初一数学思维训练题
初一数学数学思维启蒙练习题及答案
初一数学数学思维启蒙练习题及答案一、选择题1. 一辆汽车以每小时60公里的速度行驶,行驶了3小时,共行驶了多少公里?A. 180公里B. 120公里C. 160公里D. 140公里答案:A. 180公里2. 小明的爸爸今年36岁,比小明的年龄大21岁。
那么小明今年几岁?A. 15岁B. 17岁C. 16岁D. 14岁答案:C. 16岁3. 甲乙两个角相加是120度,甲角的度数是乙角度数的2倍,那么甲角的度数是多少?A. 40度B. 60度C. 80度D. 100度答案:B. 60度4. 一个数字是23的倍数,如果将这个数字的各位数颠倒,得到的数字是多少?A. 32B. 34C. 37D. 29答案:A. 325. 一个矩形花坛的宽度是5米,面积是60平方米,求长。
A. 8米B. 10米C. 12米D. 15米答案:C. 12米二、填空题1. 十进制数5678用科学计数法表示为_________。
答案:5.678 × 10^32. 线段AB的长是5cm,线段CD的长是线段AB的三倍,求线段CD的长度。
答案:15cm3. 半径为2m的圆的面积是_________。
答案:12.57平方米4. 一共有40个学生参加了数学竞赛,其中男生占总人数的5分之3,女生有多少人?答案:16人5. 几何中,两条直线在平面上相交,那么它们最多可以交于_________个点。
答案:1个三、解答题1. 请用因数分解法将数字60分解为两个乘积的形式。
答案:60 = 2 × 2 × 3 × 52. 某书店有480本书,其中科幻书和冒险书的比例是3:4,问其中每种类型的书各有多少本?答案:科幻书:180本冒险书:240本3. 请计算7!(7的阶乘)的值。
答案:7! = 7 × 6 × 5 × 4 × 3 × 2 × 1 = 50404. 请用二进制形式表示数字9。
七年级(下)数学思维拓展训练试题附答案
图4 七(下)数学思维拓展训练时间:45分钟 分值:100分一、选择题(每小题5分,共25分)1.若n 为正整数,且x 2n =3,则(3x 3n )2-4(x 2)2n 的值为( ) (A )207 (B )36 (C )45 (D )217 2.一个长方形的长是2x 厘米,宽比长的一半少4厘米,若将长方形的长和宽都增加3厘米,则该长方形的面积增加为( )(A)9 (B )2x 2+x -3 (C )-7x -3 (D )9x -3 3.若(x-5)·A= x 2+x+B ,则( )(A )A=x+6,B=-30 (B )A=x -6,B=30 (C )A=x+4,B=-20 (D )A=x -4,B=204.已知6141319,27,81===c b a ,则a ,b ,c 大小关系是( )(A )a>c>b (B )a>b>c (C )a<b<c (D )b>c>a5.如图1,直线MN//PQ ,OA ⊥OB ,∠BOQ=30︒.若以点O 为旋转中心,将射线OA 顺时针旋转60︒后,这时图中30︒的角的个数是 ( )(A) 4个 (B) 3个 (C) 2个 (D) 1个二、填空题(每小题5分,共25分)6.用如图2所示的正方形和长方形卡片若干张,拼成一个边长为a+b 的正方形,需要B 类卡片_______张.7.如图3,AB ∥CD ,M 、N 分别在AB ,CD 上,P 为两平行线间一点,那么∠1+∠2+∠3= ︒.8.如图4,一把矩形直尺沿直线断开并错位,点E 、D 、B 、F 在同一条直线上,若∠ADE =125︒, 则∠DBC= ︒.9.三个同学对问题“若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是 . 10. 数学家发明了一个魔术盒,当任意数对()b a ,进入其中时,会得到一个新的数:图1O N M A B P Qa b图2 3 2 C P D 1B N A M 图3()()21--b a .现将数对()1,m 放入其中得到数n ,再将数对()m n ,放入其中后,如果最后得到的数是 .(结果要化简) 三、解答题(每小题10分,共50分)11.计算:(1+2+3+…+2013)(2+3+4+…+2012)-(1+2+3+…+2012) (2+3+4+…+2013).12.图5是按一定规律排列的方程组集合和它解的集合的对应关系图,若方程组集合中的方程组自左至右依次记作方程组1、方程组2、方程组3、……方程组n . (1)将方程组1的解填入图中;(2)请依据方程组和它的解变化的规律,将方程组n 和它的解直接填入集合图中; (3)若方程组⎩⎨⎧-=+1my x y x 的解是⎨⎧=10x ,求m 的值,并判断该方程组是否符合(2)中的规律?13.如图6,已知两组直线分别互相平行. (1)若∠1=115º,求∠2,∠3的度数;(2)题(1)中隐含着一个规律,请你根据(1)的结果进行归纳,试用文字表述出来; (3)利用(2)中的结论解答:如果两个角的两边分别平行,其中一个角是另一个角的2倍,求这两个角的大小.方程组图514.下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y.原式=(y+2) (y +6)+4 ①=y2+8y+16 ②=( y+4)2 ③=(x2-4x+4)2 ④回答下列问题:(1)该同学②到③运用了因式分解的_______.(A)提取公因式(B)平方差公式(C)两数和的完全平方公式(D)两数差的完全平方公式(2)该同学因式分解的结果是否彻底?________(填“彻底”或“不彻底”);若不彻底,请直接写出因式分解的最后结果_________.(3)请模仿以上方法对多项式(x2-2x)(x2-2x+2)+1进行因式分解.15.如下几个图形是五角星和它的变形.