乘法公式与因式分解练习题
人教版八年级上册数学整式乘法和因式分解计算题
人教版八年级上册数学整式乘法和因式分解1.因式分解:(1)2a b ab - (2)228x -2.因式分解(1)a 2(x +y )﹣b 2(x +y ) (2)x 4﹣8x 2+16.3.计算:(1)(x 2y )3•(﹣2xy 3)2;(2)(xny 3n )2+(x 2y 6)n ;(3)(x 2y 3)4+(﹣x )8•(y 6)2;(4)a •a 2•a 3+(﹣2a 3)2﹣(﹣a )6.4.计算: (1)()()232a a -+;(2)()()23210432563a b ab a b a ⋅--÷.5.分解因式: (1)2693x xy x -+;(2)2xy x-;6.因式分解:(1)x3y﹣xy3;(2)(x+2)(x+4)+x2﹣47.分解因式:(1)2(m﹣n)2﹣m(n﹣m);(2)(x2﹣4xy+4y2)+(﹣4x+8y)+4.8.因式分解:(1)4ab b+(2)232x x-+(3)221 4a b b-+-(4)2464a-9.计算:(1)()()2323322a a a a a ⋅⋅+-(2)()()3223a a b ⋅- 10.因式分解: (1)322369x y x y xy -+(2)()()236x x y x y x -+-11.计算:(1)分解因式:34x x - (2)计算:214?4x y x ⎛⎫- ⎪⎝⎭12.把下列各式分解因式: (1)a 3﹣a(2)16x 2y 2﹣(x 2+4y 2)2 13.因式分解: (1)32246x x x -+-; (2)222(4)16a a +-. 14.分解因式: (1)x 3y -2x 2y 2+xy 3(2) a 2(x -1)2+4a (1-x ) (3)(x 2+y 2)2-4x 2y 2 15.用乘法公式计算:(1)()()()2232349x x x -+-(2)()()33x y x y +--+ 16.分解因式(1)()()mn m n m n m --- (2)229()16()m n m n +-- 17.分解因式:(1)2a (x ﹣y )+b (y ﹣x ); (2)(x 2 +1)2﹣4x 2. 18.计算:(1)(﹣2m 2n 3)2+(3m 3n 4)•(12-mn 2)3;(2)(x +2y )2﹣(x +y )(3x ﹣y )﹣5y 2 19.因式分解: (1)2232x -(2)3223242x y x y xy ++ 20.因式分解: (1)2ax a -+ (2)214x x ++21.先化简,再求值:()()2222x y x x y y ⎡⎤---÷⎣⎦,其中1x =,2y =. 22.化简求值:[(x ﹣2y )2﹣2(x +y )(3x ﹣y )﹣6y 2]÷2x ,其中12,.2x y =-=23.先化简,再求值:2(2)(2)(2)2(2)(4)x y x y x y x x y x ⎡⎤-+-+--÷-⎣⎦,其中12x =-,1y =.24.先化简再求值:()()()22224x y x y x y x y y +-+--++()其中:112x y ==,. 25.先化简,再求值:[(x ﹣y )2+(x +y )(x ﹣y )]÷2x ,其中x =2021,y =﹣2020. 26.先化简,再求值:[(xy +2)(xy ﹣2)﹣2(xy +1)2+6]÷(xy ),其中x =10,y =﹣125. 27.先化简,再求值:2(2)2()()(23)x y y x x y y y x ---+--,其中1,33x y ==-28.(1)已知225a b +=,()29a b +=,求44a b +的值; (2)若x 满足()()9715x x --=-,求()()2297x x -+-的值.29.(1)已知4a 2﹣a ﹣4=0,求代数式(2a ﹣3)(2a +3)+(a ﹣1)2+(1+a )(2﹣a )的值;(2)已知a ,b 满足a 2+b 2﹣10a ﹣4b +29=0,且a ,b 为等腰三角形△ABC 的边长.求△ABC 的周长.30.化简并求值:当12x =-时,求代数式()()()2353535x x x +--+的值.31.先化简,再求值:[(﹣a +b )(﹣a ﹣b )+(2a ﹣b )2﹣a (a +3b )]÷2a ,其中a =3,b =2 32.计算:1| (2)322332()(2)x x x x x +--33.先化简.再求值:2(1)(4)3x x x -+--,其中14x =-.34.先化简,后求值:()()()21232322x y x y x y y ⎛⎫⎡⎤+---÷ ⎪⎣⎦⎝⎭,其中1x =,12y = 35.先化简,再求值:()()()()2233102x y x y x y y x +-+--⎤⎦÷-⎡⎣.其中x =-2022,12y =-.36.先化简,再求值:2(2)(1)(1)a a a +----,其中 a = -1.37.先化简,再求值:2()3()(2)(2)x y x x y x y x y +-+++-,其中1x =,1y =-. 38.先化简,再求值:()()()2232321x x x -+-+ ,其中12x =-. 39.因式分解:24(7)9(7)a x x +-+.40.先化简,再求值:()()()()()22233333x y x y y x x y x y ⎡⎤+----+-÷⎣⎦,其中x ,y 满足()2210x y ++-=. 41.因式分解 (1)am an ap -+ (2)214x - (3)21664x x -+(4)22(32)(23)x m n y n m -+- 42.计算题 (1)()22333a a a ⋅+-(2)2()()()x y y x y x --+-(3)()3246102a a a a -+÷(4)2(1)|2-+ 43.因式分解. (1)()69m m ++; (2)222(1)4a a +-. 44.利用乘法公式计算:(1)2197(2)(x ﹣2y +4)(x +2y ﹣4)45.已知两个实数a ,b 满足10a b +=,24ab =,且a b <;分别求值; (1)22a b +; (2)-a b ; (3)23a b +.46.先化简,再求值:2(2)(3)(2)x x x +-+-其中,13x =-47.计算:234228(2)342x x x x x ⋅--+÷.48.先化简,再求值:[(2x +y )(2x ﹣y )﹣3(2x 2﹣xy )+y 2]÷(﹣12x ),其中x =﹣12,y =23.49.按要求完成下列各小题 (1)因式分解: ①269x x - ①2288a b ab b -+;(2)先化简,再求值:()()()3222242x y x y x x y x +---÷,其中2x =-,12y -=.50.因式分解:228x y y -.51.先化简,再求值:[(x -y )2+x (2y -x )+2y 2]÷y ,其中x =12,y =1. 52.先化简,再求值:()()()()222213x x x x x -+-+++,其中12x =-. 53.分解因式 (1)236x xy -; (2)269ax ax a ++; (3)223m m --.54.先化简,再求值:()()()211(21)221x x x x x +-+---,其中2x =. 55.因式分解:()()224a x y b y x -+-56.分解因式: (1)2255x y -; (2)3269m m m ++57.若220220x x +-=,求2(23)(23)(54)(1)x x x x x +--+--的值.58.先化简,再求值:2(2)6()()(2)x y x x y x y x y --+++-,其中x ,y 满足21(2)0x y -++=.59.因式分解: (1)3244m m m -+ (2)()2242a a b -- 60.因式分解: (1)235x y y - (2)()()x x y y y x -+- 61.计算: (1)218()4xy xy ⋅-(2)2(2)4()x y x x y ---62.先化简,再求值:()()22333244y x xy y x xy ⎡⎤⎡⎤----+-⎣⎦⎣⎦,其中2x =,1y =63.计算:(1)()()()21212a a a a +--+ (2)()()()224x y x y x y ---+ 64.因式分解: (1)4x 2-8x +4; (2)(x +y )2-4y (x +y ) 65.先化简,再求值:(1)2(2)()()2x y x y x y y ⎡⎤-+--÷⎣⎦,其中2x =,4y =; (2)()2426()3()()a a a b a b a -÷--+-,其中2223a b +=. 66.(1)已知3x y +=,1xy =,求22x y +的值.(2)已知2210x x --=,求322544x x x +-+的值. (3)已知22810410x y x y +-++=,求()2021x y +的值.67.计算:(1)()272643x x x x x ⋅+⋅-(2)()()()()2511313a a a a +-+-+(3)()()22141x x x --- (4)()()2323x y x y --+- 68.分解因式: (1)2m mn m -+ (2)3212a a a -- (3)()()22413x x +-- (4)421881y y -+69.先化简,再求值:()()()()2253a b a b a a b a b +-+---,其中a =-3,32b =. 70.已知(a +b )2=17,(a ﹣b )2=13,求: (1)a 2+b 2的值; (2)ab 的值. 71.计算: (1)322x x x x ⋅+⋅(2)()()()222x y x y x y +-+- 72.因式分解: (1)()()22a m b m -+- (2)322a a a -+73.先化简,再求值:(x +3y )2+(x +2y )(x -2y )-2x 2,其中x =-2,y =-1. 74.将下列各式分解因式: (1)2x (m -n )-(n -m ) (2)4m 2﹣n 2(3)3m 2n -12mn +12n (4)2a 3b ﹣18ab 375.先化简,再求值:2(23)(2)(2)(2)x y x y x y y ⎡⎤+-+-÷-⎣⎦,其中13x =,12y =-. 76.已知()27x y +=,()25x y -=. (1)求22x y +值; (2)求xy 的值. 77.先化简,再求值:(1)()()()332x x x x +---,其中4x =.(2)()()()222a b a b a b a +-++-,其中3a =,13b =-.78.计算:(1)()()()22x y x y x y x ⎡⎤-++-÷⎣⎦(2)()()()2312x x x +--- 79.因式分解: (1)24100x -; (2)22242m mn n -+; (3)()22214a a +-.80.计算:(1)()3322m m m m ⋅+-÷;(2)2(23)(2)(2)x x x +-+-; (3)(23)(23)a b c a b c +--+.81.先化简,再求值:()()()3222484a b a b ab a b ab +-+-÷,其中a =3,b =-1.82.计算:()2482a a a a -⋅-÷. 83.因式分解: (1)29a - (2)22363x xy y ++84.先化简,再求值323()(2)(2)(2)a b ab a b a b a ÷-----+--,其中2a =,1b =-. 85.化简求值:221(2)(2)242xy xy x y xy ⎛⎫⎡⎤+--+÷- ⎪⎣⎦⎝⎭,其中x =10,y =-125. 86.先化简,再求值:()()2462a b a a b -+-,其中a =2,b =-1. 87.先化简,再求值:()()()()231124x x x x x +++--+,其中6x =.88.先化简,再求值:()()()22222a b a b a b b ⎡⎤--+-÷⎣⎦,其中1,1a b =-=.89.先化简,再求值:()()()336x x x x +---,其中=x 90.计算:423a a a a ⋅+⋅91.先化简,再求值:()()()()21233x x x x x +--+-+,其中x =-1. 92.把下列多项式因式分解:(1)()()326x y y --- (2)22344xy x y y --93.已知:2()34x y +=,2()14x y -=,分别求22x y +和xy 的值.94.两个边长分别为a 和b 的正方形如图放置(图1),其未叠合部分(阴影)面积为S 1;若再在图1中大正方形的右下角摆放一个边长为b 的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S 2.(1)用含a 、b 的代数式分别表示S 1、S 2; (2)若a +b =10,ab =23,求S 1+S 2的值;(3)当S 1+S 2=29时,求出图3中阴影部分的面积S 3.95.如图,边长为a 的正方形中有一个边长为b (b <a )的小正方形,如图2是由图1中的阴影部分拼成的一个长方形.(1)设图1阴影部分的面积为1S ,图2中阴影部分的面积为2S ,请直接用含a ,b 的式子表示1S = ,2S = ,写出上述过程中所揭示的乘法公式 ; (2)直接应用,利用这个公式计算: ①(﹣12x -y )(y -12x ); ①102×98(3)拓展应用,试利用这个公式求下面代数式的结果.(3+1)×(32+1)×(34+1)×(38+1)×(316+1)......×(31024+1)+196.两个边长分别为a 和b 的正方形如图放置(图1),其未叠合部分(阴影)面积为1S ;若再在图1中大正方形的右下角摆放一个边长为b 的小正方形(如图2),两个小正方形叠合部分(阴影)面积为2S .(1)用含a ,b 的代数式分别表示12S S 、;(2)若=1640a b ab +=,,求12S S +的值;(3)当1276S S +=时,求出图3中阴影部分的面积3S .97.数学教科书中这样写道:“我们把多项式222a ab b ++及222a ab b -+叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法,经常用来解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:()22223214(1)4x x x x x +-=++-=+-;例如求代数式2246x x +-的最小值;()2222462232(1)8x x x x x +-=+-=+-.根据阅读材料用配方法解决下列问题:(1)分解因式:265m m -+________;(2)当a ,b 为何值时,多项式2241033a b a b +-++有最小值,并求出这个最小值;(3)已知8a b -=,24200ab c c +-+=,求a b c ++的值.98.将222()2a b a ab b +=++变形,得222()2a b a b ab +=+-,()()22212⎡⎤=+-+⎣⎦ab a b a b ,请根据以上变形解答下列问题: (1)已知225a b +=,2()9a b +=,则ab =________,a -b =_______.(2)若x 满足()()7515x x --=-,求22(7)(5)x x -+-的值.(3)如图,在长方形ABFD 中,DA ①AB ,FB ①AB ,AD =AC ,BE =BC .连接CD ,CE ,若AC ·BC =10,直接写出图中阴影部分的面积.99.(1)先化简,再求值:()()()222222x y x y x y y x ⎡⎤-+--+÷⎣⎦;且x ,y 满足2(2)|3|0x y -+-=.(2)如图,某市有一块长为(2)a b +米,宽为()a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像.试用含a ,b 的代数式表示绿化的面积是多少平方米?100.阅读理解,材料1:常用的分解因式的方法有提取公因式法、公式法,但有很多的多项式只用上述方法就无法分解.