北师大版八年级上册 第四章 一次函数 压轴题 专项练习(无)

合集下载

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册一、利用一次函数模型解决实际问题例1.实验表明,在某地,温度在15℃至25℃的范围内,一种蟋蟀1min的平均鸣叫次数y可近似看成该地当时温度x(℃)的一次函数.已知这种蟋蟀在温度为16℃时,1min平均鸣叫92次;在温度为23℃时,1min平均鸣叫155次.(1)求y与x之间的函数表达式;(2)当这种蟋蟀1min平均鸣叫128次时,该地当时的温度约是多少?变式1.如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位:cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2(1)依据小亮测量的数据,写出y与x之间的函数表达式,并说明理由;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8cm,求此时碗的数量最多为多少个?变式2.某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.二、利用一次函数解决行程问题例2.小军到某景区游玩,他从景区入口处步行到达小憩屋,休息片刻后继续前行,此时观光车从景区入口处出发的沿相同路线先后到达观景点,如图,l1,l2分别表示小军与观光车所行的路程y(m)与时间x(min)之间的关系.根据图象解决下列问题:(1)观光车出发分钟追上小军;(2)求l2所在直线对应的函数表达式;(3)观光车比小军早几分钟到达观景点?请说明理由.变式1.在一条笔直的道路上依次有A,B,C三地,男男从A地跑步到C地,同时乐乐从B地跑步到A地,休息1分钟后接到通知,要求乐乐比男男早1分钟到达C地,两人均匀速运动,如图是男男跑步时间t(分钟)与两人距A 地路程s(米)之间的函数图象.(1)a=,乐乐去A地的速度为;(2)结合图象,求出乐乐从A地到C地的函数解析式(写出自变量的取值范围);(3)请直接写出两人距B地的距离相等的时间.变式2.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s (km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为km/h,C点的坐标为.(2)慢车出发多少小时后,两车相距200km.变式3.某物流公司的一辆货车A从乙地出发运送货物至甲地,1小时后,这家公司的一辆货车B从甲地出发送货至乙地.货车A、货车B距甲地的距离y(km)与时间x(h)之间的关系如图所示.(1)求货车B距甲地的距离y与时间x的关系式;(2)求货车B到乙地后,货车A还需多长时间到达甲地.三、利用一次函数解决最低费用和最高利润问题例3.某校开设棋类社团,购买了五子棋和象棋.五子棋比象棋的单价少8元,用1000元购买的五子棋数量和用1200元购买的象棋数量相等.(1)两种棋的单价分别是多少?(2)学校准备再次购买五子棋和象棋共30副,根据学生报名情况,购买五子棋数量不超过象棋数量的3倍.问购买两种棋各多少副时费用最低?最低费用是多少?变式1.眉山是“三苏”故里,文化底蕴深厚.近年来眉山市旅游产业蓬勃发展,促进了文创产品的销售,某商店用960元购进的A款文创产品和用780元购进的B款文创产品数量相同.每件A款文创产品进价比B款文创产品进价多15元.(1)求A,B两款文创产品每件的进价各是多少元?(2)已知A款文创产品每件售价为100元,B款文创产品每件售价为80元,根据市场需求,商店计划再用不超过7400元的总费用购进这两款文创产品共100件进行销售,问:怎样进货才能使销售完后获得的利润最大,最大利润是多少元?变式 2.近年来,中国传统服饰备受大家的青睐,走上国际时装周舞台,大放异彩.某服装店直接从工厂购进长、短两款传统服饰进行销售,进货价和销售价如表:价格/类别短款长款进货价(元/件)8090销售价(元/件)100120(1)该服装店第一次用4300元购进长、短两款服装共50件,求两款服装分别购进的件数;(2)第一次购进的两款服装售完后,该服装店计划再次购进长、短两款服装共200件(进货价和销售价都不变),且第二次进货总价不高于16800元.服装店这次应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?变式3.某小区物管中心计划采购A,B两种花卉用于美化环境.已知购买2株A 种花卉和3株B种花卉共需要21元;购买4株A种花卉和5株B种花卉共需要37元.(1)求A,B两种花卉的单价.(2)该物管中心计划采购A,B两种花卉共计10000株,其中采购A种花卉的株数不超过B种花卉株数的4倍,当A,B两种花卉分别采购多少株时,总费用最少?并求出最少总费用.变式4.A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见如表:成本(单位:元/个)销售价格(单位:元/个)A型号35aB型号42b若顾客在该超市购买8个A种型号吉祥物和7个B种型号吉祥物,则一共需要670元;购买4个A种型号吉祥物和5个B种型号吉祥物,则一共需要410元.(1)求a、b的值;(2)若某公司计划从该超市购买A、B两种型号的吉祥物共90个,且购买A 种型号吉祥物的数量x(单位:个)不少于B种型号吉祥物数量的,又不超过B种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y元,求y的最大值.变式5.成都某知名小吃店计划购买A,B两种食材制作小吃.已知购买1千克A 种食材和1千克B种食材共需68元,购买5千克A种食材和3千克B种食材共需280元.(1)求A,B两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少总费用.变式6.某县著名传统土特产品“豆笋”、“豆干”以“浓郁豆香,绿色健康”享誉全国,深受广大消费者喜爱.已知2件豆笋和3件豆干进货价为240元,3件豆笋和4件豆干进货价为340元.(1)分别求出每件豆笋、豆干的进价;(2)某特产店计划用不超过10440元购进豆笋、豆干共200件,且豆笋的数量不低于豆干数量的,该特产店有哪几种进货方案?(3)若该特产店每件豆笋售价为80元,每件豆干售价为55元,在(2)的条件下,怎样进货可使该特产店获得利润最大,最大利润为多少元?变式7.近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?四、利用一次函数解决含参数的最高利润问题例4.在襄阳市创建“经济品牌特色品牌”政策的影响下.每到傍晚,市内某网红烧烤店就食客如云,这家烧烤店的海鲜串和肉串非常畅销,店主从食品加工厂批发以上两种产品进行加工销售,其中海鲜串的成本为m元/支,肉串的成本为n元/支;两次购进并加工海鲜串和肉串的数量与成本如下表所示(成本包括进价和其他费用):次数数量(支)总成本(元)海鲜串肉串第一次3000400017000第二次4000300018000针对团以消费,店主决定每次消费海鲜串不超过200支时,每支售价5元;超过200支时、不超过200支的部分按原价,超过200支的部分打八折.每支肉串的售价为3.5元.(1)求m、n的值;(2)五一当天,一个旅游团去此店吃烧烤,一次性消费海鲜串和肉串共1000支,且海鲜串不超过400支.在本次消费中,设该旅游团消费海鲜串x支,店主获得海鲜串的总利润为y元,求y与x的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,该旅游团消费的海鲜串超过了200支,店主决定给该旅游团更多优惠,对每支肉串降价a(0<a<1)元,但要确保本次消费获得肉串的总利润始终不低于海鲜串的总利润,求a的最大值.变式1.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:甲乙运动鞋价格进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?变式2.为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示.已知甲、乙两种产品的售价分别为12元/kg和18元/kg.(1)求出0≤x≤2000和x>2000时,y与x之间的函数关系式;(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出.其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润=销售额﹣成本),请求出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;(3)为回馈广大客户,该经销商决定对两种产品进行让利销售.在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a的最大值.变式3.为迎接“五一”小长假购物高潮,某品牌专卖店准备购进甲、乙两种衬衫,其中甲、乙两种衬衫的进价和售价如下表:衬衫价格甲乙m m﹣10进价(元/件)260180售价(元/件)若用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同.(1)求甲、乙两种衬衫每件的进价;(2)要使购进的甲、乙两种衬衫共300件的总利润不少于34000元,且不超过34700元,问该专卖店有几种进货方案;(3)在(2)的条件下,专卖店准备对甲种衬衫进行优惠促销活动,决定对甲种衬衫每件优惠a元(60<a<80)出售,乙种衬衫售价不变,那么该专卖店要获得最大利润应如何进货?五、利用一次函数解决方案问题例5.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.变式1.某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.(1)写出图中点B表示的实际意义;(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为a kg时,它们的利润和为1500元,求a的值.。

北师大版八年级上册第四章一次函数经典题型归纳(无答案)

北师大版八年级上册第四章一次函数经典题型归纳(无答案)

北师大版数学一次函数经典题型归纳考点1:一次函数的概念.1.下列函数中,y 是x 的正比例函数的是( )A .y=2x-1B .y=3x C .y=2x 2D .y=-2x+12.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.3.已知一次函数kx k y )1(-=+3,则k = . 4.函数n m xm y n +--=+12)2(,当m= ,n= 时为正比例函数;当n= ,m 时为一次函数.考点2:一次函数图象与系数2. 关于x 的一次函数y=kx+k 2+1的图像可能是( )3.已知一次函数y =x +b 的图像经过一、二、三象限,则b 的值可以是( ).A.-2B.-1C.0D.2 4.若一次函数m x m y 23)12(-+-=的图像经过 一、二、四象限,则m 的取值范围是 .5. 已知一次函数y=mx +n -2的图像如图所示,则m 、n 的取值范围是( )A.m >0,n <2B. m >0,n >2C. m <0,n <2D. m <0,n >2 6.已知关于x 的一次函数y mx n =+的图象如图所示,则2||n m m --可化简为__ __.7.如果一次函数y=4x +b 的图像经过第一、三、四象限,那么b 的取值范围是_ _。

8.下列图象中不可能是一次函数(3)y mx m =--的图象的是()9.两个一次函数1y ax b =+与2y bx a =+,它们在同一直角坐标系中的图象可能是( )10.一次函数(2)4y k x k=-+-的图象经过一、三、四象限,则k 的取值范围是考点3:一次函数的增减性1.写出一个具体的y 随x 的增大而减小的一次函数解析式_ _2.一次函数y=-2x+3中,y 的值随x 值增大而____ ___.(填“增大”或“减小”)3.已知关于x 的一次函数y=kx+4k-2(k≠0).若其图象经过原点,则k=_____;若y 随x 的增大而减小,则k 的取值范围是________.4.若一次函数()22--=x m y 的函数值y 随x 的增大而减小,则m 的取值范围是( )A. 0<mB. 0>mC. 2<mD. 2>m5. 已知点A (-5,a ),B (4,b)在直线y=-3x+2上,则a b 。

北师大版八年级上册数学期末之一次函数压轴题训练

北师大版八年级上册数学期末之一次函数压轴题训练

初二期末之一次函数压轴题训练 1(平阴)如图,一次函数的图象分别与x 轴、y 轴交于点A 、B,以线段AB 为边在第一象限内作等腰Rt 三角形ABC,∠BAC=90°.则过B 、C 两点直线的解析式为( )2.(高新)如图,两个一次函数图象的交点为(2,4),则关于x ,y 的方程组1122y k x b y k x b =+⎧⎨=+⎩的解为( )A.24x y =⎧⎨=⎩ B .42x y =⎧⎨=⎩ C .40x y =-⎧⎨=⎩ D .30x y =⎧⎨=⎩3.(高新)将一次函数y=2x 的图象向上平移2个单位后,当y >0时,x 的取值范围是( )A .x >﹣1B .x >1C .x >﹣2D .x >24.(高新)如图,已知函数b x 21y +-=和y=kx 的图象交于点P (﹣4,﹣2),则根据图象可得关于x 的不等式 b x 21+->kx 的解集为 .5.(市中)为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动,自行车队从甲地出发,途径乙地短暂休息完成补给后,继续骑行至目的地丙地.自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地.自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的2.5倍.如图表示自行车队、邮政车离甲地的路程y (km )与自行车队离开甲地时间x (h )的函数关系图象,请根据图象提供的信息,下列结论正确的个数为( )(1)自行车队行驶的速度是24km /h ; (2)邮政车行驶速度是60km /h ;(3)邮政车出发53小时与自行车队首次相遇;(4)邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km . A .1个 B .2个 C .3个 D .4个6.( 高新)如图所示,在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,点C为(﹣1,0),过点B作BD⊥x轴,垂足为D,且B点横坐标为﹣3.(1)求证:△BDC≌△COA;(2)求BC所在直线的函数关系式;(3)在直线x=12上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.7.(历下)如图,直线AB与坐标轴相交于点A(0,6),B(8,0),动点P沿路钱O→B→A运动.(1)求直线AB的表达式;(2)当点P在OB上,使得AP平分∠OAB时,求此时点P的坐标;(3)当点P在AB上,把线段AB分成1∶3的两部分时,求此时点P的坐标.8.(长清)如图,在直角坐标系中,长方形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(6,3),点E、F分别为AB、BC的中点,过点E、F的直线分别与x轴,y轴交于点D、G.(1)直接写出点E、F、G的坐标.(2)一次函数y=mx﹣的图象经过点F且与x轴交于点H,求m的值.(3)直接写出四边形OHFG的面积.9.(平阴)如图,在平面直角坐标系中,已知点A(0,2),△AOB为等边三角形,P是x轴上一个动点(不与原O重合),以线段AP为一边在其右侧作等边三角形△APQ.(1)求点B的坐标;(2)在点P的运动过程中,∠ABQ的大小是否发生改变?如不改变,求出其大小;如改变,请说明理由.(3)连接OQ,当OQ∥AB时,求P点的坐标.10.如图,直线与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线过点P.(1)求点P坐标和b的值;(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.(1)请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;(2)求出t为多少时,△APQ的面积小于3;(3)是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.11.(商河)如图,一次函数y=-x+m的图象与x轴和y轴分别交于点A和点B,与正比例函数32y x图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积;(3)在直线OP上是否存在异与点P的另一点C,使得△OBC与△OBP 的面积相等?若存在,请求出C点的坐标;若不存在,请说明理由.12.(市中)如图,在平面直角坐标系中,边长为2的正方形ABCD在第一象限内,AB∥x轴,点A的坐标为(5,3),已知直线l:y=12x+m,将直线l向上平移,(1)如果平移后的直线恰好经过点A,求m的值;(2)在(1)问的条件下,直线与正方形的边长BC交于点E,求△ABE的面积;(3)平移过程中的直线若与正方形有交点,求m的取值范围.13.(天桥)如图,在平面直角坐标系中,过点A的两条直线分别交y轴于B(0,3)、C(0,-1)两点,且∠ABC=30°,AC⊥AB于A.(1)求线段AO的长,及直线AC的解析式;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.14.(市中)如图1,在平面直角坐标系中,一次函数y =一 3 x+2 3 的图象与x 轴,y 轴分别交于点A ,点C ,过点A 作AB ⊥x 轴,垂足为点A ,过点C 作CB ⊥y 轴,垂足为点C ,两条垂线相交于点B .图1 图2 备用图(1)线段OC ,OA ,AC 的长分别为OC = __________,OA = __________,AC = __________,∠ACO= __________.(2)将图1中的△ABC 折叠,使点A 与点C 重合,再将折叠后的图形展开,折痕DE 交AB 于点D ,交AC 于点E ,连接CD ,如图2.求线段AD 的长;(3)点M 是直线AC 上一个动点(不与点A 、点C 重合),过点M 的另一条直线MN 与y 轴相交于点N ,是否存在点M ,使△AOC 与△MCN 全等?若存在,请求出点M 的坐标,若不存在,请说明理由.15.如图,在直角坐标系中,已知点M(4,0)、N(2,4),长方形ABCD的顶点A与点O重合,点D在x轴的负半轴上,点B在y轴的正半轴上,且AD=2,AB=3.(1)求证:NO=NM;(2)将长方形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动. 设它们运动的时间为t秒()(如图2),当点P运动到直线NM上时,求t的值;(3)在(2)的条件下,长方形ABCD在运动过程中,当t为何值时,长方形ABCD的周长被直线ON分成左右两部分的比为5:3?。

北师大版八年级数学上册 第四章 一次函数 压轴题专题训练

北师大版八年级数学上册 第四章 一次函数 压轴题专题训练

北师大版八年级数学第四章一次函数压轴题专题训练1、已知:一次函数的图象经过点(2,1)和点(-1,-3).(1)求此一次函数的解析式;(2)求此一次函数与x轴、y•轴的交点坐标以及该函数图象与两坐标轴所围成的三角形的面积;(3)若一条直线与此一次函数图象相交于(-2,a)点,且与y轴交点的纵坐标是5,•求这条直线的解析式;(4)求这两条直线与x轴所围成的三角形面积.2、如图是表示一骑自行车者和一骑摩托车者沿着相同路线由甲地到乙地行驶过程中行驶时间与行驶距离变化的情况,已知甲,乙两地之间的距离是60千米,•请你根据此图回答:(1)谁出发得较早?早多长时间?谁先到达?(2)从自行车出发开始,几小时后两人在途中相遇?(3)当摩托车出发后,在什么时间段内,自行车在摩托车前?在什么时间段时,•自行车在摩托车后?(4)设行驶时间为x(时),自行车与摩托车离开甲地的距离分别为y1(千米),y2(千米),分别写出x与y1,y2之间的函数关系式.3、如图,直线的表达式为,且与轴交于点,直线经过点,直线、交于点.(1)求点的坐标; (2)求直线的解析表达式; (3)求ADC ∆的面积;4、如图,已知直线b kx y +=与n mx y +=交于点P (1,4),它们分别与x 轴交于A 、B ,PA AB =,PB =(1)求两个函数的解析式; (2)若BP 交y 轴于点C ,求四边形PCOA 的面积。

1l 33y x =-+1l x D 2l A B ,1l 2l C D 2l5、如图:正方形ABCD 的边长为4,将此正方形置于平面直角坐标系中,使AB 边落在x 轴的正半轴上,且A 点的坐标是(1,0)。 ①、直线4833y x =-经过点C ,且与x 轴交与点E ,求四边形AECD 的面积; ②、若直线l 经过点E 且将正方形ABCD 分成面积相等的两部分求直线l 的解析式; ③、若直线1l 经过点F (0,5)且与直线3y x =平行,将②中直线l 沿着y 轴向上平移2个单位交x 轴于点P ,交直线1l 于点Q ,求PQF ∆的面积。

一次函数(压轴专练)(十大题型)(原卷版)—2024-2025学年八年级数学上册(北师大版)

一次函数(压轴专练)(十大题型)(原卷版)—2024-2025学年八年级数学上册(北师大版)

