有静差转速单闭环直流调速系统的建模与仿真

合集下载

单闭环不可逆直流调速系统仿真实验设计

单闭环不可逆直流调速系统仿真实验设计

课程设计单闭环不可逆直流调速系统仿真实验设计指导教师:学院:专业:班级:姓名:学号:目录任务书 (3)概述 (4)原理 (5)建模与参数设置 (12)仿真结果及分析 (16)参考文献 (17)附图 (18)任务书单闭环不可逆直流调速系统仿真实验设计1.画出系统的仿真模型2.主电路的建模和模型的参数设置(1)三相对称交流电压源的建模和参数设置(2)晶闸管整流的建模和参数设置(3)平波电抗器的建模和参数设置(4)直流电动机的建模和参数设置(5)同步脉冲触发器的建模和参数设置3.控制电路的建模和参数设置4.系统的仿真参数设置5.系统的仿真,仿真结果的输出及结果分析6.打印说明书(B5),并交软盘(一组)一张。

注意事项:1.系统建模时,将其分成主电路和控制电路两部分分别进行2.在进行参数设置时,晶闸管整流桥、平波电抗器、直流电动机等的参数设计原则如下:如果针对某个具体参数设置,则对话框的有关参数应取装置的实际值;如果不针对某歌剧厅的装置的一般情况,可先去这些装置的参数默认值进行仿真。

若仿真结果不理想,则通过仿真实验,不断进行参数优化,最后确定其参数。

3.给定信号的变化范围、调节器的参数的反馈检测环节的反馈系数等可调参数的设置,其一般方法是通过仿真试验,不断进行参数优化.4.仿真时间根据实际需要而定,以能够仿真出完整的波形为前提.5.仿真算法的选择:通过仿真实践,从仿真能否进行、仿真的速度、仿真的精度等方面进行选择。

为了提高直流调速系统的动静态性能指标,通常采用闭环系统。

对调速指标要求不高的场合,采用单闭环系统,按反馈的方式不同分为转速反馈、电流反馈、电压反馈、本次设计中采用的为单闭环不可逆直流调速系统。

转速单闭环系统原理如图1所示,图中将反映转速变化的电压信号作为反馈信号,经速度变换后接到电流调节器的输入端,与给定的电压相比较经放大后,得到移相控制电压Uct,用作控制整流桥的触发电路,触发脉冲经功放后加到晶闸管的门极和阴极之间,以改变三象全控整流电路的输出电压,这就构成了速度反馈闭环系统。

单闭环直流调速系统的设计与Matlab仿真(一)

单闭环直流调速系统的设计与Matlab仿真(一)

课题:一、单闭环直流调速系统的设计与Matlab 仿真(一)作者:学号:专业:班级:指导教师:摘要在对调速性能有较高要求的领域,如果直流电动机开环系统稳态性能不满足要求,可利用速度负反馈提高稳态精度,而采用比例调节器的负反馈调速系统仍是有静差的,为了消除系统的静差,可利用积分调节器代替比例调节器。

通过对单闭环调速系统的组成部分可控电源、由运算放大器组成的调节器、晶闸管触发整流装置、电机模型和测速电机等模块的理论分析,比较原始系统和校正后系统的差别,得出直流电机调速系统的最优模型,然后用此理论去设计一个实际的调速系统。

本设计首先进行总体系统设计,然后确定各个参数,当明确了系统传函之后,再进行稳定性分析,在稳定的基础上,进行整定以达到设计要求。

另外,设计过程中还要以Matlab 为工具,以求简明直观而方便快捷的设计过程。

摘要:Matlab 开环闭环负反馈静差稳定性V-M 系统目录摘要 (2)一、设计任务 (4)1、 ...................................................... 已知条件42、设计要求 (4)二、方案设计 (5)1、 ...................................................... 系统原理52、 ........................................................ 控制结构图 (6)三、参数计算 (7)四、P I调节器的设计 (9)五、系统稳定性分析 (11)六、小结 (12)七、参考文献 (13)1、已知条件已知一晶闸管-直流电机单闭环调速系统(V-M 系统)的结果如 图所示。

图中直流电机的参数:Pnom=2.2KW nnom=1500r/min ,Inom=12.5A , Unom=220V 电枢电阻Ra=1欧,V-M 系统主回路总电阻 R=2.9欧,V-M 系统电枢回路总电感L=40mH 拖动系统运动部分飞轮力矩GD2=1.5N.m2测速发动机为永磁式,ZYS231/110xi 型,整流触2、设计要求:(1) 生产机械要求调速围D=15 (2) 静差率s < 5%(3) 若 U*n=10V 时,n=nnom=1500r/min ,校正后相角稳定裕度丫 =45o ,剪切频率3 c >35.0rad/s ,超调量30% 调节时间ts < 0.1s倍号詮丨1、控制原理根据设计要求,所设计的系统应为单闭环直流调速系统,选定转速为反馈量,采用变电压调节方式,实现对直流电机的无极平滑调速。

