,找出实际工作时零件的主要和次要失效抗力指标作为选材的基本依据;根据所要求的主要力学性能,选择材料综合考虑钢种是否满足次要失效抗力指标的可能性和可能采用的工艺措施审查所选钢种是否满足所有工艺性基本要求和组织生产的可能性,进一步考虑材料的经济性和生产成本尽量选择简化加工工艺的材料、要考虑零件的综合成本、保证淬透性钢的合理选择。
金属材料学第二版戴起勋第二章课后题答案精编WORD版
金属材料学第二版戴起勋第二章课后题答案精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】第二章工程结构钢1.叙述构件用钢一般的服役条件、加工特点和性能要求。
答:服役条件:①工程结构件长期受静载;②互相无相对运动受大气(海水)的侵蚀;③有些构件受疲劳冲击;④一般在-50~100℃范围内使用;加工特点:焊接是构成金属结构的常用方法;一般都要经过如剪切、冲孔、热弯、深冲等成型工艺。
性能要求:①足够的强度与韧度(特别是低温韧度);②良好的焊接性和成型工艺性;③良好的耐腐蚀性;2.低碳钢中淬火时效和应变时效的机理是什么?对构件有何危害?答:构件用钢加热到Ac1以上淬火或塑性变形后,在放置过程中,强度、硬度上升,塑性、韧性下降,韧脆转变温度上升,这种现象分别称为淬火时效和应变时效。
产生的原因:C、N等间隙原子偏聚或内吸附于位错等晶体缺陷处。
提高硬度、降低塑性和韧度。
危害:在生产中的弯角、卷边、冲孔、剪裁等过程中产生局部塑形变形的工艺操作,由于应变时效会使局部地区的断裂抗力降低,增加构件脆断的危险性。
应变时效还给冷变形工艺造成困难,往往因为裁剪边出现裂缝而报废。
3.为什么普低钢中基本上都含有不大于2.0%w(Mn)?答:加入Mn有固溶强化作用,每1%Mn能够使屈服强度增加33MPa。
但是由于Mn能降低A3温度,使奥氏体在更低的温度下转变为铁素体而有轻微细化铁素体晶粒的作用。
Mn的含量过多时,可大为降低塑韧性,所以Mn控制在<2.0%。
4.为什么贝氏体型普低钢多采用0.5%w(Mo)和微量B作为基本合金化元素?答:钢中的主要合金元素是保证在较宽的冷却速度范围内获得以贝氏体为主的组织。
当Mo大于0.3%时,能显着推迟珠光体的转变,而微量的B在奥氏体晶界上有偏析作用,可有效推迟铁素体的转变,并且对贝氏体转变推迟较少。
因此Mo、B是贝氏体钢中必不可少的元素。
金属材料与热处理(少学时)(第二版)习题册答案
金属材料与热处理(少学时)(第二版)答案绪论一、填空题(将正确答案填写在横线上)1.材料能源信息2.40多万 5%左右金属3.石器青铜器铁器水泥钢铁硅新材料4.成分热处理金属材料性能5. 成分热处理用途二、简答题1.答:为了能够正确的认识和使用金属材料,合理地确定不同金属材料的加工方法,充分发挥它们的作用,我们必须比较深入地学习有关金属材料的知识。
2.答:第一章金属材料及其性能§1-1 金属材料的基本知识一、填空题(将正确答案填写在横线上)1.合金金属特性2.黑色金属有色金属3. 静冲击交变4. 弹性塑性5.使用性能工艺性能二、选择题(将正确答案的序号填在括号内)1.A2.B3. C三、名词解释1. 答:弹性变形是指外力消除后,能够恢复的变形;塑性变形是指外力消除后,无法恢复的永久性的变形。
2.答:物体受外力作用后所导致物体内部之间的相互作用力称为内力。