如x 2﹣4y 2﹣2x +4y ,但我们细心察这个式子就会发现,前两项符合平方差公式,后两项提取公因式,前后两部分分别分解图式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了:x 2﹣4y 2﹣2x +4y=(x +2y )(x ﹣2y )﹣2(x ﹣2y )=(x ﹣2y )(x +2y ﹣2).这种分解因式的方法叫分组分解法.材料2:对于x 3﹣(n 2+1)x +n 这类特殊的代数式可以按下面的方法分解因式: x 3﹣(n 2+1)x +n=x 3﹣n 2x ﹣x +n=x (x 2﹣n 2)﹣(x ﹣n )=x (x +n )(x ﹣n )﹣(x ﹣n )=(x ﹣n )(x 2+nx ﹣1)解决问题:(1)分解因式:①a2﹣4a﹣b2+4;①x3﹣5x+2.(2)①ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断①ABC的形状.参考答案:1.(1)(1)ab a -(2)2(2)(2)x x +-2.(1)(a +b )(a ﹣b )(x +y )(2)(x +2)2(x ﹣2)2 3.(1)4x 8y 9(2)2x 2ny 6n(3)2x 8y 12(4)4a 64.(1)226a a +-(2)7422a b -5.(1)()3231x x y -+(2)()()11x y y +-6.(1)xy (x +y )(x ﹣y )(2)2(x +2)(x +1)7.(1)()()32.m n m n --(2)()222.x y -+8.(1)(41)b a +(2)(1)(2)x x -- (3)11()()22a b a b -++-(4)()()444a a +-9.(1)-6a 6(2)- 24a 5b10.(1)2(3)xy x y -(2)()(3)2x x y x --11.(1)(2)(2)x x x -+;(2)3-x y12.(1)()()11a a a +-(2)()()2222x y x y -+-13.(1)22(23)x x x --+(2)22(2)(2)a a +-14.(1)xy (x -y )2(2)a (x -1)(ax -a -4)(3)(x +y )2(x -y )2 15.(1)42167281x x -+(2)2269x y y -+-16.(1)()()1m m n n -+(2)()()77m n n m --17.(1)(2a -b )(x -y )(2)(x +1)2(x -1)218.(1)46610348m n m n -(2)222x xy -+19.(1)()()244x x +-(2)()22xy x y +20.(1)(1)(1)a x x -+- (2)21()2x21.2y -x ,322.542xy --,323.12x y +();1424.()22x y -,1225.x -y ,126.4xy -+,24527.23x xy -,4328.(1)17;(2)34 29.(1)4a 2-a -6;-2;(2)12 30.3050x +,3531.2a 72-b ,﹣132.(1)3(2)62x -33.22x -,52-34.820x y -;-235.-2x y ,2021-36.45a +;137.223x xy y ---,-3 38.410x --,-839.()()()72323x a a ++- 40.43x y -,-1141.(1)()a m n p -+(2)()()121+2x x -(3)()28x -(4)()()(32)x y x y m n -+- 42.(1)569a a +(2)222-x xy(3)2235a a -+(4)443.(1)2(3)m +;(2)22(1)(1)a a +-44.(1)38809(2)2241616x y y -++ 45.(1)52;(2)2-;(3)2646.310x +,947.69x -48.46x y -,6-49.(1)①()323x x -;①()222b a - (2)224xy y -;-350.()()222y x x -+ 51.352.45x +,353.(1)()32x x y -(2)()23a x +(3)()()31m m -+54.x 2-2x ,055.()()()22x y a b a b -+- 56.(1)()()5x y x y +-(2)()23m m +57.-405458.-9xy ;1859.(1)m (m -2)2(2)(3a -2b )(a +2b )60.(1)3()()y x y x y +-(2)2()x y -61.(1)232x y -(2)2y62.24x xy y --;-2 63.(1)4(2)254y xy -64.(1)24(1)x -(2)()(3)x y x y +-65.(1)32-x y,5-;(2)()2213-+a b ,1-. 66.(1)7;(2)7;(3)-1 67.(1)8x -(2)2734a a -+-(3)1(4)22694x x y68.(1)()1m m n -+(2)()()43a a a -+(3)()()315x x -+(4)()()2233y y +-69.2222a b --,452-70.(1)15(2)171.(1)2x 4;(2)2xy +5y 272.(1)(m -2)(a +b );(2)a (a -1)273.6xy +5y 2,17.74.(1)(m -n )(2x +1);(2)(2m +n )(2m -n );(3)3n (m -2)2;(4)2ab (a +3b )(a -3b ) 75.65x y --;1276.(1)6 (2)1277.(1)92,1x -+-(2)2,2ab -78.(1)x y -(2)97x +79.(1)4(5)(5)x x +-(2)22()m n -(3)22(1)(1)a a +-80.(1)0(2)231213x x ++(3)222496a b bc c -+- 81.22a ab -,2182.083.(1)(a +3)(a -3);(2)3(x +y )2.84.2284a b -+,-28 85.2xy ,-45.86.222b a -,7-. 87.28x -+,4-88.2b a -;389.69x -;390.52a91.-x 2+4x +10,5.92.(1)(3)(2)y x --(2)2(2)y x y --93.24,594.(1)S 1=a 2﹣b 2;S 2=2b 2﹣ab(2)31 (3)29295.(1)a 2-b 2;(a +b )(a -b );a 2-b 2=(a +b )(a -b ) (2)①14x 2-y 2;①9996 (3)2048312+ 96.(1)22212;2S a b S b ab =-=-;(2)12136S S +=;(3)338S =.97.(1)(m -1)(m ﹣5)(2)当a =2,b =﹣5时,多项式a 2+b 2﹣4a +10b +33有最小值为4.(3)298.(1)2,1或-1(2)34(3)1099.(1)32x y +,6;(2)()223a ab b ++平方米 100.(1)①()()22a b a b +---;①()()2221x x x -+-; (2)①ABC 是等腰三角形。
12章乘法公式和因式分解练习题
12乘法公式和因式分解练习题一、选择题1.已知2264b Nab a +-是一个完全平方式,则N 等于 ( )A 、8B 、±8C 、±16D 、±322.如果22)()(y x M y x +=+-,那么M 等于 ( )A 、 2xyB 、-2xyC 、4xyD 、-4xy3.下列可以用平方差公式计算的是( )A 、(x -y) (x + y)B 、(x -y) (y -x)C 、(x -y)(-y + x)D 、(x -y)(-x + y)4.下列各式中,运算结果是22169b a -的是( )A 、)43)(43(b a b a --+-B 、)34)(34(a b a b --+-C 、)34)(34(a b a b -+D 、)83)(23(b a b a -+5、下列各式中,能运用平方差分式分解因式的是( )A 、21x +-B 、22y x +C 、42--xD 、()22b a ---6、若m x x +-82是完全平方式, 则m 的值为( )A 、4B 、8C 、16D 、327.计算(x +2)2的结果为x 2+□x +4,则“□”中的数为( )A .-2B .2C .-4D .4 8、把多项式1222+--y x xy 分解因式的结果是( )A .)1)(1(+-+-x y y x B.)1)(1(---+x y y xC.)1)(1+--+y x y xD..)1)(1(--+-y x y x8.已知x 2+16x +k 是完全平方式,则常数k 等于( )A .64B .48C .32D .169.若949)7(22+-=-bx x a x ,则b a +之值为何?A .18B .24C .39D . 4510.已知8)(2=-n m ,2)(2=+n m ,则=+22n m ( )A .10B .6C .5D .311.把多项式a 2-4a 分解因式,结果正确的是( )A .a (a -4)B .(a +2)(a -2)C .a (a +2) (a -2)D .(a -2)2-4A .32-xB .92+xC .38-xD .318-x13.下列计算正确的是A.()222x y x y +=+B .()2222x y x xy y -=-- C .()()22222x y x y x y +-=-D .()2222x y x xy y -+=-+ 14.下列各因式分解正确的是( )A.)2)(2()2(22+-=-+-x x xB.22)1(12-=-+x x xC.22)12(144-=+-x x xD.)2)(2(42-+=-x x x x x15.下列分解因式正确的是( ) A .)(23a 1-a a a -+=+B .2a-4b+2=2(a-2b )C .()222-a 4-a =D .()221-a 1a 2-a =+ 16.下列各式能用完全平方式进行分解因式的是( )A .x 2 +1B .x 2+2x -1C .x 2+x +1D .x 2+4x +417.下面的多项式中,能因式分解的是( )A .m 2+nB .m 2﹣m+1C .m 2﹣nD .m 2﹣2m+118. a 4b -6a 3b +9a 2b 分解因式的正确结果是A .a 2b (a 2-6a +9)B .a 2b (a +3) (a -3)C .b (a 2-3)2D .a 2b (a -3)26. 4. 19.分解因式(x -1)2 -2(x -1)+1的结果是 ( )A .(x -1)(x -2)B . x 2C .(x +1)2D . (x -2)220.已知a -b =1,则代数式2a -2b -3的值是A .-1B .1C .-5D .5 21.将代数式262++x x 化成q p x ++2)(的形式为( )A. 11)3(2+-xB. 7)3(2-+xC. 11)3(2-+xD. 4)2(2++x22.计算222(a+b)(a b)+a a b -等于( )A .4aB .6aC .22a bD .22a b - 23.如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A .m +3B .m +6C .2m +3D .2m +624.图(1)是一个长为2m ,宽为2n (m>n)的长方形,用剪刀 沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A.2mnB.(m+n)2C.(m-n)2 D .m 2 -n 2二、填空题1.若2a -b =5,则多项式6a 一3b 的值是 .2.整式A 与m 2﹣2mn+n 2的和是(m+n )2,则A= .3.(x +1)(x -1)(1+x )=4.已知x + y =—5 ,xy =6 ,则x 2 + y 2=_______.5.二次三项式29x kx -+是一个完全平方式,则k 的值是 .6.将4个数a 、b 、c 、d 排成两行、两列,两边各加一条竖线记成a b c d,定义a c b d =a d -bc ,上述等式就叫做二阶行列式.若 1 181 1x x x x +-=-+,则x = . 7.写出一个在实数范围内能用平方差公式分解因式的多项式: .8.分解因式:25x x - =________ .9.分解因式:=-822x ___________________10.分解因式:ab 3-4ab = .11.分解因式:a -6ab +9ab 2= .12.分解因式:=+-22363n mn m _______ .13.分解因式:22331212x y xy y ++=14.若2m n -=,5m n +=,则22m n -的值为 .15.若622=-n m ,且2m n -=,则=+n m .16.有足够多的长方形和正方形的卡片,如下图. 3a b 2b a 1如果选取1号、2号、3号卡片分别为1张、4张、4张,可拼成一个正方形(不重叠无缝隙)那么这个正方形的边长是三、解答题1.化简:)2()12+-+x x x ( 2.化简:1)1()1(2-++-a a a3.先化简,再求值:(x+3)(x-3)-x (x-2),其中x=4.4. 先化简,再求值:22b +(a +b )(a -b )-(a -)2b ,其中a =-3,b =12.5.先化简,再求值:()()()x x x -+++2232,其中2-=x6.已知y x A +=2,y x B -=2,计算22B A -7.先化简,再求值:()222a b b --,其中2,3a b =-=8、已知x + y = a , xy = b ,求(x-y) 2 , x 2 + y 2 , x 2-xy + y 2的值x=-时,求代数式(2x+5)(x+1)-(x-3)(x+1)的值.9.当710.观察下列算式:① 1 × 3 - 22 = 3 - 4 = -1 ② 2 × 4 - 32 = 8 - 9 = -1③ 3 × 5 - 42 = 15 - 16 = -1 ④……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.。
乘法公式与因式分解试题精选全文完整版
可编辑修改精选全文完整版乘法公式与因式分解测试题填空题1、已知:x 2-6x +k 可分解为只关于x -3的因式,则k 的值为 ( )2、若x 2-6x y+9y 2=0,则13--y x 的值为( ) 3、已知:x 2+4x y=3,2x y+9y 2=1。