单闭环直流调速系统的设计与仿真实验报告

单闭环直流调速系统的设计与仿真实验报告

单闭环直流调速系统的设计与仿真实验报告摘要:本文基于基本原理和方法,设计和仿真了一个单闭环直流调速系统。

首先介绍了直流电机调速的基本原理,然后根据系统要求,设计了控制系统的结构和参数,包括PID控制器的参数调整方法。

接下来使用Matlab/Simulink软件进行系统仿真实验,对系统的性能进行评估。

最后根据仿真结果对系统进行分析和总结,并提出了可能的改进方法。

关键词:直流电机调速、单闭环控制系统、PID控制器、仿真实验一、引言直流电机广泛应用于机械传动系统中,通过调节电机的电压和电流实现电机的调速。

在实际应用中,需要确保电机能够稳定运行,并满足给定的转速要求。

因此,设计一个高性能的直流调速系统至关重要。

本文基于单闭环控制系统的原理和方法,设计和仿真了一个直流调速系统。

首先介绍了直流电机调速的基本原理,然后根据系统要求,设计了控制系统的结构和参数,并采用PID控制器进行调节。

接着使用Matlab/Simulink软件进行系统仿真实验,并对系统的性能进行评估。

最后根据仿真结果对系统进行分析和总结,并提出了可能的改进方法。

二、直流电机调速的基本原理直流电机调速是通过调节电机的电压和电流实现的。

电压变化可以改变电机的转速,而电流变化可以改变电机的转矩。

因此,通过改变电机的电压和电流可以实现电机的调速。

三、控制系统设计和参数调整根据系统的要求,设计一个单闭环控制系统,包括传感器、控制器和执行器。

传感器用于测量电机的转速,并将信息传递给控制器。

控制器根据测量的转速和给定的转速进行比较,并调节电机的电压和电流。

执行器根据控制器的输出信号来控制电机的电压和电流。

在本实验中,采用PID控制器进行调节。

PID控制器的输出信号由比例项、积分项和微分项组成,可以根据需要对各项参数进行调整。

调整PID控制器的参数可以使用试错法、频率响应法等方法。

四、系统仿真实验使用Matlab/Simulink软件进行系统仿真实验,建立直流调速系统的模型,并对系统进行性能评估。

【设计】自动控制系统课程设计转速单闭环直流电机调速系统设计与仿真

【设计】自动控制系统课程设计转速单闭环直流电机调速系统设计与仿真

【关键字】设计东北大学秦皇岛分校控制工程学院《自动控制系统》课程设计设计题目:转速单闭环直流电机调速系统设计与仿真学生:张海松专业:自动化班级学号:指导教师:王立夫设计时间:2012年6月27日东北大学秦皇岛分校控制工程学院《自动控制系统》课程设计任务书专业:自动化班级:509 学生姓名:设计题目:转速单闭环直流电机调速系统设计与仿真一、设计实验条件实验设备:PC机二、设计任务直流电机额定电压,额定电枢电流,额定转速,电枢回路总电阻,电感,励磁电阻,励磁电感,互感,,允许过载倍数。

晶闸管装置放大系数:,时间常数:,设计要求:对转速环进行设计,并用Matlab仿真分析其设计结果。

目录绪论--------------------------------------------------------------------------------11.转速单闭环调速系统设计意义-----------------------------12.原系统的动态结构图及稳定性的分析-----------------------22.1 转速负反应单闭环控制系统组成-----------------------22.2 转速负反应单闭环控制系统的工作原理-----------------33.调节器的选择及设计-------------------------------------33.1调节器的选择- --------------------------------------33.2 PI调节器的设计--- ---------------------------------44.Mat lab仿真及结果分析----------------------------------74.1 simulink实现上述直流电机模型-----------------------74.2 参数设置并进行仿真---------------------------------74.3结果分析--------------------------------- ---------155.课设中遇到的问题--------------------------------------166.结束语- ---------------------------------------------17参考文献- ---------------------------------------------17转速单闭环直流电机调速系统设计与仿真绪论直流电动机由于调速性能好,启动、制动和过载转矩大,便于控制等特点,是许多高性能要求的生产机械的理想电动机。

单闭环直流调速系统的MATLAB计算与仿真

单闭环直流调速系统的MATLAB计算与仿真
MATLABSGI 是由美国 MathWorks 公司开发的大型软件。在 MATLAB 软件中,包括了两 个主要部分:数学计算和工程仿真。其数学计算部分提供了强大的矩阵处理和绘图功能。 1998 年,MATLAB 增加了电力系统模块库,该模块库以 Simulink 为运行环境,是建立在 Simulink 标准模块和 M 语言基础上的一个附加模型库,它提供为电力系统仿真分析专用 的各种线性与非线性元件和模块。尤其是在 MATLAB6.X 之后的版本中,SimPowerSystems 的元件库进行了扩种,用户可以在库中找到例如 IGBT、MOSFET、GTO 等几乎所有常用的 新型电力电子器件模型,给使用带来极大的方便。
1.1 直流调速系统概述
从生产机械要求控制的物理量来看,电力传动自动控制系统有调速系统、位置伺服 系统、力控制系统等其他多种类型,各种系统往往是通过控制转速来实现的,因此调速 系统是最基本的驱动控制系统。调速系统目前分为交流和直流调速控制系统,由于直流 调速系统的调速围广,静差率小、稳定性好并且具有良好的动态性能。因此在相当长的 时期,高性能的调速系统几乎都采用了直流调速系统。相比于交流调速系统,直流调速 系统在理论上和实践上更加成熟。
中的 SimuLink 实用工具来辅助设计,由于它可以构建被控系统的动态模型,直观迅速 观察各点波形,因此调速系统性能的完善可以通过反复修改其动态模型来完成,而不必 对实物模型进行反复拆装调试。本文运用 MATLAB 中的 SimuLink 实用工具对设计电路进 行了仿真。
1.3 国外现状
从 1971 年开始到目前的这个阶段,直线电机进入了独立的应用时代,在这个时代, 各类直线电机的应用得到了迅速的推广,制成了许多具有实用价值的装置和产品,例如 直线电机驱动的钢管输送机、运煤机、起重机、空压机、冲压机、拉伸机、各种电动门、 电动窗、电动纺织机等等。特别可喜的是利用直线电机驱动的磁悬浮列车,其速度已超 500km/h,接近了航空的飞行速度,且试验行程累计已达数十万千米。