(1)图7中是一个五角星,则∠A+∠B+∠C+∠D+∠E= º.(2)图7中的点A向下移到BE上时,五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化?如图8,说明你的结论的正确性.(3)把图8中的点C向上移到BD上时,五个角的和(即∠CAD+∠B+∠ACE +∠D+∠E)有参考答案 1~5.ADABA6.27.3608.559. 510x y =⎧⎨=⎩ 10. -m 2+2m11.设1+2+3+…+2012=a ,2+3+4+…+2012=b ,则a= b+1.(1+2+3+…+2013)(2+3+4+…+2012)-(1+2+3+…+2012) (2+3+4+…+2013)= (a+2013)b -a(b+2013)=ab+2013b -ab -2013a=2013b -2013a=2013b -2013(b+1)= 2013b -2013 b -2013=-2013.12.(1)直接消元可求出⎩⎨⎧==01y x ;(2)观察第一个方程都是x+y=1,第二个方程x 前面的系数都是1,而y 前面的系数应是-n ,常数项应是n 2,这样第二个方程应是x -ny= n 2,所以第n 个方程组为⎩⎨⎧=-=+21n ny x y x .其解的规律是x 从1开始依次增1,y 从0开始依次减1,这样第n 个方程组的解为⎩⎨⎧-==n y n x 1;(3)把⎩⎨⎧-==9y 10x 代入方程x -my=16,得m=32.显然不符合(2)中的规律.13.(1)因为两组直线分别互相平行,所以由平行线的性质可得∠2=∠1=115º,∠3+∠2=180º,则∠3=180º-115º=65º;(2)如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补;(3)设其中的一个角为xº,则另一个角为2xº.因为xº+2xº=180º,所以x=60º.故这两个角分别为60º和120º. 14.(1)C(2)不彻底,( x -2)4(3)设x 2-2x=y .原式=y (y +2)+1= y 2+2y+1=( y+1)2=(x 2-2x+1)2=( x -1)4 . 15.(1)180º.(2)无变化.因为∠BAC=∠C+∠E ,∠EAD=∠B+∠D ,所以∠CAD+∠B+∠C+∠D+∠E=∠BAC+∠CAD+∠EAD=180º.(3)无变化.因为∠ACB=∠CAD+∠D ,∠ECD=∠B+∠E ,所以∠CAD+∠B+∠ACE +∠D+∠E=∠ACB+∠ACE+∠ECD=180º.。
初中数学思维训练题目集
初中数学思维训练题目集数学是一门需要思维的学科,它要求我们具备逻辑思维能力、分析问题的能力以及解决问题的能力。
为了提高学生的数学思维能力,训练题目是必不可少的。
下面是一些初中数学思维训练题目,希望能对同学们的数学思维能力有所帮助。
1. 小明有一些苹果,他分给小红一半后,还剩下8个。
如果小红再给小明一半,小红还能留下几个苹果?解析:设小明最初有x个苹果,根据题意,有x/2 - 8 = x/4。
整理得到x = 32,所以小红还能留下32/2 - 8 = 8个苹果。
2. 一辆车从A地到B地,速度为60km/h;从B地到A地,速度为80km/h。
两段路程相等,来回共用了10小时,求A地到B地的距离。
解析:设A地到B地的距离为x km,根据题意,有x/60 + x/80 = 10。
整理得到x = 240,所以A地到B地的距离为240 km。
3. 有一堆石头,共有100块。
小明和小红两人轮流取石头,每次可以取1块、2块或3块,取到最后一块石头的人获胜。
如果小明先取,问谁能保证获胜?解析:我们可以列出小明和小红两人的取石头的情况:小明:1,4,7,10,...小红:2,5,8,11,...可以观察到,小明每次取的石头数与小红每次取的石头数之和都是3。
由于总共有100块石头,所以小明可以保证在最后一轮将剩下的石头取完,从而获胜。
4. 小张在一张纸上画了一个正方形,然后在每个角上画了一个等边三角形,如图所示。
如果正方形的边长为x cm,求等边三角形的边长。
解析:设等边三角形的边长为y cm,根据题意,可以列出方程:x = y + y + y。
整理得到x = 3y,所以等边三角形的边长为x/3 cm。
5. 小明和小红一起做数学题,小明做了全题的1/4,小红做了全题的1/3,他们共做了几个题目?解析:设全题的题目数为x,根据题意,可以列出方程:x/4 + x/3 = x。
整理得到x = 12,所以他们共做了12个题目。
七年级下册数学思维专项训练题(共10套)
七年级下册数学思维专项训练题(共10套)思维训练题(一)班级______________ 姓名_____________ 一、选择题:1.a 为任意自然数,包括a 在内的三个连续的自然数,可以表示为 ( )A .a -2,a -1,aB .a -3,a -2,a -1C .a ,a +1,a +2D .不同于A 、B 、C 的形式二、计算题:(动动脑筋,可能会有简便的解题方法!)1.____________________56875=⨯2.____________2006200420022000...12108642=+-+-+-+-+- 3.__________________8567785667855678=+++4.()()__________888...6428002...888488868888=++++-++++5.______________125.01712517125625.05.0171251753=⨯-⨯+⨯+ 6.______________12346123451234512345=÷7._________________31313131=-+-8._______________99163135115131=++++ 9._____________20042004...200432004220041=++++10._____________90197218561742163015201412136121=++++++++三、应用与创新:1.有一高楼,每上一层需要3分钟,每下一层需要1分30秒。