则x +3y 的值为4、x m -x m -4分解因式的结果是 ( )5、若y 2-8y+m -1是完全平方式,则m= ( ) 6.(a 2+b 2)2-4a 2b 2分解因式结果是( )7、若-b ax x -+221分解成)7)(4(21+--x x ,则a 、b 的值为( )8.若N b a b a ++=-22)32()32(,则N 的代数式是( ) 9.已知7)(2=+b a ,3)(2=-b a ,则22b a +与ab 的值分别是( ),( )10.若3,2a b ab +=-=,则22a b += ,()2a b -= ]11.多项式9x ²+1加上一个单项式后,成为一个整式的完全平方,请你写出一个..符合条件的单项式 12.已知多项式n mx --与2x -的乘积中不含x 项,则m 、n 满足的条件是__________. 13. 1纳米=0.000000001米,则3.5纳米=___________米.(用科学计数法表示)14.若4)2)((2-=++x x b ax ,则ba =_________________.选择题1. 若2422549))(________57(y x y x -=--,括号内应填代数式( )A 、y x 572+B 、y x 572--C 、y x 572+-D 、y x 572- 2. .若))(3(152n x x mx x ++=-+,则m的值为 ( )A .5-B .5C .2-D .23.已知2264b Nab a +-是一个完全平方式,则N 等于 ( ) A 、8 B 、±8 C 、±16 D 、±324. 如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( )A 、 –3B 、3C 、0D 、15. .若10=4,10=7x y ,则210x y -的值为( ). (A) 449 (B) 494 (C) 167 (D) 7166.下列各式中,运算结果是22169b a -的是( ) A 、)43)(43(b a b a --+- B 、)34)(34(a b a b --+-C 、)34)(34(a b a b -+D 、)83)(23(b a b a -+7. 计算:1.992-1.98×1.99+0.992得( )A 、0B 、1C 、8.8804D 、3.9601 8.22)213()213(-+a a 等于( )A 、4192-a B 、161814-aC 、161298124+-a aD 、161298124++a a9、对于任何整数m ,多项式9)54(2-+m 都能( ) A 、被8整除 B 、被m 整除 C 、被m -1整除 D 、被(2m -1)整除10、若a 为正整数,且x 2a =5,则(2x 3a )2÷4x 4a 的值为( )(A )5 (B )25(C )25 (D )11、把216a +-分解因式,结果是( )A.)8)(8(+-a aB.)4)(4(-+a aC.)2)(2(+-a a D 2)4.(-a 12、下列多项式中,能用公式进行因式分解的是( ) A .22b a -- B.422++x x C. 22)(b a --- D.412+-x x 13、用分组分解法将x y xy x 332-+-分解因式,下列的分组方式中不恰当的是( )A .)3()3(2xy y x x -+- B.)33()(2x y xy x -+- C.)33()(2x y xy x -+- D.y x xy x 3)3(2+-- 14、把多项式1222+--y x xy 分解因式的结果是( ) A .)1)(1(+-+-x y y x B.)1)(1(---+x y y x C.)1)(1+--+y x y x D..)1)(1(--+-y x y x 15、把多项式822222--++-y x y xy x 分解因式的结果是( )A.)2)(4(+---y x y xB.)8)(1(----y x y xC.)2)(4(--+-y x y xD.)8)(1(--+-y x y x 16、多项式3222315520m n m n m n +-的公因式是( ) A 、5mn B 、225m n C 、25m n D 、25mn 17、xy y x 2122--+解因式的结果是( ) A.)2)(4(+---y x y x B.(x-y+1)(x-y-1) C.)2)(4(--+-y x y x D.)8)(1(--+-y x y x 18、20062+3×20062–5×20072的值不能..被下列哪个数整除( )A 、3 B 、5 C 、20062 D 、2005219、一个正方形的边长增加了cm 2,面积相应增加了232cm ,则这个正方形的边长为( ) A .6cm B .5cm C .8cm D .7cm 20、下列各式中,能运用平方差分式分解因式的是( )A 、21x +- B 、22y x + C 、42--x D 、()22b a --- 21、若m x x +-82是完全平方式, 则m 的值为( ) A 、4 B 、8 C 、16 D 、32 22.计算题⑴ x (9x -5)-(3x + 1) (3x -1)⑵ (a + b -c) (a -b + c)⑶)49)(23)(23(22b a b a b a ++-⑷ (2x -1) (2x + 1)-2(x -2) (x + 2)5) 22)()(y x y x +- (6)22)35()35(y x y x ++-(7)))((c b a c b a +--+ (8) 2222)2()4()2(++-t t t23.分解因式(9)2244x xy y -+- (10)224520bxy bx a -(11)(1)(3)1x x --+ (12) 22)(16)(9n m n m --+13)x 4-12x +32 (14)5x 2-125y 415)4x 2-12x y+9y 2 (16).(m+n )2-4(m+n -1)17).22(1)(1)x a y a -+- (18)-81x 2+y 2(19)221222x xy y ++ (20)221424a ab b ++24、已知x + y = a , xy = b ,求(x -y) 2 , x 2 + y 2, x 2-xy + y 2的值25、已知22==+ab b a ,,求32232121ab b a b a ++的值26、先分解因式,再求值:655222++-+-b a b ab a ,其中92,96==b a27. 对于任意自然数n ,()()2257--+n n 是否能被24整除,为什么?28、利用分解因式进行简便运算 1、已知2a -b=3,求-8a 2+8ab -2b 2 的值。
整式的乘法与因式分解
整式的乘法与因式分解一、选择题1.下列从左边到右边的变形,是因式分解的是( )A.(3-x)(3+x)=9-x2B.m3-n3=(m-n)(m2+mn+n2)C.(y+1)(y-3)=-(3-y)(y+1)D.4yz-2y2z+z=2y(2z-yz)+z思路解析:A属于整式乘法,C是恒等变形,用的是乘法交换律,D分解不彻底.答案:B2.已知二次三项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为( )A.b=3,c=-1B.b=-6,c=2C.b=-6,c=4D.b=-4,c=-6思路解析:利用分解因式与整式乘法的互逆关系,将2(x-3)(x+1)乘出来即可.答案:D3.下列各式不能继续因式分解的是( )A.1-x2B.x2-y2C.(x+y)2D.a2+2a思路解析:A和B能用平方差公式分解,D能用提公因式法分解.答案:C4.下列多项式中能用平方差公式分解因式的是( )A.a2+(-b)2B.5m2-20mnC.-x2-y2D.-x2+9思路解析:-x2+9=9-x2=(3+x)(3-x).答案:D5.把多项式a3+2a2b+ab2-a分解因式的结果是( )A.(a2+ab+a)(a+b-1)B.a(a+b+1)(a+b-1)C.a(a2+2ab+b2-1)D.(a2+ab+a)(a+ab-a)思路解析:先提公因式a,再运用完全平方公式和平方差公式.答案:B6.对于任何整数m,多项式(4m+5)2-9都能( )A.被8整除B.被m整除C.被(m-1)整除D.被(2m-1)整除思路解析:因为(4m+5)2-9=(4m+5+3)(4m+5-3)=(4m+8)(4m+2)=8(m+2)(2m+1),所以(4m+5)2-9都能被8整除.答案:A7.若4x2-12x+m2是一个完全平方式,则m的值为( )A.3B.-3C.3或-3D.9思路解析:由于4x2-12x+m2可写为(2x)2-2×2x×3+m2,要使其成为完全平方式,则必须使m2=32,所以m=±3. 答案:C8.满足m2+n2+2m-6n+10=0的是( )A.m=1,n=3B.m=1,n=-3C.m=-1,n=3D.m=-1,n=-3思路解析:m2+n2+2m-6n+10=(m+1)2+(n-3)2=0,所以m=-1,n=3.答案:C二、填空题9.已知正方形的面积是9x 2+6xy+y 2(x>0,y>0),则该正方形的边长为____________.思路解析:把9x 2+6xy+y 2分解因式可得9x 2+6xy+y 2=(3x+y)2.答案:3x+y10.若x 2+mx+n 是一个完全平方式,则m,n 的关系是_______.思路解析:若x 2+mx+n 是一个完全平方式,则常数项n 等于一次项系数m 的一半的平方.答案:m 2=4n11.已知a-2=b+c,则代数式a(a-b-c)-b(a-b-c)+c(b-a+c)的值是_______.思路解析:因为a-2=b+c,所以a-b-c=2,所以原式=a(a-b-c)-b(a-b-c)-c(a-b-c)=a(a-b-c)-b(a-b-c)-c(a-b-c)=(a-b-c)2=4.答案:4 12.已知x,y 满足x 2+4xy+4y 2-x-2y+41=0,则x+2y 的值为_______. 思路解析:x 2+4xy+4y 2-x-2y+41=(x+2y)2-(x+2y)+41=(x+2y-21)2,由非负数性质可得x+2y=21. 答案:21 13.当x_______取时,多项式x 2+4x+6取得最小值是_______.思路解析:因为x 2+4x+6=(x+2)2+2,且(x+2)2≥0,所以当x=-2时,(x+2)2+2有最小值为2.答案:-2 214.观察下列各式x 2-1=(x-1)(x+1),x 3-1=(x-1)(x 2+x+1),x 4-1=(x-1)(x 3+x 2+x+1),根据前面各式的规律可猜想x n+1-1=_____________.思路解析:观察特点,找出其内在的规律.答案:(x-1)(x n +x n-1+…+x+1)三、解答题15.把下列多项式分解因式:(1)(m+n)3+2m(m+n)2+m 2(m+n);(2)(a 2+b 2)2-4a 2b 2;(3)(m 2-m)2+21(m 2-m)+161. 解:(1)(m+n)3+2m(m+n)2+m 2(m+n)=(m+n)[(m+n)2+2m(m+n)+m 2]=(m+n)(2m+n)2;(2)(a 2+b 2)2-4a 2b 2=(a 2+b 2)2-(2ab)2=(a 2+b 2+2ab)(a 2+b 2-2ab)=(a+b)2(a-b)2;(3)(m 2-m)2+21(m 2-m)+161=(m-21)4 16.利用分解因式求值.(1)已知x+y=1,xy=-21,利用因式分解求x(x+y)(x-y)-x(x+y)2的值; (2)已知a+b=2,ab=2,求21a 3b+a 2b 2+21ab 3的值. 思路分析:对于(1),可将x(x+y)(x-y)-x(x+y)2提取公因式x(x+y);对于(2),先提取公因式21ab,再运用公式法分解.解:(1)x(x+y)(x-y)-x(x+y)2=x(x+y)[(x-y)-(x+y)]=-2xy(x+y)=1;(2)原式=21ab(a+b)2=4. 17.利用分解因式计算. (1)1713-×191713-×15; (2)20022001200119992001220012323-+-⨯-. 思路分析:对于(1),可提取公因式1713-;对于(2),可对分子、分母采取分步分解的方法进行化简计算. 解:(1)1713-×191713-×15=1713-×(19+15)=-26; (2)2002)12001(20011999)22001(20012002200120011999200122001222323-+⨯--⨯=-+-⨯- 20021999)12001(2002)12001(19992002200220011999199920012222=--=-⨯-⨯= 18.n 为整数,试说明(n+5)2-(n-1)2的值一定能被12整除.思路分析:要证明(n+5)2-(n-1)2的值能被12整除,只要将此式分解因式,使12成为其中的一个因式即可. 解:(n+5)2-(n-1)2=[(n+5)+(n-1)][(n+5)-(n-1)]=(2n+4)×6=2(n+2)×6=12(n+2),因为n 为整数,所以n+2也为整数,故12(n+2)能被12整除,即(n+5)2-(n-1)2的值一定能被12整除.19.在对某二次三项式进行因式分解时,甲同学因看错了一次项系数而将其分解为2(x-1)(x-9),而乙同学因看错了常数项而将其分解为2(x-2)(x-4),请你将此二次三项式进行正确的因式分解.思路分析:解答此类问题的基本思路是“将错就错”,找出在错误的答案下,依然正确的条件,运用整式乘法与因式分解的关系进行求解.解:2(x-1)(x-9)=2x 2-20x+18,2(x-2)(x-4)=2x 2-12x+16,因为甲同学看错了一次项系数,但没有看错常数项,乙同学看错了常数项但没有看错一次项系数,所以原多项式为2x 2-12x+18.分解因式得2x 2-12x+18=2(x 2-6x+9)=2(x-3)2.。
【精品讲义】人教版 八年级上册数学 乘法公式与因数分解 知识点讲解+练习题
讲 义(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4④ 系数变化,(2a +b )(2a -b )=4a 2-b 2 ⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m )=x 2y 2-(z 2+zm +zm +m 2)=x 2y 2-z 2-2zm -m 2⑥ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4 1、计算下列各式:(1)[(x +y)3]4 ; (2) (a 4n )n -1 ;(3) (-a 3)2+(-a 2)3-(-a 2)·(-a)4 ;(4) x 3·x 2·x 4+(-x 4)2+4(-x 2)4例. 计算:()()53532222x y x y +-(二)、连用:连续使用同一公式或连用两个以上公式解题。
例. 计算:()()()()111124-+++a a a a例. 计算:()()57857822a b c a b c +---+例.(1)已知a b ab -==45,,求a b 22+的值。
(2) 已知2=+b a ,1=ab ,求22b a +的值。
(3) 已知8=+b a ,2=ab ,求2)(b a -的值。
(4) 已知x-y=2,y-z=2,x+z=14。
求x 2-z 2的值。
例:计算19992-2000×1998 例.已知13x x-=,求441x x +的值。
乘法公式和因式分解练习题资料
乘法公式和因式分解练习题乘法公式和因式分解练习题一、选择题1.已知2264b Nab a +-是一个完全平方式,则N 等于 ( )A 、8B 、±8C 、±16D 、±322.如果22)()(y x M y x +=+-,那么M 等于 ( )A 、 2xyB 、-2xyC 、4xyD 、-4xy3.下列可以用平方差公式计算的是( )A 、(x -y) (x + y)B 、(x -y) (y -x)C 、(x -y)(-y + x)D 、(x -y)(-x + y)4.下列各式中,运算结果是22169b a -的是( )A 、)43)(43(b a b a --+-B 、)34)(34(a b a b --+-C 、)34)(34(a b a b -+D 、)83)(23(b a b a -+5、下列各式中,能运用平方差分式分解因式的是( )A 、21x +-B 、22y x +C 、42--xD 、()22b a ---6、若m x x +-82是完全平方式, 则m 的值为( )A 、4B 、8C 、16D 、327.计算(x +2)2的结果为x 2+□x +4,则“□”中的数为( )A .-2B .2C .-4 D.4 8、把多项式1222+--y x xy 分解因式的结果是( )A .)1)(1(+-+-x y y x B.)1)(1(---+x y y xC.)1)(1+--+y x y xD..)1)(1(--+-y x y x8.已知x 2+16x +k 是完全平方式,则常数k 等于( )A .64B .48C .32D .169.若949)7(22+-=-bx x a x ,则b a +之值为何?A .18B .24C .39D . 4510.已知8)(2=-n m ,2)(2=+n m ,则=+22n m ( )A .10B .6C .5D .311.把多项式a 2-4a 分解因式,结果正确的是( )A .a (a -4)B .(a +2)(a -2)C .a (a +2) (a -2)D .(a -2)2-412.化简)23(4)325x x -+-(的结果为( )A .32-xB .92+xC .38-xD .318-x13.下列计算正确的是A.()222x y x y +=+ B .()2222x y x xy y -=--C .()()22222x y x y x y +-=-D .()2222x y x xy y -+=-+14.下列各因式分解正确的是( )A.)2)(2()2(22+-=-+-x x xB.22)1(12-=-+x x xC.22)12(144-=+-x x xD.)2)(2(42-+=-x x x x x15.下列分解因式正确的是( )A .)(23a 1-a a a -+=+B .2a-4b+2=2(a-2b )C .