有静差转速单闭环直流调速系统的建模与仿真

有静差转速单闭环直流调速系统的建模与仿真

院系电子信息工程系班级 10电气(4)姓名齐国昀学号 107301427 实验名称有静差转速单闭环直流调速系统的建模与仿真实验日期 2012 - 12- 6一、实验目的1、掌握有静差转速单闭环直流调速系统的组成和工作原理;2、掌握使用MATLAB的Simulink工具箱对其进行计算机仿真;3、检验仿真结果与理论分析的关系。

二、实验步骤:1、主电路的建模和参数设置:有静差转速单闭环直流调速系统的主电路大部分与开环调速系统相同,同样由三相对称交流电压源、晶闸管整流桥、平波电抗器、直流电动机等部分组成。

参数设置基本与开环相同,三相对称交流电压源(交流峰值电压取176.75、初相位0°,频率50HZ,其它为默认值,B、C相与A相基本相同,除了初相位设置成互差120°外)、晶闸管整流桥(缓冲电阻Rs=50K、缓冲电容Cs为无穷大inf、内电阻Ron=0.001、内电抗Lon=0)、平波电抗器(阻抗R=0、电感L=5Ml/电容C为无穷大inf)、直流电动机(励磁电阻Rf=146.7、电感取0、电枢电阻Ra=1.5、电枢电感La=0.016、电枢绕组和励磁绕组互感Laf=0.76H、电机转动惯量J=0.57kg.m^2、额定负载转矩Tl=18N.m);2、控制电路的建模和参数设置:有静差转速单闭环直流调速系统的控制电路由给定信号、速度调节器、速度反馈等环节组成。

仿真模型中根据需要,另增加了限幅值和自定义的函数模块Fcn。

“给定信号”模块的建模和参数设置方法与开环调速系统相同,此处参数设置为10rad/s。

有静差调速系统的速度调节器ASR采用比例调节器,放大倍数可以根据实际需要选择,通常通过仿真优化而得。

当给定信号90-6*u后作为同步触发器的移相控制信号Uct。

将主电路和控制电路的仿真模型按照单闭环转速负反馈调速系统电气原理图的连接关系进行模型连接。

3、系统的仿真参数设置:第 1 页共 4 页指导教师签名院系电子信息工程系班级 10电气(4)姓名齐国昀学号 107301427实验名称有静差转速单闭环直流调速系统的建模与仿真实验日期 2012 -12 -6 系统仿真参数的设置方法与开环系统相同,仿真中所选择的算法为ode23s,仿真开始时间为0,停止时间为5s,其它仿真参数设置与开环系统中的相同。

转速反馈单闭环直流调速系统仿真

转速反馈单闭环直流调速系统仿真

实验一、转速反馈单闭环直流调速系统仿真一、实验内容:直流电机模型框图如下图所示,仿真参数为R=0.6,T l=0.00833,T m=0.045,Ce=0.1925。

本次仿真采用算法为ode45,仿真时间5s。

1.开环仿真:用Simulink实现上述直流电机模型,直流电压U d0取220V,0~2.5s,电机空载,即I d=0;2.5s~5s,电机满载,即I d=55A。

画出转速n的波形,根据仿真结果求出空载和负载时的转速n以及静差率s。

改变仿真算法,观察效果(运算时间、精度等)。

实验步骤:(1)按照上图把电机模型建立好,其中u d0设置为常数,并把其幅值设置为220,把其它相应的环节也设置好。

把I d设置为“阶跃信号”,且在0~2.5s之间其幅值为0,而2.5~5s之间其幅值为55,在对系统中其它参数进行设置。

为了观察输出地波形,在输出处接上一个示波器。

(2)对仿真模式进行设置,系统默认的仿真算法为ode45,只需要把仿真时间设置为5s即可。

(3)对系统进行仿真。

仿真结果:(1)仿真算法为ode45:图1 上图即为电机转速的仿真结果图,同图上我们可以看出来分为了两个阶段,其中第一个阶段(0~2.5s)为空载转速,第二阶段(2.5~5s)为满载转速。

空载转速为1142n/min。

在2.5s时加入了负载,通过仿真结果我们可以看出来,负载转速为972n/min。

这可以看出来在加入负载之后,电机的转速开始下降。

根据电机转差率的公式s=(n0-n)/ n0=(1142-972)/1142=0.149。

转差率还是比较小的,说明该电机效率比较高。

通过观察该仿真的时间,其运算时间为T=9.134*10^-7s。

(2)仿真算法为ode23:仿真结果图如图2所示,由图我们可以看出来,结果基本上和计算方法为ode45的结果一样,但是运算时间却不一样,该算法的运算时间为T=3.636*10^-7s。

运算时间比ode45的时间短。

转速反馈单闭环直流调速系统仿真

转速反馈单闭环直流调速系统仿真

转速反馈单闭环直流调速系统仿真题目:转速反馈单闭环直流调速系统仿真直流电机模型框图如下图所示,仿真参数为R =0.4,T l =0.00833,T m =0.045,Ce=0.25。

本次仿真采用算法为ode45,仿真时间3s 。

图1 直流电机模型1、开环仿真:用Simulink 实现上述直流电机模型,直流电压U d0取500V ,0~1.5s ,电机空载,即I d =0;1.5s~3s ,电机满载,即I d =100A 。

画出转速n 的波形,根据仿真结果求出空载和负载时的转速n 以及静差率s 。

改变仿真算法,观察效果(运算时间、精度等)。

cde45 cde23空载转速n=2000r/min 负载转速n=1840r/min静差率s=(2000-1840)/2000=0.08使用各种算法对于本例来说差别不大,各算法所用时间如下所示。

ode45 3.011s ode 23 2.493s ode 113 2.406s由此可见,ode45算法运算时间较长,ode23与ode113的时间较短,查阅资料发现ode45仿真精度最高,ode23与ode113cde113 精度较低。