小贤于下午6时15分开始从最底层不断地向上走,到了最顶层后便立即往下走,中途没有停留,他在7时36分返回最底层。
这座高楼共有多少层?2.回答下列各题:(1)用1、2、3、4、5、6、7、8可组成多少个没有重复数字的五位数?(2)在15个连续自然数中最多有多少个质数?最少有多少个质数?(3)以下是一个数列,第一项是1,第二项是4,以后每一项是前两项相乘的积。
初一数学思维题
初一数学思维题近年来,数学作为一门重要的学科,受到了越来越多的关注。
作为初一学生,我们需要掌握一些基本的数学思维题,培养我们的逻辑思维能力和解决问题的能力。
下面,我将为大家介绍一些有趣的初一数学思维题。
一、题目:一群人去唱歌,共花费100元。
其中男生每人花费3元,女生每人花费2元,而一个小孩只花费1元。
问男生、女生和小孩的人数各是多少?解析:设男生人数为x,女生人数为y,小孩人数为z。
根据题目可得以下等式:3x + 2y + z = 100又因为男生、女生和小孩的人数必须是整数,所以我们可以列出以下不等式:x > 0, y > 0, z > 0现在我们来解这个方程组。
首先,我们可以固定一个变量,假设男生人数为1。
那么女生人数可以通过等式3x + 2y + z = 100求得为49,小孩人数为48。
所以,男生人数为1,女生人数为49,小孩人数为48。
二、题目:有一只蜗牛爬行在10米高的墙上,白天爬3米,晚上滑下2米。
问蜗牛需要多久才能爬到墙顶?解析:我们可以使用递归的思想来解决这个问题。
假设蜗牛需要x 天才能爬到墙顶。
那么在第x天白天,蜗牛会爬3x米,晚上滑下2x米,总共爬行距离为3x - 2x = x米。
根据题目可知,蜗牛需要爬行的总距离为10米,所以我们可以列出以下不等式:x ≥ 10根据这个不等式,我们可以得出蜗牛需要至少10天才能爬到墙顶。
三、题目:甲、乙、丙三个人一起做一件事情,甲单独做需要10天,乙单独做需要15天,丙单独做需要20天。
问他们一起做需要多少天?解析:我们可以设甲、乙、丙一起做需要x天。
根据题目可得以下等式:1/10 + 1/15 + 1/20 = 1/x为了简化计算,我们可以找到这三个数的最小公倍数,即300。
然后,我们可以将等式两边都乘以300,得到以下等式:30 + 20 + 15 = 300/x化简后得到:65 = 300/x解这个方程可以得到x = 300/65 ≈ 4.61所以,甲、乙、丙三个人一起做需要约4.61天。
七年级数学思维训练(共10套)5(2)
七年级数学思维训练(共10套)(第一套)班级______________ 姓名_____________一、选择题:1.a 为任意自然数,包括a 在内的三个连续的自然数,可以表示为 ( )A .a -2,a -1,aB .a -3,a -2,a -1C .a ,a +1,a +2D .不同于A 、B 、C 的形式二、计算题:(动动脑筋,可能会有简便的解题方法!)1.____________________56875=⨯2.____________2006200420022000...12108642=+-+-+-+-+-3.__________________8567785667855678=+++4.()()__________888...6428002...888488868888=++++-++++5.______________125.01712517125625.05.0171251753=⨯-⨯+⨯+ 6.______________12346123451234512345=÷ 7._________________31313131=-+-8._______________99163135115131=++++9._____________20042004...200432004220041=++++10._____________90197218561742163015201412136121=++++++++ 三、应用与创新:1.有一高楼,每上一层需要3分钟,每下一层需要1分30秒。
小贤于下午6时15分开始从最底层不断地向上走,到了最顶层后便立即往下走,中途没有停留,他在7时36分返回最底层。
这座高楼共有多少层?2.回答下列各题:(1)用1、2、3、4、5、6、7、8可组成多少个没有重复数字的五位数?(2)在15个连续自然数中最多有多少个质数?最少有多少个质数?(3)以下是一个数列,第一项是1,第二项是4,以后每一项是前两项相乘的积。
七年级奥数思维训练50题
七年级奥数思维训练50题1. 一个数p 为质数,并且p+10,p+14也是质数,p 是多少?除此之外还有别的数吗?2. 证明:大于12的整数都可以表示成两个合数之和。
3. 请同时取出六个连续的正整数,使它们满足:6个数中任取2个、3个、4个、5个、6个数之和都是合数,并简述理由。
4. 已知x 、y 、z 为整数,且11|(7x +2y −5z)。
求证:11|(3x −7y +12z)。
5. 已知定理:“若三个大于3的质数a 、b 、c 满足关系式2a+5b=c ,则a+b+c 是整数n 的倍数”。
问上述定理中的整数n 的最大可能值是多少?说明你的理由。
6. 已知六位数N 的前三位组成的数与后三位组成的数之和能被111整除。
求证:111|N 。