()222-a 4-a =D .()221-a 1a 2-a =+16.下列各式能用完全平方式进行分解因式的是( )A .x 2 +1 B.x 2+2x -1 C.x 2+x +1 D.x 2+4x +417.下面的多项式中,能因式分解的是( )A .m 2+nB .m 2﹣m+1C .m 2﹣nD .m 2﹣2m+118. a 4b -6a 3b +9a 2b 分解因式的正确结果是A .a 2b (a 2-6a +9)B .a 2b (a +3) (a -3)C .b (a 2-3)2D .a 2b (a -3)26. 4. 19.分解因式(x -1)2 -2(x -1)+1的结果是 ( )A .(x -1)(x -2)B . x 2C .(x +1)2D . (x -2)220.已知a - b =1,则代数式2a -2b -3的值是A .-1B .1C .-5D .521.将代数式262++x x 化成q p x ++2)(的形式为( )A. 11)3(2+-xB. 7)3(2-+xC. 11)3(2-+xD. 4)2(2++x22.计算222(a+b)(a b)+a a b -等于( )A .4aB .6aC .22a bD .22a b -23.如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A .m +3B .m +6C .2m +3D .2m +624.图(1)是一个长为2m ,宽为2n (m>n)的长方形,用剪刀 沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A.2mnB.(m+n)2C.(m-n)2 D .m 2 -n 2二、填空题1.若2a -b =5,则多项式6a 一3b 的值是 .2.整式A 与m 2﹣2mn+n 2的和是(m+n )2,则A= .3.(x +1)(x -1)(1+x )=4.已知x + y =—5 ,xy =6 ,则x 2 + y 2=_______.m +3 m3m n 图 图5.二次三项式29x kx -+是一个完全平方式,则k 的值是 .6.将4个数a 、b 、c 、d 排成两行、两列,两边各加一条竖线记成a b c d,定义a c b d =ad -bc ,上述等式就叫做二阶行列式.若 1 181 1x x x x +-=-+,则x = . 7.写出一个在实数范围内能用平方差公式分解因式的多项式: .8.分解因式:25x x - =________ .9.分解因式:=-822x ___________________10.分解因式:ab 3-4ab = .11.分解因式:a -6ab +9ab 2= .12.分解因式:=+-22363n mn m _______ .13.分解因式:22331212x y xy y ++=14.若2m n -=,5m n +=,则22m n -的值为 .15.若622=-n m ,且2m n -=,则=+n m .16.有足够多的长方形和正方形的卡片,如下图.3a 2a 1如果选取1号、2号、3号卡片分别为1张、4张、4张,可拼成一个正方形(不重叠无缝隙)那么这个正方形的边长是三、解答题1.化简:)2()12+-+x x x ( 2.化简:1)1()1(2-++-a a a3.先化简,再求值:(x+3)(x-3)-x (x-2),其中x=4.4. 先化简,再求值:22b +(a +b )(a -b )-(a -)2b ,其中a =-3,b =12.5.先化简,再求值:()()()x x x -+++2232,其中2-=x6.已知y x A +=2,y x B -=2,计算22B A -7.先化简,再求值:()222a b b --,其中2,3a b =-=8、已知x + y = a , xy = b ,求(x -y) 2 , x 2 + y 2 , x 2-xy + y 2的值9.当7x =-时,求代数式(2x +5)(x +1)-(x -3)(x +1)的值.10.观察下列算式:① 1 × 3 - 22 = 3 - 4 = -1 ② 2 × 4 - 32 = 8 - 9 = -1③ 3 × 5 - 42 = 15 - 16 = -1 ④……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.。
人教版八年级数学上册《整式的乘法与因式分解》测试卷(含答案)
人教版八年级数学上册《整式的乘法与因式分解》测试卷(含答案)一、选择题(每小题3分,共30分)1.下列计算正确的是( )A.x+x²=x³B.x²・x³=x6C.(x³)²=x6D.x9÷x³=x³2.若12x m y2与13x3y n是同类项,则m,n的值为( )A.m=3,n=2B.m=2,n =3C.m=-3.n=2D.m=-2,n=33.下列因式分解不完全的是( )A.a²-2ab+b²=(a-b)²B.a³-a =a (a²-1)C.a²b-ab²=ab(a-b)D.a²-b²=(a+b)(a-b)4.已知(a +b)²=(a-b)²+M,则M为( )A.abB.2abC.-2abD.4ab5.下列多项式乘法中,能运用平方差公式的是()A.(a-b)(a-b)B.(a-b)(-a+b)C.(a+b)(-a+b)D.(a-b)(b-a)6.如果(x+m)与(x+3)的乘积中不含x的一次项,则m的值为( )A.-3B.3C.0D.17.如图的图形面积由以下哪个公式表示( )A.a²-b²=a(a-b)+b(a-b)B.(a-b)²=a²-2ab+b²C.(a+b)²=a²+2ab+b²D.a²-b²=(a+b)(a-b)8.若△ABC的三边a,b,c满足a²+b²+c²-ab-bc-ca=0,则△ABC是( )A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形9.下列计算:①3a+2b=5ab;②3x³×(-2x²)=-6x5;③4a³b÷(-2a²b)=-2a;④(-a²)³=a6;⑤(-a)³÷(-a)=-a².其中正确的有( )A.1个B.2个C.3个D.4 个10.已知x+y=6,xy=8,下列结论:①(x+y)²=36;②x²+y²=20;③x-y=2;④x²y²=12.其中正确的是( )A.①②③④B.①②④C.①②D.①③④二、填空题(每小题3分,共18分)11.x平方x²+y²+2x-6y+10=0,则x・y=_________12.当x______时,(x-3)0=1.13.若x²+2(m-3)x+16是一个完全平方式,那么m应为_________.14.若x-1x =1,则x²+1x2的值是__________.15.观察下列关于自然数的等式:①3²-4X1²=5;②5²-4X2²=9;③7²-4X3²=13.根据上述规律解决下列问题:(1)完成第四个等式:____________________;(2)写出你猜想的第n个等式_____________________(用含n的式子表示).16.已知a,b满足等式x=a²+b²+5,y=2(2b-a),则x,y的大小关系为______________.三、解答题(72分)17.(10分)计算下列各题.(1)-2a²bx(−12ab2)x(-abc);(2)(5x-3)(-5x-3)-(5x+3)²+(5x-3)².18.(12分)分解因式。
乘法公式
八年级整式的乘法与因式分解练习题一、选择题1.下列各式运算正确的是( )A.532a a a =+B.532a a a =⋅C.632)(ab ab =D.5210a a a=÷ 2. 计算232(3)x x ⋅-的结果是( )A. 56xB. 62xC.62x -D. 56x -3.计算32)21(b a -的结果正确的是( ) A. 2441b a B.3681b a C. 3681b a - D.5318a b - 4. 44221625)(______)45(b a b a -=+-括号内应填( )A 、2245b a +B 、2245b a +C 、2245b a +-D 、2245b a --5.如图,阴影部分的面积是( )A .xy 27B .xy 29 C .xy 4 D .xy 26.()()22x a x ax a -++的计算结果是( ) A. 3232x ax a +- B. 33x a -C.3232x a x a +-D.222322x ax a a ++-7.下面是某同学在一次测验中的计算摘录①325a b ab +=; ②33345m n mn m n -=-;③5236)2(3x x x -=-⋅; ④324(2)2a b a b a ÷-=-; ⑤()235a a =;⑥()()32a a a -÷-=-. 其中正确的个数有( )A.1个B.2个C.3个D. 4个8.下列分解因式正确的是( )A.32(1)x x x x -=-.B.2(3)(3)9a a a +-=-C. 29(3)(3)a a a -=+-.D.22()()x y x y x y +=+-.9. 如(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为( ).A .0B .3C .-3D .110. 若3x =15, 3y =5,则3x y-= ( ).A .5B .3C .15D .10二、填空题(本大题共有7小题,每空2分,共16分) 11.计算(-3x 2y )·(213xy )=__________. 12.计算22()()33m n m n -+--=__________. 13.201()3π+=________ 14. 当x __________时,(x -3)0=1.15. 若22210a b b -+-+=,则a = ,b =16.已知4x 2+mx +9是完全平方式,则m =_________.17. 已知5=+b a ,3ab =则22a b +=__________.18. 定义2a b a b *=-,则(12)3**= .三、解答题(本大题共有7小题,共54分)19.(9分)计算:(1)34223()()a b ab ÷ (2)))(()(2y x y x y x -+-+.(3)xy xy y x y x 2)232(2223÷+-- (4)2007200831()(1)43⨯-=20.(12分)分解因式:(1) 12abc -2bc 2; (2) 2a 3-12a 2+18a ;(3) 9a(x -y)+3b(x -y); (4) (x +y )2+2(x +y )+1.(5)3x -12x 3; (6)9a 2(x -y )+4b 2(y -x );21.先化简,再求值:(1)()()()22x y x y x y x ⎡⎤-++-÷⎣⎦,其中x=3,y=1(2)(2x+3y )2 — (2x+3y)(2x-3y), 其中x=3,y=1(3),其中.22. (5分) 请你从下列各式中,任选两式作差,并将得到的式子进行因式分解. 2224()19a x y b +, , ,23.(8分)解下列方程与不等式(1) 3(7)18(315)x x x x -=--; (2)(3)(7)8(5)(1)x x x x +-+>+-.24.若0352=-+y x ,求yx 324⋅的值.(4分)25(本题8分)对于任意的正整数n ,代数式n(n+7)-(n+3)(n-2)的值是否总能被6整除,请说明理由。
2022-2023学年初一数学第二学期培优专题训练28 利用乘法公式和因式分解简便计算
专题28 利用乘法公式和因式分解简便计算【例题讲解】用简便方法进行计算.(1)21.4×2.3+2.14×27+214×0.5.(2)22100007525-. (3)(2112-)×2211(1)(1)34-⨯-⨯…×(21110-). (4)1952+195×10+52. 1191010⨯⨯⨯195×5+521.用简便方法计算2008﹣4016×2007+2007的结果是_____.2.利用因式分解计算:22111021198⨯-⨯的结果是______.3.利用因式分解简便运算:2252.847.2-=_____.4.利用因式分解计算2221000252248=-__________. 5.计算:2222020200119=200119--⨯__. 6.利用因式分解计算:3.4614.70.5414.729.4⨯+⨯-=______.7.利用因式分解计算:2022+202×196+982=______.8.利用乘法公式简便计算.(1)4.3212+8.642×0.679+0.6792;(2)2020×2022-20212.9.利用因式分解计算(1)2900894906-⨯(2)2.6815.731.415.7 1.32⨯-+⨯10.利用因式分解计算:(1)21 3.1462 3.1417 3.14⨯+⨯+⨯;(2)22758258-.11.利用因式分解进行简便运算:(1)2920.217220.2120.21⨯+⨯- (2)2210119810199+⨯+12.利用因式分解进行简便计算:(1)3×852﹣3×152;(2)20212﹣4042×2019+20192.13.利用因式分解计算:225652443524⨯-⨯.14.计算:(要求:应用因式分解巧算,写明计算过程)(1)7749.124.12525⨯-⨯; (2)1.1 2.5 2.29 2.50.61 2.5⨯+⨯+⨯; (3)20.9990.9990.001+⨯;(4)已知2004+=a b ,1003=ab ,求22222-+a b a b ab 的值.15.简便计算:(1)227.29 2.71-;(2)2.887.680.48⨯+⨯-⨯;(3)2200820081664-⨯+.16.用简便方法计算:(1)8502﹣1700×848+8482(2)2221111()1()1()232021⎡⎤⎡⎤⎡⎤-⨯-⨯⋯⨯-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦17.简便计算(1)221.2229 1.3334⨯-⨯ (2)2220220219698⨯++18.利用因式分解计算:(1)222222221009998974321-+-+⋯+-+-(2)()()()()2483212451515151++++⋅⋯⋅+(3)()()4222222n n n ++-19.用简便方法计算:(1)22429171-(2)2220220219698⨯++20.利用因式分解计算:22015201520152016+-⨯21.利用因式分解计算:(1)342+34×32+162(2)38.92-2×38.9×48.9+48.9222.计算:①2032﹣203×206+1032②20192﹣2018×2020.23.用简便方法计算.(1)227.29 2.71-(2)44134 23.7 1.35555 -⨯+⨯-⨯24.利用因式分解计算:3232 2018320182015 201820182019-⨯-+-25.利用因式分解简便计算:11 1009922⨯26.利用因式分解计算:(1)9788597879788⨯+⨯+⨯;(2)23.86 3.86 3.85-⨯. 27.利用乘法公式计算:(1)2201920182020-⨯. (2)299.8.专题28 利用乘法公式和因式分解简便计算【例题讲解】用简便方法进行计算.(1)21.4×2.3+2.14×27+214×0.5.(2)22100007525-. (3)(2112-)×2211(1)(1)34-⨯-⨯…×(21110-). 221191010⨯⨯⨯195×5+52,1.用简便方法计算2008【答案】1.【分析】共三项,其中4016是2×2008,用完全平方公式分解因式即可解答.【解答】20082﹣4016×2007+20072,=20082﹣2×2008×2007+20072,=(2008﹣2007)2,=1.【点评】此题考查公式法在有理数计算中的应用,正确分析出所应用的公式是解题的关键. 2.利用因式分解计算:22111021198⨯-⨯的结果是______.【答案】8800【分析】先提出11,再根据平方差公式计算即可.【解答】原式=2211(10298)⨯-=11(10298)(10298)⨯+⨯-=112004⨯⨯=8800.故答案为:8800.【点评】本题主要考查了应用因式分解计算,掌握平方公式是解题的关键.即22()()a b a b a b -=+-.3.利用因式分解简便运算:2252.847.2-=_____.【答案】560【分析】利用平方差法进行因式分解,再进行计算;【解答】原式=()()52.847.252.847.2+⨯-=100 5.6⨯=560.