2、闭环仿真:在上述仿真基础上,添加转速闭环控制器,转速指令为2000rpm,0~1.5s,电机空载,即I d=0;1.5s~3s,电机满载,即I d=100A。

(1)控制器为比例环节:试取不同k p值,画出转速波形,求稳态时n和s并进行比较。

Kp=1 Kp=2Kp=4 Kp=8稳态时的转速n由图中表格可以读出,分别是1568r/min、1760 r/min、1874 r/min、1932 r/min。

静差率分别为0.01854、0.1001、0.00435、0.00408。

(2)控制器为比例积分环节,设计恰当的k p和k I值,画出转速波形、电机端电压波形和电枢绕组电流波形,求出静差率、超调量、响应时间和抗扰性。

结合《自动控制原理》相关知识,对结果进行分析。

单闭环直流调速系统的设计与仿真

单闭环直流调速系统的设计与仿真

大学本科毕业设计单闭环直流调速系统的设计与仿真学生姓名院系名称专业名称电气工程及其自动化班级级学号指导教师完成时间年月日单闭环直流调速系统的设计与仿真内容摘要:在对调速性能有较高要求的领域,如果直流电动机开环系统稳态性能不满足要求,可利用速度负反馈提高稳态精度,而采用比例调节器的负反馈调速系统仍是有静差的,为了消除系统的静差,可利用积分调节器代替比例调节器。

通过对单闭环调速系统的组成部分可控电源、由运算放大器组成的调节器、晶闸管触发整流装置、电机模型和测速电机等模块的理论分析,比较原始系统和校正后系统的差别,得出直流电机调速系统的最优模型。

然后用此理论去设计一个实际的调速系统,并用MATLAB仿真进行正确性的验证。

关键词:稳态性能稳定性开环闭环负反馈静差The design and simulation ofSingle loop dc speed control systemAbstract :In the higher demand for performance of speed, if the open loop dc system's steady performance does not meet the requirements, can use speed inverse feedback to improve steadystate precision, but although the speed inverse feedback system adopts proportion regulator,it still have off, in order to eliminate static, can use integral regulator to replace proportion regulator.Based on the theoretical analysis of the single closed loop system which is made up of controllable power, the regulator which is made up of operational amplifier, a rectifier triggered by thyristor , motor model and tachogenerators module, compare the difference of the open loop system and the closed loop system,the original system and the this paper compares the theory of open loop system and the closed-loop system, the difference of primitive system and calibrated system, conclude the optimal model of the dc motor speed control system. Then use this theory to design a practical control system, and verify the validity with MATLAB simulation.Key words: steady-statebehaviour stability open loop Close-loop feedback offset目录1绪论 (1)1.1直流调速系统概述 (1)1.2 MATLAB简介 (1)2 单闭环控制的直流调速系统简介 (2)2.1 V—M系统简介 (2)2.2转速控制闭环调速系统的调速指标 (2)2.3闭环调速系统的组成及静特性 (3)2.4反馈控制规律 (4)2.5主要部件 (5)2.5.1 比例放大器 (5)2.5.2 比例积分放大器 (5)2.5.3额定励磁下直流电动机 (7)2.6稳定条件 (8)2.7稳态抗扰误差分析 (8)3 单闭环直流调速系统的设计及仿真 (10)3.1参数设计及计算 (10)3.1.1参数给出 (10)3.1.2 参数计算 (10)3.2有静差调速系统 (11)3.2.1有静差调速系统的仿真模型 (11)3.2.2主要元件的参数设置 (12)3.2.3仿真结果及分析 (12)3.2.4 动态稳定的判断,校正和仿真 (13)3.3无静差调速系统 (15)3.3.1 PI串联校正的设计 (15)3.3.2无静差调速系统的仿真模型 (17)3.3.3主要元件的参数设置 (18)3.3.4仿真结果及分析 (18)3.4有静差调速系统和无静差调速系统的动态分析设计 (19)3.4.1有静差调速系统的仿真模型 (19)3.4.2参数设置 (19)3.4.3仿真结果及分析 (19)参考文献 (23)致谢 (24)1绪论1.1直流调速系统概述从生产机械要求控制的物理量来看,电力拖动自动控制系统有调速系统、位置随动系统、张力控制系统等多种类型,而各种系统往往都是通过控制转速来实现的,因此调速系统是最基本的拖动控制系统。

实验一-单闭环直流调速系统仿真

实验一-单闭环直流调速系统仿真

图2-49 传递函数模块对话框
阶跃时刻, 可改到0 。
阶跃值,可 改到10 。
图2-50 阶跃输入模块对话框
填写所需要 的放大系数
图2-51 增益模块对话框
图2-52
Integrator模块对话框
积分饱和值, 可改为10。
积分饱和值,可 改为-10。
(4)模块连接
以鼠标左键点击起点模块输出端,拖动鼠标至终 点模块输入端处,则在两模块间产生“→”线。
图2-56 无超调的仿真结果
K p 0.8
1 15
系统转速的响应 的超调较大、但 快速性较好。
图2-57 超调量较大的仿真结果
SIMULINK软件的仿真方法为系统设计提 供了仿真平台,可以选择合适的PI参数, 满足系统的跟随性能指标。
在《自动控制理论》课程中讨论了多种PI 调节器的设计方法,MATLAB也为它们的 实现提供了模块。
仿真模型的运行
(1)仿真过程的启动:单击启动仿真工具条的按钮 或选择Simulation→Start菜单项,则可启动仿真过 程,再双击示波器模块就可以显示仿真结果。
(2)仿真参数的设置:为了清晰地观测仿真结果, 需要对示波器显示格式作一个修改,对示波器的 默认值逐一改动。改动的方法有多种,其中一种 方法是选中SIMULINK模型窗口的 Simulation→Configuration Parameters菜单项,打 开仿真控制参数对话框,对仿真控制参数进行设 置。
关于直流电动机调速系统的PI设计,将在 第3章中作详细的论述。
对应额定转速时的给定电压
U
* n
10V