单位横截面积上的内力称为应力。
四、简答题1.答:(略)2.金属材料是如何分类的?答:金属材料种类繁多,通常分为黑色金属和有色金属两大类。
黑色金属指铁、锰、铬及其合金,而把除铁、锰、铬以外的其他金属及合金称为有色金属(或××合金)。
另外,通常将硬质合金也作为一个类别来单独划分。
§1—2金属材料的力学性能一、填空题(将正确答案填写在横线上)1.强度塑性硬度冲击韧性疲劳强度2.抗拉强度抗压强度抗扭强度抗弯强度抗剪强度3.静永久(塑性)变形断裂4.断后伸长率(A)断面收缩率(Z)5.硬度6.布氏硬度洛氏硬度维氏硬度7.试验力测量表面压痕直径8.平均压力 HBW9.冲击不破坏10. 107 108二、判断题(正确的打“√”,错误的打“×”)1. ×2. ×3. ×4. √5. √6. √7. √8. √9. √10. √三、选择题(将正确答案的序号填在括号内)1.C2.A3. A4. A5.C四、名词解释1.答:屈服强度是金属材料呈现屈服现象时,材料发生塑性变形而力不增加的应力点,用R eL表示。
金属材料学(第二版)课后答案
第一章钢的合金化原理1.名词解释1)合金元素: 特别添加到钢中为了保证获得所要求的组织结构从而得到一定的物理、化学或机械性能的化学元素。
(常用M来表示)2)微合金元素: 有些合金元素如V,Nb,Ti, Zr和B等,当其含量只在0.1%左右(如B 0.001%,V 0.2 %)时,会显著地影响钢的组织与性能,将这种化学元素称为微合金元素。
3)奥氏体形成元素:在γ-Fe中有较大的溶解度,且能稳定γ相;如Mn, Ni, Co, C, N, Cu;4)铁素体形成元素: 在α-Fe中有较大的溶解度,且能稳定α相。
如:V,Nb, Ti 等。
5)原位析出: 元素向渗碳体富集,当其浓度超过在合金渗碳体中的溶解度时, 合金渗碳体就在原位转变成特殊碳化物如Cr钢中的Cr:ε-FexC→Fe3C→(Fe, Cr)3C→(Cr, Fe)7C3→(Cr, Fe)23C66)离位析出: 在回火过程中直接从α相中析出特殊碳化物,同时伴随着渗碳体的溶解,可使HRC和强度提高(二次硬化效应)。
如V,Nb, Ti等都属于此类型。
2.合金元素V、Cr、W、Mo、Mn、Co、Ni、Cu、Ti、Al中哪些是铁素体形成元素?哪些是奥氏体形成元素?哪些能在a-Fe中形成无限固溶体?哪些能在g-Fe 中形成无限固溶体?答:铁素体形成元素:V、Cr、W、Mo、Ti、Al;奥氏体形成元素:Mn、Co、Ni、Cu能在a-Fe中形成无限固溶体:V、Cr;能在g-Fe 中形成无限固溶体:Mn、Co、Ni3.简述合金元素对扩大或缩小γ相区的影响,并说明利用此原理在生产中有何意义?答:(1)扩大γ相区:使A3降低,A4升高一般为奥氏体形成元素分为两类:a.开启γ相区:Mn, Ni, Co 与γ-Fe无限互溶.b.扩大γ相区:有C,N,Cu等。
如Fe-C相图,形成的扩大的γ相区,构成了钢的热处理的基础。
(2)缩小γ相区:使A3升高,A4降低。
一般为铁素体形成元素分为两类:a.封闭γ相区:使相图中γ区缩小到一个很小的面积形成γ圈,其结果使δ相区与α相区连成一片。
金属材料学课后答案(较全)