一次函数(压轴专练)(十大题型)(1)求直线AB 的解析式;(2)作直线OC ,当点C 运动到什么位置时,AOB V 的面积被直线OC 分成1:2的两部分;(3)过点C 的另一直线CD 与y 轴相交于D 点,是否存在点C 使BCD △与AOB V 全等?若存在,求出点坐标;若不存在,说明理由.(1)求直线2l的函数表达式;(2)求四边形ABCD的面积;(3)在直线2l上是否存在点不存在,请说明理由.题型2:最值问题3.如图,直线392y x =-+交y 轴于点A ,交x 轴于点B ,点()4,C t 在第四象限,点(,0)P m 在线段OB 上.连接OC ,BC ,过点P 作x 轴的垂线,交边AB 于点E ,交折线段OCB 于点F .(1)求点A ,B 的坐标;(2)设点E ,F 的纵坐标分别为1y ,2y ,当04m ££时,12y y -为定值,求t 的值;(3)在(2)的条件下,分别过点E ,F 作EG ,FH 垂直于y 轴,垂足分别为点G ,H ,当06m ££时,求长方形EGHF 周长的最大值.(1)B 的坐标为_________,线段OA 的长为_________.(2)求直线CD 的解析式和点D 的坐标.(3)如图(2),点M 是线段CE 上一动点(不与点C ,E 重合),ON ①在点M 移动过程中,线段OM 与ON 数量关系是否不变,并证明;②连结MN ,当DMN V 面积最大时,求OM 的长度和DMN V 的面积.(1)求直线CD 解析式;(2)如图2,点M 是线段CE 上一动点(不与点C 、E 重合),ON ①点M 移动过程中,线段OM 与ON 数量关系是否不变,并证明;②当OMN V 面积最小时,求点M 的坐标和OMN V 面积.(1)若点E 坐标为2,3n æöç÷èø.ⅰ)求m 的值;ⅱ)点P 在直线2l 上,若3AEP BDE S S =V V ,求点P 的坐标;(2)点F 是线段CE 的中点,点G 为y 轴上一动点,是否存在点形.若存在,求出m 的值,若不存在,请说明理由.(1)经过点A 且与直线33y x =-平行的直线交x 轴于点B ,试求B (2)如图1,若()4,0B ,过()1,0M 的直线与直线AB 所夹锐角为45(3)如图2,在(1)的条件下,现有点(),C m n 在线段AB 上运动,点的中点.直接写出当C 从点A 开始运动,到点B 停止运动,M 点的运动路径长为(1)如图1,求A 、C 两点坐标.(2)点P 是AOC V 内一点,点P 的坐标为(,25)m m -+,点Q 在第二象限,连接PC ,QC ,PCQ Ð请用含m 的式子表示点Q 的坐标.(3)在(2)的条件下,点B 在x 轴上与点A 关于y 轴对称,过Q 做QE OC ⊥于点E ,延长延长MP 交x 轴于点N ,连接BM ,取BM 的中点G ,连接QG 并延长交x 轴于点H ,当QM 点P 的坐标.(1)求点A ,C 的坐标.(2)现有一动点P 沿折线O C B O ®®®以2个单位长度/秒的速度运动,运动时间为①当OAP △为等腰三角形时,求出所有满足条件的t 的值.②如图2,已知x 轴正半轴上有一动点Q ,当点P 在线段OB 上运动时,连接线CQ 的对称图形CQA ¢V ,作CPB △关于直线CP 的对称图形CPB ¢V ,射线10.在平面直角坐标系中,点O 为坐标原点,直线()40y kx k k =-¹交x 轴的正半轴于点A ,交y 轴的正半轴于点,B AB =.(1)求OB 的长;(2)如图1,点C 在x 轴的负半轴上,点D 在AB 上,连接CD 交y 轴于点E ,点E 为CD 的中点,设点C 的横坐标为,t ACD △的面积为S ,求S 与t 的函数解析式;(3)如图2,在(2)的条件下,将射线EC 绕点E 顺时针旋转45°,交x 轴的负半轴于点F ,连接BF ,若2BFE BED OEF Ð+Ð=Ð,求S 的值.11.如图,平面直角坐标系中,直线4y x =-+分别交x 、y 轴于A 、B 两点,点P 为线段AB 的中点.(1)直接写出点P的坐标;⊥交y轴正半轴于点(2)如图1,点C是x轴负半轴上的一动点,过点P作PD PCÐ的度数;分别是CD、OB的中点,连接MN,求MNO(3)如图2,点Q是x轴上的一个动点,连接PQ.把线段PQ绕点Q顺时针旋转+的值最小时,求此时点T的坐标.OT.当PT OT(1)则a = ,b = ,c = ;(2)如图1,在x 轴上是否存在点D ,使ACD 的面积等于V ABC 的面积?若存在,请求出点存在,请说明理由;(3)如图2,连接OC 交AB 于点M ,是否存在一点()0,N n 在y 轴上,使得积,若有,请求出n 的取值范围;若没有,请说明理由.(1)求点A的坐标;V(2)若点C在第二象限,ACD①求点C的坐标;x+>②直接写出不等式组4V沿x轴平移,点③将CAD(1)若33k =-,点P 是直角NOM △的“近N 点”,则OP 的长度可能是①1 ;②2 ;③3 ;④23(2)若线段MN 上的所有点(不含M 和)N 都是直角NOM △的“(3)当1k >时,若一次函数y x k =+与2y kx =+的交点恰好是直角值范围是______ .(1)当OA OB =时,求点A 坐标及直线l 的解析式;(2)在(1)的条件下,如图2所示,设Q 为AB 延长线上的一点,作直线OQ ,过AB 、两点分别作于M ,BN OQ ⊥于N ,若8AM =,求BN 的长.(3)当m 取不同值时,点B 在y 轴正半轴上运动,分别以OB AB 、为边,点B 为直角顶点在第一、二象限内作等腰直角OBF V 和等腰直角ABE V ,连接EF 交y 轴于点P ,如图3,问:当点B 在y 轴正半轴上运动时,试猜想PB 的长度是否为定值?若是,请求出其值;若不是,说明理由.17.定义:在平面直角坐标系中,我们称直线(y ax b a =+,b 为常数)是点(,)P a b 的关联直线,点(,)P a b 是直线y ax b =+的关联点;特别地,当0a =时,直线y b =的关联点为(0,)P b .如图,直线:24AB y x =-+与x 轴交于点A ,与y 轴交于点B .【定义辨析】(1)直线AB 的关联点的坐标是( )A .(0,0)B .(0,4)C .(2,0)D .(2,4)-【定义延伸】(2)点A 的关联直线与直线AB 交于点C ,求点C 的坐标;;【定义应用】(3)点(1,)K m 的关联直线与x 轴交于点E ,=45ABE а,求m 的值.18.在平面直角坐标系xOy 中,对于任意两点()111P x y ,与()222P x y ,的“非常距离”,给出如下定义:若1212x x y y -³-,则点1P 与点2P 的“非常距离”为12x x -;若1212x x y y -<-,则点1P 与点2P 的“非常距离”为12y y -.例如:点()112P ,,点()235P ,,因为1325-<-,所以点1P 与点2P 的“非常距离”为253-=,也就是图1中线段1PQ 与线段2P Q 长度的较大值(点Q 为垂直于y 轴的直线1PQ 与垂直于x 轴的直线2P Q 的交点).(1)已知点102A æö-ç÷èø,B 为y 轴上的一个动点.①若点A 与点B 的“非常距离”为2,直接写出点B 的坐标;②直接写出点A 与点B 的“非常距离”的最小值;(2)已知点3,34C x x æö+ç÷èø是直线m 上的一个动点.①如图2,点D 的坐标是()01,,求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标;②如图3,正方形FGMN 的边长为1,边FG 在x 轴上,点E 是正方形FGMN 边上的一个动点,记d 为点C 与点E 的“非常距离”的最小值,当正方形FGMN 沿x 轴平移,在平移过程中点G 的横坐标大于等于0,且小于等于9时,直接写出d 的最大值.20.“一方有难、八方支援”,在某地发生自然灾害后,某公司响应“助力乡情献爱心”活动,捐出了九月份的全部利润.已知该公司九月份只售出了A、B、C三种型号的产品若干件,每种型号产品不少于4件,九月份支出包括这批产品进货款20万元和其他各项支出1.9万元(含人员工资和杂项开支).这三种产品的售价和进价如下表,人员工资1y(万元)和杂项支出2y(万元)分别与销售总量x(件)成一次函数关系(如图).型号A B C进价(万元/件)0.50.80.7售价(万元/件)0.8 1.20.9(1)写出1y与x的函数关系式为______;九月份A、B、C三种型号产品的销售的总件数为_____件.(2)设公司九月份售出A种产品n件,九月份总销售利润为W(万元),求W与n的函数关系式并直接写出n的取值范围;(3)请求出该公司这次爱心捐款金额的最大值.21.一队学生从学校出发去劳动基地,行进的路程与时间的函数图象如图所示,队伍走了0.8小时后,队伍中的通讯员按原路加快速度返回学校取材料.通讯员经过一段时间回到学校,取到材料后立即按返校时加快的速度追赶队伍,并比学生队伍早18分钟到达基地.如图,线段OD表示学生队伍距学校的路程y(千米)与时间x(小时)之间的函数关系,折线OABC表示通讯员距学校的路程y(千米)与时间x(小时)之间的函数关系,请你根据图象信息,解答下列问题:(1)学校与劳动基地之间的距离为________千米;(2)a=________,B点的坐标是________.(3)若通讯员与学生队伍的距离不超过3千米时能用无线对讲机保持联系,请你直接写出通讯员离开队伍后他们能用对讲机保持联系的时间的取值范围.。

北师大版八年级上册 第四章 一次函数 压轴题 专项练习

北师大版八年级上册 第四章 一次函数 压轴题 专项练习

一次函数压轴题分类题型一:求解析式1.一次时装表演会预算中票价定位每张100元,容纳观众人数不超过2000人,毛利润y(百元)关于观众人数x(百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过1000人时,毛利润y(百元)关于观众人数x(百人)的函数解析式和成本费用s(百元)关于观众人数x(百人)的函数解析式;⑵若要使这次表演会获得36000元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000人时,表演会的毛利润=门票收入—成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入—成本费用—平安保险费)题型二:函数直线与行程相结合2.如图,lA、lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系。

(1)B出发时与A相距___千米。

(2)走了一段路后,自行车发生故障,进行修理,所用的时间是___小时。

(3)B出发后___小时与A相遇。

(4)求出A行走的路程S与时间t的函数关系式.(写出过程)(5)若B的自行车不发生故障,保持出发时的速度前进,___小时与A相遇,相遇点离B的出发点___千米。

在图中表示出这个相遇点C.3.在一条笔直的公路旁依次有A,B,C三个村庄,甲,乙两人同时分别从A,B两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C村,最终到达C村。

设甲、乙两人到C村的距离y1,y2(km)与行驶时间x(h)之间的函数关系如图所示,请回答下列问题:(1)A、C两村间的距离为km,a= ;(2)求出图中点P的坐标,并解释该点坐标所表示的实际意义;(3)乙在行驶过程中,何时距甲10km?4.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地,乙骑摩托车从B地到A地,到达A地后立即按原路返回,设甲、乙两人离B地的距离y(Km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)写出两地之间的距离为________Km;(2)直接写出Y甲,Y乙与X之间的函数关系式(不写过程),求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间的距离不超过3Km时,能够用无线对讲机保持联系,求甲、乙两人能够用无线对讲机保持联系时X的取值范围.题型三:函数(两车或两人距离变化函数图)5.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,设先出发车辆行驶的时间为x h,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图像解决一下问题:(2)求出点D的坐标并很据坐标解释图中点D的实际意义;(3)求快车出发多长时间时,两车之间的距离为300km。

第四章 一次函数压轴题考点训练(解析版)-2024年常考压轴题攻略(8年级上册北师大版)

第四章 一次函数压轴题考点训练(解析版)-2024年常考压轴题攻略(8年级上册北师大版)

第四章一次函数压轴题考点训练A ....【答案】A【分析】根据y 1,y 2的图象判断出k+b 的值,然后根据k-1、所求函数图象经过的象限即可.【详解】解:根据y 1,y 2的图象可知,,且当x=1时,y 2=0,即k+b=0.∴对于函数()1y k x b =-+,有b 时,y=k-1+b=0-1=-1<0.∴符合条件的是选项.故选:A.【点睛】本题主要考查的是一次函数的图象和性质,掌握一次函数的图象和性质是解题的关....()A.(-1,0)【答案】B【分析】由题意作A求的P点;首先利用待定系数法即可求得直线∵A(1,-1),∴C的坐标为(1,1连接BC,设直线BC∴123k bk b+-⎧⎨+-⎩==,解得⎧⎨⎩A .433B .233【答案】D【分析】根据题意利用相似三角形可以证明线段用o n AB B ∆∽AON ∆求出线段o n B B 的长度,即点【详解】解:由题意可知,2OM =,点则OMN ∆为顶角30度直角三角形,ON如图所示,当点P 运动至ON 上的任一点时,设其对应的点∵o AO AB ⊥,iAP AB ⊥∴o iOAP B AB ∠=∠又∵tan 30o AB AO =∙ ,tan i AB AP =∙∴::o i AB AO AB AP=∴o i AB B ∆∽AOP∆∴o i AB B AOP∠=∠【答案】32b -≤≤【分析】根据矩形的性质求得点D 的坐标,交,则交点在线段BD 之间,代入求解即可.【详解】解:矩形ABCD 中,点A 、根据矩形的性质可得:(1,3)D 根据图像得到直线y x b =+与矩形ABCD 将点(4,1)B 代入得:41b +=,解得b 将点(1,3)D 代入得:13+=b ,解得b 由此可得32b -≤≤【答案】0k <或01k <<【分析】分别利用当直线()430y kx k k =+-≠过点值范围,据此即可求解.【详解】解:当直线y =【点睛】本题主要考查等腰直角三角形的性质和两直线交点坐标的求法,加辅助线,构造等腰直角三角形和全等三角形,是解题的关键.评卷人得分三、解答题13.A城有某种农机30台,B城有该农机40台.现要将这些农机全部运往运任务承包给某运输公司.已知C乡需要农机34台,两乡运送农机的费用分别为250元/台和200元/台,从别为150元/台和240元/台(1)设A城运往C乡该农机x台,运送全部农机的总费用为系式,并直接写出自变量x的取值范围;值.【答案】(1)W 关于x 的函数关系式为W =140x +12540,自变量x 的取值范围为0≤x ≤30;(2)有三种调运方案:①A 城运往C 乡28台,运往D 乡2台;B 城运往C 乡6台,运往D 乡34台;②A 城运往C 乡29台,运往D 乡1台;B 城运往C 乡5台,运往D 乡35台;③A 城运往C 乡30台,运往D 乡0台;B 城运往C 乡4台,运往D 乡36台;(3)a 的值为200元.【分析】(1)设A 城运往C 乡x 台农机,可以表示出运往其它地方的台数,根据调运单价和调运数量可以表示总费用W ;(2)列出不等式组确定自变量x 的取值范围,在x 的正整数解的个数确定调运方案,并分别设计出来;(3)根据A 城运往C 乡的农机降价a 元其它不变,可以得出另一个总费用与x 的关系式,根据函数的增减性,确定当x 为何值时费用最小,从而求出此时的a 的值.【详解】解:(1)设A 城运往C 乡x 台农机,则A 城运往D 乡(30﹣x )台农机,B 城运往C 乡(34﹣x )台农机,B 城运往D 乡(6+x )台农机,由题意得:W =250x +200(30﹣x )+150(34﹣x )+240(6+x )=140x +12540,∵x ≥0且30﹣x ≥0且34﹣x ≥0,∴0≤x ≤30,答:W 关于x 的函数关系式为W =140x +12540,自变量x 的取值范围为0≤x ≤30.(2)由题意得:1401254016460030x x +>⎧⎨⎩,解得:28≤x ≤30,∵x 为整数,∴x =28或x =29或x =30,因此有三种调运方案,即:①A 城运往C 乡28台,运往D 乡2台;B 城运往C 乡6台,运往D 乡34台;②A 城运往C 乡29台,运往D 乡1台;B 城运往C 乡5台,运往D 乡35台;③A 城运往C 乡30台,运往D 乡0台;B 城运往C 乡4台,运往D 乡36台;(3)由题意得:W =(250﹣a )x +200(30﹣x )+150(34﹣x )+240(6+x )=(140﹣a )x +12540,∵总费用最小值为10740元,∴140﹣a <0∴W 随x 的增大而减小,又∵28≤x ≤30,∴当x =30时,W 最小,即:(140﹣a )×30+12540=10740,【答案】(1)y=2x+4(2)1112-+【分析】(1)根据图像求出B的坐标,然后根据待定系数法求出直线(1)求m 的值;(2)点P 从O 出发,以每秒2个单位的速度,沿射线OA 方向运动.设运动时间为t ()s .①过点P 作PQ OA ⊥交直线AB 于点Q ,若APQ ABO ∆≅∆,求t 的值;②在点P 的运动过程中,是否存在这样的t ,使得POB ∆为等腰三角形?若存在,请求出所有符合题意的t 的值;若不存在,请说明理由.【答案】(1)6;(2)①2或8;②2.5或4或6.4.3【点睛】本题主要考查一次函数图象与几何图形的综合,形的性质,利用分类讨论的思想方法,是解题的关键.17.如图,在平面直角坐标系中,直线2y x =-+交于点C .(1)求点A ,B 的坐标.(3)存在.∵线段AB在第一象限,∴这时点P在x轴负半轴.∵==OA 2,OB 4,∴222224BP OP OB x =+=+,222222420AB OA OB =+=+=,222()(2)AP OA OP x =+=-.∵222BP AB AP +=,∴222420(2)x x ++=-,解得8x =-,∴当点P 的坐标为(8,0)-时,ABP 是直角三角形;③设AB 是直角边,点A 为直角顶点,即90BAP ∠= .∵点A 在x 轴上,P 是x 轴上的动点,∴90BAP ∠≠ .综上,当点P 的坐标为(0,0)或(8,0)-时,ABP 是直角三角形.【点睛】本题考查的是一次函数的图象与及几何变换、一次函数的性质及直角三角形的判定等知识点,掌握分类讨论思想和一次函数图像的性质是解答本题的关键.。