图2-45 比例积分控制的直流调速系统的仿真框图
仿真模型的建立
进入MATLAB,单击 MATLAB命令窗口工 具栏中的SIMULINK 图标,

单闭环直流调速系统的设计与Matlab仿真(一)资料

单闭环直流调速系统的设计与Matlab仿真(一)资料

课题:一、单闭环直流调速系统的设计与Matlab 仿真(一)作者: 学号: 专业: 班级: 指导教师:在对调速性能有较高要求的领域,如果直流电动机开环系统稳态性能不满足要求,可利用速度负反馈提高稳态精度,而采用比例调节器的负反馈调速系统仍是有静差的,为了消除系统的静差,可利用积分调节器代替比例调节器。

通过对单闭环调速系统的组成部分可控电源、由运算放大器组成的调节器、晶闸管触发整流装置、电机模型和测速电机等模块的理论分析,比较原始系统和校正后系统的差别,得出直流电机调速系统的最优模型,然后用此理论去设计一个实际的调速系统。

本设计首先进行总体系统设计,然后确定各个参数,当明确了系统传函之后,再进行稳定性分析,在稳定的基础上,进行整定以达到设计要求。

另外,设计过程中还要以Matlab为工具,以求简明直观而方便快捷的设计过程。

摘要:Matlab 开环闭环负反馈静差稳定性V-M 系统摘要 (2)一、 ..................................................... 设计任务 41、 ...................................................... 已知条件42、设计要求 (4)二、 ..................................................... 方案设计 51、 ...................................................... 系统原理 52、 ........................................................ 控制结构图 6三、 ..................................................... 参数计算7四、 ....................................................... PI调节器的设计.. (9)五、 ................................................ 系统稳定性分析11六、 ......................................................... 小结12七、 ..................................................... 参考文献13一、设计任务1、已知条件已知一晶闸管-直流电机单闭环调速系统(V-M系统)的结果如图所示。

单闭环直流调速系统的仿真研究【基于MATLAB软件的仿真】《论文》

单闭环直流调速系统的仿真研究【基于MATLAB软件的仿真】《论文》

单闭环直流调速系统的仿真研究【基于MATLAB软件的仿真】《论文》1引言调速方法通常有机械的、电气的、液压的、气动的几种,仅就机械与电气调速方法而言,也可采用电气与机械配合的方法来实现速度的调节。

电气调速有许多优点,如可简化机械变速机构,提高传动效率,操作简单,易于获得无极调速,便于实现远距离控制和自动控制,因此,在生产机械中广泛采用电气方法调速。

1.1直流调速系统的概述由于直流电动机具有极好的运动性能和控制特性,尽管它不如交流电动机那样结构简单、价格便宜、制造方便、维护容易,但是长期以来,直流调速系统一直占据垄断地位。

就目前来看,直流调速系统仍然是自动调速系统的主要形式。

在我国许多工业部门,如海洋钻探、纺织、轧钢、矿山、采掘、金属加工、造纸以及高层建筑等需要高性能可控电力拖动的场合,仍然广泛采用直流调速系统。

而且,直流调速系统在理论上和实践上都比较成熟,从控制技术的角度来看,它又是交流调速系统的基础。

随着GTO晶闸管、GTR、P-MOSFET、IGBT和MCT等全控型功率器件的问世,这些有自断能力的器件逐步取代了原来普通晶闸管系统所必须的换向电路,简化了电路的结构,提高了效率和工作频率,降低了噪声,缩小了电力电子装置的体积和重量。

谐波成分大、功率因素差的相控变流器逐步被斩波器或脉冲宽度调制器所代替,明显的扩大了电动机控制的调速范围,提高了调速精度,改善了快速性、效率和功率因素。

PWM电源终将取代晶闸管相控式可控功率电源,成为电源的主流。

随着信息、控制与系统学科以及电力电子的发展,电力拖动系统获得了迅猛发展,从旋转交流机组到水银整流器静止交流装置、晶闸管整流装置,再到众多集成电力模块。

目前完全数字化的控制装置已成功应用于生产,以微机作为控制系统的核心部件,并具有控制、检测、监视、故障诊断及故障处理等多功能电气传动系统正处在形成和不断完善之中。

1.2本章小结本章介绍了直流调速系统的研究前景及其优点。

单闭环直流调速系统的设计与仿真实验报告4.doc

单闭环直流调速系统的设计与仿真实验报告4.doc

单闭环直流调速系统的设计与仿真实验报告4比例积分控制的单闭环直流调速系统仿真一、实验目的1.熟练使用MATLAB 下的SIMULINK 仿真软件。

2.通过改变比例系数以及积分时间常数τ的值来研究和τ对比例积分控制的直流调速系统的影响。

二、实验内容1.调节器的工程设计2.仿真模型建立3.系统仿真分析三、实验要求建立仿真模型,对参数进行调整,从示波器观察仿真曲线,对比分析参数变化对系统稳定性,快速性等的影响。

四、实验原理图4-1 带转速反馈的闭环直流调速系统原理图调速范围和静差率是一对互相制约的性能指标,如果既要提高调速范围,又要降低静差率,唯一的方法采用反馈控制技术,构成转速闭环的控制系统。