故答案为:560.【点评】本题考查利用公式法因式分解进行简便运算.熟练掌握公式法因式分解是解题的关键.4.利用因式分解计算2221000=__________.5.计算:2020200119=--__.6.利用因式分解计算:______.【答案】29.4【分析】根据提取公因式法,提取公因数14.7,进行简便计算,即可. 【解答】原式=(3.46+0.542)14.7-⨯=214.7⨯=29.4故答案为:29.4.【点评】本题主要考查提取公因式法分解因式,提取公因数14.7,进行简便计算,是解题的关键.7.利用因式分解计算:2022+202×196+982=______.【答案】90000.【分析】将式子改写为完全平方公式的形式进行计算.【解答】原式2220222029898=+⨯⨯+2(20298)=+2300=90000=.故答案为90000.【点评】本题考查利用完全平方公式计算,熟练掌握公式的形式是关键.8.利用乘法公式简便计算.(1)4.3212+8.642×0.679+0.6792;(2)2020×2022-20212.【答案】(1)25(2)-1【分析】(1)根据完全平方公式计算即可;(2)根据平方差公式计算即可【解答】(1)4.3212+8.642×0.679+0.6792224.3212 4.3210.6790.679=+⨯⨯+()24.3210.679=+ 25=25=(2)2020×2022-20212()()220211202112021=-+-222=202112021--1=-【点评】本题考查了利用乘法公式简便计算,掌握乘法公式是解题的关键.9.利用因式分解计算(1)2900894906-⨯ (2)2.6815.731.415.7 1.32⨯-+⨯【答案】(1)36(2)31.4【分析】(1)先将894906⨯变形为()()a b a b +-的形式,再利用平方差公式求解;(2)先提取公因式15.7,再进行计算即可.【解答】(1)解:2900894906-⨯222222290090(9006)(9006)(9006)9609000630--⨯+=--=-+==(2)解:2.6815.731.415.7 1.32⨯-+⨯15.7(2.682 1.32)15.7231.4=⨯-+=⨯= 【点评】本题考查通过因式分解进行简化计算,解题关键是提取公因式或根据数字特点将所求式子进行变形后利用公式求解.10.利用因式分解计算:(1)21 3.1462 3.1417 3.14⨯+⨯+⨯;(2)22758258-.【答案】(1)314;(2)508000【分析】(1)利用提取公因式法计算;(2)应用平方差公式计算.【解答】解:(1)原式 3.14(216217)314=⨯++=;(2)原式(758258)(758258)1016500508000=+-=⨯=.【点评】本题考查因式分解的应用,属于基础题型.11.利用因式分解进行简便运算:(1)2920.217220.2120.21⨯+⨯- (2)2210119810199+⨯+【答案】(1)2021;(2)40000【分析】(1)观察式子,利用提公因式法进行求解;(2)根据式子的特点,利用完全平方公式进行求解.【解答】(1)解:原式()20.2129721=⨯+-20.21100=⨯2021=.(2)解:原式2210129910199=+⨯⨯+()210199=+ 2200=40000=【点评】本题考查因式分解的应用,解题的关键是根据每个式子中的特点选择适当的因式分解的方法(如提公因式法、公式法等),从而简化计算.12.利用因式分解进行简便计算:(1)3×852﹣3×152; (2)20212﹣4042×2019+20192.【答案】(1)21000;(2)4【分析】(1)提取公因式,利用平方差公式进行因式分解计算即可;(2)对原式进行变形,利用完全平方公式直接分解因式计算即可.【解答】解:(1)3×852﹣3×152=3×(852-152)=3×(85+15)×(85-15)=3×100×70=21000;(2)20212﹣4042×2019+20192=20212-2×2021×2019+20192=(2021-2019)2=22=4.【点评】本题考查了因式分解的应用,熟练掌握平方差公式和完全平方公式是解题的关键. 13.利用因式分解计算:225652443524⨯-⨯.【答案】3120000【分析】先提取24,再利用平方差公式即可求解.【解答】225652443524⨯-⨯=()2224565435⨯-=()()24565435565435⨯+⨯-=241000130⨯⨯=3120000.【点评】此题主要考查因式分解的运用,解题的关键是熟知平方差公式的运用.14.计算:(要求:应用因式分解巧算,写明计算过程)(1)7749.124.12525⨯-⨯; (2)1.1 2.5 2.29 2.50.61 2.5⨯+⨯+⨯;(3)20.9990.9990.001+⨯; 2222)a (a -原式()1003200420062006=⨯-=-.【点评】本题考查了因式分解的应用,掌握因式分解的方法是解题的关键.15.简便计算:(1)227.29 2.71-;(2)2.887.680.48⨯+⨯-⨯; (3)2200820081664-⨯+.【答案】(1)45.8;(2)80;(3)4000000【分析】(1)利用平方差公式即可求解;(2)提取8,故可求解;(3)利用完全平方公式即可求解.【解答】(1)227.29 2.71-=()()7.29 2.717.29 2.71+⨯-=10×4.58=45.8;(2)2.887.680.48⨯+⨯-⨯=()8 2.87.60.4⨯+-=8×10=80(3)2200820081664-⨯+=2220082200888-⨯⨯+=()220088-=20002=4000000.【点评】此题主要考查因式分解的应用,解题的关键是熟知提公因式法、公式法分解因式.16.用简便方法计算:(1)8502﹣1700×848+8482(2)2221111()1()1()⎡⎤⎡⎤⎡⎤-⨯-⨯⋯⨯-⎢⎥⎢⎥⎢⎥ 112021⎛⨯⨯+ ⎝20222021⨯⨯⨯20202021⨯⨯⨯【点评】本题考查了因式分解的应用,熟练掌握完全平方公式、平方差公式是解本题的关键.(1)221.2229 1.3334⨯-⨯ (2)2220220219698⨯++【答案】(1)6.332;(2)90000【分析】(1)先利用同底数幂的乘法变形,再利用平方差公式计算;(2)利用完全平方公式变形计算.【解答】解:(1)221.2229 1.3334⨯-⨯=22221.2223 1.3332⨯-⨯=()()221.2223 1.3332⨯-⨯=223.666 2.666-=()()3.666 2.666 3.666 2.666+-=6.332;(2)2220220219698+⨯++=2220222029898+⨯⨯+=()220298+=90000【点评】本题考查了同底数幂的乘法,平方差公式,完全平方公式,计算时注意乘法公式的应用.18.利用因式分解计算:(1)222222221009998974321-+-+⋯+-+-(2)()()()()2483212451515151++++⋅⋯⋅+(3)()()4222222n n n ++-(1)22429171-(2)2220220219698⨯++【答案】(1)154800;(2)90000.【分析】(1)利用平方差公式进行计算即可得到答案;(2)把原式化为:2220222029898+⨯⨯+,再利用完全平方公式进行计算即可得到答案.【解答】解:(1)22429171-()()429171429171=+-600258154800=⨯=(2)2220220219698⨯++2220222029898=+⨯⨯+()220298=+ 230090000.==【点评】本题考查的是利用平方差公式与完全平方公式进行简便计算,掌握两个公式的特点是解题的关键.20.利用因式分解计算:22015201520152016+-⨯【答案】0【分析】先提取公因数2015进行分解,然后再进行计算即可.【解答】22015201520152016+-⨯=()2015120152016⨯+-=20150⨯0=.【点评】本题考查了利用因式分解进行计算,熟练掌握提公因式法是解此题的关键.21.利用因式分解计算:(1)342+34×32+162 (2)38.92-2×38.9×48.9+48.92【答案】(1)2500;(2)100.【分析】(1)转化为完全平方公式形式,计算即可;(2)根据完全平方公式计算即可.【解答】解:(1)342+34×32+162=342+2×34×16+162=(34+16)2=502=2500;(2)38.92-2×38.9×48.9+48.92=(38.9-48.9)2=(-10)2=100.【点评】本题考查了根据完全平方公式因式分解,熟练掌握完全平方式的特点是解题关键.22.计算:①2032﹣203×206+1032 ②20192﹣2018×2020.【答案】①10000;②1.【分析】①根据完全平方公式计算即可;②根据平方差公式计算即可.【解答】解:①原式=2032﹣2×203×103+1032=(203﹣103)2=1002=10000; ②原式=20192﹣(2019﹣1)×(2019+1)=20192﹣(20192﹣1)=20192﹣20192+1=1.【点评】本题主要考查了平方差公式以及完全平方公式,熟记公式是解答本题的关键.平方差公式:()()22a b a b a b +-=-.完全平方公式:()2222a b a ab b ±=±+.23.用简便方法计算.(1)227.29 2.71-(2)4413423.7 1.3-⨯+⨯-⨯24.利用因式分解计算:322018320182015-⨯-25.利用因式分解简便计算:10099⨯(1)9788597879788⨯+⨯+⨯;(2)23.86 3.86 3.85-⨯.【答案】(1)97800;(2)0.0386【分析】(1)提取公因式978后进行计算;(2)提取公因式3.86后进行计算.【解答】(1)原式()9788578=⨯++97800=.(2)原式()3.86 3.86 3.85=⨯-0.0386=.【点评】本题考查利用因式分解对有理数进行简便运算,利用提取公因式因式分解是解答此题的关键.27.利用乘法公式计算:(1)2201920182020-⨯. (2)299.8.【答案】(1)1(2)9960.04【分析】(1)观察算式,把2018和2020分别用2019-1和2019+1表示,利用平方差公式对这一部分进行运算,然后再去括号相加减即可;(2)将99.8表示成100-0.2,然后利用完全平方公式展开运算即可.【解答】(1)原式22019(20191)(20191)=--⨯+()2222019201911=--=(2)原式2(1000.2)=-2210021000.20.2=-⨯⨯+9960.04=【点评】本题考查了乘法公式,熟练掌握平方差公式和完全平方公式并运用是解题的关键.。
八年级整式的乘法与因式分解练习题及答案
一、单选题1、已知x+y=﹣5,xy=3,则x2+y2=()A. 19B. ﹣19C. 25D. ﹣25参考答案: A【思路分析】本题考查的是完全平方公式。
仔细读题,获取题中已知条件,结合完全平方公式的相关知识,即可解答此题。
【解题过程】解:x2+y2=(x+y)2﹣2xy=(﹣5)2﹣2×3=25﹣6=19。
故选A。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2、下列方程没有实数根的是()A. x2+4x=10B. 3x2+8x-3=0C. x2-2x+3=0D. (x-2)(x-3)=12参考答案: C【思路分析】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根【解题过程】解:A、方程变形为:x2+4x-10=0,△=42-4×1×(-10)=56>0,所以方程有两个不相等的实数根,故A选项不符合题意;B、△=82-4×3×(-3)=100>0,所以方程有两个不相等的实数根,故B选项不符合题意;C、△=(-2)2-4×1×3=-8<0,所以方程没有实数根,故C选项符合题意;D、方程变形为:x2-5x-6=0,△=52-4×1×(-6)=49>0,所以方程有两个不相等的实数根,故D选项不符合题意.故选:C。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -3、如果多项式p=a2+2b2+2a+4b+2008,则p的最小值是()A. 2005B. 2006C. 2007D. 2008参考答案: A【思路分析】把p重新拆分组合,凑成完全平方式的形式,然后判断其最小值.【解题过程】解:p=a2+2b2+2a+4b+2008,=(a2+2a+1)+(2b2+4b+2)+2005,=(a+1)2+2(b+1)2+2005,当(a+1)2=0,(b+1)2=0时,p有最小值,最小值最小为2005.故选:A.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -4、如果x=3m+1,y=2+9m,那么用x的代数式表示y为()A. y=2xB. y=x2C. y=(x−1)2+2D. y=x2+1参考答案: C【思路分析】根据移项,可得3m的形式,根据幂的运算,把3m代入,可得答案.【解题过程】解x=3m+1:,y=2+9m,3m=x−1,y=(x−1)2+2,故选:C.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -5、把x³-9x+8因式分解,正确的结果是()A. (x-1)(x+3)B. (x-1)(x2-x+8)C. (x-1)(x2+x-8)D. (x+1)(x2-x+8)参考答案: C【思路分析】本考点的主要内容是拆项法分解因式,在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,使多项式能用分组分解法进行因式分解。
难点详解青岛版七年级数学下册第12章乘法公式与因式分解重点解析练习题(含详解)