2021北师大版八上一次函数压轴题精选30题

2021北师大版八上一次函数压轴题精选30题

2021北师大版八上一次函数压轴题精选30题1.小明家新房装修时选定了某种品牌同一花色的壁纸,这种壁纸有大卷和小卷两种型号,已知购买1卷大卷壁纸和2卷小卷壁纸共花费900元,购买2卷大卷壁纸和3卷小卷壁纸共花费1550元.其中一大卷壁纸可贴10平方米的墙壁,一小卷壁纸可贴5平方米的墙纸.(1)求大卷和小卷壁纸的单价;(2)小明的爸爸共购买了40卷壁纸.若设购买大卷壁纸x卷.①设购买壁纸总费用为y元,写出y与x的函数关系式;②小明的爸爸决定,买壁纸的预算不能超过15000元,求可贴墙壁的最大面积.2.为响应国家扶贫攻坚的号召,A市先后向B市捐赠两批物资,甲车以60km/h的速度从A市匀速开往B 市.甲车出发1h后,乙车以90km/h的速度从A市沿同一条道路匀速开往B市.甲、乙两车距离A市的路程y(km)与甲车的行驶时间x(h)之间的关系如图所示(1)A,B两市相距km,m=,n=;(2)求乙车行驶过程中y关于x的函数解析式,并写出x的取值范围;(3)在乙车行驶过程中,当甲、乙两车之间的距离为30km时,直接写出x的值.3.如图,已知直线y=kx+3与x轴的正半轴交于点A,与y轴交于点B,sin∠OAB=.(1)求k的值;(2)D、E两点同时从坐标原点O出发,其中点D以每秒1个单位长度的速度,沿O→A→B的路线运动,点E以每秒2个单位长度的速度,沿O→B→A的路线运动.当D,E两点相遇时,它们都停止运动设运动时间为t秒.①在D、E两点运动过程中,是否存在DE∥OB?若存在,求出t的值,若不存在,请说明理由;②若设△OED的面积为S,求s关于t的函数关系式,并求出t为多少时,s的值最大?4.如图,在平面直角坐标系中,一次函数y=﹣x+b的图象与x轴,y轴分别交于B,C两点,与正比例函数y=x的图象交于点A,点A的横坐标为4.(1)求A,B,C三点的坐标;(2)若动点M在线段OA和射线AC上运动,当三角形OMC的面积是三角形OAC的面积的时,求点M的坐标;(3)若点P(m,1)在三角形AOB的内部(包括边界),则m的取值范围是.5.如图,在平面直角坐标系中,等腰Rt△AOB斜边OB在x轴正半轴上,B(6,0),A在第一象限,直线y=x与AB相交于点C.动点P(m,0)从原点出发,沿线段OB向右运动(0≤m<6).过点P 作OB的垂线与直线OC相交于点F,与△AOB的边OA或AB相交于点E.以EF为直角边、点E为直角顶点,在EF的左侧作等腰直角△EFG,连接AP.(1)求直线AB的解析式及点C的坐标;(2)当以点P、E、A为顶点的三角形为等腰三角形时,求m的值;(3)当△EFG与△AOB的重叠部分的图形是轴对称图形时,直接写出m的取值或取值范围.6.如图,直线y=﹣2x+4与x轴交于点A,与y轴交于点B,点P为射线AO上的一点(点P不与点A 重合),BC是△ABP的中线,点C,C′关于BP对称,设点P的横坐标为m.(1)求点A,B的坐标,若∠APB=45°,求PB所在直线的解析式;(2)若BC=BA,求m的值;(3)若点C′在x轴下方,直接写出m的取值范围.7.已知直线AB交x轴于点A(a,o),交y轴于点B(0,b),且a、b满足|a+b|+(b﹣4)2=0.(1)求∠ABO的度数;(2)如图1,若点C在第一象限,且BE⊥AC于点E,延长BE至点D,使得BD=AC,连接OC、OD、CD,试判断△COD的形状,并说明理由;(3)如图2,若点C在OB上,点F在AB的延长线上,且AC=CF,△ACP是以AC为直角边的等腰直角三角形,CQ⊥AF于点Q,求的值.8.如图,直线y=﹣3x+12分别交x轴、y轴于点A,B,以AB为斜边向左侧作等腰Rt△ABD,延长BD 交x轴于点C,连接DO,过点D作DE⊥DO交y轴于点E.(1)求证:∠1=∠2.(2)求OE的长.(3)点P在线段AB上,当PE与∠COD的一边平行时,求出所有符合条件的点P的坐标.9.在平面直角坐标系中,已知点A(1,0),B(0,3),C(﹣3,0),D是线段AB上一点,CD交y轴于E,且S△BCE=2S△AOB.(1)求直线AB的解析式;(2)求点D的坐标;(3)猜想线段CE与线段AB的数量关系和位置关系,并说明理由;(4)若F为射线CD上一点,且∠DBF=45°,求点F的坐标.10.在平面直角坐标系中,一次函数的图象分别与x轴、y轴交于点A、B,点C在线段OB上,将△AOB沿AC翻折,点B恰好落在x轴上的点D处,直线DC交AB于点E.(1)求点C的坐标;(2)若点P在直线DC上,点Q是y轴上一点(不与点B重合),当△CPQ和△CBE全等时,直接写出点P的坐标(不包括这两个三角形重合的情况).11.如图,直角坐标系xOy中,过点A(6,0)的直线l1与直线l2:y=kx﹣1相交于点C(4,2),直线l2与x轴交于点B.(1)k的值为;(2)求l1的函数表达式和S△ABC的值;(3)直线y=a与直线l1和直线l2分别交于点M,N,(M,N不同)①直接写出M,N都在y轴右侧时a的取值范围;②在①的条件下,以MN为边作正方形MNDE,边DE恰好在x轴上,直接写出此时a的值.12.如图,在平面直角坐标系中,点A(1,m)是直线y=﹣x﹣2上一点,点A向上平移5个单位长度得到点B.(1)求点B的坐标;(2)在直线y=﹣x﹣2上是否存在一点C,使得△ABC是直角三角形,若存在,求出C点坐标;若不存在,说明理由;(3)若一次函数y=kx﹣2图象与线段AB存在公共点D,直接写出k的取值范围.13.如图在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b分别交x轴,y轴于点A、B,OA=4,∠OBA的外角平分线交x轴于点D.(1)求点D的坐标;(2)点P是线段BD上一点(不与B、D重合),过点P作PC⊥BD交x轴于点C,设点P的横坐标为t,△BCD的面积为S,求S与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,PC的延长线交y轴于点E,当PC=PB时,将射线EP绕点E旋转45°交直线AB于点F,求F点坐标.14.如图,直线l1:y=kx﹣2k+1经过定点C,分别交x轴,y轴于A,B两点,直线l2经过O,C两点,点Dl2上.(1)①直接写出点C的坐标为;②求直线l2的解析式;(2)如图1,若S△BOC=2S△BCD,求点D的坐标;(3)如图2,直线l3经过D,E(0,﹣)两点,分别交x轴的正半轴、l1于点P,F,若PE=PF,∠EDO=45°,求k的值.15.如图,在平面直角坐标系中,直线AB与x轴、y轴相交于A(6,0)、B(0,2)两点,动点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上时,过点D 作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)求经过A、B两点的一次函数表达式及点D的坐标;(3)在x轴上是否存在点P,使得以C、D、P为顶点的三角形是等腰三角形?若存在,请直接写出P 点的坐标.(不用写过程)16.如图,直线y=﹣x+4,与x轴、y轴分别交于A,B两点,点C与点B关于原点对称.(1)直接写出点A,B,C的坐标;(2)在线段OA的延长线上任取一点P,作PQ⊥BP,交直线AC于Q.求证:PQ=PB;(3)在(2)的条件下,过点P作PM⊥AC于点M,直接写出的值.17.如图,矩形OABC在平面直角坐标系中,OA在x轴负半轴,OC在y轴正半轴,点D在边OC上,连接BD,将△BCD沿BD折叠,得到△BDE,使点E落在矩形OABC内部,过点E作EF⊥AB于F,直线CF交x轴于点M,若点E(﹣3,9),F恰为AB中点.(1)如图1,直线CM的解析式;(2)如图2,点P为x轴上的动点,过P作x轴的垂线,分别交直线CM、BD于点N、Q,若NQ=2CD,求点P坐标;(3)点H为直线BD上动点,若△AEH以AE为直角边的直角三角形,是否存在点H?如果存在,直接写出点H坐标;不存在,请说明理由!18.如图1,直线y=x和直线y=﹣x+5相交于点A,直线y=﹣x+5与x轴交于点C,点P在线段AC上,PD⊥x轴于点D,交直线y=x于点Q.(1)点A的坐标为;(2)当QP=OA时,求Q点的坐标及△APQ的面积;(3)如图2,在(2)的条件下,∠OQP平分线交x轴于点M.①直接写出点M的坐标;②点N在直线y=x的上方,当△OQN和△OQM全等时直接写出N点坐标.19.如图,在平面直角坐标系xOy中,直线y=x+4与x轴,y轴分别交于点A,B,与直线y=﹣x交于点C,点P的坐标是(t,0),过点P作x轴的垂线l,与射线CO,CB分别交于点D,E,以DE为边向右作正方形DEFG.(1)点C的坐标是;(2)当点F在y轴上时,求t的值;(3)设正方形DEFG与△BOC重合部分的面积为S,求S关于t的函数关系式,并直接写出自变量t 的取值范围.20.如图1,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.(1)若直线AB解析式为y=﹣2x+12,求:①求点C的坐标;②求△OAC的面积.(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值及此时点P的坐标;若不存在,说明理由.21.如图,四边形OABC是一张放在平面直角坐标系中的正方形纸片,点O与坐标原点重合,点A在x 轴上,点C在y轴上,OC=5,点E在边BC上,点N的坐标为(3,0),过点N且平行于y轴的直线MN与EB交于点M.现将纸片折叠,使顶点C落在MN上,并与MN上的点G重合,折痕为OE.(1)求点G的坐标,并求直线OG的解析式;(2)若直线l:y=mx+n平行于直线OG,且与长方形ABMN有公共点,请直接写出n的取值范围.(3)设点P为x轴上的点,是否存在这样的点P,使得以P,O,G为顶点的三角形为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.22.如图1,在平面直角坐标系中,直线y=﹣x+2与坐标轴交于A,B两点,以AB为斜边在第一象限内作等腰直角三角形ABC.点C为直角顶点,连接OC.(1)A点坐标为,B点坐标为.(2)请你过点C作CE⊥y轴于E点,试探究并证明OB+OA与CE的数量关系.(3)如图2,将线段AB绕点B沿顺时针方向旋转至BD,且OD⊥AD,延长DO交直线y=x+5于点P,求点P的坐标.23.直线AB:y=﹣x+6分别与x,y轴交于A,B两点,过点B的直线交x轴负半轴于点C,且OB:OC =3:1.(1)求直线BC的解析式;(2)在直线BC上是否存在点D(点D不与点C重合),使得S△ABD=S△ABC?若存在,求出点D的坐标;若不存在,请说明理由;(3)如图,P为A点右侧x轴上的一动点,以P为直角顶点、BP为腰在第一象限内作等腰直角三角形△BPQ,连接QA并延长交y轴于点K,当P点运动时,K点的位置是否发生变化?如果不变,请求出它的坐标;如果变化,请说明理由.24.已知直线l1:y=﹣x+b与x轴交于点A,直线l2:y=x﹣与x轴交于点B,直线l1、l2交于点C,且C点的横坐标为1.(1)求直线l1的解析式和点A的坐标.(2)直线l1与y轴交于点D,将l1向上平移9个单位得l3,l3与x轴、y轴分别交于点E、F,点P为l3上一动点,连接AP、BP,当△ABP的周长最小时,求△ABP的周长和点P的坐标.(3)将l1绕点C逆时针旋转,使旋转后的直线l4过点G(﹣2,0),过点C作l5平行于x轴,点M、N分别为直线l4、l5上两个动点,是否存在点M、点N,使△BMN是以点M为直角顶点的等腰直角三角形,若存在,求出点M的坐标,若不存在,请说明理由.25.如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,直线y=﹣2x+3与x轴交于点B,与y 轴交于点C,与直线y=2x+6交于点D.(1)求点D的坐标;(2)将△BOC沿x轴向左平移,平移后点B的对应点为点E.点O的对应点为点F,点C的对应点为点G,当点F到达点A时,停止平移,设平移的距离为t.①当点G在直线y=2x+6上时,求△DCG的面积;②当△EFG与四边形AOCD重合部分的面积为2时,请直接写出t的值.26.在平面直角坐标系xOy中,直线l1:y=k1x+6与x轴、y轴分别交于A、B两点,且OB=OA,直线l2:y=k2x+b经过点C(,1),与x轴、y轴、直线AB分别交于点E、F、D三点.(1)求直线l1的解析式;(2)如图1,连接CB,当CD⊥AB时,求点D的坐标和△BCD的面积;(3)如图2,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使△QCD是以CD为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.27.如图,在平面直角坐标系中,直线y=﹣x+3分别交y轴,x轴于A、B两点,点C在线段AB上,连接OC,且OC=BC.(1)求线段AC的长度;(2)如图2,点D的坐标为(﹣,0),过D作DE⊥BO交直线y=﹣x+3于点E.动点N在x 轴上从点D向终点O匀速运动,同时动点M在直线y=﹣x+3上从某一点向终点G(2,1)匀速运动,当点N运动到线段DO中点时,点M恰好与点A重合,且它们同时到达终点.i)当点M在线段EG上时,设EM=s、DN=t,求s与t之间满足的一次函数关系式;ii)在i)的基础上,连接MN,过点O作OF⊥AB于点F,当MN与△OFC的一边平行时,求所有满足条件的s的值.28.如图1,已知函数y=x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.①若△PQB的面积为,求点M的坐标;②连接BM,如图2,若∠BMP=∠BAC,求点P的坐标.29.如图,在平面直角坐标系中,A(a,0),B(0,b),且a、b满足(a﹣2)2+=0.(1)求A点的坐标为(,),B点的坐标为(,);(2)若点M为直线y=mx在第一象限上一点,且△ABM是以AB为腰的等腰直角三角形,求m的值;(3)如图过点A的直线y=nx﹣2n交y轴负半轴于点P,N点的横坐标为﹣1,过N点的直线y=x+c 交AP于点M(3,n),(i)试用含n的式子表示c;(ii)给出两个结论:①的值是不变;②的值是不变,只有一个结论正确,请你判断出正确的结论,并加以证明和求出其值.30.如图,在平面直角坐标系中,直线y=kx过点A(6,m),过点A作x轴的垂线,垂足为点B,过点A作y轴的垂线,垂足为点C.∠AOB=60°,CD⊥OA于点D.动点P从点O出发,以每秒2个单位长度的速度向点A运动,动点Q从点A出发.以每秒个单位长度的速度向点B运动.点P,Q 同时开始运动,当点P到达点A时,点P,Q同时停止运动,设运动时间为t(s),且t>0.(1)求m与k的值;(2)当点P运动到点D时,求t的值;(3)连接DQ,点E为DQ的中点,连接PE,当PE⊥DQ时,请直接写出点P的坐标.参考答案与试题解析1.小明家新房装修时选定了某种品牌同一花色的壁纸,这种壁纸有大卷和小卷两种型号,已知购买1卷大卷壁纸和2卷小卷壁纸共花费900元,购买2卷大卷壁纸和3卷小卷壁纸共花费1550元.其中一大卷壁纸可贴10平方米的墙壁,一小卷壁纸可贴5平方米的墙纸.(1)求大卷和小卷壁纸的单价;(2)小明的爸爸共购买了40卷壁纸.若设购买大卷壁纸x卷.①设购买壁纸总费用为y元,写出y与x的函数关系式;②小明的爸爸决定,买壁纸的预算不能超过15000元,求可贴墙壁的最大面积.【解答】解:(1)设大卷壁纸单价为m元/卷,小卷壁纸单价为n元/卷,由题意得:,解得:,答:大卷壁纸单价为400元/卷,小卷壁纸单价为250元/卷;(2)①购买大卷壁纸x卷,购买小卷壁纸(40﹣x)卷,则y=400x+250(40﹣x)=150x+10000,∴y与x的函数关系式为y=150x+10000;②∵y≤15000,∴150x+10000≤15000,解得:x≤,x为整数,设贴墙壁的面积为S,则S=10x+5(40﹣x)=5x+200,∵5>0,∴S随x的增大而增大,∵x最大值为33,∴S max=5×33+200=365,答:可贴墙壁的最大面积为365平方米.2.为响应国家扶贫攻坚的号召,A市先后向B市捐赠两批物资,甲车以60km/h的速度从A市匀速开往B 市.甲车出发1h后,乙车以90km/h的速度从A市沿同一条道路匀速开往B市.甲、乙两车距离A市的路程y(km)与甲车的行驶时间x(h)之间的关系如图所示(1)A,B两市相距360km,m=5,n=6;(2)求乙车行驶过程中y关于x的函数解析式,并写出x的取值范围;(3)在乙车行驶过程中,当甲、乙两车之间的距离为30km时,直接写出x的值.【解答】解:(1)由函数图象可知,AB两市相距360km,则m=+1=5(h),n==6(h),故答案为:360,5,6;(2)设乙车行驶过程中y关于x的函数解析式为y=k+b,将点(1,0)和点(5,360)代入得:,解得:,则乙车行驶过程中y关于x的函数解析式为y=90x﹣90,由(1)可知,m=5,则1≤x≤5;(3)设甲车行驶过程中y关于x的函数解析式为y=cx,将点(6,360)代入得:6c=360,解得:c=60,则甲车行驶过程中y关于x的函数解析式为y=60x,联立,解得:,即当甲车行驶3h时,两车相遇,由题意,分以下两种情况:①当甲、乙两车未相遇前,即1≤x<3时,则60x﹣(90x﹣90)=30,解得:x=2,符合题设;②当甲、乙两车相遇后,即3≤x<5时,则90x﹣90﹣60x=30,解得:x=4,符合题设;综上,在乙车行驶过程中,当甲、乙两车之间的距离为30km时,x的值为2或4.3.如图,已知直线y=kx+3与x轴的正半轴交于点A,与y轴交于点B,sin∠OAB=.(1)求k的值;(2)D、E两点同时从坐标原点O出发,其中点D以每秒1个单位长度的速度,沿O→A→B的路线运动,点E以每秒2个单位长度的速度,沿O→B→A的路线运动.当D,E两点相遇时,它们都停止运动设运动时间为t秒.①在D、E两点运动过程中,是否存在DE∥OB?若存在,求出t的值,若不存在,请说明理由;②若设△OED的面积为S,求s关于t的函数关系式,并求出t为多少时,s的值最大?【解答】解:(1)直线y=kx+3,当x=0时,y=3,∴B(0,3),∴OB=3,∵∠AOB=90°,且sin∠OAB=,∴=,∵AB=OB=×3=5,∴OA==4,∴A(4,0),把A(4,0)代入y=kx+3得0=4k+3,解得k=.(2)①不存在,理由如下:在OA上取一点F(,0),连接BF,当0<t<时,如图1,OD=t,OE=2t,∵==,==,∴=,∵∠DOE=∠FOB,∴△ODE∽△OFB,∴∠ODE=∠OFB,∴DE∥BF,当t=时,DE与BF重合,∴当0<t≤时,不存在DE∥OB;当<t<4时,如图2,AF=4=,AD=4﹣t,AE=8﹣2t,∵==,=,∴=,同理可证DE∥BF,∴此时不存在DE∥OB,综上所述,不存在DE∥OB.②当0<t≤时,如图1,S△OED=OD•OE=t×2t=t2,∴S=t2,∵a=1>0,∴S随t的增大而增大,∴当t=时,S最大=()2=;当<t<4时,如图2,作EG⊥x轴,则EG∥BO,∴△AGE∽△AOB,∴=,∴GE=•AE=(8﹣2t),∴S△OED=OD•GE=×t(8﹣2t)=t2+t,∴S=t2+t,∵S=t2+t=(t﹣2)2+,且<0,<2<4,∴当t=2时,S最大=,∵>,∴当t=2时,S的最大值为,综上所述,S=,当t=2时,S的最大值为.4.如图,在平面直角坐标系中,一次函数y=﹣x+b的图象与x轴,y轴分别交于B,C两点,与正比例函数y=x的图象交于点A,点A的横坐标为4.(1)求A,B,C三点的坐标;(2)若动点M在线段OA和射线AC上运动,当三角形OMC的面积是三角形OAC的面积的时,求点M的坐标;(3)若点P(m,1)在三角形AOB的内部(包括边界),则m的取值范围是2<m<5.【解答】解:(1)∵点A在正比例函数y=x的图象上,且点A的横坐标为4.∴点A(4,2),∴2=﹣4+b,∴b=6,∴一次函数解析式为y=﹣x+6,∵一次函数y=﹣x+6的图象与x轴,y轴分别交于B,C两点,∴点B(6,0),点C(0,6);(2)由(1)可知:OC=6,x A=4,∴S△OAC=×OC×x A=×6×4=12,∵S△OMC=S△OAC=4,∴S△OMC=×OC×|x M|=4,∴|x M|=,∴x M=±,分情况讨论:①当动点M在线段OA上时,x>0,则当x=时,y=,∴此时M点的坐标为(,),②动点M射线AC上运动时:a.若x>0,则当x=时,y=﹣+6=,故此时M点的坐标为(,),b.若x<0,则当x=﹣时,y=+6=,故此时M点的坐标为(﹣,),综上,M点的坐标为(,)或(,)或(﹣,);故答案为:(,)或(,)或(﹣,);(3)∵点P(m,1)在△AOB的内部(不包括边界),∴当y=1时,代入正比例函数中得:1=x,解得:x=2,当y=1时,代入一次函数中得:1=﹣x+6,解得:x=5,∴2<m<5.故答案为:2<m<5.5.如图,在平面直角坐标系中,等腰Rt△AOB斜边OB在x轴正半轴上,B(6,0),A在第一象限,直线y=x与AB相交于点C.动点P(m,0)从原点出发,沿线段OB向右运动(0≤m<6).过点P 作OB的垂线与直线OC相交于点F,与△AOB的边OA或AB相交于点E.以EF为直角边、点E为直角顶点,在EF的左侧作等腰直角△EFG,连接AP.(1)求直线AB的解析式及点C的坐标;(2)当以点P、E、A为顶点的三角形为等腰三角形时,求m的值;(3)当△EFG与△AOB的重叠部分的图形是轴对称图形时,直接写出m的取值或取值范围.【解答】解:(1)设直线AB的解析式为y=kx+b,如图1,作AH⊥OB于点H,∵AB=AO,∴OH=BH=OB=×6=3,∴H(3,0),∵∠OAB=90°,∴AH=OB=3,∴A(3,3),把A(3,3)、B(6,0)代入y=kx+b,得,解得,∴直线AB的解析式为y=﹣x+6;由得,∴C(5,1).(2)如图1,点E在OA上,AE=PE,∵PE⊥OB,∴∠OPE=90°,∵∠AOB=∠ABO=45°,∴∠POE=∠PEO=45°,∵P(m,0),∴PE=OP=AE=m,∴OE===m,∵AB=AO===3,∴m+m=3,解得m=6;如图2,点E在AB上,AE=PE,∵∠BPE=90°,∠PBE=45°,∴∠PEB=∠PBE=45°,∴AE=PE=PB=6﹣m,∵BE===PB=(6﹣m),∴6﹣m+(6﹣m)=3,解得m=3,综上所述,m的值为6或3.(3)当点E在OA边上,如图1,设FG交OA于点M,∵EF=EG,∠FEG=90°,∴∠MFE=∠G=45°,∴∠MEF=∠MFE=45°,∴ME=MF,∴△MEF是轴对称图形,此时0<m≤3;如图3,点E在AC上,EG交OA于点N,FG交OA于点M,EN=MN,连接FN,∵∠FEG=∠EPB=90°,∴EG∥OB,∴∠MNG=∠AOB=∠G=45°,∴∠GMN=90°,∴FG⊥OA,∵∠FEN=∠FMN=90°,FN=FN,EN=MN,∴Rt△EFN≌Rt△MFN(HL),∴四边形MFEN是轴对称图形,MF=EF,作CQ⊥OB于点Q,则Q(5,0),∴BQ=CQ=1,∵∠BQC=90°,∴BC===,∴AC=3﹣=2,∵P(m,0),∴F(m,m),∵PE=PB=6﹣m,∴EF=6﹣m﹣m=6﹣m,∵∠GMN=∠A=90°,∴MF∥AC,∴△OMF∽△OAC,∴=,∴===,设MF=2n,则OM=3n,∴OF===n,∴==,∵∠OPF=90°,OP=m,PF=m,∴OF==m,∴MF=OF=×m=m,∴m=6﹣m,解得m=;当点G与点M重合时,则MF=GF===EF,∴m=(6﹣m),解得m=,如图4,当≤m<5时,△EFG与△AOB的重叠部分为等腰直角△EFG,是轴对称图形;如图5,点E在BC上,FG交AB于点I,∵∠GEF=∠OPF=90°,∴GE∥OB,∴∠IEG=∠ABO=45°,∴∠IEG=∠G=45°,∴IG=IE,∴△IGE是轴对称图形,此时5<m<6,综上所述,m的取值范围是0<m≤3或m=或≤m<5或5<m<6.6.如图,直线y=﹣2x+4与x轴交于点A,与y轴交于点B,点P为射线AO上的一点(点P不与点A 重合),BC是△ABP的中线,点C,C′关于BP对称,设点P的横坐标为m.(1)求点A,B的坐标,若∠APB=45°,求PB所在直线的解析式;(2)若BC=BA,求m的值;(3)若点C′在x轴下方,直接写出m的取值范围.【解答】解:(1)把x=0代入y=﹣2x+4,得到y=4.把y=0代人y=﹣2x+4,得x=2.∴A(2,0),B(0,4),若∠APB=45°,则点P在轴的负半轴上,且OP=OB=4.∴P(﹣4,0),设PB所在直线的解析式y=kx+b,∴,解得.∴PB所在直线的解析式为y=x+4;(2)若BC=BA,∵BO⊥CA,∴CO=OA,∵A(2,0),∴C(﹣2,0),∴AC=4,CO=OA=2,∵BC是△ABP的中线,∴PC=AC=4,∴OP=OC+PC=2+4=6,∴点P(﹣6,0),∴m=﹣6;(3)0<m<2.理由:当点P在x轴负半轴上时.点C′在x轴上方;点P与原点O重合时.点C′在x轴上,点P 在点O,A之间时,点C在x轴下方.∴0<m<2.7.已知直线AB交x轴于点A(a,o),交y轴于点B(0,b),且a、b满足|a+b|+(b﹣4)2=0.(1)求∠ABO的度数;(2)如图1,若点C在第一象限,且BE⊥AC于点E,延长BE至点D,使得BD=AC,连接OC、OD、CD,试判断△COD的形状,并说明理由;(3)如图2,若点C在OB上,点F在AB的延长线上,且AC=CF,△ACP是以AC为直角边的等腰直角三角形,CQ⊥AF于点Q,求的值.【解答】解:(1)∵|a+b|+(b﹣4)2=0,∴a=﹣4,b=4,∴点A的坐标为(﹣4,0),点B的坐标为(0,4),∴AO=BO=4,∵∠AOB=90°,∴∠ABO的度数为45°;(2)△COD是等腰直角三角形.证明:如图1:∵BE⊥AC,OA⊥OB,∴∠EFB+∠EBF=∠OF A+∠OAF,又∵∠OF A=∠EFB,∴∠EBF=∠OAF,在△AOC与△BOD中,,∴△AOC≌△BOD(SAS),∴OC=OD,∠AOC=∠BOD,∴∠AOB+∠BOC=∠BOC+∠DOC,∴∠DOC=∠AOB=90°,∴△COD为等腰直角三角形;(3)过点C作CK⊥OB交AB于K,∵∠ACP=90°,∴∠BCP=∠OAC,∵OA=OB,∴∠OAC+∠CAF=∠OAB=45°,∴∠OBA=∠F+∠BCF=45°,∵AC=CF,∴∠CAF=∠F,∴∠BCF=∠OAC=∠BCP,即OB平分∠PCF,∵△ACP是以AC为直角边的等腰直角三角形,∴CA=CP,∵AC=CF,∴CP=CF,∵CB=CB,∴△BCF≌△BCP(SAS),∴BF=BP,∵∠OBA=45°,CK⊥OB,∴△BCK为等腰直角三角形,∴△ACF和△BCK均为等腰三角形,∵CQ⊥AF,∴FQ=AQ,BQ=QK,∴BF=AK,∵△BCK为等腰直角三角形,∴BQ=QK=CQ,∴===2.8.如图,直线y=﹣3x+12分别交x轴、y轴于点A,B,以AB为斜边向左侧作等腰Rt△ABD,延长BD 交x轴于点C,连接DO,过点D作DE⊥DO交y轴于点E.(1)求证:∠1=∠2.(2)求OE的长.(3)点P在线段AB上,当PE与∠COD的一边平行时,求出所有符合条件的点P的坐标.【解答】(1)证明∵△ABD是以AB为斜边向左侧作等腰直角三角形,∠BDA=∠CDA=∠BOC=90°,∴∠1=90°﹣∠BCO,∠2=90°﹣∠BCO,∴∠1=∠2;(2)解:如图:∵DB⊥DA,DE⊥DO,∴∠3+∠4=90°,∠5+∠4=90°,∴∠3=∠5,∵∠1=∠2,且DB=DA,∴△BDE≌△ADO(ASA),∴BE=OA,又∵直线y=﹣3x+12分别交x轴、y轴于点A,B,∴OB=12,OA=4,∴BE=OA=4,∴OE=OB﹣BE=12﹣4=8;(3)解:∵点P在直线y=﹣3x+12上,∴设点P的坐标为(x,﹣3x+12).∵直线PE与∠COD的一边平行,∴分两种情况.①若PE∥OC,如图,∴点P的纵坐标等于点E的纵坐标=8,∴﹣3x+12=8,解得x=,∴点P的坐标为(,8);②若PE∥OD(如图),延长EP交x轴于点Q,由(2)知:△BDE≌△ADO,∴DO=DE,∵∠ODE=90°,∴∠DOE=45°=∠DOC=∠EQO,∴OQ=OE=8,∴Q(8.0).设直线EP为:y=kx+8,则0=8k+8,解得k=﹣1,∴直线EP为y=﹣x+8,联立直线AB,得,解得:,∴点P的坐标为(2.6),综上所述:符合条件的点P的坐标为(,8)或(2,6).9.在平面直角坐标系中,已知点A(1,0),B(0,3),C(﹣3,0),D是线段AB上一点,CD交y轴于E,且S△BCE=2S△AOB.(1)求直线AB的解析式;(2)求点D的坐标;(3)猜想线段CE与线段AB的数量关系和位置关系,并说明理由;(4)若F为射线CD上一点,且∠DBF=45°,求点F的坐标.【解答】解:(1)设直线AB的函数解析式为:y=kx+b,则,∴,∴直线AB的函数解析式为:y=﹣3x+3;(2)设E(0,t),∵A(1,0),B(0,3),∴OA=1,OB=3,∴S△AOB=,∵S△BCE=2S△AOB,∴S△BCE=3,∴,解得t=1,∴E(0,1),设直线CE的函数解析式为:y=mx+n,将C、E的坐标代入得:,∴,∴直线CE的函数解析式为:y=x+1,当x+1=﹣3x+3时,∴x=,则y=,∴D(),(3)猜想:CE=AB,CE⊥AB,理由如下:∵OE=OA=1,OC=OB=3,∠COE=∠BOA=90°,∴△COE≌△BOA(SAS),∴CE=AB,∠OCE=∠OBA,∵∠OBA+∠BAO=90°,∴∠OCE+∠BAO=90°,∴∠CDA=90°,∴CE⊥AB;(4)在射线CD上存在两个F点,使∠DBF=45°,如图,当点F在线段CD上时,过点D作GH∥y轴,过点B、F分别作GH的垂线,垂足分别为G、H点,∵CD⊥AB,∠DBF=45°,∴∠DBF=∠DFB=45°,∴BD=DF,∵∠BDG+∠FDH=90°,∠BDG+∠DBG=90°,∴∠FDH=∠DBG,又∵∠G=∠H∴△BDG≌△DFH(AAS),∴FH=DG=3﹣=,DH=BG=,∴点F(﹣,),当点F在CD的延长线上时,由对称性可知F(,),综上点F的坐标为:(﹣,)或(,),10.在平面直角坐标系中,一次函数的图象分别与x轴、y轴交于点A、B,点C在线段OB上,将△AOB沿AC翻折,点B恰好落在x轴上的点D处,直线DC交AB于点E.(1)求点C的坐标;(2)若点P在直线DC上,点Q是y轴上一点(不与点B重合),当△CPQ和△CBE全等时,直接写出点P的坐标(﹣2,0)或(2,3)或(﹣)(不包括这两个三角形重合的情况).【解答】解:(1)由得,A(3,0),B(0,4),∴OA=3,OB=4,∵∠AOB=90°,由勾股定理得,AB=5,∵将△AOB沿AC翻折,点B恰好落在x轴上的点D处,∴AD=AB=5,∴OD=2,设OD=x,则BC=4﹣x,在Rt△OCD中,由勾股定理得:x2+22=(4﹣x)2,解得x=,∴C(0,);(2)由(1)得直线CD的解析式为y=x+,∵将△AOB沿AC翻折,点B恰好落在x轴上的点D处,∴∠ABO=∠CDO,∵∠BCE=∠DCO,∴∠BEC=∠COD=90°,①当点D与P重合时,OP=2,OC=,CP=,则△CPQ与△CBE全等,∴P(﹣2,0);②当CQ=BC=时,则点Q的纵坐标为﹣1时,点Q与直线CD之间的距离为2,则△CPQ与△CBE全等,∴P(﹣);③当PC=BE=2时,得点P(2,3),综上,点P的坐标为(﹣2,0)或(2,3)或(﹣).故答案为:(﹣2,0)或(2,3)或(﹣).11.如图,直角坐标系xOy中,过点A(6,0)的直线l1与直线l2:y=kx﹣1相交于点C(4,2),直线l2与x轴交于点B.(1)k的值为;(2)求l1的函数表达式和S△ABC的值;(3)直线y=a与直线l1和直线l2分别交于点M,N,(M,N不同)①直接写出M,N都在y轴右侧时a的取值范围;②在①的条件下,以MN为边作正方形MNDE,边DE恰好在x轴上,直接写出此时a的值.【解答】解:(1)将点C(4,2)代入y=kx﹣1得,2=4k﹣1,解得,故答案为:;(2)设直线l1的表达式为y=k1x+b将点A(6,0),C(4,2)代入得,,解得,∴直线l1的表达式为y=﹣x+6,当y=0时,,解得x=,∴点B的坐标为(,0),∴AB=6﹣=,∴S△ABC=;(3)①当x=0时,y=x﹣1=﹣1,y=﹣x+6=6,∴M,N都在y轴右侧时a的取值范围是:﹣1<a<6且a≠2.②当y=a时,x﹣1=a,则x=,∴点N的坐标为(,a),当y=a时,﹣x+6=a,则x=6﹣a,∴点M的坐标为(6﹣a,a)∴MN=|6﹣a﹣|=||,∵四边形MNDE为正方形,∴||=|a|,解得:或,∴或.12.如图,在平面直角坐标系中,点A(1,m)是直线y=﹣x﹣2上一点,点A向上平移5个单位长度得到点B.(1)求点B的坐标;(2)在直线y=﹣x﹣2上是否存在一点C,使得△ABC是直角三角形,若存在,求出C点坐标;若不存在,说明理由;(3)若一次函数y=kx﹣2图象与线段AB存在公共点D,直接写出k的取值范围.【解答】解:(1)∵点A(1,m)是直线y=﹣x﹣2上一点,∴m=﹣1﹣2=﹣3.∴点A的坐标为(1,﹣3),∴点A向上平移5个单位长度得到点B的坐标为(1,2);(2)存在,①当∠B=90°时,如图,∵B(1,2),C点在y=﹣x﹣2上,∴2=﹣x﹣2,解得:x=﹣4,∴C(﹣4,2),∴BC=5,∵点A向上平移5个单位长度得到点B,∴AB=BC=5,∴∠CAB=45°,②当∠ACB=90°时,作CG⊥AB于G,∵∠CAB=45°,∴△ABC是等腰直角三角形,∴G为AB中点,∵点A的坐标为(1,﹣3),点B的坐标为(1,2),∴G(1,﹣0.5)∵点C在y=﹣x﹣2上,∴﹣0.5=﹣x﹣2,解得:x=﹣1.5,∴C(﹣1.5,﹣0.5).综上,存在一点C,使得△ABC是直角三角形,C点坐标为(﹣4,2)或(﹣1.5,﹣0.5);(3)当直线y=kx﹣2过点A(1,﹣3)时,得﹣3=k﹣2,解得k=﹣1.当直线y=kx﹣2过点B(1,2)时,得2=k﹣2,解得k=4.如图,若一次函数y=kx﹣2与线段AB有公共点,则k的取值范围是﹣1≤k≤4且k≠0.13.如图在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b分别交x轴,y轴于点A、B,OA=4,∠OBA的外角平分线交x轴于点D.(1)求点D的坐标;(2)点P是线段BD上一点(不与B、D重合),过点P作PC⊥BD交x轴于点C,设点P的横坐标为t,△BCD的面积为S,求S与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,PC的延长线交y轴于点E,当PC=PB时,将射线EP绕点E旋转45°交直线AB于点F,求F点坐标.【解答】解:(1 )∵OA=4,∴A(4,0),把A(4,0)代入,得:b=﹣3,过点D作DH⊥AB于点H,则DH=DO,BH=BO,∵当x=0时,y=3,∴B(0,﹣3),∴OA=4,BO=BH=3,∴,AD=DO+OA=DH+4,∵,∴,解得:DH=6,∴OD=6,∴点D的坐标为(﹣6,0),(2)过点P作PE⊥OD于点E,则△DPE∽△DBO,∵点P在直线BD上,且点P的横坐标为t,∴DE=t+6,∵OD=6,OB=3,∴,∵△DPE∽△DBO,∴,∴,解得:,∵PC⊥BD,∴△PDC∽△ODB,∴,∴,∴,∴;(3)作PH垂直于x轴于点H,设射线EP绕点E逆时针旋转45°交x轴于点K,顺时针旋转45°交x轴于点G.∵∠BPC=90°,∠BOC=90°∴B,P,C,O四点共圆,∴∠POC=∠PBC=45°,∴PH=HO,∴DH=6﹣HO=6﹣PH,∴,得PH=2,∴HC=CG=1,∴OE=2,∵∠KEP=∠DBC,∠PEB=∠BDC,∴∠KEP+∠PEB=∠DBC+∠BDC,即∠KEO=∠BCO,∴OE:GK=CO:BO=1:3,∴GK=6,∴K(﹣6,0),∴直线KE为:y=﹣x﹣2,联立方程组:,解得x=12,y=﹣6,∴F1(12,﹣6),∵∠KEP+∠PEG=90°,∴∠DEG=90°,∴∠OEG=∠ODE,∴OG:OE=OE:OD=1:3,∴OG=;∴G(,0),∴直线EG的解析式为:y=3x﹣2,联立方程组:,解得x=,y=2,∴F2(,2),综上所述:F的坐标为(12,﹣6)或(,2).14.如图,直线l1:y=kx﹣2k+1经过定点C,分别交x轴,y轴于A,B两点,直线l2经过O,C两点,点Dl2上.(1)①直接写出点C的坐标为(2,1);②求直线l2的解析式;(2)如图1,若S△BOC=2S△BCD,求点D的坐标;(3)如图2,直线l3经过D,E(0,﹣)两点,分别交x轴的正半轴、l1于点P,F,若PE=PF,∠EDO=45°,求k的值.【解答】解(1)①∵y=kx﹣2k+1经过定点C,∴点C的坐标与k的取值无关,∴x=2时,y=1,∴C(2,1),故答案为:(2,1);②设l2的解析式为:y=ax,把C(2,1)代入y=ax得:a=,∴l2的解析式为y=,(2)如图,取OB的中点H,连接CH,。