转速闭环控制可以减小转速降落,降低静差率,扩大调速范围。

在直流调速系统中,将转速作为反馈量引进系统,与给定量进行比较,用比较后的偏差值进行系统控制,可以有效的抑制甚至消除扰动造成的影响。

当t=0时突加输入时,由于比例部分的作用,输出量立即响应,突跳到,实现了快速响应;随后按积分规律增长,。

在时,输入突降为0,=0,= ,使电力电子变换器的稳态输出电压足以克服负载电流压降,实现稳态转速无静差。

五、实验各环节的参数及和1/τ的参数的确定5.1各环节的参数:直流电动机:额定电压=220V,额定电流=55A,额定转速=1000r/min,电动机电动势系数=0.192V •min/r。

假定晶闸管整流装置输出电流可逆,装置的放大系数=44,滞后时间常数=0.00167s。

电枢回路总电阻R=1.0Ω,电枢回路电磁时间常数=0.00167s 电力拖动系统机电时间常数=0.075s。

转速反馈系数=0.01V •min/r。

对应额定转速时的给定电压=10V。

稳态性能指标D=20,s 5% 。

5.2 和1/τ的参数的确定:PI调节器的传递函数为其中,。

(1)确定时间常数1)整流装置滞后时间常数;2)转速滤波时间常数;3)转速环小时间常数;(2)计算参数按跟随和抗扰性都较好的原则,取h=5,则调节器超前时间常数,即积分时间常数:,则由此可得开环增益:于是放大器比例放大系数:六、仿真模型的建立如图6-1为比例积分控制的无静差直流调速系统的仿真框图,根据仿真框图,利用MATLAB下的SMULINK软件进行系统仿真,建立的仿真模型如图6-2所示。

《MATLAB工程应用》---转速单闭环直流调速系统仿真

《MATLAB工程应用》---转速单闭环直流调速系统仿真

《MATLAB工程应用》
转速单闭环直流调速系统仿真
一、选题背景
此次课程设计要求设计转速单闭环直流电路,与转速双闭环直流电路相比,转速单闭环直流电路的电源利用率更高,应用更为广泛。

我们应该对转速单闭环直流理论知识详细掌握,以及对MATLAB的simulink进行熟练的操作。

二、原理分析
任何一个自动控制系统的调试都是先从弄清这个自动控制系统由哪些器件或设备组成,其大致的工作原理及整个系统的工作过程如何开始的。

对自动控制系统基本组成及工作原理的分析称为定性分析。

下面就结合本章介绍的相关知识,对一个实际的自动控制系统——单闭环直流调速系统进行工作原理上的定性分析。

三、过程论述
原理图
仿真图
四、结果分析
五、课程设计总结
当负载突增时,积分控制的无静差调速系统动态过程曲线如图。

在稳态运行时,转速偏差电压必为零。

如果不为零,则继续变化,就
不是稳态了。

在突加负载引起动态速降时产生,达到新的稳态时,又恢复为零,但已从上升到,使电枢电压由上升到,以克服负载电流增加的压降。

比例积分控制综合了比例控制和积分控制两种规律的优点,又克服了各自的缺点,扬长避短,互相补充。

比例部分能迅速响应控制作用,积分部分则最终消除稳态偏差。

单闭环控制系统设计及仿真

单闭环控制系统设计及仿真

单闭环控制系统设计及仿真班级电信2014姓名张庆迎学号142081100079摘要直流调速系统具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动中获得了广泛应用。

本文从直流电动机的工作原理入手,建立了双闭环直流调速系统的数学模型,并详细分析了系统的原理及其静态和动态性能。

然后按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,利用Simulink对系统进行了各种参数给定下的仿真,通过仿真获得了参数整定的依据。

在理论分析和仿真研究的基础上,本文设计了一套实验用双闭环直流调速系统,详细介绍了系统主电路、反馈电路、触发电路及控制电路的具体实现。

对系统的性能指标进行了实验测试,表明所设计的双闭环调速系统运行稳定可靠,具有较好的静态和动态性能,达到了设计要求。

采用MATLAB软件中的控制工具箱对直流电动机双闭环调速系统进行计算机辅助设计,并用SIMULINK进行动态数字仿真,同时查看仿真波形,以此验证设计的调速系统是否可行。

关键词直流电机直流调速系统速度调节器电流调节器双闭环系统一、单闭环直流调速系统的工作原理1、单闭环直流调速系统的介绍单闭环调速系统的工作过程和原理:电动机在启动阶段,电动机的实际转速(电压)低于给定值,速度调节器的输入端存在一个偏差信号,经放大后输出的电压保持为限幅值,速度调节器工作在开环状态,速度调节器的输出电压作为电流给定值送入电流调节器, 此时则以最大电流给定值使电流调节器输出移相信号,直流电压迅速上升,电流也随即增大直到等于最大给定值, 电动机以最大电流恒流加速启动。

电动机的最大电流(堵转电流)可以通过整定速度调节器的输出限幅值来改变。

在电动机转速上升到给定转速后, 速度调节器输入端的偏差信号减小到近于零,速度调节器和电流调节器退出饱和状态,闭环调节开始起作用。

2、双闭环直流调速系统的介绍为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。

《MATLAB工程应用》---转速单闭环直流调速系统仿真一

《MATLAB工程应用》---转速单闭环直流调速系统仿真一

《MATLAB工程应用》转速单闭环直流调速系统仿真一、选题背景在对调速性能有较高要求的领域,如果直流电动机开环系统稳态性能不满足要求,可利用速度负反馈提高稳态精度,而采用比例调节器的负反馈调速系统仍是有静差的,为了消除系统的静差,可利用积分调节器代替比例调节器。