金属材料学课后答案(较全)第一章1.为什么说钢中的S、P杂质元素在一般情况下总是有害的?答:S、P会导致钢的热脆和冷脆,并且容易在晶界偏聚,导致合金钢的第二类高温回火脆性,高温蠕变时的晶界脆断。
S能形成FeS,其熔点为989℃,钢件在大于1000℃的热加工温度时FeS会熔化,所以易产生热脆;P能形成Fe3P,性质硬而脆,在冷加工时产生应力集中,易产生裂纹而形成冷脆。
2.钢中的碳化物按点阵结构分为哪两大类?各有什么特点?答:简单点阵结构和复杂点阵结构简单点阵结构的特点:硬度较高、熔点较高、稳定性较好;复杂点阵结构的特点:硬度较低、熔点较低、稳定性较差。
3.简述合金钢中碳化物形成规律。
答:①当rC/rM>0.59时,形成复杂点阵结构;当rC/rM<0.59时,形成简单点阵结构;②相似者相溶:完全互溶:原子尺寸、电化学因素均相似;有限溶解:一般K都能溶解其它元素,形成复合碳化物。
③NM/NC比值决定了碳化物类型④碳化物稳定性越好,溶解越难,析出难越,聚集长大也越难;⑤强碳化物形成元素优先与碳结合形成碳化物。
4.合金元素对Fe-C相图的S、E点有什么影响?这种影响意味着什么?答:A形成元素均使S、E点向_____移动,F形成元素使S、E点向_____移动。
S点左移意味着_____减小,E点左移意味着出现_______降低。
(左下方;左上方)(共析碳量;莱氏体的C量)5.试述钢在退火态、淬火态及淬火-回火态下,不同合金元素的分布状况。
答:退火态:非碳化物形成元素绝大多数固溶于基体中,而碳化物形成元素视C和本身量多少而定。
优先形成碳化物,余量溶入基体。
淬火态:合金元素的分布与淬火工艺有关。
溶入A体的因素淬火后存在于M、B中或残余A中,未溶者仍在K中。
回火态:低温回火,置换式合金元素基本上不发生重新分布;>400℃,Me开始重新分布。
非K形成元素仍在基体中,K形成元素逐步进入析出的K中,其程度取决于回火温度和时间。
金属材料学第二版戴起勋课后题答案
⾦属材料学第⼆版戴起勋课后题答案第⼀章1.为什么说钢中的S、P杂质元素在⼀般情况下总是有害的?答:S、P会导致钢的热脆和冷脆,并且容易在晶界偏聚,导致合⾦钢的第⼆类⾼温回⽕脆性,⾼温蠕变时的晶界脆断。
S能形成FeS,其熔点为989℃,钢件在⼤于1000℃的热加⼯温度时FeS会熔化,所以易产⽣热脆;P能形成Fe3P,性质硬⽽脆,在冷加⼯时产⽣应⼒集中,易产⽣裂纹⽽形成冷脆。
2.钢中的碳化物按点阵结构分为哪两⼤类?各有什么特点?答:简单点阵结构和复杂点阵结构简单点阵结构的特点:硬度较⾼、熔点较⾼、稳定性较好;复杂点阵结构的特点:硬度较低、熔点较低、稳定性较差。
3.简述合⾦钢中碳化物形成规律。
答:①当r C/r M>0.59时,形成复杂点阵结构;当r C/r M<0.59时,形成简单点阵结构;②相似者相溶:完全互溶:原⼦尺⼨、电化学因素均相似;有限溶解:⼀般K都能溶解其它元素,形成复合碳化物。
③N M/N C⽐值决定了碳化物类型④碳化物稳定性越好,溶解越难,析出难越,聚集长⼤也越难;⑤强碳化物形成元素优先与碳结合形成碳化物。
4.合⾦元素对Fe-C相图的S、E点有什么影响?这种影响意味着什么?答:A形成元素均使S、E点向_____移动,F形成元素使S、E点向_____移动。
S点左移意味着_____减⼩,E点左移意味着出现_______降低。