北师大版八年级数学上册第四章一次函数专题练习

北师大版八年级数学上册第四章一次函数专题练习

一次函数专题练习题型一:判断一次函数的图象1.正比例函数y=kx (k ≠0)函数值y 随x 的增大而增大,则y=kx ﹣k 的图象大致是( )A .B .C .D .2.已知正比例函数y =kx 的图象经过第二、四象限,则一次函数y =kx ﹣k 的图象可能是图中的( )A. B. C. D.3.在同一坐标系中,正比例函数y=kx 与一次函数y=x -k 的图象为( )A. B. C. D.4.如图,一次函数y 1=ax +b 与y 2=abx +a 在同一坐标系内的图象正确的是( )A .B .C .D .5.两个一次函数1y mx n=+,2y nx m=+,它们在同一坐标系中的图象可能是图中的( )A .B .C .D .6.如图,在同一直角坐标系中,直线l1:y=kx和l2:y=(k−2)x+k的位置不可能是()A. B. C. D.7.两个一次函数①y1=ax+b与②y2=bx+a在同一坐标系中的大致图象是()A. B. C. D.题型二:根据一次函数解析式判断其经过象限1.函数2y x=-的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.一次函数35y x=-的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限3.已知直线y=kx+b,若k+b=﹣5,kb=5,那该直线不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.一次函数y=–5x+b的图象一定经过的象限是()A.第一、三象限B.第二、三象限C.第二、四象限D.第一、四象限5.函数y x=的图象与21y x=+的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限6.已知一次函数1y kx=+,y随x的增大而增大,则该函数的图象一定经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限题型三:已知函数经过的象限,求参数的取值范围1.已知一次函数y =(k ﹣2)x+k 不经过第三象限,则k 的取值范围是( ) A.k ≠2 B.k >2 C.0<k <2 D.0≤k <22.已知一次函数2y kx m x =--的图象经过第一、三、四象限,则下列结论正确的是( ) A .0,0k m >< B .2,0k m >>.C .2,0k m ><D .2,0k m <>3.函数y=(m-4)x+2m-3的图象经过一、二、四象限,那么m 的取值范围是( ) A .4m <B .1.54m <<C . 1.54m -<<D .4m >4.若一次函数(2)y m x m =-+的图像经过第一,二,三象限,则m 的取值范围是( ) A.02m << B.02m <≤ C.2m > D.02m ≤<5.已知一次函数y kx b =+的图象不经过第三象限,则k 、b 的符号是( ) A.k 0<,0b > B.0k >,0b ≥C.k 0<,0b ≥D.0k >,0b ≤题型四:一次函数图象与坐标轴交点问题1.一次函数23y x =--的图象与y 轴的交点坐标是( ) A .(3,0)B .(0,3)C .(3,0)-D .(0,3)-2.直线y=x+1与x 轴交于点A ,则点A 的坐标为( ) A.(2,1) B.(-1,0)C.(1,-5)D.(2,-1)3.如图,一次函数y =2x+1的图象与坐标轴分别交于A ,B 两点,O 为坐标原点,则△AOB 的面积为( )A .14 B .12 C .2 D .44.已知一次函数4y kx =-(k 0<)的图像与两坐标轴所围成的三角形的面积等于4,则该一次函数表达式为( )A.4y x =-- B .24y x =-- C.34y x =-- D.44y x =-- 5.一次函数y=-2(x-3)在y 轴上的截距是( ) A.2B.-3C.6D.66.已知直线y =kx+8与x 轴和y 轴所围成的三角形的面积是4,则k 的值是( ) A .-8 B .8 C .土8 D .4 题型五:一次函数图象平移问题1.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( )A.()2,2 B.()2,3 C.()2,4 D.(2,5)2.将直线y =3x −1向上平移1个单位长度,得到的一次函数解析式为( ) A.y =3x B.y =3x +1 C.y =3x +2 D.y =3x +33.已知直线y =﹣2x+1通过平移后得到直线y =﹣2x+7,则下列说法正确的是( ) A.向左平移3个单位 B.向右平移3个单位 C.向上平移7个单位 D.向下平移6个单位4.把直线y kx =向上平移3个单位,经过点()1,5,则k 值为( )A .-1B .2C .3.D .5题型六:判断一次函数的增减性1.已知点(-1,y 1)、(3,y 2)都在直线y=-2x+1上,则y 1、y 2大小关系是( )A .12y y > B .12y y = C .12y y < D .不能比较2.已知一次函数32y x =+上有两点()11,M x y ,()22,N x y ,若12x x >,则1y 、2y 的关系是( )A.12y y > B.12y y = C.12y y < D.无法判断3.已知点(-2,y 1),(-1,y 2),(1,y 3)都在直线y=-13x+b 上,则y 1,y 2,y 3的值的大小关系是( ).A.y 1>y 2>y 3B.y 1<y 2<y 3C.y 3>y 1>y 2D.y 3>y 1>y 24.一次函数y 1=kx+b 与y 2=x+a 的图象如图所示,则下列结论中正确的个数是( )①y 2随x 的增大而减小;②3k+b =3+a ;③当x <3时,y 1<y 2; ④当x >3时,y 1<y 2. A .3B .2C .1D .0题型七:根据一次函数增减性求参数1.已知一次函数y =(3﹣a )x+3,如果y 随自变量x 的增大而增大,那么a 的取值范围为( ) A .a <3 B .a >3 C .a <﹣3 D .a >﹣32.某一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的表达式可能是( ) A .24y x =+B .31y x =-C .31y x =-+D .24y x =-+题型八:根据一次函数增减性判断自变量的变化1.如图是一次函数y=kx+b 的图象,当y <1时,x 的取值范围是( ) A .x <2 B .x >2 C .x <3 D .x >3 题型九:求一次函数解析式1.已知函数3y x b =-+,当13x =-时,1y =,则b =____.2.直线y kx b =+与51y x =-+平行,且经过(2,1),则k +b =______。