7. 若a 、b 、c 为整数,且|a −b |19+|c −a |99=1试求|c −a|+|a −b|+|b −cl 的值。
8. 海边有一堆苹果,第一只猴子拿走15,扔掉一个;第二只猴子又拿走剩下的15,扔掉一个;第三只猴子又拿走剩下的15,再扔掉一个。
试用代数式表示所说的意思及剩下的苹果数。
9. 父亲和儿子在100米的跑道上进行赛跑,已知儿子跑5步的时间父亲能跑6步,儿子跑7步的距离与父亲跑4步的距离相等.现在儿子站在100米的中点处,父亲站在100米跑道的起点处同时起跑.问父亲能否在100米的终点处超过儿子?并说明理由。
10. 一个负有理数a 在数轴上的位置为A ,那么在数轴上与A 相距d个单位(d>0)的点中,与原点距离最远的点所对应的数是多少?11.某城镇沿环形路上依次排列有五所小学:A1、A2、A3、A4、A5,它们顺次有电脑15台、7台、11台、3台、14台,为使各校的电脑数相同,允许一些小学向相邻小学调出电脑,问怎样调配才能使调出的电脑总台数最少?并求出电脑的最少总台数。
12.张三、李四和王五三人各有若干两金子,要求互相赠送。
先由张三给李四和王五,所给的金子数等于李四、王五原来各有的,依相同的方式再由李四给张三和王五现有金子数,后由王五给张三和李四现有金子数,互送后每人恰好有64两,问原来三人各有金子多少两?13.培育学校初一7班计划用班会费的66元钱,同时购买平价分别为3元、2元、1元的甲、乙、丙三种笔记本,奖励成绩好的同学,已知购买乙种笔记本的本数比购买甲种笔记本的本数多2本,而购买甲种笔记本的本数不少于10本,且购甲种笔记本的费用不超过总费用的一半,若购买的甲、乙、丙三种笔记本恰好用了66元,问可有几种购买方案,每种方案中购买的甲、乙、丙三种笔记本各多少本?14.有五位小朋友,他们是小明,小红,小华,小青,小琪,他们分别有苹果15个,7个,11个,3个,14个,现要使每位小朋友的苹果数相等,各调几个给邻友:小明给小红,小红给小华,小华给小青,小青给小琪,小琪给小明,若甲给乙一2个,即为乙给甲2个,要使移动的总数最小,应作怎样安排?15.某人从家到商店买东西,三分之一的路程骑自行车,三分之二的路程步行;返回时,三分之一的时间骑自行车,三分之二的时间步行,已知骑车速度为12千米/小时,步行速度为3千米/小时,且去时比返回时所用时间多3小时,那么家到商店的距离是多少千米?16.某人沿着向上移动的自动扶梯从顶朝下走到底用了7分30秒,而他沿着自动扶梯从底朝上走到顶只用了1分钟30秒,那么此人不走,乘着扶梯从底到顶需要用几分钟?又若停电,此人沿扶梯从底走到顶需几分钟(假定此人上、下扶梯的行走速度相同)。
初中数学思维训练题目
初中数学思维训练题目数学是一门需要思维的学科,通过解题可以培养学生的逻辑思维能力和解决问题的能力。
在初中数学学习中,思维训练题目是非常重要的一部分。
下面我将为大家介绍一些初中数学思维训练题目,希望能够帮助大家提升数学思维能力。
一、逻辑思维题1. 在一条直线上,有三个点A、B、C。
已知AB的长度是2,BC的长度是3,问AC的长度是多少?解析:根据直线上的三点共线的性质,可以得知AC的长度等于AB和BC长度的和,即AC=AB+BC=2+3=5。
2. 有两个相同的容器,容器A中装满了水,容器B中只有一半的水。
现在需要将容器A中的水倒入容器B,使得容器B中的水正好装满。
问应该倒入容器B的水量是容器A中的多少?解析:由题意可知,容器B中只有容器A水量的一半,所以应该将容器A中的一半水倒入容器B,即容器A的水量的一半。
二、推理思维题1. 有一张长方形的纸片,将纸片的一角剪掉后,剩下的形状是什么?解析:纸片的形状是长方形,将一角剪掉后,剩下的形状仍然是长方形。
2. 有两个容器,一个容器中装满了水,另一个容器是空的。
现在需要将容器A中的水倒入容器B,但是只能使用一个空杯子。
请问如何操作才能将水倒入容器B?解析:可以借助空杯子,将容器A中的水先倒入空杯子,然后再将空杯子中的水倒入容器B。
三、创新思维题1. 有一条长为10米的绳子,需要将它分成两段,其中一段的长度是另一段的2倍。
请问应该如何分割绳子?解析:假设绳子的一段长度为x米,则另一段的长度为2x米。
根据题意,x+2x=10,即3x=10,解得x=10/3。
所以应该将绳子分成长度为10/3米和20/3米的两段。
2. 有一堆石头,其中有一块石头比其他的石头更重。
现在只有一个天平,可以使用三次称重的机会。
请问如何找出那块更重的石头?解析:首先将石头分成三堆,分别取两堆放在天平的两边进行第一次称重。
如果天平平衡,说明那块更重的石头在第三堆中;如果天平不平衡,说明那块更重的石头在较重的一边。
初一数学逻辑思维训练题
以下是一些初一数学逻辑思维训练题,这些题目旨在考察
学生的数学逻辑思维和推理能力。
1. 填空题:一个两位数,如果它的十位数字是3,个位
数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1-6)
朝上一面的数字,任意抛掷这枚骰子,得到的两位数是3的
倍数的可能性是( )。
2. 选择题:下列四个算式中,结果最大的是( )。
A. 12×(1/4)
B. 12÷(1/4)
C. 12×4
D. 12÷4
3. 选择题:若a、b互为相反数,c、d互为倒数,则(a
+ b)^2022 + (-cd)^2023 = ( )。
A. 0
B. 1
C. -1
D. 2022
4. 解答题:有长度为1,2,3,4,5,6,7,8,9的线段各一条,选其中的三条线段围成一个三角形。
三角形的边长可能是哪些?请列举出所有可能的边长。
5. 解答题:有五根木条,它们的长度分别是1厘米、2
厘米、3厘米、4厘米、5厘米,从它们当中选出3根木条围
成一个三角形,一共可以围成多少种不同的三角形?