(左下⽅;左上⽅)(共析碳量;莱⽒体的C量)5.试述钢在退⽕态、淬⽕态及淬⽕-回⽕态下,不同合⾦元素的分布状况。
答:退⽕态:⾮碳化物形成元素绝⼤多数固溶于基体中,⽽碳化物形成元素视C和本⾝量多少⽽定。
优先形成碳化物,余量溶⼊基体。
淬⽕态:合⾦元素的分布与淬⽕⼯艺有关。
溶⼊A体的因素淬⽕后存在于M、B中或残余A中,未溶者仍在K中。
回⽕态:低温回⽕,置换式合⾦元素基本上不发⽣重新分布;>400℃,Me 开始重新分布。
⾮K形成元素仍在基体中,K形成元素逐步进⼊析出的K中,其程度取决于回⽕温度和时间。
(完整版)金属学材料学课后习题答案全
1-1. 为什么说钢中的S、P 杂质元素在一般情况下是有害的?答:S容易和Fe结合形成熔点为989C的FeS相,会使钢在热加工过程中产生热脆性;P与Fe 结合形成硬脆的F&P相,使钢在冷变形加工过程中产生冷脆性。
1-2. 钢中的碳化物按点阵结构分为哪两大类?各有什么特点?答:可以分为简单点阵结构和复杂点阵结构,简单点阵结构的特点:硬度较高、熔点较高、稳定性较好;复杂点阵结构的特点:硬度较低、熔点较低、稳定性较差。
1-3. 简述合金钢中碳化物形成规律。
答:①当r C r M>0.59时,形成复杂点阵结构;当r C r x0.59时,形成简单点阵结构;② 相似者相溶:完全互溶:原子尺寸、电化学因素均相似;有限溶解:一般K 都能溶解其它元素,形成复合碳化物。
③强碳化合物形成元素优先与碳结合形成碳化物。
④N M N C 比值决定了碳化物类型⑤碳化物稳定性越好,溶解越难,析出难越,聚集长大也越难。
1-4.合金元素对Fe - F&C相图的S、E点有什么影响?这种影响意味着什么?答:凡是扩大Y 相区的元素均使S、E点向左下方移动;凡是封闭丫相区的元素均使S E 点向左上方移动。
S 点左移,意味着共析碳量减少; E 点左移,意味着出现莱氏体的碳含量减少。
1-19. 试解释40Cr13 已属于过共析钢,而Cr12 钢中已经出现共晶组织,属于莱氏体钢。
答:①因为Cr属于封闭y相区的元素,使S点左移,意味着共析碳量减小,所以钢中含有Cr12%寸,共析碳量小于0.4%,所以含0.4%C 13%Cr的40Cr13不锈钢就属于过共析钢。
②Cr使E点左移,意味着出现莱氏体的碳含量减小。
在Fe-C相图中,E点是钢和铁的分界线,在碳钢中是不存在莱氏体组织的。
但是如果加入了12%的Cr,尽管含碳量只有2%左右,钢中却已经出现了莱氏体组织。
1-21. 什么叫钢的内吸附现象?其机理和主要影响因素是什么?答:合金元素溶入基体后,与晶体缺陷产生交互作用,使这些合金元素发生偏聚或内吸附,使偏聚元素在缺陷处的浓度大于基体中的平均浓度,这种现象称为内吸附现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章钢的合金化原理1.名词解释1)合金元素: 特别添加到钢中为了保证获得所要求的组织结构从而得到一定的物理、化学或机械性能的化学元素。
(常用M来表示)2)微合金元素: 有些合金元素如V,Nb,Ti, Zr和B等,当其含量只在0.1%左右(如B 0.001%,V 0.2 %)时,会显著地影响钢的组织与性能,将这种化学元素称为微合金元素。
3)奥氏体形成元素:在γ-Fe中有较大的溶解度,且能稳定γ相;如Mn, Ni, Co, C, N, Cu;4)铁素体形成元素: 在α-Fe中有较大的溶解度,且能稳定α相。