北师大版数学八年级上册-第四章-一次函数专题复习练习

北师大版数学八年级上册-第四章-一次函数专题复习练习

首师大附中初二下学期数学复习专题试卷(一次函数)一、单选题1若一次函数y=kx+2经过点(1,1),则下面说法正确的是()A.y随x的增大而增大B.图象经过点(3,-1)C.图象不经过第二象限D.图象与函数y=-x图象有一个交点2如图,可以得出不等式组的解集是()A.x<-1B.-1<x<0C.-1<x<4D.x>43如图,直线y=-x+m与直线y=nx+5n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+5n>0的整数解为()A.-5,-4,-3B.-4,-3C.-4,-3,-2D.-3,-24小阳在如图①所示的扇形舞台上沿O-M-N匀速行走,他从点O出发,沿箭头所示的方向经过点M再走到点N,共用时70秒.有一台摄像机选择了一个固定的位置记录了小阳的走路过程,设小阳走路的时间为t(单位:秒),他与摄像机的距离为y(单位:米),表示y与t的函数关系的图象大致如图②,则这个固定位置可能是图①中的()A.点QB.点PC.点MD.点N5图1是某娱乐节目中一个游戏环节的录制现场,场地由等边△ADE和正方形ABCD 组成,正方形ABCD两条对角线交于点O,在AD的中点P处放置了一台主摄像机.游戏参与者行进的时间为x,与主摄像机的距离为y,若游戏参与者匀速行进,且表示y 与x的函数关系式大致如图2所示,则游戏参与者的行进路线可能是()A.A→O→DB.E→A→CC.A→E→DD.E→A→B二、填空题6在平面直角坐标系xoy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式为______.7如图,有一种动画程序,屏幕上正方形ABCD是黑色区域(含正方形边界),其中A(1,1),B(2,1),C(2,2),D(1,2),用信号枪沿直线y=-2x+b发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b的取值范围为______.三、解答题8如图,在平面直角坐标系中,点A的坐标为,点B的坐标为.(1)求直线AB所对应的函数表达式.(2)点C在直线AB上,且到y轴的距离是1,求点C的坐标.9如图,在平面直角坐标系中,直线AC:y=-x+2.5与x轴交于C点,与y轴交于A 点,直线AB与x轴交于C点,与y轴交于A点,已知B(-3,0).(1)求直线AB的解析式.(2)直线AD过点A,交线段BC于点D,把s△ABC的面积分为1:2两部分;求出此时的点D的坐标.10在平面直角坐标系xOy中,已知点A(0,3)、点B(3,0),一次函数y=2x的图象与直线AB交于点M.(1)求直线AB的函数解析式及M点的坐标;(2)若点N是x轴上一点,且△MNB的面积为6,求点N的坐标.111如图,在平面直角坐标系xOy中,矩形ABCD的边AD=3,A(,0),B(2,0),2直线y=kx+b经过B,D两点.(1)求直线y=kx+b的解析式;(2)将直线y=kx+b平移,若它与矩形有公共点,直接写出b的取值范围.12问题:探究一次函数y=kx+k+2(k是不为0常数)图象的共性特点,探究过程:小明尝试把x=-1代入时,发现可以消去k,竟然求出了y=2.老师问:结合一次函数图象,这说明了什么?小组讨论得出:无论k取何值,一次函数y=kx+k+2的图象一定经过定点(-1,2),老师:如果一次函数的图象是经过某一个定点的直线,那么我们把像这样的一次函数的图象定义为“点旋转直线”.已知一次函数y=(k+3)x+(k-1)的图象是“点选直线”(1)一次函数y=(k+3)x+(k-1)的图象经过的顶点P的坐标是______.(2)已知一次函数y=(k+3)x+(k-1)的图象与x轴、y轴分别相交于点A、B①若△OBP的面积为3,求k值;②若△AOB的面积为1,求k值.14在平面直角坐标系xOy中,直线l:y=x+b与x轴交于点A,与y轴交于点B,213如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上(1)求线段AB所在直线的函数解析式;(2)若点P在图中所给网格中的格点上,△APB是等腰三角形,满足条件的点P共有______个,在图上标出P点的位置.11且点C的坐标为(4,-4).(1)点A的坐标为______________,点B的坐标为______________;(用含b的式子表示)(2)当b=4时,如图所示.连接AC,△B C,判断ABC的形状,并证明你的结论;(3)过点C作平行于y轴的直线l2,点P在直线l2上.当-5<b<4时,在直线l1平移的过程中,若存在点P使得△ABP是以AB为直角边的等腰直角三角形,请直接写出所有满足条件的点P的纵坐标.备用图15如图,一次函数的图象与x轴、y轴分别相交于点A、B,且点B的坐标为(0,3)33将△AOB沿直线AB翻折,得△ACB,若点C的坐标为(,),求该一次函数的表22达式.16如图所示,已知OABC是一张放在平面直角坐标系中的矩形纸片,O为坐标原点,点A在x轴上,点C在y轴上,且OA=15,OC=9,在边AB上选取一点△D,将AOD沿OD翻折,使点A落在BC边上,记为点E.(1)求DE所在直线的解析式;(2)设点P在x轴上,以点O、E、P为顶点的三角形是等腰三角形,问这样的点P有几个,并求出所有满足条件的点P的坐标;(3)在x轴、y轴上是否分别存在点M、N,使四边形MNED的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.17在平面直角坐标系xOy中,有一点C,过点C分别作CA⊥x轴,CB⊥y轴,点A、B 是垂足.定义:若长方形OACB的周长与面积的数值相等,则点C是平面直角坐标系中的平衡点.(1)请判断下列是平面直角坐标系中的平衡点的是______;(填序号)①E(1,2)②F(-4,4)(2)若在第一象限中有一个平衡点N(4,m)恰好在一次函数y=-x+b(b为常数)的图象上;①求m、b的值;②一次函数y=-x+b(b为常数)与y轴交于点D,问:在这函数图象上,是否存在点M,使S△OMD=3S△OND,若存在,请直接写出点M的坐标;若不存在,请说明理由.(3)过点P(0,-2),且平行于x轴的直线上有平衡点Q吗?若有,请求出平衡点Q的坐标;若没有,说明理由.答案与解析一、单选题1B试题解析:解:将(1,1)代入y=kx+2中,1=k+2,解得:k=-1,∴一次函数解析式为y=-x+2.A、∵-1<0,∴一次函数y=-x+2中y随x的增大而减小,A结论不正确;B、当x=3时,y=-3+2=-1,∴一次函数y=-x+2的图象经过点(3,-1),B结论正确;C、∵k=-1<0,b=2>0,∴一次函数y=-x+2的图象经过第一、二、四象限,C结论不正确;D、∵直线y=-x+2与y=-x平行,∴一次函数y=-x+2的图象与函数y=x图象没有交点,D结论不正确.故选B.本题考查了待定系数法求一次函数解析式、一次函数的性质、两直线相交或平行以及一次函数图象与系数的关系,根据点的坐标利用待定系数法求出一次函数解析式是解题的关键.2D试题解析:解:∵直线y=ax+b交x轴于点(4,0),∴ax+b<0的解集为:x>4,∵直线y=cx+d交x轴于点(-1,0),∴cx+d>0的解集为:x>-1,∴不等式组的解集是:x>4.故选D.根据直线y=ax+b交x轴于点(4,0),直线y=cx+d交x轴于点(-1,0),再结合图象即可得出两不等式的解集,进而得出答案.本题考查了一次函数与一元一次不等式,属于基础题,关键是正确根据图象解题.3B试题解析:解:∵直线y=-x+m与y=nx+5n(n≠0)的交点的横坐标为-2,∴关于x的不等式-x+m>nx+5n的解集为x<-2,∵y=nx+5n=0时,x=-5,∴nx+5n>0的解集是x>-5,∴-x+m>nx+5n>0的解集是-5<x<-2,∴关于x的不等式-x+m>nx+5n>0的整数解为-3,-4.故选B.满足不等式-x+m>nx+5n>0就是直线y=-x+m位于直线y=nx+5n的上方且位于x轴的上方的图象,据此求得自变量的取值范围即可.本题考查了一次函数的图象和性质以及与一元一次不等式的关系,要熟练掌握.4B试题解析:解:从图②图象上观察得到小阳沿着O-M匀速行走时,离摄像机距离越来越近;在弧M-N行走时,离摄像机距离先越来越近,再越来越远,观察图①可得:这个固定位置可能是图①中的P点.故选:B.此题考查了动点问题的函数图象,弄清图象中的数据及变化过程是解本题的关键.5A试题解析:解:由题意可得,当经过的路线是A→O→D时,从A→O,y随x的增大先减小后增大且图象对称,从O→D,y随x的增大先减小后增大且函数图象对称,故选项A符号要求;当经过的路线是E→A→C时,从E→A,y随x的增大先减小后增大,但后来增大的最大值小于刚开始的值,故选项B不符号要求;当经过的路线是A→E→D时,从A→E,y随x的增大先减小后增大,但后来增大的最大值大于于刚开始的值,故选项C不符号要求;当经过的路线是E→A→B时,从E→A,y随x的增大先减小后增大,但后来增大的最大值小于刚开始的值,故选项D不符号要求;故选:A.本题考查动点问题的函数图象,解答本题的关键是明确题意,明确各个选项中路线对应的函数图象,利用数形结合的思想解答.二、填空题16y=3x或y=-x3试题解析:解:分两种情况:①当直线过第一、三象限时,如图1,过点A作AB⊥OA,交待求直线于点B,过点A 作平行于y轴的直线交x轴于点C,过点B作BD⊥AC于点D,则∠OAB=∠OCA=∠D=90°,∴△OCA∽△ADB,∴==,∵A(2,1),∠AOB=45°,∴OC=2,AC=1,AO=AB,∴AD=OC=2,BD=AC=1,∴点D的坐标为(2,3),∴点B的坐标为(1,3),此时正比例函数的解析式为y=3x;②当直线过第二、四象限时,过点A作AB⊥OA,交待求直线于点B,过点A作直线平行于x轴,交y轴于点C,过点B作BD⊥AC,△知OCA∽ADB,得OC则∠OAB=∠OCA=∠D=90°,∴△OCA∽△ADB,∴==,∵A(2,1),AC=2,AO=AB,∴AD=OC=1,BD=AC=2,∴D点坐标为(3,1),∴点B的坐标为(3,-1),此时正比例函数解析式为y=-x,故答案为:y=3x或y=-x.①当直线过第一、三象限时,如图1,过点A作AB⊥OA,交待求直线于点B,过点A 作平行于y轴的直线交x轴于点C,过点B作BD⊥AC于点D,由∠OAB=∠OCA=∠D=90°AC OA==,根据A(2,1)、∠AOB=45°得AD=OC=2、BD=AC=1,AD BD AB即可得点D、B的坐标,从而得出答案;②当直线过第二、四象限时,过点A作AB⊥OA,交待求直线于点B,过点A作直线平行于x轴,交y轴于点C,过点B作BD⊥AC,与(1)同理.本题主要考查待定系数法求正比例函数解析式、相似三角形的判定与性质,根据相似三角形的判定与性质得出点D、点B的坐标是解题的关键.73≤b≤6试题解析:解:由题意可知当直线y=-2x+b经过A(1,1)时b的值最小,即-2×1+b=1,b=3;当直线y=-2x+b过C(2,2)时,b最大即2=-2×2+b,b=6,故能够使黑色区域变白的b的取值范围为3≤b≤6.根据题意确定直线y=-2x+b经过哪一点b最大,哪一点b最小,然后代入求出b的取值范围.本题是一次函数在实际生活中的运用,解答此类题目时一定要注意数形结合的运用.三、解答题8解:(1)设直线AB所对应的函数表达式为y=kx+b,依题意有解得:3故函数解析式为:y=-x+3;233(2)①x=1时,y=-+3=;2239②x=-1时,y=+3=.2239故点C的坐标为(1,)或(-1,).22试题解析:(1)设出函数解析式,将两点代入,运用待定系数法求解;(2)分两种情况:①x=1;②x=-1;代入直线AB所对应的函数表达式可求点C的坐标.本题考查待定系数法求函数解析式及一次函数图象上点的坐标特征,难度不大,注意掌握待定系数法的运用.9解:(1)在直线AC:y=-x+2.5中,令x=0,则y=2.5,则A点坐标为(0,2.5),设直线AB的解析式为y=kx+b,则,解得.5故直线AB的解析式为y=x+2.5.6(2)在直线AC:y=-x+2.5中,令y=0,则x=2.5,则C点坐标为(2.5,0),BC=2.5-(-3)=5.5,1 2 , (5.5×1 =则点 D 的坐标为(-3+ 11 11 7 2 ,0)或(2.5- ,0),即(- ,0)或( ,0). 6 6 6 3试题解析:(1)在直线 AC :y=-x+2.5 中,令 x=0,求出 A 点坐标,再根据待定系数法可求直线 AB 的解析式.(2)根据等高的三角形面积比等于底边的比可求点 D 的坐标.本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征、三角形的 面积等知识,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.10 解: 1)设直线 AB 的函数解析式为 y=kx+b (k≠0).把点 A (0,3)、点 B (3,0)代入得:解得: ,∴直线 AB 的函数解析式为 y=-x+3;由 得: ,∴M 点的坐标为(1,2).(2)设点 N 的坐标为(x ,0).∵△MNB 的面积为 6,1∴ ×2×|x -3|=6, 2∴x=9,或 x=-3.∴点 N 的坐标为(-3,0)或(9,0).试题解析:(1)由待定系数法求出直线 AB 的解析式,由两条直线的解析式即可得出点 M 的坐标;(2)设点 N 的坐标为(x ,△0).由 MNB 的面积为 6 得出方程,解方程即可.此题主要考查了两条直线的相交或平行问题,熟练掌握待定系数法求直线的解析式是 解决问题的关键.1 11 解:(1)∵A( ,0),B (2,0),AD=3.2(1∴D(,3).2将B,D两点坐标代入y=kx+b中,得解得,,∴y=-2x+4.1(2)把A(,0),C(2,3)分别代入y=-2x+b,2得出b=1,或b=7,∴1≤b≤7.试题解析:(1)利用矩形的性质,得出点D坐标,进一步利用待定系数法求得函数解析式;(2)分别把点A、C点的坐标代入y=kx+b,[k是(1)中数值知,b未知]求得b的数值即可.此题考查待定系数法求函数解析式、一次函数的图象与几何变换及矩形的性质,以及函数平移的特点,难度较大.12(-1,-4)试题解析:解:1)∵一次函数y=(k+3)x+(k-1)整理为y=k(x+1)+3x-1的形式,∴令x+1=0,则x=-1,∴y=-4,∴P(-1,-4).故答案为:(-1,-4);(2)∵一次函数y=(k+3)x+(k-1)的图象与x轴、y轴分别相交于点A、B∴A(1-kk+3,0),B(0,k-1).①∵△OBP的面积为3,1∴|k-1|=3,解得k=7或-5;21 1 - k ( b A 0 B2 ②∵△AOB 的面积为 1,∴ ×|k -1|×| |=1,解得 k=5 或-1. 2k + 3(1)先把一次函数 y=(k+3)x+(k-1)整理为 y=k (x+1)+3x-1 的形式,再令 x+1=0, 求出 y 的值即可;(2)先用 k 表示出 AB 的坐标,再根据三角形的面积公式即可得出结论.本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适 合此函数的解析式是解答此题的关键.134试题解析:解: 1)设直线 AB 的函数解析式为 y=kx+b (k 、 为常数且 k≠0), 依题意,得 (1, ),(0, ), 把 A 与 B 坐标代入解析式得:,解得:k=-2,b=2, 则直线 AB 的函数解析式为 y=-2x+2; (2)如图,点 P 共有 4 个. 故答案为:4. (1)设直线 AB 解析式为 y=kx+b ,把 A 与 B 坐标代入求出 k 与 b 的值,即可确定出直线解析式; (2)根据图形确定出满足△APB 是等腰三角形时 P 的位置,即可得到结果.此题考查了待定系数法求一次函数解析式,以及等腰三角形的判定,熟练掌握待定系 数法是解本题的关键.14 解:(1)(-2b ,0),(0,b );(2)等腰直角三角形,证明:过点 C 作 CD⊥y 轴于点 D ,如图,则∠BDC=∠AOB=90°,∵点 C 的坐标是(4,-4),∴点 D 的坐标是(0,-4),CD=4,∵当 b=4 时,点 A ,B 的坐标分别为(-8,0),(0,4),∴AO=8,BO=4,BD=8,B D ∴AO=BD,BO=CD ,在△AOB 和△BDC 中,,∴△AOB≌△BDC,∴∠1=∠2,AB=BC ,∵∠1+∠3=90°,∴∠2+∠3=90°,即∠ABC=90°,∴△ABC 是等腰直角三角形;(3)-12,,8,试题解析:此题考查了一次函数的图像和性质、全等三角形的性质和判定、等腰直角三角形的判 定等知识.(1)分别求出 x=0 和 y=0 时,对应的 y 和 x 的值,即可求出 A 、B 两点的坐标,(2)先确定出 A 、 、 的坐标,利用 SAS 求出△AOB≌△BDC,由此得出∠1=∠2,AB=BC , 再利用等量代换即可求出∠2+∠3=90°,即∠ABC=90°;(3)画出所有符合题意的图形,根据全等列出关于 b 的方程,求解,就可以表示出 点 P 的纵坐标.【解答】1 解:(1)y= x+b ,2当 x=0 时,y=b ,∴B(0,b ),1当 y=0 时, x+b =0,x=-2b , 2∴A(-2b ,0),故答案为(-2b ,0),(0,b );(2)见答案;(3)如图(1),,3,∴OA=PE=-2b,AE=OB=-b,∴-2b+(-b)=4,解得:b=-48∴2b=-,38∴点P的纵坐标是-;3如图(2),可证△OAB≌△EBP,∴OA=BE=-2b,PE=OB=-b=4,∴b=-4,∴OE=-3b=12,∴点P的纵坐标是-12;如图(3),∴AC=OA=a,CD=3∴OA=PE=-2b,AE=OB=-b,∴-2b-4=-b,解得:b=-4,∴PE=8,∴点P的纵坐标是8,8故所有满足条件的点P的纵坐标为:-,-12,8.315解:过点C作CD⊥x轴于点D,设点A的坐标为(a,0),则OA=a,33∵将△AOB沿直线AB翻折得△ACD,C(,),223,OD=223∴AD=OD-OA=-a,2在Rt△ACD中,根据勾股定理得:AD2+CD2=AC2,33即:(-a)2+()2=a2,22解得:a=1,∴点A的坐标为(1,0),设一次函数的表达式为:y=kx+b(k≠0)将A(1,0),B(0,3)代入y=kx+b得:解得:,∴该一次函数的表达式为:y=-3x+3.试题解析:利用翻折变换的性质结合锐角三角函数关系得出CO,AO的长,进而得出A,坐标,再利用待定系数法求出直线AB的解析式.解得OP4=EP4=75此题主要考查了翻折变换的性质以及锐角三角函数关系和待定系数法求一次函数解析式等知识,得出A,B点坐标是解题关键.16解:(1)由题意知,OE=OA=15,AD=DE,在Rt△OCE中,由勾股定理得:CE=OE2-OC2=225-8=12,∴BE=BC-CE=15-12=3在Rt△BED中,由勾股定理知:AD2=DE2=BE2+BD2,即DE2=(9-DE)2+32,解得DE=5,∴AD=5∴D(15,5),E(12,9)设DE直线的解析式为y=kx+b,∴解得k=-4,b=25 3∴DE直线的解析式为y=-43x+25;(2)当在x的正半轴上,OP1=OE=15时,点P1与点A重合,则P1(15,0);当在x的负半轴上,OP2=OE=15时,则P2(-15,0);当OE=EP3时,作EH⊥OA于点H,有OH=CE=HP3=12,则P3(24,0);当OP4=EP4时,由勾股定理知P4H2+EH2=P4E2,即(12-P4E)2+92=P4E275,即P4(,0);88∴满足△OPE为等腰三角形的点有四个:P1(15,0);P2(-15,0);P3(24,0);P4(75,0);8(3)作点D关于x的对称点D′,点E关于y轴的对称点E′,连接E′D′,分别交于y轴、x轴于点N、点M,则点M、N是所求得的点.在Rt△BE′D′中,D′E′==537∴四边形DENM的周长=DE+EN+MN+MD=DE+D′E′=5+537.试题解析:(1)由于OE=OA=15,AD=DE,在Rt△OCE中,由勾股定理求得CE的值,再在Rt△BED 中,由勾股定理建立关于DE的方程求解;(2)分四种情况:在x的正半轴上,OP=OE时;在x的负半轴上,OP=OE时;EO=EP 时;OP=EP时,分别可以求得点P对应的点的坐标;(3)作点D关于x的对称点D′,点E关于y轴的对称点E′,连接E′D′,分别交于y轴、x轴于点N、点M,则点M、N是所求得的点,能使四边形的周长最小,周长且为E′D′+ED.本题综合考查矩形的性质、翻折的性质、勾股定理、待定系数法、轴对称的性质、等腰三角形.注意第2小题中不要漏了某种情况.17②试题解析:解:(1)∵1×2≠2×(|-1|+2),4×4=2×(|-4|+4),∴点E不是平衡点,点N是平衡点,故答案为:②;(2)①∵N是第一象限中的平衡点,∴4m=2(4+m),解得m=4,∴N(4,4),∵N点在y=-x+b的图象上,∴4=-4+b,解得b=8;②由①可知一次函数解析式为y=-x+8,∴D(0,8),∴OD=8,且N(4,4),21 = ×4×8=16, △∴SOND =3S =3×16=48, △∴S OMD △OND 设 M 坐标为(t ,-t+8),则 M 到 y 轴的距离为|t|,1∴ ×8×|t|=48,解得 t=12 或 t=-12, 2当 t=12 时,-t+8=-4,当 t=-12 时,-t+8=20,∴存在满足条件的点 M ,其坐标为(12,-4)或(-12,20);(3)∵PQ∥x 轴,且 P (0,-2),∴可设点 Q 坐标为(x ,-2),∵点 Q 为平衡点,∴2|x|=2(|x|+2),该方程无解,∴不存在满足条件的 Q 点.(1)计算 1×2≠2×(|-1|+2),4×4=2×(4+4)即可求得答案;(2)①(4+m )×2=4m,可求出 m ,把 N 点坐标代入一次函数解析式可求得 b ;②由 一次函数解析式可求得 D 点坐标,则可求得△OND 的面积,由条件则可求得点 M 到 y 轴的距离,则可求得 M 点的坐标;(3)可设 Q 点坐标为(x ,-2),由平衡点的定义可得到关于 x 的方程,解方程进行 判断即可.本题为一次函数的综合应用,涉及待定系数法、三角形面积、新定义、分类讨论及方 程思想等知识点.解决本题的关键是理解题目中所给的平衡点的定义.本题考查知识 点不多,难度不大.。