这些题目需要学生运用逻辑思维和推理能力来解答,通过
深入思考和仔细分析,找到正确的答案。
七年级思维训练80题(含答案),拔高数学思维能力
1. 计算:七年级思维训练80题(含答案),拔高数学思维能力111113355720212023________. 2. 已知20212021202120222022202220232023202320202020+2020202120212021202220222022a b c,,,则abc ________.3. 123499910001001(1)1(1)1(1)1(1) 的值是________.4. 设11112018201920202050M,则1M的整数部分是________. 5.计算:44444444441032422324343244632458324432416324283244032452324 =________.6.已知5555284110133144□,其中□里的数字是________.7.哪些连续正整数之和为1000?试求出所有的解.8.2023减去它的12,再减去余下的13,再减去余下的14,以此类推,一直到最后减去余下的11000,最后的结果为________.9.n个正数的乘积的n次方根称为这n个数的几何平均数.喜羊羊写了4个数,这4个数的几何平均数是2048;美羊羊也写了4个数,这4个数的几何平均数是8.那么,喜羊羊和美羊羊写的这8个数的几何平均数是________.10.有下列三个命题:(1)若α,β是不相等的无理数,则αβ + α – β是无理数;(2)若α,β是不相等的无理数,则是无理数;(3)若α,β是无理数.其中正确的命题个数是________.11. 如果a ,b ,c 是三个任意整数,那么2a b ,2a c ,2b c( ). A. 都不是整数B. 至少有两个整数C. 至少有一个整数D. 都是整数12. 有理数m ,n 在数轴上的位置如图所示,在m n ,m n ,n m ,m n 中正数的个数是________.13. 如果实数a ,b ,c 在数轴上的位置如图所示,那么代数式||||a b b c 可以化简为( ).A. 2c – aB. 2a – 2bC. –aD. a14. 把4个不同的整数两两相加得到6个和,并且这6个和是5个互不相同的数:23,26,29,32和35.那么这4个整数中最大的是________.15. 从1~26这26个整数中取出两个数,选出的两个数相乘所得的积正好是剩余的24个数之和.选出的两个数分别是________和________.16. 已知a – b = 4,ab + c 2 + 4 = 0,则a + b = ________.17. 已知a 、b 、c 是实数,且13ab a b ,17bc b c ,112ac a c ,则acbc ab abc=________.18. 已知 | x | + x + y =5,x + | y |-y = 10,则 x + y 的值是________.19.________.20. 222 − 4有________个不同的质因数.21. 已知x 是实数,则(x 2-4x +3)(x 2+4x +3)的最小值是________.22. 若实数a ,b ,c 满足等式36b ,96b c ,则c 可能取的最大值为________.23. 已知x ,y 是非负整数,且满足4(2)34x y ,那么满足条件的x + y 的最大值是________.24. 若正整数x ,y ,z 满足11145x y z ,则xyz 的最大值是________.25. 231x x x 的最小值是________.26. 满足24x y y 的整数对(x ,y )有________个.27. 设a 是整数,关于x 的方程12x a 只有三个不同的整数解,求这三个解.28. 若a 为整数,则关于x 的方程(a – 1) x = a + 1的所有整数解的和是________.29. 已知x 与y 使得x + y ,x – y ,xy ,x y四个数中的三个相等,则这样的数对(x ,y )有________对.30. 若关于x ,y 的二元一次方程组 132kx y bk x y 有无穷多组解,则22k b 的值为________.31. 若[x ]表示不超过x 的最大整数,且满足方程3x + 5[x ] – 49 = 0,则3x +1=________.32. 如果关于x 的不等式组9080x a x b 的整数解仅有1,2,3,那么整数a ,b 组成的有序数对(a ,b )共有________对.33. 如果关于x 的不等式组100x x a无解,则a 的取值范围是________.34. 在1~100的自然数中与10互质的自然数共有________个.35. 已知三个质数a ,b ,c 满足133a b c ab bc ac ,则abc =________.36.已知三位数abc能被5整除,但不能被6和7整除;三位数cba能被6整除,但不能被5和7整除;三位数cab能被7整除,但不能被5和6整除,则abc =________.37.九位数ABCABCBBB能被1~17中的任意整数整除,且A,B,C是不同的数字,则九位数ABCABCBBB是________.38.乘积376×733的个位数字是________.39.四位数aabb是一个整数的平方,aabb=________.p 的不同正因数的个数不超过10,则满足题意的p 40.已知p是质数,且271的个数是________.41.如图所示有4种类型的几何体,每个几何体都是由4个单位正方体组成.选出8个同类型的几何体,把它们组合成一个2×4×4的长方体.可以完成组合的几何体有________种类型.42.已知圆环内直径为a厘米,外直径为b厘米,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为________厘米.43.