通过对单闭环调速系统的组成部分可控电源、由运算放大器组成的调节器、晶闸管触发整流装置、电机模型和测速电机等模块的理论分析,比较原始系统和校正后系统的差别,得出直流电机调速系统的最优模型。

然后用此理论去设计一个实际的调速系统,并用MATLAB仿真进行正确性的验证。

二、原理分析(设计理念)晶闸管-直流电动机系统可以通过调节晶闸管控制角改变电动机电枢电压实现调速,但是存在两个问题,一是全电压启动时启动电流大;二是转速随着负载变化而变化,负载越大,转速降落越大,难于在负载变动时保持转速的稳定而满足生产工艺的要求。

为了减小负载波动对电动机转速的影响,可以采取带转速负反馈的闭环调速系统,根据转速的偏差来自动调节整流器的输出电压,从而保持转速的稳定。

带转速负反馈的有静差直流调速系统的结构如图1所示。

系统有转速给定环节U。

放大器 Kp、移相触发器CF、晶闸管整流器和直流电动机M、测速发电机TG等组成。

该系统在电动机负载增加时,转速将下降,转速反馈U。

减小,而转速的偏差△U。

将增大(△U.=U.-U.)同时放大器输出U。

增加,并经移相触发器使整流器输出电压U。

增加,电枢电流[。

增加,从而使电动机电磁转矩增加,转速也随之升高,补偿了负载增加造成的转速降。

三、过程论述该系统在电机负载增加时,转速n将下降,转速反馈Un减小,导致转速的偏差△Un增大(△Un=Un*-Un),同时放大器输出Uc增加,并经移相触发器使整流输出电压Ud增加,电枢电流Id增加,从而使电动机电磁转矩增加,转速n 也随之升高,补偿了负载增加造成的转速降。

上述负载R增加时转速调节的过程可以简单表示如下:R增大→n减小→Un减小→△Un增大→Uc增大→Ud增大→Id增大四、结果分析1.AC电源2.Universal Bridge3. RL4.DC Machine5.Step6.Pulse7.Saturation8.输出波形图对研究过程中所获得的主要的数据、现象进行定性或定量分析,得出结论和推论。

转速单闭环直流调速系统的仿真

转速单闭环直流调速系统的仿真
动电流大 转速随负载变化而变化
影响正常 生产
系统的工作原理
T1
三 相 电 源
T4
T2
a
T5
T3
b
T6
I1
A
V Ud
Ld
c
M
触 发 器
Uc
六路 触发 脉冲
R
A
G
V
U2
I2
图1.晶闸管直流调速系统电气原理图
励磁 电源
系统的工作原理
Ld
Id
给定Un* + △Un 比例调 Uc 移相触
3
反相器
Simulink/Commonly Used Blocks/Gain
4
交流电压源 Simscape/SimpowerSystems/Electical Sources
直流电压源
/AC Voltage Sources DC Voltage Sources
5
直流电机
Simscape/SimpowerSystems/Machines/DC Machine
原理分析
该系统在电机负载增加时,转速n将下降,转速反 馈Un减小,导致转速的偏差△Un增大 (△Un=Un*-Un),同时放大器输出Uc增加,并 经移相触发器使整流输出电压Ud增加,电枢电流 Id增加,从而使电动机电磁转矩增加,转速n也随 之升高,补偿了负载增加造成的转速降。上述负 载R增加时转速调节的过程可以简单表示如下: R↑→ n↓→Un↓→ΔUn↑→Uc↑→Ud↑→n↑.
系统的仿真建模
图3.有静差转速单闭环直流调速系统的仿真建模
仿真结果
仿真中所选择的算法为ode23s,仿真开始时间为0 s,停止时 间设为2s,其他仿真参数设置为默认。

直流调速系统及其仿真.ppt

直流调速系统及其仿真.ppt
T
二、调压调速的关键装置--可控直流电源
常用的可控直流电源有以下三种:
1、旋转变流机组
2、静止可 控整流器
3、直流斩波 器和脉宽调制
变换器
1、旋转变流机组----用交流电动机拖动直流发电 机,以获得可调的直流电压(G-M系统)。
+ 励 磁 电 源
+
-
~
GE
~M n +(-) n

大 装
If
G
U
M
晶闸管整流器的内阻 要求D=20,s≤5%
Rrec=0.13Ω
问题
问若采用开环V-M系统能否满足要求? 若采用α=0.015V·min/r转速负反馈闭环系统,问放大 器的放大系数为多大时才能满足要求?
解(1)设系统满足D=20,检验系统是否满足s≤5%?
nmin
nn D
1000 20
50(r / min)
n-
+
+
RP2
U tg
IG
-
-
V-M闭环系统原理框图
(a)给定环节——产生控制信号:由高精度直流 稳压电源和用于改变控制信号的电位器组成。
(b)比较与放大环节——信号的比较与放大;由P、I、 PI运放器组成
(c)触发器和整流装置环节(组合体)--功率放大 GT:单结晶体管、锯齿波、正弦波触发器; 整流装置:单相、三相、半控、全控.
U
* n
, 则n
改变
(2)对负载波动等扰动信号的调节——稳速过程:
n基本不受负载波动等扰动输入的影响
例如:
TL
n
Un
U n
(U
* n
Un )
Uct Ud 0 ( Id Te ) n

《MATLAB工程应用》转速单闭环直流调速系统仿真

《MATLAB工程应用》转速单闭环直流调速系统仿真

《MATLAB工程应用》转速单闭环直流调速系统仿真一、选题背景晶闸管开环直流调速系统启动电流大,转速随负载变化而变化,负载越大,转速降落越大,因此,无法在负载变动时保持转速的稳定,影响生产。