七年级数学下册第12章乘法公式与因式分解重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下面的计算正确的是( )A .(a +b )2=a 2+b 2B .(a 3)2=a 6C .a 2+a 3=2a 5D .(3a )2=6a 22、若代数式24x x k ++是一个完全平方式,那么k 的值是( )A .1B .2C .3D .43、下列各式因式分解正确的是( )A .()2211x x +=+B .()()311x x x x x -=+-C .()()21343x x x x ++=++D .()22121x x x x ++=++4、已知29x kx ++是完全平方式,则k 的值为( )A .-6B .±3C .±6D .35、下列等式从左到右的变形,属于因式分解的是( )A .(x +1)(x ﹣1)=x 2﹣1B .x 2﹣8x +16=(x ﹣4)2C .x 2﹣2x +1=x (x ﹣1)+1D .x 2﹣4y 2=(x +4y )(x ﹣4y ) 6、下列运算正确的是( )A .2a +3b =5abB .2(2a ﹣b )=4a ﹣bC .(a +b )(a ﹣b )=a 2﹣b 2D .(a -b )2=a 2-b 27、下列多项式不能..因式分解的是( ) A .22x y + B .22x y - C .222x xy y ++ D .222x xy y -+8、下列计算正确的是( )A .(a +b )2=a 2+b 2B .(﹣a +b )(﹣b +a )=a 2﹣b 2C .(﹣a +b )2=a 2+2ab +b 2D .(﹣a ﹣1)2=a 2+2a +19、下列因式分解正确的是( )A .2ab 2﹣4ab =2a (b 2﹣2b )B .a 2+b 2=(a +b )(a ﹣b )C .x 2+2xy ﹣4y 2=(x ﹣y )2D .﹣my 2+4my ﹣4m =﹣m (2﹣y )210、下列多项式能用“两数和(差)的平方公式”进行因式分解的是( )A .22x y +B .21x x -+C .221x x +-D .2441x x -+第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图1,将边长为x 的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示长方形.这两个图能解释一个等式是______.2、分解因式:3a a -=__.3、分解因式:3x +9=_________.4、因式分解:a (a ﹣b )﹣b (b ﹣a )=_____________.5、分解因式:()()23a y z b z y ---=________.三、解答题(5小题,每小题10分,共计50分)1、(1)计算:()23542a a a a ⎡⋅⎢⎥⎣⎦+÷⎤; (2)分解因式:24x -.2、(1)已知:x +2y +1=3,求3x ×9y ×3的值;(2)下边是小聪计算(3a ﹣b )(3a +b )﹣a (4a ﹣1)的解题过程.请你判断是否正确?若有错误,请写出正确的解题过程.(3a ﹣b )(3a +b )﹣a (4a ﹣1)=3a 2﹣b 2﹣4a 2﹣a=﹣a 2﹣b 2﹣a .3、已知3m n +=,2mn =.(1)当2a =时,求()nm n m a a a ⋅-的值; (2)求2()(4)(4)m n m n -+--的值.4、【教材呈现】以下是华师大版教材第50页16题:【自主解答】解:根据两个数和或差的平方公式,分两种情况:当M为含字母x的一次单项式时,原式可以表示为关于x的二项式的平方,∵4x2+M+1=(2x)2+M+12=(2x±1)2,∴M=±2×2x•1=±4x;当M为含字母x的四次单项式时,原式可以表示为关于x2的二项式的平方,∵4x2+M+1=M+2×2x2•1+12=(2x2+1)2,∴M=4x4.综上述,M为4x或﹣4x或4x4.【解后反思】①上述解答过程得到等式:4x2±4x+1=(2x+1)2;4x4+4x2+1=(2x2+1)2观察等式左边多项式的系数发现:(±4)2=4×4×1.②结合多项式的因式分解又如:16x2+24x+9=(4x+3)2;9x2﹣12x+4=(3x﹣2)2,发现这两个多项式的系数规律:242=4×16×9,(﹣12)2=4×9×4.③一般地:若关于x的二次三项式ax2+bx+c(a、b、c是常数)是某个含x的二项式的平方,则其系数a、b、c一定存在某种关系.(1)请你写出系数a、b、c之间存在的这种关系式:;【解决问题】(2)若多项式9y2+4加上一个含字母y的单项式N,就能表示为一个含y的二项式的平方,请直接写出所有满足条件的单项式N;(3)若关于x的多项式x2﹣2(m﹣3)x+(m2+3m)是一个含x的多项式的平方,求实数m的值.5、问题提出:计算:1+3+3(1+3)+3(1+3)2+3(1+3)3+3(1+3)4+3(1+3)5+3(1+3)6问题探究:为便于研究发现规律,我们可以将问题“一般化”,即将算式中特殊的数字3用具有一般性的字母a代替,原算式化为:1+a+a(1+a)+a(1+a)2+a(1+a)3+a(1+a)4+a(1+a)5+a(1+a)6然后我们再从最简单的情形入手,从中发现规律,找到解决问题的方法:(1)仿照②,写出将1+a+a(1+a)+a(1+a)2+a(1+a)3进行因式分解的过程;(2)填空:1+a+a(1+a)+a(1+a)2+a(1+a)3+a(1+a)4=;发现规律:1+a+a(1+a)+a(1+a)2+…+a(1+a)n=;问题解决:计算:1+3+3(1+3)+3(1+3)2+3(1+3)3+3(1+3)4+3(1+3)5+3(1+3)6=(结果用乘方表示).-参考答案-一、单选题1、B【解析】【分析】直接利用完全平方公式以及积的乘方运算法则、幂的乘方运算法则、合并同类项法则分别判断得出答案.【详解】A、(a+b)2=a2+2ab+b2,故此选项错误;B、(a3)2=a6,故此选项正确;C、a2+a3,无法合并,故此选项错误;D、(3a)2=9a2,故此选项错误;故选:B.【点睛】此题主要考查了完全平方公式以及积的乘方运算、幂的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.2、D【解析】【分析】根据完全平方公式即可求出答案.【详解】 解:代数式24x x k ++是一个完全平方式,则2224222x x k x x ++=+⨯⨯+∴4k =故选D【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式.3、B【解析】【分析】根据因式分解的定义(把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解)及完全平方公式依次进行判断即可得.【详解】解:A 、不能进行因式分解,错误;B 、选项正确,是因式分解;C 、选项是整式的乘法,不是因式分解,不符合题意;D 、()22211x x x ++=+,选项因式分解错误;故选:B .【点睛】题目主要考查因式分解的定义及方法,深刻理解因式分解的定义是解题关键.4、C【解析】【分析】根据完全平方式的特点:两数的平方和,加上或减去这两个数的乘积的2倍,即可确定k 的值.【详解】∵22293x kx x kx ++=++∴236k =±⨯=±故选:C【点睛】本题考查了完全平方式,掌握完全平方式的特点是关键.注意不要忽略了k 的负值.5、B【解析】【分析】根据因式分解的定义“把一个多项式化成几个整式的积的形式叫做因式分解”进行解答即可得.【详解】解:A 、2(1)(1)1x x x +-=-,不是因式分解,选项说法错误,不符合题意;B 、22816(4)x x x -+=-,是因式分解,选项说法正确,符合题意;C 、221(1)1x x x x -+=-+,不是因式分解,选项说法错误,不符合题意;D 、左、右不相等,选项说法错误,不符合题意;故选B .【点睛】本题考查了因式分解,解题的关键是熟记因式分解的定义.6、C【解析】【分析】A 、利用合并同类项的法则即可判定;B 、利用去括号的法则即可判定;C 、利用平方差公式即可判定;D 、利用完全平方公式判定.【详解】解:A 、2a ,3b 不是同类项,235a b ab ∴+≠,故选项错误,不符合题意;B 、2(2)42a b a b -=-,故选项错误,不符合题意;C 、22()()a b a b a b +-=-,正确,符合题意;D 、222()2a b a b ab -=+-,故选项错误,不符合题意;故选:C .【点睛】此题主要考查了整式的运算法则,解题的关键是掌握平方差公式和完全平方公式的公式结构.7、A【解析】【分析】根据平方差公式、完全平方公式分解因式即可.【详解】解:A 、22x y +不能因式分解,符合题意; B 、22x y -=()()x y x y +-,能因式分解,不符合题意;C 、222x xy y ++=2()x y +,能因式分解,不符合题意;D 、222x xy y -+ =2()x y -,能因式分解,不符合题意,故选:A .【点睛】本题考查因式分解、完全平方公式、平方差公式,熟记公式,掌握因式分解的结构特征是解答的关键.8、D【解析】【分析】根据完全平方公式判断即可,完全平方公式:(a ±b )2=a 2±2ab +b 2.【详解】解:A .(a +b )2=a 2+2ab +b 2,故本选项不合题意;B .(−a +b )(−b +a )=−(a −b )(a −b )=−a 2+2ab −b 2,故本选项不合题意;C .(−a +b )2=a 2−2ab +b 2,故本选项不合题意;D .(−a −1)2=a 2+2a +1,故本选项符合题意;故选:D .【点睛】本题考查了完全平方公式,掌握完全平方公式的结构特点是解答本题的关键.9、D【解析】【分析】将各式计算得到结果,即可作出判断.【详解】解:A. 2ab 2﹣4ab =2ab (b ﹣2),分解不完整,故错误;B .a 2+b 2不能分解因式,而(a +b )(a ﹣b )=a2−b2,故错误;C .x 2+2xy ﹣4y 2不能分解因式,而(x −y )2=x 2−2xy +y 2,故错误;D .﹣my 2+4my ﹣4m =﹣m (2﹣y )2,故正确.故选:D .【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.10、D【解析】【分析】根据完全平方公式的结构特征,对每一个选项所给算式进行变形后,再判断其是否能用完全平方公式进行因式分解.【详解】A 、22x y +不满足完全平方公式的结构特征,不符合题意;B 、21x x -+中间项应为-2x ,故不符合完全平方公式,不符合题意;C 、221x x +-中间项应为2x -,最后一项应为1+,故不符合完全平方公式,不符合题意;D 、()()22224412212121x x x x x -+=-⨯⨯+=-,符合完全平方公式,符合题意;【点睛】本题考查完全平方公式,因式分解,能够熟悉完全平方公式的结构特征,以及利用完全平方公式进行因式分解是解决此类题型的关键.二、填空题1、()()2111x x x -=+-【解析】【分析】根据图形可以用代数式表示出图1和图2的面积,由此得出等量关系即可.【详解】解:由图可知,图1的面积为:x 2−12,图2的面积为:(x +1)(x −1),所以x 2−1=(x +1)(x −1).故答案为:x 2−1=(x +1)(x −1).【点睛】本题考查平方差公式的几何背景,解答本题的关键是明确题意,列出相应的代数式.2、(1)(1)a a a +-【解析】【分析】确定公因式是 a ,然后提取公因式后再利用平方差公式分解即可.【详解】2(1)a a =-,(1)(1)a a a =+-.故答案为:(1)(1)a a a +-.【点睛】本题考查因式分解,掌握方法是关键.3、3(x +3)【解析】【分析】直接找出公因式3,进而提取公因式分解因式即可.【详解】解:3x +9=3(x +3).故答案为:3(x +3).【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.4、(a ﹣b )(a +b )【解析】【分析】原式变形后,提取公因式即可.【详解】解:原式()()()()a a b b a b a b a b =-+-=+-.故答案为:()()a b a b +-.【点睛】本题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.5、(2a +3b )(y ﹣z )【解析】【分析】先调整符号,然后提公因式即可.【详解】解:()()23a y z b z y ---,=()()23a y z b y z -+-,=()()23a b y z +-.故答案为()()23a b y z +-.【点睛】本题考查提公因式法因式分解,掌握因式分解的方法是解题关键.三、解答题1、(1)62a ;(2)()()22x x +-【解析】【分析】(1)先算乘方,再算乘除,最后化简;(2)利用平方差公式进行求解.【详解】.解:(1)原式82826822a a a a a a ⎡⎤=+÷=÷=⎣⎦.(2)原式()()22x x =+-.【点睛】本题考查了多项式的因式分解、整式混合运算等知识点,掌握整式的乘方、乘除法则及混合运算是解决(1)的关键,掌握因式分解的平方差公式是解决本题(2)的关键.2、(1)27 ;(2)不正确,答案见解析 .【解析】【分析】(1)将393x y ⨯⨯中的9y 化为23y ,再根据同底数幂的乘法“同底数幂相乘,底数不变,指数相加”即可得;(2)根据多项式与多项式相乘的法则“多项式与多项式相乘,先用多项式的每一项乘另一个多项式的每一项,再把所得的积相加”和单项式与多项式相乘的法则“单项式与多项式相乘,就是用单项式去乘另一个多项式的每一项,再把所得的积相加”进行解答即可得.【详解】解:(1)3x ×9y ×3=3x ×32y ×3=3x +2y +1=33=27;(2)不正确,解:原式=9a 2﹣b 2﹣4a 2+a=5a 2﹣b 2+a .【点睛】本题考查了整式的乘法,解题的关键是掌握同底数幂的乘法,多项式与多项式相乘的法则和单项式与多项式相乘的法则.3、 (1)4(2)7【解析】【分析】(1)根据同底数幂的乘法“同底数幂相乘,底数不变,指数相加”得32()m n m n a a a a a -=-,再将2a =代入即可得;(2)由题意得()21m n -=,再根据多项式与多项式相乘的法则“多项式与多项式相乘,先用多项式的每一项乘另一个多项式的每一项,再把所得的积相加”将(4)(4)m n --进行计算,即可得(1)解:∵3m n +=,2mn =,∴()32m n m n n n m m a a a a a a a +=⋅--=-, ∵2a =,∴原式=3222844-=-=;(2)解:∵3m n +=,2mn =,∴()()22243421m n m n mn -=+-=-⨯=, ∴2()(4)(4)m n m n -+--=()1416mn m n +-++=124316+-⨯+=7.【点睛】本题考查了整式的乘法,解题的关键是掌握同底数幂的乘法和多项式与多项式相乘的法则.4、 (1)24b ac =(2)12y ±或48116y (3)1m =【解析】【分析】(1)观察例题找到多项式的系数的规律求解即可;(2)根据例题,根据两个数和或差的平方公式,分两种情况:当N 为含字母y 的一次单项式时,原式可以表示为关于y 的二项式的平方,当N 为含字母y 的四次单项式时,原式可以表示为关于y 2的二项式的平方,进而求解即可;(3)根据题意,由多项式的系数的规律列出方程求解即可.(1)根据例题发现多项式的系数规律可知24b ac =故答案为:24b ac =(2)当N 为含字母y 的一次单项式时,原式可以表示为关于y 的二项式的平方,∵9y 2+4+N =(3y )2+N +4=(3 y ±2)2,∴N =±2×32y ⨯=12y ±;当N 为含字母y 的四次单项式时,原式可以表示为关于y 2的二项式的平方,∵9y 2+4+N =2292224y N +⨯⨯+229=24y ⎛⎫+ ⎪⎝⎭,48116y M ∴= 综上述,N 为12y 或12-y 或48116y . (3)x 2﹣2(m ﹣3)x +(m 2+3m )根据24b ac =可得()()222343m m m --=+⎡⎤⎣⎦ 解得1m =【点睛】本题考查了完全平方式,根据完全平方式变形求解,掌握完全平方公式是解题的关键.5、 (1)(1+a )4(2)(1+a )5;(1+a )n +1;47【解析】【分析】(1)用提取公因式(1+a )一步步分解因式,最后化为积的形式;(2)通过前面(1)的例子,用提取公因式法(1+a )一步步分解因式,最后化为积的形式, 发现规律:是根据(1)(2)的结果写出结论;问题解决:通过前面的例子,用提取公因式法(1+3)一步步分解因式,最后化为积的形式.(1)解:1+a +a (1+a )+a (1+a )2+a (1+a )3=(1+a )(1+a )+a (1+a )2+a (1+a )3=(1+a )2(1+a )+a (1+a )3=(1+a)3+a(1+a)3=(1+a)3(1+a)=(1+a)4;(2)解:1+a+a(1+a)+a(1+a)2+a(1+a)3+a(1+a)4=(1+a)(1+a)+a(1+a)2+a(1+a)3+a(1+a)4=(1+a)2(1+a)+a(1+a)3+a(1+a)4=(1+a)3+a(1+a)3+a(1+a)4=(1+a)3(1+a)+a(1+a)4=(1+a)4+a(1+a)4=(1+a)4(1+a)=(1+a)5;故答案为:(1+a)5;发现规律:1+a+a(1+a)+a(1+a)2+…+a(1+a)n=(1+a)n+1;故答案为:(1+a)n+1;问题解决:1+3+3(1+3)+3(1+3)2+3(1+3)3+3(1+3)4+3(1+3)5+3(1+3)6=(1+3)(1+3)+3(1+3)2+3(1+3)3+3(1+3)4+3(1+3)5+3(1+3)6=(1+3)2(1+3)+3(1+3)3+3(1+3)4+3(1+3)5+3(1+3)6=(1+3)3(1+3)+3(1+3)4+3(1+3)5+3(1+3)6=(1+3)4(1+3)+3(1+3)5+3(1+3)6=(1+3)5(1+3)+3(1+3)6=(1+3)6(1+3)=(1+3)7=47.故答案为:47.【点睛】此题考查了数字类运算的规律,提公因式法分解因式,整式的混合运算法则,正确掌握提公因式法分解因式是解题的关键,同时还考查了类比解题的思想.。
整式的乘法与因式分解单元练习(Word版 含答案)
∴(x±3)2=x2±2(m-2)x+9,
∴2(m-2)=±12,
∴m=8或-4.