设有一个边长为1的正三角形,记作A1(如图1),将A1的每条边三等分,以中间的线段为一边向形外作正三角形,去掉中间的线段后所得到的图形记作A2(如图2);将A2的每条边三等分,并重复上述过程,所得到的图形记作A3(如图3);再将A3的每条边三等分,并重复上述过程,所得到的图形记作A4,那么A4的周长是________.图1 图2 图344. 如图所示,AOB 是一条直线,若1:2:3:41:2:4:5 ,则2 的余角是________度.45. 如图,AB //CD ,那么∠1 –∠2 +∠3 –∠4 +∠5 =________度.46. 如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( ).A .450°B .540°C .630°D .720°47.从一个凸n边形的纸板上剪下一个三角形,剩余的是一个内角和为2160°的多边形,则n最大是________.48.一个凸n边形的内角和小于1998°,那么n的最大值是________.49.如果一个凸多边形的内角和等于外角和的3倍,那么这个多边形的边数是().A.4B.6C.8D.10E.1250.如图所示,在△ABC中,AC=7,BC=4,D为AB中点,E为AC边上一点,且1902AED C,则CE =________.51.在△ABC中,已知BD和CE分别是两边上的中线,并且BD⊥CE,BD=4,CE=6,那么△ABC的面积是________.52.△ABC中,∠A为最小角,∠B为最大角,且2∠B = 5∠A,若∠B的最大值为m°,∠B的最小值为n°,则m + n =________.53.如图,在锐角△ABC中,高线CD,BE相交于点F,若∠A=55°,则∠BFC的度数是________度.54.如图,PQ=PR=QS,线段PR与QS相互垂直,则∠PRQ与∠PSQ度数之和是________度.55.在平行四边形ABCD中,AD = 2AB,点M是AD的中点,CE⊥AB于E.如果∠CEM = 40°,那么∠DME的值是().A.150° B.140° C.135° D.130°56.若长方形内有一点P,点P到各边的距离从小到大依次为1,2,5,6则长方形面积最小为________.57.如图所示的4×5的方格图中,过格点P的直线与方格图上、下边界相交形成的直角梯形ABCD(其中AB<CD)的面积最大是________.58. 如图,CD 是Rt △ABC 斜边AB 上的高,∠BAC 的平分线AE 交CD 于H ,交∠BCD 的平分线CF 于G .求证:HF ∥BC .59. 由8个相同的小正方体搭成的一个几何体,俯视图如下,那么这个几何体的左视图一定不是( ).60. 若n 个人完成一项工程需要m 天,则(m +n )个人完成这项工程需要( )天. A.nm mnB.m nm nC.m nmnD.2mnm n61. 一个商人用m 元(m 为正整数)买来了n 台(n 为质数)电视机,其中有两台以成本的一半价钱卖给某个慈善机构,其余的电视机在商店出售,每台盈利500元,结果该商人获得利润为5500元,则n 的最小值是________.62. 某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是________%. (注:100% 销售价进价利润率进价)63. 小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的最大值是________.64. 图书馆内,在标有号码1,2,3,4的书架上分别有书120,135,142,167本.若干天后,每个书架上都各被借出a 本书,又过了若干天,四个书架又分别被借出0,b ,c ,d 本书,并且四个书架上余下同样本数的书. 若b ,c ,d ≥1,b +c +d =a ,则两次借出书后,1号书架剩有________本书.65.五个不同的数,两两之和依次等于3,4,5,6,7,8,11,12,13,15 则这五个数的平均数是________.66.王明在早晨六点至七点之间外出晨练,锻炼时长不超过一小时,出门和回家的时候,时针与分针的夹角都是110°.则王明晨练的时间为________分钟.67.某人骑车沿直线旅行,先前进了a千米,休息了一段时间,又原路返回b千米(b﹤a),再前进c千米,则此人离起点的距离S与时间t的关系示意图是().68.某届运动会的十一天的比赛中,醒狮队拿了16块金牌,其中每天至少拿一枚金牌,则醒狮队拿金牌的不同的情况可能有________种.(假设金牌都是一样的)69.将正方形的每条边8等分,再以这些分点为顶点(不包括正方形的顶点),可以得到不同的三角形的个数是________.70.口袋中装有20个只有颜色不同其他都相同的球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么这样取法有________种.71.将若干红黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放________个球.72.在{1000,1001,1002,…,2000}中有________对相邻的数满足下列条件:每对中的两数相加时不需要进位.73.试求所有满足如下性质的四元实数组(a,b,c,d):组中的任一数都等于其余三个数中某两个数的乘积.(注:四元实数组中的数相同,顺序不同,算作同一组)74.将三位数A各个数位上的数字重新排列,得出的所有数的算术平均值等于A.这样的三位数A共有________个.75.如图,6个人围成一圈做传球游戏,每个人接到球后传给和他不相邻的某一人(如:A接到球后可以传给C、D或E),开始时,球在A的手中,若球被传递三次后又回到A,此种情况出现的概率是________.76.如图,△ABC中,D、E分别是边BC、AC的中点,从这8个图形△ABD、△ACD、△ABE、△BCE、△GAB、△GAE、△GBD、四边形CEGD中任取2个图形,取出的2个图形面积相等的概率是________.77.