如:V,Nb, Ti 等。
5)原位析出: 元素向渗碳体富集,当其浓度超过在合金渗碳体中的溶解度时, 合金渗碳体就在原位转变成特殊碳化物如Cr钢中的Cr:ε-FexC→Fe3C→(Fe, Cr)3C→(Cr, Fe)7C3→(Cr, Fe)23C66)离位析出: 在回火过程中直接从α相中析出特殊碳化物,同时伴随着渗碳体的溶解,可使HRC和强度提高(二次硬化效应)。
如V,Nb, Ti等都属于此类型。
2.合金元素V、Cr、W、Mo、Mn、Co、Ni、Cu、Ti、Al中哪些是铁素体形成元素?哪些是奥氏体形成元素?哪些能在a-Fe中形成无限固溶体?哪些能在g-Fe 中形成无限固溶体?答:铁素体形成元素:V、Cr、W、Mo、Ti、Al;奥氏体形成元素:Mn、Co、Ni、Cu能在a-Fe中形成无限固溶体:V、Cr;能在g-Fe 中形成无限固溶体:Mn、Co、Ni3.简述合金元素对扩大或缩小γ相区的影响,并说明利用此原理在生产中有何意义?答:(1)扩大γ相区:使A3降低,A4升高一般为奥氏体形成元素分为两类:a.开启γ相区:Mn, Ni, Co 与γ-Fe无限互溶.b.扩大γ相区:有C,N,Cu等。
如Fe-C相图,形成的扩大的γ相区,构成了钢的热处理的基础。
(2)缩小γ相区:使A3升高,A4降低。
一般为铁素体形成元素分为两类:a.封闭γ相区:使相图中γ区缩小到一个很小的面积形成γ圈,其结果使δ相区与α相区连成一片。
如V, Cr, Si, A1, Ti, Mo, W, P, Sn, As, Sb。
b.缩小γ相区:Zr, Nb, Ta, B, S, Ce 等(3)生产中的意义:可以利用M扩大和缩小γ相区作用,获得单相组织,具有特殊性能,在耐蚀钢和耐热钢中应用广泛。
4.简述合金元素对铁碳相图(如共析碳量、相变温度等)的影响。
答:答:1)改变了奥氏体区的位置2)改变了共晶温度:(l)扩大γ相区的元素使A1,A3下降;(2)缩小γ相区的元素使A1,A3升高。
当Mo>8.2%, W>12%,Ti>1.0%,V>4.5%,Si>8.5%,γ相区消失。
3.)改变了共析含碳量:所有合金元素均使S点左移。
(提问:对组织与性能有何影响呢?)5.合金钢中碳化物形成元素(V,Cr,Mo,Mn等)所形成的碳化物基本类型及其相对稳定性。
答:答:基本类型:MC型;M2C型;M23C6型;M7C3型;M3C型;M6C型;(强K形成元素形成的K比较稳定,其顺序为:Ti>Zr>Nb>V>W,Mo>Cr>Mn>Fe)各种K相对稳定性如下:MC→M2C→M6C→M23C6→M7C3→M3C(高-------------------------低)6.主要合金元素(V,Cr,Ni,Mn,Si,B等)对过冷奥氏体冷却转变影响的作用机制。
答:Ti, Nb, Zr, V:主要是通过推迟P转变时K形核与长大来提高过冷γ的稳定性;W,Mo,Cr:1)推迟K形核与长大;2)增加固溶体原子间的结合力,降低Fe的自扩散激活能。
作用大小为:Cr>W>MoMn:(Fe,Mn)3C,减慢P转变时合金渗碳体的形核与长大;扩大γ相区,强烈推迟γ→α转变,提高α的形核功;Ni:开放γ相区,并稳定γ相,提高α的形核功(渗碳体可溶解Ni, Co)Co:扩大γ相区,但能使A3温度提高(特例),使γ→α转变在更高的温度进行,降低了过冷γ的稳定性。