为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(单闭环或双闭环)。

对调速指标要求不高的场合,采用单闭环系统;对调速指标要求高的场合,采用双闭环系统。

按反馈的方式不同,可分为转速反馈、电流反馈、电压反馈。

在单闭环系统中,般采用转速反馈。

二、原理分析转速单闭环直流调速系统原理如图 1 转速单闭环直流调速系统原理图所示。

图 1 转速单闭环直流调速系统原理图中将反映转速变化的电压信号作为反馈信号,经过速度变换后接到电流调节器的输入端,与给定的电压U;相比较经放大后,得到移相控制电压信号Uc,用作控制整流桥的触发电路,触发脉冲经功放后加到晶闸管的门极和阴极之间,以改变整流桥的输出电压,这就构成了速度负反馈闭环系统。

图 1 转速单闭环直流调速系统原理图该系统在电机负载增加时,转速n将下降,转速反馈U n减小,导致转速的偏差ΔU n。

将增大(ΔU n=U n∗−U n),U C增加,并经移相触发器使整流器输出电压U增加,电枢电流1。

也就增加了,从而使电动机电磁转矩增加,转速n也随之升高,补偿了负载增加造成的转速降。

在MATLAB仿真中,通常省略AD采样中的变换环节,直接用测量模块得到实际物理量。

三、过程论述利用Simulink建立有静差的转速单闭环直流调速系统仿真模型。

该系统由给定信号、速度调节器、晶闸管整流桥、平波电抗器、直流电动机、速度反馈等部分组成。

与开环直流调速系统相比,二者的主电路就基本相同,系统的差别主要在控制电路上。

图 2 有静差的转速单闭环直流调速系统仿真模型图 2 有静差的转速单闭环直流调速系统仿真模型中的二极管桥模块参数设置如图 3 二极管参数设置。

在整流桥后面并一个二极管桥,主要是为了加快电动机的减速过程,同时避免在整流桥输出端出现负电压而使波形畸变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

院系电子信息工程系班级 10电气(4)姓名齐国昀学号 107301427 实验名称有静差转速单闭环直流调速系统的建模与仿真实验日期 2012 - 12- 6
一、实验目的
1、掌握有静差转速单闭环直流调速系统的组成和工作原理;
2、掌握使用MATLAB的Simulink工具箱对其进行计算机仿真;
3、检验仿真结果与理论分析的关系。

二、实验步骤:
1、主电路的建模和参数设置:
有静差转速单闭环直流调速系统的主电路大部分与开环调速系统相同,同样由三相对称交
流电压源、晶闸管整流桥、平波电抗器、直流电动机等部分组成。

参数设置基本与开环相同,
三相对称交流电压源(交流峰值电压取176.75、初相位0°,频率50HZ,其它为默认值,B、
C相与A相基本相同,除了初相位设置成互差120°外)、晶闸管整流桥(缓冲电阻Rs=50K、
缓冲电容Cs为无穷大inf、内电阻Ron=0.001、内电抗Lon=0)、平波电抗器(阻抗R=0、电感
L=5Ml/电容C为无穷大inf)、直流电动机(励磁电阻Rf=146.7、电感取0、电枢电阻Ra=1.5、
电枢电感La=0.016、电枢绕组和励磁绕组互感Laf=0.76H、电机转动惯量J=0.57kg.m^2、额定
负载转矩Tl=18N.m);
2、控制电路的建模和参数设置:
有静差转速单闭环直流调速系统的控制电路由给定信号、速度调节器、速度反馈等环节组成。

仿真模型中根据需要,另增加了限幅值和自定义的函数模块Fcn。

“给定信号”模块的建模和参数设置方法与开环调速系统相同,此处参数设置为10rad/s。

有静差调速系统的速度调节器ASR采用比例调节器,放大倍数可以根据实际需要选择,通常通
过仿真优化而得。

当给定信号90-6*u后作为同步触发器的移相控制信号Uct。

将主电路和控制
电路的仿真模型按照单闭环转速负反馈调速系统电气原理图的连接关系进行模型连接。

3、系统的仿真参数设置:
第 1 页共 4 页指导教师签名
院系电子信息工程系班级 10电气(4)姓名齐国昀学号 107301427
实验名称有静差转速单闭环直流调速系统的建模与仿真实验日期 2012 -12 -6 系统仿真参数的设置方法与开环系统相同,仿真中所选择的算法为ode23s,仿真开始时
间为0,停止时间为5s,其它仿真参数设置与开环系统中的相同。

三、仿真模型图
如图1所示:
图1:有静差转速单闭环直流调速系统的仿真模型
第 2 页共 4 页指导教师签名
院系电子信息工程系班级 10电气(4)姓名齐国昀学号 107301427 实验名称有静差转速单闭环直流调速系统的建模与仿真实验日期 2012 -12 -6 四、仿真结果分析
参数设置完成后,即可进行仿真。

在额定转速电压Un*=10V,转速反馈系数a=0.0068,放
大倍数Kp=20时的对应的电机转速、电枢电流、电磁转矩波形可从示波器中观察到如图2所示:
图2:直流电机转速、电枢电流、电磁转矩的仿真波形
第 3 页共 4 页指导教师签名
院系电子信息工程系班级 10电气(4)姓名齐国昀学号 107301427 实验名称有静差转速单闭环直流调速系统的建模与仿真实验日期 2012 -12 -6 直流电机的励磁电流没有变化,如图3所示:
图3:励磁电流的仿真波形
与开环控制系统的仿真结果相比较,单闭环有静差直流调速系统的电动机转速曲线比开
环控制系统有了较明显的改善,过度过程时间大为缩小。

第 4 页共 4 页指导教师签名。

相关文档
最新文档