按如图的程序进行操作,规定:程序运行从“输入一个值x”到“结果是否>487?”为一次操作.如果操作进行四次才停止,那么x的取值范围是________.78.如图是一个正方体的平面展开图,若该正方体相对的两个面上的代数式的值相等,则x – y – z的值是________.79. 设)(n f 为正整数n (十进制)的各数位上的数字的平方之和,如14321)123(222 f .记)()(1n f n f ,))(()(1n f f n f k k ,k =1,2,3……,则2016(2016)f 的值是________.80. 有16枚棋子,都是一面黑色,另一面白色,放在4×4的正方形网格里.最初,所有棋子都是黑面朝上.规定:每次操作,将一个2×2正方形中的4枚棋子都正反面翻转一次.那么,要得到如图所示的排列,至少需要经过________次操作.1.计算:7年级思维训练80题答案1111 13355720212023________.答案:1011 20232.已知202120212021202220222022202320232023 20202020+2020202120212021202220222022 a b c,,,则abc ________.答案:13.123499910001001(1)1(1)1(1)1(1)的值是________.答案:–14.设11112018201920202050M,则1M的整数部分是________.答案:615.计算:4444444444 1032422324343244632458324 432416324283244032452324=________.答案:3736.已知5555284110133144□,其中□里的数字是________.答案:77.哪些连续正整数之和为1000?试求出所有的解.答案:198+199+200+201+202;55+56+...+70;28+29+ (52)8. 2023减去它的12,再减去余下的13,再减去余下的14,以此类推,一直到最后减去余下的11000,最后的结果为________.答案:202310009. n 个正数的乘积的n 次方根称为这n 个数的几何平均数.喜羊羊写了4个数,这4个数的几何平均数是2048;美羊羊也写了4个数,这4个数的几何平均数是8.那么,喜羊羊和美羊羊写的这8个数的几何平均数是________. 答案:12810. 有下列三个命题:(1)若α,β是不相等的无理数,则αβ + α – β是无理数; (2)若α,β是不相等的无理数,则是无理数;(3)若α,β是无理数. 其中正确的命题个数是________. 答案:011. 如果a ,b ,c 是三个任意整数,那么2a b ,2a c ,2b c( ). A. 都不是整数B. 至少有两个整数C. 至少有一个整数D. 都是整数答案:C12. 有理数m ,n 在数轴上的位置如图所示,在m n ,m n ,n m ,m n 中正数的个数是________.答案:213. 如果实数a ,b ,c 在数轴上的位置如图所示,那么代数式||||a b b c 可以化简为( ).A. 2c – aB. 2a – 2bC. –aD. a答案:C14. 把4个不同的整数两两相加得到6个和,并且这6个和是5个互不相同的数:23,26,29,32和35.那么这4个整数中最大的是________. 答案:1915. 从1~26这26个整数中取出两个数,选出的两个数相乘所得的积正好是剩余的24个数之和.选出的两个数分别是________和________. 答案:15,2116. 已知a – b = 4,ab + c 2 + 4 = 0,则a + b = ________.答案:017. 已知a 、b 、c 是实数,且13ab a b ,17bc b c ,112ac a c ,则acbc ab abc=________.答案:11118. 已知 | x | + x + y =5,x + | y |-y = 10,则 x + y 的值是________.答案:119.________.答案:20. 222 − 4有________个不同的质因数.答案:621. 已知x 是实数,则(x 2-4x +3)(x 2+4x +3)的最小值是________.答案:–1622. 若实数a ,b ,c 满足等式36b ,96b c ,则c 可能取的最大值为________. 答案:223. 已知x ,y 是非负整数,且满足4(2)34x y ,那么满足条件的x + y 的最大值是________. 答案:424. 若正整数x ,y ,z 满足11145x y z,则xyz 的最大值是________. 答案:16025. 231x x x 的最小值是________.答案:526. 满足24x y y 的整数对(x ,y )有________个.答案:627. 设a 是整数,关于x 的方程12x a 只有三个不同的整数解,求这三个解.答案:–3,1,528. 若a 为整数,则关于x 的方程(a – 1) x = a + 1的所有整数解的和是________.答案:429. 已知x 与y 使得x + y ,x – y ,xy ,x y四个数中的三个相等,则这样的数对(x ,y )有________对. 答案:230. 若关于x ,y 的二元一次方程组 132kx y bk x y 有无穷多组解,则22k b 的值为________. 答案:531. 若[x ]表示不超过x 的最大整数,且满足方程3x + 5[x ] – 49 = 0,则3x +1=________. 答案:2032. 如果关于x 的不等式组9080x a x b的整数解仅有1,2,3,那么整数a ,b 组成的有序数对(a ,b )共有________对. 答案:7233. 如果关于x 的不等式组100x x a无解,则a 的取值范围是________.答案:1a34. 在1~100的自然数中与10互质的自然数共有________个.答案:4035. 