使C曲线向左移。
Al, Si :不形成各自K,也不溶解在渗碳体中,必须扩散出去为K形核创造条件;Si可提高Fe原子的结合力。
B,P,Re:强烈的内吸附元素,富集于晶界,降低了γ的界面能,阻碍α相和K形核。
7.合金元素对马氏体转变有何影响?答:合金元素的作用表现在:1)对马氏体点Ms- Mf温度的影响;2)改变马氏体形态及精细结构(亚结构)。
除Al,Co 外,都降低Ms温度,其降低程度:强C→Mn→Cr→Ni→V→Mo,W,Si弱提高γ’含量:可利用此特点使Ms温度降低于0℃以下,得到全部γ组织。
如加入Ni,Mn,C,N 等合金元素有增加形成孪晶马氏体的倾向,且亚结构与合金成分和马氏体的转变温度有关. 8.如何利用合金元素来消除或预防第一次、第二次回火脆性?答:1)低温回火脆性(第I类,不具有可逆性)其形成原因:沿条状马氏体的间界析出K薄片;防止:加入Si, 脆化温度提高300℃;加入Mo, 减轻作用。
2)高温回火脆性(第II类,具有可逆性)其形成原因:与钢杂质元素向原奥氏体晶界偏聚有关。
防止:加入W,Mo消除或延缓杂质元素偏聚.9.如何理解二次硬化与二次淬火两个概念的相关性与不同特点。
答:二次硬化:在含有Ti, V, Nb, Mo, W等较高合金钢淬火后,在500- 600℃范围内回火时,在α相中沉淀析出这些元素的特殊碳化物,并使钢的HRC和强度提高。
(但只有离位析出时才有二次硬化现象)二次淬火:在强K形成元素含量较高的合金钢中淬火后γ’十分稳定,甚至加热到500-600℃回火时升温与保温时中仍不分解,而是在冷却时部分转变成马氏体,使钢的硬度提高。
相同点:都发生在合金钢中,含有强碳化物形成元素相对多,发生在淬回火过程中,且回火温度550℃左右。
不同点:二次淬火,是回火冷却过程中Ar转变为m,是钢硬度增加。
二次硬化:回火后,钢硬度不降反升的现象(由于特殊k的沉淀析出)10.一般地,钢有哪些强化与韧化途径?答1)强化的主要途径宏观上:钢的合金化、冷热加工及其综合运用是钢强化的主要手段。
微观上:在金属晶体中造成尽可能多的阻碍位错运动的障碍;或者尽可能减少晶体中的可动位错,抑制位错源的开动,如晶须。
(主要机制有:固溶强化、细晶强化、位错强化、“第二相”强化、沉淀强化、时效强化、弥散强化、析出强化、二次硬化、过剩相强化)2)韧化途径:细化晶粒;降低有害元素的含量;防止预存的显微裂纹;形变热处理;利用稳定的残余奥氏体来提高韧性;加入能提高韧性的M,如Ni, Mn;尽量减少在钢基体中或在晶界上存在粗大的K或其它化合物相。
第二章工程结构钢1.对工程结构钢的基本性能要求是什么?答:(1)足够高的强度、良好的塑性;(2)适当的常温冲击韧性,有时要求适当的低温冲击韧性;(3)良好的工艺性能。
2.合金元素在低合金高强度结构钢中的主要作用是什么?为什么考虑采用低C?答:为提高碳素工程结构钢的强度,而加入少量合金元素,利用合金元素产生固溶强化、细晶强化和沉淀强化。
利用细晶强化使钢的韧-脆转变温度的降低,来抵消由于碳氮化物沉淀强化使钢的韧-脆转变温度的升高。
考虑低C的原因:(1)C含量过高,P量增多,P为片状组织,会使钢的脆性增加,使FATT50(℃)增高。