(word完整版)北师大版本八年级数学(上)一次函数压轴题集锦

(word完整版)北师大版本八年级数学(上)一次函数压轴题集锦

北师大版本八年级数学(上)一次函数压轴题集锦1.在平面直角坐标系中,△AOC中,∠ACO=90°.把AO绕O点顺时针旋转90°得OB,连接AB,作BD⊥直线CO于D,点A的坐标为(﹣3,1).(1)求直线AB的解析式;(2)若AB中点为M,连接CM,动点P、Q分别从C点出发,点P沿射线CM以每秒个单位长度的速度运动,点Q沿线段CD以每秒1个长度的速度向终点D运动,当Q点运动到D点时,P、Q同时停止,设△PQO的面积为S(S≠0),运动时间为T秒,求S与T的函数关系式,并直接写出自变量T的取值范围;(3)在(2)的条件下,动点P在运动过程中,是否存在P点,使四边形以P、O、B、N(N为平面上一点)为顶点的矩形?若存在,求出T的值.2.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC (1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.3.如图直线ℓ:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(x,y)是直线ℓ在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.4.如图,在平面直角坐标系xoy中,点A(1,0),点B(3,0),点,直线l经过点C,(1)若在x轴上方直线l上存在点E使△ABE为等边三角形,求直线l所表达的函数关系式;(2)若在x轴上方直线l上有且只有三个点能和A、B构成直角三角形,求直线l所表达的函数关系式;(3)若在x轴上方直线l上有且只有一个点在函数的图形上,求直线l所表达的函数关系式.5.如图1,直线y=﹣kx+6k(k>0)与x轴、y轴分别相交于点A、B,且△AOB的面积是24.(1)求直线AB的解析式;(2)如图2,点P从点O出发,以每秒2个单位的速度沿折线OA﹣OB运动;同时点E从点O出发,以每秒1个单位的速度沿y轴正半轴运动,过点E作与x轴平行的直线l,与线段AB相交于点F,当点P与点F重合时,点P、E均停止运动.连接PE、PF,设△PEF的面积为S,点P 运动的时间为t秒,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,过P作x轴的垂线,与直线l相交于点M,连接AM,当tan∠MAB=时,求t值.7.如图,已知AOCE,两个动点B同时在D的边上按逆时针方向A运动,开始时点F在点FA位置、点Q在点O位置,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位.(1)在前3秒内,求△OPQ的最大面积;(2)在前10秒内,求x两点之间的最小距离,并求此时点P,Q的坐标.8.若直线y=mx+8和y=nx+3都经过x轴上一点B,与y轴分别交于A、C(1)填空:写出A、C两点的坐标,A_________,C_________;(2)若∠ABO=2∠CBO,求直线AB和CB的解析式;(3)在(2)的条件下若另一条直线过点B,且交y轴于E,若△ABE为等腰三角形,写出直线BE的解析式(只写结果).9.如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(﹣4,0),点B的坐标为(0,b)(b>0).P 是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为P'(点P'不在y轴上),连接P P',P'A,P'C.设点P的横坐标为a.(1)当b=3时,求直线AB的解析式;(2)在(1)的条件下,若点P'的坐标是(﹣1,m),求m的值;(3)若点P在第一像限,是否存在a,使△P'CA为等腰直角三角形?若存在,请求出所有满足要求的a的值;若不存在,请说明理由.11.如图,四边形OABC为直角梯形,BC∥OA,A(9,0),C(0,4),AB=5.点M从点O出发以每秒2个单位长度的速度向点A运动;点N从点B同时出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.(1)求直线AB的解析式;(2)t为何值时,直线MN将梯形OABC的面积分成1:2两部分;(3)当t=1时,连接AC、MN交于点P,在平面内是否存在点Q,使得以点N、P、A、Q为顶点的四边形是平行四边形?如果存在,直接写出点Q的坐标;如果不存在,请说明理由.12.如图所示,在平面直角坐标系中,已知点A(0,6),点B(8,0),动点P从A开始在线段AO上以每秒1个单位长度的速度向点O运动,同时动点Q从B开始在线段BA上以每秒2个单位长度的速度向点A运动,设运动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△ABO相似?13.如图,在平面直角坐标系中,O为坐标原点,P(x,y),PA⊥x轴于点A,PB⊥y轴于点B,C(a,0),点E在y轴上,点D,F在x轴上,AD=OB=2FC,EO是△AEF的中线,AE交PB于点M,﹣x+y=1.(1)求点D的坐标;(2)用含有a的式子表示点P的坐标;(3)图中面积相等的三角形有几对?14.如图,在直角坐标平面中,Rt△ABC的斜边AB在x轴上,直角顶点C在y轴的负半轴上,cos∠ABC=,点P在线段OC上,且PO、OC的长是方程x2﹣15x+36=0的两根.(1)求P点坐标;(2)求AP的长;(3)在x轴上是否存在点Q,使四边形AQCP是梯形?若存在,请求出直线PQ的解析式;若不存在,请说明理由.15.已知函数y=(6+3m)x+(n﹣4).(1)如果已知函数的图象与y=3x的图象平行,且经过点(﹣1,1),先求该函数图象的解析式,再求该函数的图象与y=mx+n的图象以及y轴围成的三角形面积;(2)如果该函数是正比例函数,它与另一个反比例函数的交点P到轴和轴的距离都是1,求出m和n的值,写出这两个函数的解析式;(3)点Q是x轴上的一点,O是坐标原点,在(2)的条件下,如果△OPQ是等腰直角三角形,写出满足条件的点Q的坐标.16.如图,Rt△OAC是一张放在平面直角坐标系中的直角三角形纸片,点O与原点重合,点A在x轴上,点C在y轴上,OA和OC是方程的两根(OA>OC),∠CAO=30°,将Rt△OAC折叠,使OC边落在AC边上,点O与点D重合,折痕为CE.(1)求线段OA和OC的长;(2)求点D 的坐标;(3)设点M为直线CE上的一点,过点M作AC的平行线,交y轴于点N,是否存在这样的点M,使得以M、N、D、C为顶点的四边形是平行四边形?若存在,请求出符合条件的点M的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系中,O为坐标原点,点A在x轴的正半轴上,△AOB为等腰三角形,且OA=OB,过点B作y轴的垂线,垂足为D,直线AB的解析式为y=﹣3x+30,点C在线段BD上,点D关于直线OC的对称点在腰OB上.(1)求点B坐标;(2)点P沿折线BC﹣OC以每秒1个单位的速度运动,当一点停止运动时,另一点也随之停止运动.设△PQC的面积为S,运动时间为t,求S与t的函数关系式,并写出自变量t的取值范围;(3)在(2)的条件下,连接PQ,设PQ与OB所成的锐角为α,当α=90°﹣∠AOB时,求t值.(参考数据:在(3)中,取.)18.如图,在平面直角坐标系中,直线l经过点A(2,﹣3),与x轴交于点B,且与直线平行.(1)求:直线l的函数解析式及点B的坐标;(2)如直线l上有一点M(a,﹣6),过点M作x轴的垂线,交直线于点N,在线段MN上求一点P,使△PAB是直角三角形,请求出点P的坐标.19.已知如图,直线y=﹣x+4与x轴相交于点A,与直线y=x相交于点P.(1)求点P的坐标;(2)求S△OPA的值;(3)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A 重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,F的坐标为(a,0),矩形EBOF与△OPA重叠部分的面积为S.求:S与a之间的函数关系式.20.如图,在平面直角坐标系中,点A(2,0),C(0,1),以OA、OC为边在第一象限内作矩形OABC,点D(x,0)(x>0),以BD为斜边在BD上方做等腰直角三角形BDM,作直线MA交y轴于点N,连接ND.(1)求证:①A、B、M、D四点在同一圆周上;②ON=OA;(2)若0<x≤4,记△NDM的面积为y,试求y关于x的函数关系式,并求出△NDM面积的最大值;(3)再点D运动过程中,是否存在某一位置,使DM⊥DN?若存在,请求出此时点D的坐标;若不存在,请说明理由.21.如图(1),直线y=kx+1与y轴正半轴交于A,与x轴正半轴交于B,以AB为边作正方形ABCD.(1)若C(3,m),求m的值;(2)如图2,连AC,作BM⊥AC于M,E为AB上一点,CE交BM 于F,若BE=BF,求证:AC+AE=2AB;(3)经过B、C两点的⊙O1交AC于S,交AB的延长线于T,当⊙O1的大小发生变化时,的值变吗?若不变证明并求其值;若变化,请说明理由.22.如图:直线y=﹣x+18分别与x轴、y轴交于A、B两点;直线y=2x分别与AB交于C点,与过点A 且平行于y轴的直线交于D点.点E从点A出发,以每秒1个单位的速度沿x轴向左运动,过点E作x 轴的垂线,分别交直线AB、OD于P、Q,以PQ为边向右作正方形PQMN,设正方形PQMN与△ACD 重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒).(1)当0<t<12时,求S与t之间的函数关系式;(2)求(1)中S的最大值;(3)当t>0时,若点(10,10)落在正方形PQMN 的内部,求t的取值范围.23.直线l:y=﹣x+3分别交x轴、y轴于B、A两点,等腰直角△CDM斜边落在x轴上,且CD=6,如图1所示.若直线l以每秒3个单位向上作匀速平移运动,同时点C从(6,0)开始以每秒2个单位的速度向右作匀速平移运动,如图2所示,设移动后直线l运动后分别交x轴、y轴于Q、P两点,以OP、OQ 为边作如图矩形OPRQ.设运动时间为t秒.(1)求运动后点M、点Q的坐标(用含t的代数式表示);(2)若设矩形OPRQ与运动后的△CDM的重叠部分面积为S,求S与t的函数关系式,并写出t相应的取值范围;(3)若直线l和△CDM运动后,直线l上存在点T使∠OTC=90°,则当在线段PQ上符合条件的点T有且只有两个时,求t的取值范围.24.如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB边落在x轴正半轴上,且A点的坐标是(1,0).(1)直线经过点C,且与x轴交于点E,求四边形AECD的面积;(2)若直线l 经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;(3)若直线l1经过点F()且与直线y=3x平行.将(2)中直线l沿着y轴向上平移1个单位,交x轴于点M,交直线l1于点N,求△NMF的面积.25.如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求直线l2的解析表达式;(2)求△ADC的面积;(3)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,求出点P的坐标;(4)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由.26.如图,直线y=x+6与x轴、y轴分别相交于点E、F,点A的坐标为(﹣6,0),P(x,y)是直线y=x+6上一个动点.(1)在点P运动过程中,试写出△OPA的面积s与x的函数关系式;(2)当P运动到什么位置,△OPA的面积为,求出此时点P的坐标;(3)过P作EF的垂线分别交x轴、y轴于C、D.是否存在这样的点P,使△COD≌△FOE?若存在,直接写出此时点P的坐标(不要求写解答过程);若不存在,请说明理由.27.如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.(1)若直线AB解析式为y=﹣2x+12,①求点C的坐标;②求△OAC的面积.(2)如图,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.28.已知直角梯形OABC在如图所示的平面直角坐标系中,AB∥OC,AB=10,OC=22,BC=15,动点M 从A点出发,以每秒一个单位长度的速度沿AB向点B运动,同时动点N从C点出发,以每秒2个单位长度的速度沿CO向O点运动.当其中一个动点运动到终点时,两个动点都停止运动.(1)求B点坐标;(2)设运动时间为t秒;①当t为何值时,四边形OAMN的面积是梯形OABC面积的一半;②当t为何值时,四边形OAMN的面积最小,并求出最小面积;③若另有一动点P,在点M、N运动的同时,也从点A出发沿AO运动.在②的条件下,PM+PN的长度也刚好最小,求动点P的速度.29.如图,在平面直角坐标系xoy中,直线AP交x轴于点P(p,0),交y轴于点A(0,a),且a、b满足.(1)求直线AP的解析式;(2)如图1,点P关于y轴的对称点为Q,R(0,2),点S在直线AQ上,且SR=SA,求直线RS的解析式和点S的坐标;(3)如图2,点B(﹣2,b)为直线AP上一点,以AB为斜边作等腰直角三角形ABC,点C在第一象限,D为线段OP上一动点,连接DC,以DC为直角边,点D为直角顶点作等腰三角形DCE,EF⊥x轴,F为垂足,下列结论:①2DP+EF的值不变;②的值不变;其中只有一个结论正确,请你选择出正确的结论,并求出其定值.30.如图,已知直线l1:y=﹣x+2与直线l2:y=2x+8相交于点F,l1、l2分别交x轴于点E、G,矩形ABCD 顶点C、D分别在直线l1、l2,顶点A、B都在x轴上,且点B与点G重合.(1)求点F的坐标和∠GEF的度数;(2)求矩形ABCD的边DC与BC的长;(3)若矩形ABCD从原地出发,沿x轴正方向以每秒1个单位长度的速度平移,设移动时间为t(0≤t≤6)秒,矩形ABCD与△GEF重叠部分的面积为s,求s关于t的函数关系式,并写出相应的t的取值范围.。