故选D.
9.下面计算正确的是( )
A. x3 4x3 5x6
C. 2x3 4 16x12
【答案】C
B. a2 a3 a6
D. x 2 y x 2 y x2 2y2
【解析】 【分析】 A.合并同类项得到结果;B.利用同底数幂的乘法法则计算得到结果;C.利用幂的乘方与积 的乘方运算法则计算得到结果;D.利用平方差公式计算得到结果,即可作出判断. 【详解】
4.下列运算正确的是
A. b5 b3 b2
B. (b5 )2 b7
C. b2·b4 b8
【答案】A 【解析】
D. a(·a 2b) a2 2ab
选项 A, b5 b3 b2,正确;选项 B,
b5
2
b10
,错误;选项 C, b2·b4 b6 ,错误;
选项 D, a·a 2b a2 2ab ,错误.故选 A.
B.(a-b)2=a2-2ab+b2 D.(a-b)(a+2b)=a2+ab-b2
【解析】 图(4)中, ∵ S 正方形=a2-2b(a-b)-b2=a2-2ab+b2=(a-b)2, ∴ (a-b)2=a2-2ab+b2. 故选 B
7.下列运算正确的是( )
A. 2a2 4a2
B. a b2 a2 b2
C.12
【答案】D
【解析】
(x-2 015)2+(x-2 017)2
=(x-2 016+1)2+(x-2 016-1)2
= (x 2016)2 2(x 2016) 1 (x 2016)2 2(x 2016) 1
八年级数学整式的乘法与因式分解常考题型例题
八年级数学整式的乘法与因式分解常考题型例题单选题1、计算:a2⋅a5=()A.a B.7a C.a10D.a7答案:D解析:利用同底数幂的乘法法则运算.解:a2⋅a5=a2+5=a7,故选:D.小提示:本题考查了同底数幂的乘法运算,解题的关键是掌握同底数幂相乘,底数不变,指数相加.2、已知a、b、c是△ABC的三条边,且满足a2+bc=b2+ac,则△ABC是( )A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形答案:C解析:已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b,即可确定出三角形形状.已知等式变形得:(a+b)(a-b)-c(a-b)=0,即(a-b)(a+b-c)=0,∵a+b-c≠0,∴a-b=0,即a=b,则△ABC为等腰三角形.此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.3、下列式子中,正确的有( )①m3∙m5=m15;②(a3)4=a7;③(-a2)3=-(a3)2;④(3x2)2=6x6A.0个B.1个C.2个D.3个答案:B解析:根据同底数幂的乘法、幂的乘方、积的乘方逐一分析判断即可.解:①m3⋅m5=m8,故该项错误;②(a3)4=a12,故该项错误;③(−a2)3=−a6,−(a3)2=−a6,故该项正确;④(3x2)2=9x4,故该项不正确;综上所述,正确的只有③,故选:B.小提示:本题考查同底数幂的乘法、幂的乘方、积的乘方,掌握运算法则是解题的关键.4、若多项式x2+mx−8因式分解的结果为(x+4)(x−2),则常数m的值为( )A.−2B.2C.−6D.6答案:B解析:根据多项式的乘法法则计算出(x+4)(x−2)的结果,然后与x2+mx−8比较即可.解:∵(x+4)(x−2)=x2+2x-8=x2+mx−8,∴m=2.此题考查了十字相乘法和整式的乘法,熟练掌握因式分解和整式的乘法是互为逆运算是解本题的关键.5、下列计算中错误的是()A.4a5b3c2÷(−2a2bc)2=ab B.(−24a2b3)÷(−3a2b)⋅2a=16ab2C.4x2y⋅(−12y)÷4x2y2=−12D.(a10÷a4)÷(a8÷a5)÷12a6=2a3答案:D解析:根据整式乘除的运算法则分别计算出各选项的结果,即可得解.A选项4a5b3c2÷(−2a2bc)2=ab,正确,故不符合题意;B选项(−24a2b3)÷(−3a2b)⋅2a=16ab2,正确,故不符合题意;C选项4x2y⋅(−12y)÷4x2y2=−12,正确,故不符合题意;D选项(a10÷a4)÷(a8÷a5)÷12a6=2a-3,不正确,故符合题意.故选:D.小提示:本题主要考查了整式的乘除运算,属于基础题,需要有一定的运算求解能力,熟练掌握运算法则是解题的关键.6、若x2﹣4x+1=0,则代数式﹣2x2+8x+1的值为()A.0B.1C.2D.3答案:D解析:给条件的代数式求值问题,先观察代数式,把条件变成需要的形式,然后整体代入,计算即可.∵x2﹣4x+1=0,∴x2﹣4x=﹣1,∴﹣2x2+8x=2,∴原式=2+1=3.故选择:D.小提示:本题考查代数式的值问题,关键是把条件变性后,整体代入,如果次数较高的代数式一般把条件高次的求出,然后用降次方法进行化简,在整体代入求值.7、要使多项式(x+p)(x−q)不含x的一次项,则p与q的关系是()A.相等B.互为相反数C.互为倒数D.乘积为−1答案:A解析:计算乘积得到多项式,因为不含x的一次项,所以一次项的系数等于0,由此得到p-q=0,所以p与q相等. 解:(x+p)(x−q)=x2+(p−q)x−pq∵乘积的多项式不含x的一次项∴p-q=0∴p=q故选择A.小提示:此题考查整式乘法的运用,注意不含的项即是该项的系数等于0.8、如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n);②a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你认为其中正确的有()A.①②B.②③C.①③④D.①②③④答案:C解析:根据长方形面积公式判断各式是否正确即可.①(2a+b)(m+n),正确;②a(m+n)+b(m+n),错误;③m(2a+b)+n(2a+b),正确;④2am+2an+bm+bn,正确故正确的有①③④所以答案是:C.小提示:本题考查了长方形的面积问题,掌握长方形的面积公式是解题的关键.填空题9、计算m4⋅(−m)2⋅m=______.答案:m7解析:根据同底数幂乘法法则计算即可得答案.m4⋅(−m)2⋅m=m4⋅m2⋅m=m4+2+1=m7.小提示:本题考查同底数幂乘法,同底数幂相乘,底数不变,指数相加;熟练掌握运算法则是解题关键.10、计算:(2+3x)(−2+3x)=__________.答案:9x2−4##−4+9x2解析:原式利用平方差公式化简即可.(2+3x)(−2+3x)=9x2−4.所以答案是:9x2−4.小提示:本题考查了平方差公式,熟练掌握平方差公式是解本题的关键.11、已知a=7−3b,则代数式a2+6ab+9b2的值为_________.答案:49解析:先将条件的式子转换成a+3b=7,再平方即可求出代数式的值.解:∵a=7−3b,∴a+3b=7,∴a2+6ab+9b2=(a+3b)2=72=49,所以答案是:49.小提示:本题考查完全平方公式的简单应用,关键在于通过已知条件进行转换.12、计算:(2+3x)(−2+3x)=__________.答案:9x2−4##−4+9x2解析:原式利用平方差公式化简即可.(2+3x)(−2+3x)=9x2−4.所以答案是:9x2−4.小提示:本题考查了平方差公式,熟练掌握平方差公式是解本题的关键.13、计算(−0.125)2019×82020=_______.答案:-8解析:先把原式改写成(−0.125)2019×82019×8,然后逆用积的乘方法则计算即可.原式=(−0.125)2019×82019×8=(−0.125×8)2019×8=-8.故答案为-8.小提示:本题考查了积的乘方运算逆运算,熟练掌握积的乘方法则是解答本题的关键.积的乘方等于各因数乘方的积,即(ab)m=a m b m(m为正整数).解答题14、第一步:阅读材料,掌握知识.要把多项式am+an+bm+bn分解因式,可以先把它的前两项分成组,并提出a,把它的后两项分成组,并提出b,从而得am+an+bm+bn=a(m+n)+b(m+n).这时,由于a(m+n)+b(m+n)中又有公因式(m+n),于是可提公因式(m+n),从而得到(m+n)(a+b),因此有am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).这种因式分解的方法叫做分组分解法,如果把一个多项式各个项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解.第二步:理解知识,尝试填空:(1)ab−ac+bc−b2=(ab−ac)+(bc−b2)=a(b−c)−b(b−c)=_____________第三步:应用知识,因式分解:(2)x2-(p+q)x+pq;(3)x2y−4y−2x2+8.第四步:提炼思想,拓展应用(4)已知三角形的三边长分别是a,b,c,且满足a2+2b2+c2=2b(a+c),试判断这个三角形的形状,并说明理由.答案:(1)(a−b)(b−c)(2)(x−p)(x−q)(3)(y−2)(x+2)(x−2)(4)等边三角形,理由见详解.解析:(1)如果把一个多项式各项分组并提出公因式后,它们的另一个因式刚好相同,那么这个多项式即可利用分组分解法来因式分解,据此即可求解;(2)先展开(p+q)x,再利用分组分解法来因式分解,据此即可求解;(3)直接利用分组分解法来因式分解即可求解;(4)根据所给等式,先移项,再利用完全平方公式和等边三角形的判定求证即可.解:(1)ab−ac+bc−b2=(ab−ac)+(bc−b2)=a(b−c)−b(b−c)=(a−b)(b−c)(2)x2−(p+q)x+pq=x2−px−qx+pq=x(x−p)−q(x−p)=(x−p)(x−q)(3)x2y−4y−2x2+8=y(x2−4)−2(x2−4)=(y−2)(x2−4)=(y−2)(x+2)(x−2)(4)等边三角形,理由如下:∵a2+2b2+c2=2b(a+c)∴a2+2b2+c2=2ab+2bc∴a2−2ab+b2+b2−2bc+c2=0∴(a−b)2+(b−c)2=0∴a−b=0,b−c=0即a=b=c∴这个三角形是等边三角形.小提示:本题考查因式分解—提公因式法,因式分解—分组分解法,完全平方公式,等边三角形的判定,解题的关键是读懂材料并熟知因式分解的方法.x,试求A+B.15、已知A=2x,B是多项式,计算B+A时,某同学把B+A误写成B÷A,结果得x2+12答案:A+B=2x3+x2+2x解析:x)·2x=2x3+x2,再计算A+B的值即可.根据题意可得B=(x2+12x)·2x=2x3+x2,根据题意可得:B=(x2+12∴A+B=2x+2x3+x2.小提示:本题考查了整式的乘法,熟练掌握运算法则是解本题的关键.。
八年级数学整式的乘法与因式分解专题练习(解析版)
八年级数学整式的乘法与因式分解专题练习(解析版)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a2+b2+c2—ab-bc-ca的值等于( )A.0 B.1 C.2 D.3【答案】D【解析】【分析】首先把a2+b2+c2﹣ab﹣bc﹣ac两两结合为a2﹣ab+b2﹣bc+c2﹣ac,利用提取公因式法因式分解,再把a、b、c代入求值即可.【详解】a2+b2+c2﹣ab﹣bc﹣ac=a2﹣ab+b2﹣bc+c2﹣ac=a(a﹣b)+b(b﹣c)+c(c﹣a)当a=2012x+2011,b=2012x+2012,c=2012x+2013时,a-b=-1,b-c=-1,c-a=2,原式=(2012x+2011)×(﹣1)+(2012x+2012)×(﹣1)+(2012x+2013)×2=﹣2012x﹣2011﹣2012x﹣2012+2012x×2+2013×2=3.故选D.【点睛】本题利用因式分解求代数式求值,注意代数之中字母之间的联系,正确运用因式分解,巧妙解答题目.2.因式分解x2+mx﹣12=(x+p)(x+q),其中m、p、q都为整数,则这样的m的最大值是()A.1 B.4 C.11 D.12【答案】C【解析】分析:根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p、q的关系判断即可.详解:∵(x+p)(x+q)= x2+(p+q)x+pq= x2+mx-12∴p+q=m,pq=-12.∴pq=1×(-12)=(-1)×12=(-2)×6=2×(-6)=(-3)×4=3×(-4)=-12∴m=-11或11或4或-4或1或-1.∴m的最大值为11.故选C.点睛:此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.3.如果多项式29x kx -+能用公式法分解因式,那么k 的值是( )A .3B .6C .3±D .6±【答案】D【解析】由于可以利用公式法分解因式,所以它是一个完全平方式222a ab b ±+,所以236k =±⨯=±.故选D.4.若代数式x 2+ax +64是一个完全平方式,则a 的值是( )A .-16B .16C .8D .±16【答案】D【解析】试题分析:根据完全平方式的意义,首平方,尾平方,中间加减积的2倍,可知a=±2×8=16.故选:D点睛:此题主要考查了完全平方式的意义,解题关键是明确公式的特点,即:完全平方式分两种,一种是完全平方和公式,就是两个整式的和括号外的平方。
苏教版七年级下数学乘法公式及提公因式法因式分解练习题(可编辑)