(2)C含量增加,会使C当量增大,当C当量>0.47时,会使钢的可焊性变差,不利于工程结构钢的使用。
3.什么是微合金钢?微合金化元素在微合金化钢中的主要作用有哪些?试举例说明。
答:微合金钢:利用微合金化元素Ti, Nb, V;主要依靠细晶强化和沉淀强化来提高强度;利用控制轧制和控制冷却工艺----- 高强度低合金钢微合金元素的作用:1)抑制奥氏体形变再结晶;例:再热加工过程中,通过应变诱导析出铌、钛、钒的氮化物,沉淀在晶界、亚晶界和位错上,起钉扎作用,有效地阻止奥氏体再结晶的晶界和位错的运动,抑制再结晶过程的进行。
2)阻止奥氏体晶粒长大;例:微量钛(w≤0.02%)以TiN从高温固态钢中析出,呈弥散分布,对阻止奥氏体晶粒长大很有效。
3)沉淀强化;例:w(Nb)≤0.04%时,细化晶粒造成的屈服强度的增量ΔσG大于沉淀强化引起的增量ΔσPh;当w(Nb)≥0.04%时, ΔσPh增量大大增加,而ΔσG保持不变。
4)改变与细化钢的组织例:在轧制加热时,溶于奥氏体的微合金元素提高了过冷奥氏体的稳定性,降低了发生先共析铁素体和珠光体的温度范围,低温下形成的先共析铁素体和珠光体组织更细小,并使相间沉淀Nb(C,N)和V(C,N)的粒子更细小。
4.低碳贝氏体钢的合金化有何特点?解:合金元素主要是能显著推迟先共析F和P转变,但对B转变推迟较少的元素如Mo,B,可得到贝氏体组织。
1)加入Mn, Ni, Cr等合金元素,进一步推迟先共析F和P转变,并使Bs点下降,可得到下B组织;2)加入微合金化元素充分发挥其细化作用和沉淀作用;3)低碳,使韧性和可焊性提高。
第三章机械制造结构钢1.名词解释1)液析碳化物:由于碳和合金元素偏析,在局部微小区域内从液态结晶时析出的碳化物。
2)网状碳化物:过共析钢在热轧(锻)加工后缓慢冷却过程中由二次碳化物以网状析出于奥氏体晶界所造成的。
3)水韧处理:高锰钢铸态组织中沿晶界析出的网状碳化物显著降低钢的强度、韧性和抗磨性。
将高锰钢加热到单相奥氏体温度范围,使碳化物充分溶入奥氏体,然后水冷,获得单一奥氏体组织。
4)超高强度钢:一般讲,屈服强度在1 370MPa(140 kgf/mm2)以上,抗拉强度在1 620 MPa (165 kgf/mm2)以上的合金钢称超高强度钢。
2.调质钢、弹簧钢进行成分、热处理、常用组织及主要性能的比较,并熟悉各自主要钢种。
答:成分热处理常用组织主要性能调质钢0.30~0.50%C的C钢或中、低合金钢淬火与高温回火回火S或回火T较高的强度,良好的塑性和韧性弹簧钢中、高碳素钢或低合金钢淬火和中温回火回火T 高的弹性极限,高的疲劳强度,足够的塑性和韧性主要钢种:A.调质钢:按淬透性大小可分为几级:1)40,45,45B2)40Cr,45Mn2, 45MnB, 35MnSi3)35CrMo, 42MnVB, 40MnMoB ,40CrNi4)40CrMnMo, 35SiMn2MoV,40CrNiMoB.弹簧钢:1)Mn弹簧钢:60Mn,65Mn2)MnSi弹簧钢:55Si2Mn,60Si2MnA3)Cr弹簧钢:50CrMn,50CrVA, 50CrMnVA (使用T<300℃)4)耐热弹簧:30W4Cr2VA (可达500℃)5)耐蚀弹簧:3Cr13, 4Cr13, 1Cr18Ni9Ti (温度<400℃)3.液析碳化物和带状碳化物的形成、危害及消除方法。