第四章一次函数专练2024-2025学年北师大版数学 八年级上册

第四章一次函数专练2024-2025学年北师大版数学 八年级上册

北师大版八上第四章一次函数专练一.选择题(共10小题)1.下列图象中,不能表示y是x的函数的是()A.B.C.D.2.已知函数y=(m+1)是正比例函数,且图象在第二、四象限内,则m的值是()A.2B.﹣2C.±2D.﹣3.根据如图所示的程序计算函数y的值,若输入x的值是2,则输出y的值是1,若输入x的值是7,则输出y的值是()A.1B.﹣1C.2D.﹣24.一次函数y=kx+b的图象与x轴交于点A(﹣2,0),则关于x的方程kx+b=0的解为()A.x=0B.x=﹣2C.x=2D.x=35.已知直线y=﹣3x+m过点A(﹣1,y1)和点(﹣3,y2),则y1和y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.不能确定6.下列有关一次函数y=﹣2x﹣1的说法中,正确的是()A.y的值随着x值的增大而增大B.函数图象与y轴的交点坐标为(0,1)C.当x>0时,y>﹣1D.函数图象经过第二、三、四象限7.若直线y=kx+b经过第一、二、四象限,则函数y=bx﹣k的大致图象是()A.B.C.D.8.如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3).有下列结论:①关于x的方程kx+b=0的解为x=2;②关于x的方程kx+b=3的解为x=0;③当x>2时,y<0;④当x<0时,y<3.其中正确的是()A.①②③B.①③④C.②③④D.①②④9.已知甲、乙两人均骑自行车沿同一条路从A地出发到B地,他们离出发地的距离S(单位:km)和行驶时间t(单位:h)之间的函数关系如图所示,根据图象提供的信息,下列说法错误的是()A.甲、乙两人均行驶了30千米B.乙在行驶途中停留了0.5小时C.甲乙相遇后,甲的速度大于乙的速度D.甲全程用了2.5小时10.如图,过点A的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=﹣x+3B.y=﹣2x+3C.y=2x﹣3D.y=﹣x﹣3二.填空题(共6小题)11.在函数y=中,自变量x的取值范围是.12.已知某直线经过点A(0,2),且与两坐标轴围成的三角形面积为2.则该直线的一次函数表达式是.13.某市出租车白天的收费起步价为14元,即路程不超过3公里时收费14元,超过部分每公里收费2.4元.如果乘客白天乘坐出租车的x(x>3)公里,乘车费为y元,那么y与x之间的关系式为.14.如图,三个正比例函数的图象分别对应的解析式是:①y=ax,②y=bx,③y=cx,请用“>”表示a,b,c的不等关系.(14题)(15题)15.直线y=kx+3k﹣2(k≠0)一定经过一个定点,这个定点的坐标是.16.甲、乙两车分别从A,B两地同时相向匀速行驶.当乙车到达A地后,继续保持原速向远离B的方向行驶,而甲车到达B地后立即掉头,并保持原速与乙车同向行驶,经过一段时间后两车同时到达C地.设两车行驶的时间为x(小时),两车之间的距离为y(千米),y与x之间的函数关系如图所示,当甲车到达B地时,乙车距离A地千米.三.解答题(共6小题)17.已知:一次函数y =(2a +4)x +(3﹣b ),根据给定条件,确定a 、b 的值.(1)y 随x 的增大而增大;(2)图象经过第二、三、四象限;(3)图象与y 轴的交点在x 轴上方.18.已知一次函数.(1)在如图中画出该函数的图象.(2)该函数的图象与x 轴交点为A ,与y 轴的交点B ,求△AOB 的面积.19.我校将举办一年一度的秋季运动会,需要采购一批某品牌的乒乓球拍和配套的乒乓球,一副球拍标价80元,一盒球标价25元.体育商店提供了两种优惠方案,具体如下:方案甲:买一副乒乓球拍送一盒乒乓球,其余乒乓球按原价出售;方案乙:按购买金额打9折付款.学校欲购买这种乒乓球拍10副,乒乓球x (x ≥10)盒.(1)请直接写出两种优惠办法实际付款金额y 甲(元),y 乙(元)与x (盒)之间的函数关系式.(2)如果学校需要购买15盒乒乓球,哪种优惠方案更省钱?(3)如果学校提供经费为1800元,选择哪个方案能购买更多乒乓球?20.如图,在平面直角坐标系中,直线l交x轴于点A(﹣1,0)、交y轴于点B(0,3).(1)求直线l对应的函数表达式;(2)在x轴上是否存在点C,使得△ABC为等腰三角形,若存在,请求出点C的坐标,若不存在,请说明理由.21.如图,一次函数的图象与x轴,y轴分别交于点A,点B.(1)求A,B两点的坐标.(2)过点B作直线BC交x轴于点C,若AC=3OA,求△BOC的面积.22.如图是甲骑自行车与乙骑摩托车,分别从A,B两地向C地(A,B,C在同一直线上)行驶过程中离B 地的距离S(千米)与行驶时间t(小时)的关系图,请你根据图中给出的信息解答下列问题:(1)甲在行驶过程中的速度为千米/小时;乙在行驶过程中的速度为千米/小时;(2)求出在乙到达C地前,甲乙两人相距10千米时t的值.。

北师大版八年级数学上册 一次函数压轴题分类归纳(超详细!!!)

北师大版八年级数学上册  一次函数压轴题分类归纳(超详细!!!)

一次函数压轴题专题类型一:一次函数与最值问题例题1.如图,平面直角坐标系中,直线轴交于点A,与直线交于点,,为直线上一点.求,的值;求线段AP的最小值,并求此时点P的坐标.例题2. 如图,直线:与x轴相交于点A,直线:经过点,,与x轴交于点,,与y轴交于点C,与直线相交于点D.求直线的函数关系式;点P是上的一点,若的面积等于的面积的2倍,求点P的坐标;设点Q的坐标为,,是否存在m的值使得最小?若存在,请求出点Q的坐标;若不存在,请说明理由.例题3. 如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系已知,,点E是AB的中点,在OA上取一点D,将沿BD翻折,使点A落在BC边上的点F处.Ⅰ直接写出点E、F的坐标;Ⅱ若M为x轴上的动点,N为y轴上的动点,当四边形MNFE的周长最小时,求出点M、N的坐标,并求出周长的最小值.1.变式练习:1.如图,正方形ABOD的边长为,在x轴上,OD在y轴上,且,,点C为AB的中点,直线CD交x轴于点F.求直线CD的函数关系式;过点C作且交于点E,求证:;求点E坐标;点P是直线CE上的一个动点,求的最小值.类型二一次函数与几何问题例题1.如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点且OA、OB的长分别是一元二次方程的两个根,点C在x轴负半轴上,且AB::2求A、C两点的坐标;若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.例题2.如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,OA、OB的长分别是一元二次方程的两个根.求点D的坐标.求直线BC的解析式.在直线BC上是否存在点P,使为等腰三角形?若存在,请直接写出点P的坐标;若不存在,说明理由.例题3. 如图,已知函数的图象与y轴交于点A,一次函数的图象经过点,,与x轴以及的图象分别交于点C、D,且点D的坐标为,,则______ ,______ ,______ ;函数的函数值大于函数的函数值,则x的取值范围是______求四边形AOCD的面积;在x轴上是否存在点P,使得以点,,为顶点的三角形是直角三角形?若存在求出点P的坐标;若不存在,请说明理由.变式练习:1.如图,在平面直角坐标系中,直线AB与x轴、y轴的正半轴分别交于点,,直线CD与x轴正半轴、y轴负半轴分别交于点,,与CD相交于点E,点,,,的坐标分别为,、,、,、,,点M是OB的中点,点P在直线AB上,过点P作轴,交直线CD于点Q,设点P的横坐标为m.求直线,对应的函数关系式;用含m的代数式表示PQ的长;若以点,,,为顶点的四边形是矩形,请直接写出相应的m的值.2.已知一次函数的图象经过点,、,直线MN与坐标轴相交于点A、B两点.求一次函数的解析式.如图1,点C与点B关于x轴对称,点D在线段OA上,连结BD,把线段BD顺时针方向旋转得到线段DE,作直线CE交x轴于点F,求的值.如图2,点P是直线AB上一动点,以OP为边作正方形OPNM,连接ON、PM交于点Q,连BQ,当点P在直线AB上运动时,的值是否会发生变化?若不变,请求出其值;若变化,请说明理由.类型三一次函数与面积问题例题1.如图,在平面直角坐标系中,直线AC:与x轴交于C点,与y轴交于A点,直线AB与x轴交于C点,与y轴交于A点,已知,.求直线AB的解析式.直线AD过点A,交线段BC于点D,把的面积分为1:2两部分;求出此时的点D的坐标.例题2.已知直线L:与x轴、y轴交于A、B两点,在y轴上有一个点,,动点M从A点出发,以每秒1个单位的速度沿x轴向左移动.求A、B两点的坐标.求的面积S与点M移动的时间t之间的函数关系式.当时,求直线CM所对应的解析式.问直线CM与直线L有怎样的位置关系?为什么?变式练习:2.平面直角坐标系xOy中,点P的坐标为,.试判断点P是否在一次函数的图象上,并说明理由;(2)如图,一次函数的图象与x轴、y轴分别相交于点A、B,若点P在的内部,求m的取值范围.3.如图,函数与的图象交于,.求出m、n的值;求出的面积.类型四、一次函数与方程不等式例题1.如图,已知函数和的图象交于点P,,这两个函数的图象与x轴分别交于点A、B.分别求出这两个函数的解析式;求的面积;根据图象直接写出不等式的解集.例题2.如图,函数与的图象交于,.求出m、n的值;直接写出不等式的解集;求出的面积.变式练习:1. 在同一坐标系中画出了三个一次函数的图象:, 和求 和 的交点A 的坐标;根据图象填空:当x ______ 时 ;当x ______ 时 ;对于三个实数 , , ,用 , , 表示这三个数中最大的数,如 , , , , , 当 时 当 时,请观察三个函数的图象,直接写出 , , 的最小值.。

2024-2025学年北师大版数学八上 第四章 一次函数 单元试卷(含答案)

2024-2025学年北师大版数学八上 第四章 一次函数 单元试卷(含答案)
13.<5
14.−4
15.<
1
1
16.k=2或−2.
17. = 2 + 10 (−5 < < 0)
18.(1) = 20−2 (2)5 < < 10
19.(1) = 1.5 + 5(0 < < 15);
(2)当弹簧长度为23cm时,所挂物体的质量为 12kg.
20.(1)y1=15x+30(x≥3),y2=12x+60(x≥3);(2)当购买 10 张票时,两种优惠方案付款

时,y 随 x 的增大而增大.
14.已知正比例函数 = −2的图象经过点(2,),则 m 的值为
15.已知点(−2,1),(2,2)都在直线 = 2−3上,则1


2.(填“<”或“>”或“=”)
16.若直线 ykx2 与坐标轴围成的三角形的面积是 4,则 k 的值为
.
17.已知点(−4,0)及第二象限的动点(,),且− = 5.设的面积为,则关于的
10.已知一次函数 y=kx+b(k,b 为常数,k≠0)的图象经过一、三、四象限,则下列结论
正确的是(
A.kb>0
)
B.kb<0
C.k+b>0
D.k+b<0
二、填空题
11.一次函数 = 2 + 1与轴的交点坐标是
12.请写出一个当 > 1时,随的增大而减小的函数表达式:
13.已知一次函数 = (5−) + 2,当 m
B. = + 1
6.一次函数 = −2−1的图象大致是(
A.
C. = −−2

第四章一次函数中有关角度问题专题训练北师大版2024—2025学年八年级上册

第四章一次函数中有关角度问题专题训练北师大版2024—2025学年八年级上册

第四章一次函数中有关角度问题专题训练北师大版2024—2025学年八年级上册一、一次函数与角平分线例1.如图,在平面直角坐标系中,A(1,0),B(3,0),C(0,﹣3),CB平分∠ACP,则直线PC的解析式为()A.y=x﹣3B.y=﹣x﹣3C.y=x﹣3D.y=﹣x﹣3变式1.如图,直线与x轴、y轴交于A、B两点,∠BAO的平分线所在的直线AM的解析式是()A.B.C.D.变式2.如图,正方形ABCD的边长为2,A为坐标原点,AB和AD分别在x轴、y轴上,点E是BC边的中点,过点A的直线y=kx交线段DC于点F,连接EF,若AF平分∠DFE,则k的值为.变式3.如图,在平面直角坐标系xOy中,直线与x轴交于点A,与y轴交于点B,将△AOB沿过点A的直线折叠,使点B落在x轴负半轴上,记作点C,折痕与y轴交点交于点D,则点C的坐标为,点D的坐标为.二、一次函数中角度相等问题例2.如图1,直线y=﹣x﹣4交x轴和y轴于点A和点C,点B(0,2)在y轴上,连接AB.点Q为直线AB上一动点,当∠BCQ=∠BAO时,求点Q的坐标.变式1.如图,直线y=﹣2x+4与x轴、y轴分别交于A、B两点,C为OB上一点,且∠1=∠2,则S△ABC=.变式2.如图,在平面直角坐标系中,一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A和点B,过点B的直线BC:y=kx+b交x轴于点C(﹣8,0).(1)k的值为;(2)点M为直线BC上一点,若∠MAB=∠ABO,则点M的坐标是.变式3.已知平面直角坐标系中,O为坐标原点,点A坐标为(0,8),点B坐标为(4,0),点E是直线y=x+4上的一个动点,若∠EAB=∠ABO,则点E的坐标为.变式4.平面直角坐标系中,直线AB:y=2x+3与x轴、y轴分别交于点B、A.直线BC:y =﹣2x﹣3与x轴、y轴分别交于点B、C.(1)如图1,直线BC与直线y=﹣x交于D点,点E为x轴上一点,当△BDE是以BD 为底边的等腰三角形时,求E点坐标;(2)如图2,点P在点A下方的y轴上一点,∠ODB=∠PDA,直线DP与直线AB交于点M,求M点的坐标.三、一次函数中的45度角例3.如图,直线与x轴、y轴分别交于点A和点B,M是OB上的一点,若将△ABM沿M折叠,点B恰好落在x轴上的点B'处.求:在x轴上找一点N,且N点在A点的右侧,使得∠ABN=45°,请直接写出N点坐标.变式1.如图,在直角坐标系中,直线y=﹣x+4交矩形OACB于F与G,交x轴于D,交y 轴于E.(1)△OED的面积为;(2)若∠FOG=45°,则矩形OACB的面积是.变式2.如图,在平面直角坐标系中,直线y=2x+8与x轴,y轴分别交于点A,C,经过点C 的直线与x轴交于点B(8,0).(1)求直线BC的解析式;(2)如图(1),点G是线段BC上一动点,当G点距离y轴3个单位时,求△ACG的面积;(3)如图(2),已知D为AC的中点,点O关于点A的对称点为点Q,点P在直线BC 上,当∠DQP=45°时,求点P的坐标.变式3.如图1,在平面直角坐标系中,一次函数与x轴交于点B,与y轴交于点A,点C为线段AB的中点,过点C作DC⊥x轴,垂足为D.(1)若点E为y轴负半轴上一点,连接CE交x轴于点F,且CF=FE,在直线CD上有一点P,使得AP+EP最小,求P点坐标;(2)如图2,直线CD上存在点Q使得∠ABQ=45°,请直接写出点Q的坐标.变式4.如图1,直线AB交x轴正半轴于点A,交y轴正半轴于点B,OA=OB,.(1)求直线AB的解析式;(2)如图2,直线交直线AB于点C,D是AB上一点,过点D分别作x轴,y轴的垂线交直线于点E,F,求的值;(3)在(2)条件下,P在直线OC上,且∠APO=45°,求点P的坐标.四、一次函数中的其它度角例4.如图,直线y=﹣x+3与x轴,y轴交于A,B两点.点P是线段OB上的一动点(能与点O,B重合),若能在斜边AB上找到一点C,使∠OCP=90°.设点P的坐标为(m,0),则m的取值范围是()A.3≤m≤4B.2≤m≤4C.0≤m≤D.0≤m≤3变式1.如图,已知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b的值为()A.3B.C.4D.变式2.如图,已知直线MN:y=x+2交x轴负半轴于点A,交y轴于点B,点C是x轴上的一点,且OC=2,则∠MBC的度数为()A.45°或135°B.30°或150°C.60°或120°D.75°或165°五、一次函数中倍角和角度和问题例5.如图,在平面直角坐标系xOy中,直线l1:y=﹣的图象与x轴、y轴分别交于D,B两点.直线y=kx+的图象与x轴交于C.直线l1与直线l2交于点A(a,3).(1)求点A的坐标及直线l2的表达式;(2)若点E在直线l2上,且△ADE的面积为,求点E的坐标;(3)在x轴上是否存在点P,使得∠ACB=2∠APC,若存在,求出点P坐标,若不存在,说明理由.变式1.如图,已知直线AB:y=kx+b与x轴交于点,与y轴交于点C(0,3),且与直线y=x相交于点A.(1)如图1,点D在直线y=x上,且横坐标为2,点Q为射线BC上一动点,若,请求出点Q的坐标.(2)如图2,过点A作y轴的垂线段AE,垂足为E,M为y轴上一点,且∠MAE=∠OAB,请直接写出直线AM的表达式.变式2.平面直角坐标系中,直线AB:y=2x+3与x轴、y轴分别交于点B、A.直线BC:y =﹣2x﹣3与x轴、y轴分别交于点B、C.(1)求△BCA的面积;(2)如图1,直线BC与直线y=﹣x交于D点,点E为x轴上一点,当△BDE是以BD 为底边的等腰三角形时,求E点坐标;(3)如图2,点P在点A下方的y轴上一点,∠ODB=∠PDA,直线DP与直线AB交于点M,求M点的坐标.变式3.如图1,在平面直角坐标系中,直线l:y=x+2与x轴交于点A,与y轴交于点B,点C在x轴的正半轴上,且OC=3OB.(1)求直线BC的表达式;(2)点P是线段BC上一动点,点E是直线AB上一动点,点F为x轴上一动点,过P 作PO⊥AB于Q,连接PE、EF,当时,求PE+EF的最小值;(3)如图2,在(2)问条件下,点M为直线AB上一动点,当∠QPM=∠ACB+∠BAC 时,直接写出所有符合条件的点M的坐标.变式2.如图,直线l:y=kx+b(k≠0)与坐标轴分别交于点A,B,以OA为边在y轴的右侧作正方形AOBC,且S△AOB=8.(1)求直线l的解析式;(2)如图1,点D是x轴上一动点,点E在AD的右侧,∠ADE=90°,AD=DE.①探究发现,点E在一条定直线上,请直接写出该直线的解析式;②当AE+CE最小时,求E点的坐标;③如图2,点D是线段OB的中点,另一动点H在直线BE上,且∠HAC=∠BAD,求出点H的坐标.。

北师大版八年级上册 第四章 一次函数 压轴题 专项练习(无答案)

北师大版八年级上册 第四章 一次函数 压轴题 专项练习(无答案)

一次函数面积问题和点的存在性问题1、若一次函数y=k1x-4 与正比例函数y=k2x 的图像都经过点P(2,-1).(1)分别求出这两个函数的解析式;(2)求这两个函数的图像与x轴所围成的三角形的面积.2、如图,已知A(8,0)、B(0,6)、C(0,-2),连接AB,过点C的直线l 与A B 相交于点P.(1)如图,当P B=PC 时,求点P的坐标.(2)如图,如果直线l 交x轴于点E,且O C:OE=5:4,连结A C,求点E的坐标及△PAC 的面积.3、已知点P(x,y)是第一象限内的点,且x+y=8,点A的坐标为(10,0),设△OAP 的面积为S.(1)求S关于x的函数解析式,并写出自变量的取值范围.(2)若△OAP 的面积为10,是否存在点Q(3,a),使得△PQA 的面积也等于10. 若存在,请求出a 的值;若不存在,请说明理由.4、如图,在平面直角坐标系中,点 A 、B 的坐标分别为(-3,0)(0,3).(1)某一次函数图像与 x 、y 轴的交点分别为 P 、Q ,P 、Q 在直线 A B 的同侧,且 Q 点的纵坐标大于 3,若△PAB 与△QAB 的面积都等于 3,求这个一次函数的解析式.(2)在坐标轴上是否存在点 M ,使△MPQ 为等腰三角形,若存在,请求出点 M 的坐标(直接写出);若不存在, 说明理由.5、如图 12,直线 y =kx-1与 x 轴、y 轴分别交与 B 、C 两点,OB :OC=12(1) 求 B 点的坐标和 k 的值;(2) 若点 A (x ,y )是第一象限内的直线 y =kx-1 上的一个动点.当点 A 运动过程中,试写出△AOB 的面积 S 与 x 的函数关系式;(3) 探索:①当点 A 运动到什么位置时,△AOB 的面积是;14② 在①成立的情况下,x 轴上是否存在一点 P ,使△POA 是等腰三角形.若存在,请写出满足条件的所有 P 点的坐标;若不存在,请说明理由.6、已知长方形A BCO,O 为坐标原点,B 为坐标为(8,6),A、C 分别在坐标轴上,P 是线段B C 上的动点,设PC=m,已知点D在第一象限且是直线y=2x+6 上的一点,若△APD 是等腰直角三角形.(1)求点D的坐标.(2)直线y=2x+6 向右平移6个单位后,在该直线上,是否存在点D,使△APD 是等腰直角三角形?若存在,请写出这些点的坐标;若不存在,请说明理由.7、在平面直角坐标系中,取点P(-1,1),Q(2,3). 在x轴上有一点R,若使得P R+QR 最小,求R点的坐标.变式练习:①在平面直角坐标系中,取点P(-1,1,Q(2,3). 在y轴上有一点S,若使得|PS-QS|的值最大,求S点的坐标.②在平面直角坐标系中,有四个点A(-8,3),B(-4,5),C(0,n),D(m,0),当四边形ABCD 的周长最短时,求mn 的值.8、如图,在平面直角坐标系中,在矩形A BCO 的边长A B=8,BC=6,点E为B C 的中点.(1)在x轴上是否存在点P,使得P A+PE 最小?求出点P的坐标;(2)线段M N=2,且点M、N 在线段O C 上(M 在N的左边),当四边形AMNE 的周长最短时,求M、N 的坐标.9、如图,点A为(2,0),点B 在直线y=x 上,且横坐标为x,过点B作x轴的垂线交直线y x 与点C. 设△ABC 的面积为S.(1)求S关于x的函数关系式,并写出自变量的取值范围;(2)设点P为y=x 上的一点,点Q为直线y x 上的点,连接A P、PQ,求A P+PQ 的最小值,并求出此时P 和Q点的坐标.10.如图,在平面直角坐标系中,函数y=2x+12 的图象分别交x轴、y 轴于A、B 两点,过点A的直线交y轴正半轴于点M,且点M为线段O B 的中点.(1)求直线A M 的函数解析式.=S△AOB,请直接写出点P 的坐标.(2)试在直线A M 上找一点P,使得S△ABP11.如图,一次函数y=ax-b 与正比例函数y=kx 的图象交于第三象限内的点A,与y 轴交于B(0,-4)且O A=AB,△OAB 的面积为6.(1)求两函数的解析式;(2)若M(2,0),直线BM 与A O 交于P,求P点的坐标;(3)在x 轴上是否存在一点E,使S=5,若存在,求E 点的坐标;若不存在,请说明△ABE理由。