苏教版七年级下数学乘法公式及提公因式法因式分解练习题(可编辑)苏教版七年级下数学乘法公式及提公因式法因式分解练习题周庄中学七年级数学周周练(考查范围:乘法公式及提公因式法因式分解)一、选择题1、下列各式中正确的是( )A、(―a3)2 ―a6B、(2b―5)2 4b2―25C、(a―b)(b―a) ―(a―b)2D、a2+2ab+(―b)2 (a―b)22、下列计算正确的是( )A、(x+y)2 x2+y2B、(x―y)2 x2―2xy,y2C、(x+2y)(x―2y) x2,2y2D、(,x+y)2 x2―2xy+y23、有若干张面积分别为纸片,阳阳从中抽取了1张面积为a2的正方形纸片,4张面积为ab的长方形纸片,若他想拼成一个大正方形,则还需要抽取面积为b2的正方形纸片( ) A、2张 B、4张 C、6张D、8张4、如果关于x的二次三项式x2―mx+16是一个完全平方式,那么m的值是( )A、8或―8B、8C、―8D、无法确定5、小明计算一个二项式的平方时,得到正确结果a2―10ab+?,但最后一项不慎被污染了,这一项应是( )A、5bB、5b2C、25b2D、100b26、化简:(a+1)2―(a―1)2 ( ) A、2 B、4 C、4aD、2a2+27、为了美化城市,经统一规划,将一正方形草坪的南北方向增加3m,东西方向缩短3m,则改造后的长方形草坪面积与原来正方形草坪面积相比( )A、增加6m2B、增加9m2C、减少9m2D、保持不变8、下面式子从左边到右边的变形是因式分解的是( )A、x2―x―2 x(x―1)―2B、(a+b)(a―b) a2―b2C、x2―4 (x+2)(x―2)D、x―1 x(1―)9、下列各式从左到右,是因式分解的是( )A、(y―1)(y+1) y2―1B、x2y+xy2―1 xy(x+y)―1C、(x―2)(x―3) (3―x)(2―x)D、x2―4x+4 (x―2)210、将m2(a―2)+m(2―a)分解因式,正确的是( )A、(a―2)(m2―m)B、m(a―2)(m+1)C、m(a―2)(m―1)D、m(2―a)(m―1)二、填空题11、因式分解:(x+y)2―3(x+y) _________ (12、分解因式:(x+3)2―(x+3) _________ (13、9x3y2+12x2y2―6xy3中各项的公因式是 _________ (14、若x+5,x―3都是多项式x2―kx―15的因式,则k __(15、若a+b 5,ab 3,则a2+b2 _________ (16、若(x―1)2 2,则代数式x2―2x+5的值为 _________ (17、小强同学在下面的4个计算中:?(a―b)2 a2―b2,?(―2a3)24a6,?a3+a2 a5,?―(a―1) ―a+1(做正确的题目是 _________ (填题目序号)(18、已知x+y 1,则x2+xy+y2 _________ (19、如图,甲类纸片是边长为2的正方形,乙类纸片是边长为1的正方形,丙类纸片是长、宽边长分别是2和1的长方形(现有甲类纸片1张,乙类纸片4张,则应至少取丙类纸片 _________ 张才能用它们拼成一个新的正方形(20、我们知道,可以利用直观的几何图形形象的表示有些代数恒等式(例如:(2a+b)(a+b) 2a2+3ab+b2,可以用图1的面积关系来表示(还有许多代数恒等式也可以用几何图形面积来表示其正确性((1)根据图2写出一个代数恒等式 _________ ;(2)已知等式:(a+2b)2 a2+4ab+4b2,请你在图3的方框内画出一个相应的几何图形,利用这个图形的面积关系来表示等式的正确性(21、若x2―6x+m是完全平方式,则m ___ (22、如果a2+ma+9是一个完全平方式,那么m _________ (23、观察下列各式:(x―1)(x+1) x2―1 (x―1)(x2+x+1) x3―1 (x―1)(x3+x2+x+1) x4―1,根据前面各式的规律可得(x―1)(xn+xn―1+…+x+1) _________ (其中n为正整数)(24、如果(2a+2b+1)(2a+2b―1) 63,那么a+b的值为 _________ (25、如图,边长为a的正方形中有一个边长为b的小正方形,若将图1的阴影部分拼成一个长方形,如图2,比较图1和图2的阴影部分的面积,你能得到的公式是 _________ (三、解答题26、如图,有一位狡猾的地主,把一块边长为a的正方形的土地,租给李老汉种植,他对李老汉说:“我把你这块地的一边减少4m,另一边增加4m,继续租给你,你也没有吃亏,你看如何”(李老汉一听,觉得自己好像没有吃亏,就答应了(同学们,你们觉得李老汉有没有吃亏,请说明理由(27、计算;(1)(x―3y)(―x,3y); (2)4x2―(―2x―3)2((3)(2x―3y)2―(y+3x)(3x―y); (4)(x+y)(x2+y2)(x―y)(x4―y4);(5)(a―2b+3)(a+2b―3); (6)[(x―y)2+(x+y)2](x2―y2);28、观察下面各式规律:12+(1×2)2+22 (1×2+1)2;22+(2×3)2+32(2×3+1)2;32+(3×4)2+42 (3×4+1)2…写出第n行的式子,并证明你的结论(29、因式分解: (3x+2y+1)2―(3x+2y―1)(3x+2y+1)本文档由华涛教学资料室为您倾心整理,欢迎下载~19题。
整式的乘法与因式分解的练习题
整式的乘法与因式分解的练习题初中数学整式的乘除与因式分解一、选择题:1、下列运算中,正确的是()A.某2·某3=某6B.(ab)3=a3b3C.3a+2a=5a2D.(某³)²=某52、下列从左边到右边的变形,是因式分解的是()23322(A)(3某)(3某)9某(B)mn(mn)(mmnn)(C)(y1)(y3)(3y)(y1)2(D)4yz2yzz2y(2zyz)z3、下列各式是完全平方式的是()某2某A、4B、14某2C、a2abb2D、某22某14、下列多项式中能用平方差公式分解因式的是()22(A)a(b)(B)5m220mn22(C)某y(D)某295、如(某+m)与(某+3)的乘积中不含某的一次项,则m的值为()A.–3B.3C.0D.16、一个正方形的边长增加了2cm,面积相应增加了32cm2,则这个正方形的边长为(A、6cmB、5cmC、8cmD、7cm1、下列分解因式正确的是()A、2n2nmn2n(nm1)B、ab22ab3bb(ab2a3)C、某(某y)y(某y)(某y)2D、a2a2a(a1)22、下列各式中,能用平方差公式进行因式分解的是()A、某2-某y2B、-1+y2C、2y2+2D、某3-y33、下列各式能用完全平方公式分解因式的是()A、4某2+1B、4某2-4某-1C、某2+某y+y2D、某2-4某+44、若9某2k某y4y2是一个完全平方式,则k的值为()A、6B、±6C、12D、±125、若分解因式某2m某15(某3)(某n)则m的值为()A、-5B、5C、-2D、2二、填空题:a54a237、=_______。
在实数范围内分解因式a268、当某___________时,某4等于__________;220021.520039、3___________210、若3某=2,3y=3,则3某-y等于2211、若9某m某y16y是一个完全平方式,那么m的值是__________。
乘法公式与因式分解
、选择题(每题3分,共36分)下列各式中可以运用平方差公式计算的是 A. (-a+4c ) (a-4c ) B. (x-2y ) (2x+y )1 1'(—x+y )27、从边长为a 的正方形中去掉一个边长为b 的小正方形,如图,然后将剩余部分剪后拼成一 个矩形,上述操作所能验证的等式是 ()A. a 2 b 2 (a b)(a b)B. (a b)2 a 2 2ab b 2C. (a b)2 a 2 2ab b 2 2D . a ab a(a b)8、下列分解因式正确的是( )A. x 3 x x(x 2 1)B.m m 6 (m 3)(m2)C. (a 4)(a 4) a 216D. 2 2x y (x y)(x y)9、若a 为整数,则a 2 a 疋能被( )整除 A . 2 B . 3C . 4D . 510、无论x,y 取何值,x 2+y 2-2x+12y+40的值都是()A 、正数B 、负数C 、零D 、非负数11、 下列判断两角相等的叙述中,错误的是()A 、对顶角相等B 、两条直线被第三条直线所截,内错角相等C 、两直线平行,同位角相等D 、•••/仁/2,, / 2=Z 3AZ 仁/ 3 12、 下列计算中,正确的是()2?5 1022?3-122,2A 、2 2 =2B 、a+a=aC 、a a = aD 、(a+b ) =a +b七年级数学乘法公式与因式分解、241、 C. (-3a-1 ) (1-3a) D. ( - — x-y 22、 3、 2若4x +12xy+m 是一个完全平方式,则 B..3y 2 C . 9y 2 D(-a-b )的结果是2 2B . -a -bC A..y 2 计算(a+b ) A 2、2A . a -b4、设(3m+2n A . 12mn5、若 x 2-kxy+9y A. 3 Bm 的值为 .36y 22.a -2ab+b -a (-2ab-b2 2=(3m-2n ) +P,则P 的值是 B . 24mn C . 6mn D2是一个完全平方式,则k 值为.6 C . ± 6 D . ± 812 248mn6、当n 是整数时,2n 1 2n 1是A 2的倍数 B、4的倍数 C 、6的倍数 D t*第T题團、8的倍数13.下列可以用平方差公式计算的是 ( )A 、(x — y) (x + y)B 、(x — y) (y — x)C 、(x — y)(— y + x)D 、(x — y)(— x + y) 14若(7/ 5y)( ) 49x 4 25?,括号内应填代数式 ()A 、7/ 5yB 、7/5yC 、7/5yD 、7x 2 5y15、下列式子由左到右的变形中,属于因式分解的是( )A 、(x 2y)2 x 2 4xy 4y 2B 、x 2 2y 4 (x 1)2 3C 、3x 2 2x 1 (3x 1)(x 1)D 、m(a b c) ma mb me二、填空(每小题3分,共24分)1 2 1 211、计算(- a+3b ) - (一 a-3b )= .3312、 分解因式:4 a 2 9b 2 = __________________ .13、 如果(2a + 2b + 1) (2a + 2b —1)=63,那么 a + b 的值为 _____________ .214、 多项式4x +1加上一个单项式后能成为一个整式的完全平方, ?请你写出符合条件的这个 单项式是 ___________ .15、 若 x y 5,xy 6 贝卩 x 2y xy 2 = ___________ , 2x 2 2y 2 = __________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乘法公式与因式分解练习题
第I卷(选择题)
一.选择题(32分)
1、若x+y=7 xy= -11,则x2+y2的值是()
A.49 B.27 C.38 D.71
2、若(x+a)(x+b)=x2-kx+ab,则k的值为( )
A.a+b B.-a-b C.a-b D.b-a
3、若4x2+12xy+m是一个完全平方式,则m的值为()
A..y2
B..3y2 C.9y2 D.36y2
4、若4x2+axy+25y2是一个完全平方式,则a= ( )
A.20 B.-20 C.±20 D.±10
5、下列各式中从左到右的变形,是因式分解的是()
6、下列多项式乘法,不能用平方差公式计算的是( )
A.(-a-b)(-b+a)
B.(xy+z)(xy-z)
C.(-2a-b)(2a+b)
D.(0.5x-y)(-y-0.5x)
7.若x+y=7 xy= -11,则x2+y2的值是()
A.49 B.27 C.38 D.71
8、下列多项式中,能用公式法进行因式分解的是()
A.x2-4y B.x2+2x+4 C.x2+4 D.x2-x+
4
1
9.若4x2+axy+25y2是一个完全平方式,则a= ( )
A.20 B.-20 C.±20 D.±10
5、下列计算题中,能用公式(a+b)(a-b)=a2-b2的是
()
(A)(x-2y)(x+y)(B)(n+m)(-m-n)
(C)(2x+3)(3x-2)(D)(-a-2b)(-a+2b)
6、下列各式从左到右的变形中,是因式分解的是
()
(A)3x+2x-1=5x-1(B)(3a+2b)(3a—2b)=9a2-4b2
(C)x2+x=x2(1+1/x)(D)2x2—8y2=2(x+2y)(x-2y)
7、(1-4x)(x+3y)是下列哪个多项式分解因式的结果
()
(A)4x2+12xy-x-3y(B)4x2-12xy+x-3y
(C)4x2+12xy-x-3y(D)x+3y-4x2-12xy
8、多项式a2+b2—2a+4b+6的值总是
(A)负数(B)0C正数D非负数
A、6x2y+12xy2-24y3
B、x4y3-3x3y4+2x2y5
C、6x4y3+12x3y4-24x2y5
D、x2y-3xy2+2y3
10、下列各多项式中:① x2-y2;②x2+1;③x2+4x;④x2-10x+25其中能直接运用公式法分解因式的个数是()
A、1个
B、2个
C、3个
D、4个
11.20072-2006×2008的计算结果是()
A.1 B.-1 C.2 D.-2
第II卷(选择题)
二.填空题(8分)
12.分解因式:x3-x=
七年级数学(第1页,共2页)
七年级数学(第2页,共2页)
13.如果x +y =10,xy =7,则x
2
y +xy 2
=
14、分解因式:22a a -= . 15、分解因式:92-x =.
16、分解因式2x 2-18 = .
17、若3a-b=2,则9a 2-6ab+b 2=______.
三.解答题(11—15小题每题6分,16—18每题10分,共60分)
18、对下列多项式进行因式分解 (1)9x 2y-3xyz (2) 3
221218a
a a -+- (3)81x 4-16 y 4
19、对下列多项式进行因式分解(每题4分共16分) (1)81x 4-16 y 4 (2) (x +y)2+8(x +y+2)
(3) 25(a -b)2-144(a +b)2 (4) (x +1)(x +3)+1
20、分解因式(16分)
(1)ma 2—4ma+4m ; (2)a 2—ab+ac —bc.
(3)4x 2―y 2+2yz —z 2. (4)a 4+a 3b —ab 3—b 4.
21、(4分)利用因式分解计算.
22、根据(x+a)(x+b)=x2+(a+b)x+ab,直接计算下列题(1)(x-4)(x-9) (2)(xy-8a)(xy+2a)
23、请你来计算:若1+x+x2+x3=0,
求x+x2+x3+…+x2000的值.27、如图是四张纸片拼成的图形,请利用图形的面积的
不同表示方式,写出一个a、b的恒等式
第27题图
七年级数学(第3页,共2页)。