北师大版初中数学八年级上册一次函数压轴题

北师大版初中数学八年级上册一次函数压轴题

北师大版初中数学八年级上册一次函数压轴题姓名:________ 班级:________ 成绩:________一、综合题 (共5题;共65分)1. (15分) (2017七下·柳州期末) 如图1,在平面直角坐标系中,OA=7,OC=18,将点C先向上平移7个单位,再向左平移4个单位,得到点B,连接AB,BC.(1)填空:点B的坐标为________;(2)如图2,BF平分∠ABC交x轴于点F,CD平分∠BCO交BF于点D,过点F作FH⊥BF交BC的延长线于点H,试判断DC与FH的位置关系,并说明理由;(3)若点P从点C出发以每秒2个单位长度的速度沿CO方向移动,同时点Q从点O出发以每秒1个单位长度的速度沿OA方向移动,设移动的时间为t秒(0<t<7),四边形OPBA与△OQB的面积分别记为S1,S2,是否存在一段时间,使S1<2S2?若存在,求出t的取值范围;若不存在,试说明理由.2. (12分) (2019八下·北京期中) 如图,以为原点的直角坐标系中,点的坐标为,直线交轴于点.点为线段上一动点,作直线,交直线与点.过点作直线平行于轴,交轴于点,交直线与点.记,得面积为.(1)当点在第一象限时,求证:≌ .(2)当点在线段上移动时,点也随之在直线上移动,求出与之间的函数关系式,并写出自变量的取值范围.(3)当点在线段上移动时,是否可能成为等腰三角形?如果可能,直接写出所有能使成为等腰三角形的的值.如果不可能,请说明理由.3. (10分)(2018·无锡模拟) 如图1,菱形ABCD中,∠A=60°,点P从A出发,以2cm/s的速度沿边AB、BC、CD匀速运动到D终止,点Q从A与P同时出发,沿边AD匀速运动到D终止,设点P运动的时间为t(s).△APQ 的面积S(cm2)与t(s)之间函数关系的图象由图2中的曲线段OE与线段EF、FG给出.(1)求点Q运动的速度;(2)求图2中线段FG的函数关系式;(3)问:是否存在这样的t,使PQ将菱形ABCD的面积恰好分成1:5的两部分?若存在,求出这样的t的值;若不存在,请说明理由.4. (13分)(2017·丹东模拟) 如图,直线y= x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).(1)求抛物线F1所表示的二次函数的表达式及顶点Q的坐标;(2)在抛物线上是否存在点P,使△BPC的内心在y轴上,若存在,求出点P的坐标,若不存在写出理由;(3)直线y=kx﹣6与y轴交于点N,与直线AC的交点为M,当△MNC与△AOC相似时,求点M坐标.5. (15分) (2017九上·孝义期末) 为了响应国家“自主创业”的号召,某大学毕业生开办了一个装饰品商店,采购了一种今年刚上市的饰品进行了30天的试销,购进价格为20元/件,销售结束后,得知日销售量P(件)与销售时间x(天)之间的关系如图(1)所示,销售价格Q(元/件)与销售时间x(天)之间的关系如图(2)所示.(1)根据图象直接写出:日销售量P(件)与销售时间x(天)之间的函数关系式为________;销售单价Q (元/件)与销售时间x(天)的函数关系式为________.(不要求写出自变量的取值范围)(2)写出该商品的日销售利润W(元)和销售时间x(天)之间的函数关系式;(不要求写出自变量的取值范围)(3)请问在30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润.参考答案一、综合题 (共5题;共65分)1-1、1-2、1-3、2-1、2-3、3-1、3-2、3-3、4-1、4-2、4-3、5-1、5-2、5-3、。

北师大版八年级数学上册期末复习专题练习 第四章 一次函数 压轴题(无答案)

北师大版八年级数学上册期末复习专题练习 第四章 一次函数 压轴题(无答案)

专题-----一次函数压轴题1.如图,直线y=﹣x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM 沿AM折叠,使点B恰好落在x轴上的点B′处.求:(1)点B′的坐标;(2)直线AM所对应的函数关系式.2.如图,A、B分别是x轴上位于原点左右两侧的两点,点P(2,p)在第一象限内,直线PA交y轴与点C(0,2),直线PB交y轴与点D,且S△AOP=6,(1)求S△COP;(2)求点A的坐标及p的值;(3)若S△AOP=S△BOP,求直线BD的解析式.3.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向下平移与x轴,y轴分别交于点C、D,若DB=DC,试求直线CD的函数解析式.4.如图,直线y=kx+6分别与x轴、y轴相交于点E和点F,点E的坐标为(﹣8,0),点A 的坐标为(0,3).(1)求k的值;(2)若点P(x,y)是第二象限内的直线上的一个动点,当点P运动过程中,试写出△OPA 的面积S与x的函数关系式,并写出自变量x的取值范围;(3)探究:当P运动到什么位置时,△OPA的面积为,并说明理由.5.如图,直线与x 轴、y 轴分别交于A 、B ,以线段AB 为直角边在第一象限内作等腰Rt △ABC ,∠BAC=90°,如果在第二象限内有一点P (a ,),且△ABP 的面积与△ABC 的面积相等,求a 的值.(新方法:P37)6.如图,在平面直角坐标系中,过点B (3,0)的直线AB 与直线OA 相交于点A (2,1),动点M 在线段OA 和射线AC 上运动.(1)设直线AB 的关系式为y kx b =+,求k 、b(2)求△OAC 的面积; (3)是否存在点M ,使△OMC 的面积是△OAC 的 面积的12?若存在,直接写出此时点M 的坐标; 若不存在,说明理由.7.如图,正方形ABOD的边长是2,C为AB的中点,直线CD交x轴于点F.(1)求直线CD所在的函数解析式;(2)在x轴上取点E,连DE,使得∠1=∠2,试说明EC⊥CD的理由;(3)求点E的坐标.8.已知一次函数y=kx+b的图象与x轴、y轴分别交于点A(﹣2,0)、B(0,4),直线l 经过点B,并且与直线AB垂直.点P在直线l上,且△ABP是等腰直角三角形.(1)求直线AB的解析式;(2)求点P的坐标;(3)点Q(a,b)在第二象限,且S△QAB=S△PAB.①用含a的代数式表示b;②若QA=QB,求点Q的坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数面积问题和点的存在性问题1、若一次函数y=k1x-4 与正比例函数y=k2x 的图像都经过点P(2,-1).(1)分别求出这两个函数的解析式;(2)求这两个函数的图像与x轴所围成的三角形的面积.2、如图,已知A(8,0)、B(0,6)、C(0,-2),连接AB,过点C的直线l与A B 相交于点P.(1)如图,当P B=PC 时,求点P的坐标.(2)如图,如果直线l交x轴于点E,且O C:OE=5:4,连结A C,求点E的坐标及△P AC 的面积.3、已知点P(x,y)是第一象限内的点,且x+y=8,点A的坐标为(10,0),设△OAP 的面积为S.(1)求S关于x的函数解析式,并写出自变量的取值范围.(2)若△OAP 的面积为10,是否存在点Q(3,a),使得△PQA 的面积也等于10. 若存在,请求出a的值;若不存在,请说明理由.4、如图,在平面直角坐标系中,点A 、B的坐标分别为(-3,(0,3).(1)某一次函数图像与 x 、y 轴的交点分别为 P 、Q ,P 、Q 在直线 A B 的同侧,且 Q 点的纵坐标大于 3,若△P AB 与△QAB 的面积都等于 3,求这个一次函数的解析式. (2)在坐标轴上是否存在点 M ,使△MPQ 为等腰三角形,若存在,请求出点 M 的坐标(直接写出);若不存在, 说明理由. 5、如图 12,直线 y =kx-1 与 x 轴、y 轴分别交与 B 、C 两点,OB :OC=12(1) 求 B 点的坐标和 k 的值; (2) 若点 A (x ,y )是第一象限内的直线 y =kx-1 上的一个动点.当点 A 运动过程中,试写出△AOB 的面积 S 与 x 的函数关系式; (3) 探索:①当点 A 运动到什么位置时,△AOB 的面积是14; ② 在①成立的情况下,x 轴上是否存在一点 P ,使△POA 是等腰三角形.若存在,请写出满足条件的所有 P 点的 坐标;若不存在,请说明理由.6、已知长方形 A BCO ,O 为坐标原点,B 为坐标为(8,6),A 、C 分别在坐标轴上,P 是线段 B C 上的动点,设 PC=m ,已知点 D 在第一象限且是直线 y =2x+6 上的一点,若△APD 是等腰直角三角形. (1)求点 D 的坐标. (2)直线 y =2x+6 向右平移 6 个单位后,在该直线上,是否存在点 D ,使△APD 是等腰直角三角形?若存在, 请写出这些点的坐标;若不存在,请说明理由.7、在平面直角坐标系中,取点 P (-1,1),Q (2,3). 在 x 轴上有一点 R ,若使得 P R+QR 最小,求 R 点的坐标.变式练习: ①在平面直角坐标系中,取点 P (-1,Q (2,3). 在 y 轴上有一点 S ,若使得|PS-QS|的值最大,求 S 点的坐标.②在平面直角坐标系中,有四个点 A (-8,3),B (-4,5),C (0,n ),D (m ,0),当四边形 ABCD 的周长最短时, 求 m n 的值.8、如图,在平面直角坐标系中,在矩形 A BCO 的边长 A B=8,BC=6,点 E 为 B C 的中点. (1)在 x 轴上是否存在点 P ,使得 P A+PE 最小?求出点 P 的坐标; (2)线段 M N=2,且点 M 、N 在线段 O C 上(M 在 N 的左边),当四边形 AMNE 的周长最短时,求 M 、N 的坐标.9、如图,点 A 为(2,0),点 B 在直线 y =x 上,且横坐标为 x ,过点 B 作 x 轴的垂线交直线 yx 与点 C . 设△ ABC 的面积为 S . (1)求 S 关于 x 的函数关系式,并写出自变量的取值范围; (2)设点 P 为 y =x 上的一点,点 Q 为直线 y=x 上的点,连接 A P 、PQ ,求 A P+PQ 的最小值,并求出此时 P 和 Q 点的坐标.10.如图,在平面直角坐标系中,函数 y =2x+12 的图象分别交 x 轴、y 轴于 A 、B 两点,过点 A 的直线交 y 轴正半 轴于点 M ,且点 M 为线段 O B 的中点. (1)求直线 A M 的函数解析式. (2)试在直线 A M 上找一点 P ,使得 S △ABP =S △AOB ,请直接写出点 P 的坐标.11.如图,一次函数y=ax-b 与正比例函数y=kx 的图象交于第三象限内的点A,与y 轴交于B (0,-4)且O A=AB,△OAB 的面积为6.(1)求两函数的解析式;(2)若M(2,0),直线BM 与A O 交于P,求P点的坐标;(3)在x轴上是否存在一点E,使S=5,若存在,求E点的坐标;若不存在,请说明理△ABE由。

北师大版八年级数学第四章一次函数压轴题专题训练1、已知:一次函数的图象经过点(2,1)和点(-1,-3).(1)求此一次函数的解析式;(2)求此一次函数与x轴、y•轴的交点坐标以及该函数图象与两坐标轴所围成的三角形的面积;(3)若一条直线与此一次函数图象相交于(-2,a)点,且与y轴交点的纵坐标是5,• 求这条直线的解析式;(4)求这两条直线与x轴所围成的三角形面积.2、如图是表示一骑自行车者和一骑摩托车者沿着相同路线由甲地到乙地行驶过程中行驶时间与行驶距离变化的情况,已知甲,乙两地之间的距离是60千米,•请你根据此图回答:(1)谁出发得较早?早多长时间?谁先到达?(2)从自行车出发开始,几小时后两人在途中相遇?(3)当摩托车出发后,在什么时间段内,自行车在摩托车前?在什么时间段时,•自行车在摩托车后?(4)设行驶时间为x (时),自行车与摩托车离开甲地的距离分别为y 1(千米),y 2(千米),分别写出x 与y 1,y 2之间的函数关系式.3、如图,直线1l 的表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l 、2l 交于点C .(1)求点D 的坐标; (2)求直线2l 的解析表达式; (3)求ADC ∆的面积;4、如图,已知直线b kx y +=与n mx y +=交于点P (1,4),它们分别与x 轴交于A 、B ,PA AB =,25PB =。

(1)求两个函数的解析式; (2)若BP 交y 轴于点C ,求四边形PCOA 的面积。

5、如图:正方形ABCD 的边长为4,将此正方形置于平面直角坐标系中,使AB 边落在x 轴的正半轴上,且A 点的坐标是(1,0)。①、直线4833y x =-经过点C ,且与x 轴交与点E ,求四边形AECD 的面积; ②、若直线l 经过点E 且将正方形ABCD 分成面积相等的两部分求直线l 的解析式; ③、若直线1l 经过点F (0,5)且与直线3y x =平行,将②中直线l 沿着y 轴向上平移2个单位交x 轴于点P ,交直线1l 于点Q ,求PQF ∆的面积。

6、如图,在平面直角坐标系中,O 为坐标原点,直线y=-34x+3与x 轴、y 轴分别交于A ,B 两点.点P 从点A 出发,以每秒1个单位的速度沿射线AO 匀速运动,设点P 的运动时间为t 秒.(1)求OA ,OB 的长.(2)过点P 与直线AB 垂直的直线与y 轴交于点E ,在点P 的运动过程中,是否存在这样的点P ,使△EOP ≌△AOB ?若存在,请求出t 的值;若不存在,请说明理由.7、已知,如图,在平面直角坐标系内,点A 的坐标为(0,24),经过原点的直线l 1与经过点A 的直线l 2相交于点B ,点B 坐标为(18,6). (1)求直线l 1,l 2的表达式;(2)点C 为线段OB 上一动点(点C 不与点O ,B 重合),作CD ∥y 轴交直线l 2于点D ,过点C ,D 分别向y 轴作垂线,垂足分别为F ,E ,得到矩形CDEF (矩形是长方形). ①设点C 的纵坐标为a ,求点D 的坐标(用含a 的代数式表示); ②若矩形CDEF 的面积为108,求出点C 的坐标.l2l 1y xBAO8、如图直线L :y=12—x+2与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点C (0,4),动点M 从A 点以每秒1个单位的速度沿X 轴向左移动.(1)求A 、B 两点的坐标;(2)求△COM 的面积S 与M 移动的时间t 之间的函数关系式;(3)当t 为何值时△COM ≌△AOB ,并求此时M 点的坐标.9、如图,平面直角坐标系中,原点为O ,点A 、M 的坐标分别为(0,8)、(3,4),AM 的延长线交x 轴于点B .点P 为线段AO 上的一个动点,点P 从点O 沿OA 方向以1个单位/秒的速度向A 运动,正方形PCEF 边长为2(点C 在y 轴上,点E 、F 在y 轴右侧).设运动时间为t 秒.(1)正方形PCEF 的对角线PE 所在直线的函数表达式为 (用含t 的式子表示),若正方形PCEF 的对角线PE 所在直线恰好经过点M ,则时间t 为 秒. (2)若正方形PCEF 始终在△AOB 内部运动,求t 的范围.F E DCl 2l 1yxB A O(3)在条件(2)下,设△PEM 的面积为y ,求y 与t 的函数表达式.10、如图,直线l 的解析式为4y x =-+,它与x 轴、y 轴分别相交于A B 、两点.平行于直线l 的直线m 从原点O 出发,沿x 轴的正方形以每秒1个单位长度的速度运动,它与x 轴、y 轴分别相交于M N 、两点,设运动时间为t 秒(04t <≤).(1)求A B 、两点的坐标;(2)用含t 的代数式表示MON △的面积1S ;(3)以MN 为对角线作矩形OMPN ,记MPN △和OAB △重合部分的面积为2S , ①当2t <≤4时,试探究2S 与t 之间的函数关系式; ②在直线m 的运动过程中,当t 为何值时,2S 为OAB △面积的51611、一次函数33+=x y 与坐标轴交于A 、C 两点,与过A 点的直线3+-=x y 与一次函数2121+=x y 交于点B ,求ABC S ∆12、如图,直线y =kx +3与x 轴、y 轴分别交于A ,B 两点,34OB OA =,点C 是直线y =kx +3上与A ,B 不重合的动点.过点C 的另一直线CD 与y 轴相交于点D ,是否存在点C使△BCD 与△AOB 全等?若存在,请求出点C 的坐标;若不存在,请说明理由.13、如图,直线112y x =-+与x 轴、y 轴分别交于A ,B 两点,C (1,2),坐标轴上是否存在点P ,使S △ABP =S △ABC ?若存在,求出点P 的坐标;若不存在,请说明理由.xOAB C y14、如图,已知直线m 的解析式为112y x =-+,与x 轴、y 轴分别交于A ,B 两点,以线段AB 为直角边在第一象限内作等腰Rt △ABC ,且∠BAC =90°,点P 为直线x =1上的动点,且△ABP 的面积与△ABC 的面积相等. (1)求△ABC 的面积; (2)求点P 的坐标.B OyAxmOAx CB y15、如图,直线P A :y =x +2与x 轴、y 轴分别交于A ,Q 两点,直线PB :y =-2x +8与x 轴交于点B .(1)求四边形PQOB 的面积.(2)直线PA 上是否存在点M ,使得△PBM 的面积等于四边形PQOB 的面积?若存在,求出点M 的坐标;若不存在,请说明理由. Q x A O B P y 一次函数压轴题分类题型一:求解析式1.一次时装表演会预算中票价定位每张100元,容纳观众人数不超过2000人,毛利润y (百元)关于观众人数x (百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过1000人时,毛利润y (百元)关于观众人数x (百人)的函数解析式和成本费用s (百元)关于观众人数x (百人)的函数解析式;⑵若要使这次表演会获得36000元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000人时,表演会的毛利润=门票收入—成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入—成本费用—平安保险费)题型二:函数直线与行程相结合2.如图,lA、lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系。

相关文档
最新文档