已知三个质数a ,b ,c 满足133a b c ab bc ac ,则abc =________.答案:15436. 已知三位数abc 能被5整除,但不能被6和7整除;三位数cba 能被6整除,但不能被5和7整除;三位数cab 能被7整除,但不能被5和6整除,则abc =________. 答案:67537. 九位数ABCABCBBB 能被1~17中的任意整数整除,且A ,B ,C 是不同的数字,则九位数ABCABCBBB 是________. 答案:30630600038. 乘积376 ×733 的个位数字是________.答案:739. 四位数aabb 是一个整数的平方,aabb =________.答案:774440. 已知p 是质数,且271p 的不同正因数的个数不超过10,则满足题意的p的个数是________. 答案:241. 如图所示有4种类型的几何体,每个几何体都是由4个单位正方体组成.选出8个同类型的几何体,把它们组合成一个2×4×4的长方体.可以完成组合的几何体有________种类型.答案:442. 已知圆环内直径为a 厘米,外直径为b 厘米,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为________厘米. 答案:49a +b43. 设有一个边长为1的正三角形,记作A 1(如图1),将A 1的每条边三等分,以中间的线段为一边向形外作正三角形,去掉中间的线段后所得到的图形记作A 2(如图2);将A 2的每条边三等分,并重复上述过程,所得到的图形记作A 3(如图3);再将A 3的每条边三等分,并重复上述过程,所得到的图形记作A 4,那么A 4的周长是________.图1 图2 图3答案:64944. 如图所示,AOB 是一条直线,若1:2:3:41:2:4:5 ,则2 的余角是________度.答案:6045.如图,AB//CD,那么∠1 –∠2 +∠3 –∠4 +∠5 =________度.答案:046.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=().A.450° B.540° C.630° D.720°答案:B47.从一个凸n边形的纸板上剪下一个三角形,剩余的是一个内角和为2160°的多边形,则n最大是________.答案:1548.一个凸n边形的内角和小于1998°,那么n的最大值是________.答案:1349.如果一个凸多边形的内角和等于外角和的3倍,那么这个多边形的边数是().A.4B.6C.8D.10E.12答案:C50.如图所示,在△ABC中,AC=7,BC=4,D为AB中点,E为AC边上一点,且1902AED C,则CE =________.答案:5.551.在△ABC中,已知BD和CE分别是两边上的中线,并且BD⊥CE,BD=4,CE=6,那么△ABC的面积是________.答案:1652.△ABC中,∠A为最小角,∠B为最大角,且2∠B = 5∠A,若∠B的最大值为m°,∠B的最小值为n°,则m + n =________.答案:17553.如图,在锐角△ABC中,高线CD,BE相交于点F,若∠A=55°,则∠BFC的度数是________度.答案:12554.如图,PQ=PR=QS,线段PR与QS相互垂直,则∠PRQ与∠PSQ度数之和是________度.答案:13555.在平行四边形ABCD中,AD = 2AB,点M是AD的中点,CE⊥AB于E.如果∠CEM = 40°,那么∠DME的值是().A.150° B.140° C.135° D.130°答案:A56.若长方形内有一点P,点P到各边的距离从小到大依次为1,2,5,6则长方形面积最小为________.答案:3357.如图所示的4×5的方格图中,过格点P的直线与方格图上、下边界相交形成的直角梯形ABCD(其中AB<CD)的面积最大是________.答案:1258. 如图,CD 是Rt △ABC 斜边AB 上的高,∠BAC 的平分线AE 交CD 于H ,交∠BCD 的平分线CF 于G .求证:HF ∥BC .答案:证明:由∠DCB =90°-∠B =∠BAC ,知∠HCG =12∠DCB =12∠BAC =∠HAD .而∠CHG =∠AHD ,从而∠CGH =180°-(∠HCG +∠CHG )=180°-(∠HAD +∠AHD )=90°,知AG ⊥CG ,即AG ⊥CF .此时,∠FCA =90°-∠GAC =90°-∠GAF =∠CF A ,故AC =AF ,即点A 在CF 的垂直平分线AG 上.又H 在AG 上,则HC =HF ,即知∠HFC =∠FCH =∠FCB ,故HF ∥BC .59. 由8个相同的小正方体搭成的一个几何体,俯视图如下,那么这个几何体的左视图一定不是( ).答案:C60. 若n 个人完成一项工程需要m 天,则(m +n )个人完成这项工程需要( )天. A.nm mnB.m nm nC.m nmnD.2mnm n答案:A61. 一个商人用m 元(m 为正整数)买来了n 台(n 为质数)电视机,其中有两台以成本的一半价钱卖给某个慈善机构,其余的电视机在商店出售,每台盈利500元,结果该商人获得利润为5500元,则n 的最小值是________. 答案:1762. 某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是________%. (注:100% 销售价进价利润率进价)答案:1763. 小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱将是你的n倍”;小玲对小倩说:“你若给我n元,我的钱数将是你的2倍”,其中n为正整数,则n的最大值是________.答案:864.图书馆内,在标有号码1,2,3,4的书架上分别有书120,135,142,167本.若干天后,每个书架上都各被借出a本书,又过了若干天,四个书架又分别被借出0,b,c,d本书,并且四个书架上余下同样本数的书.若b,c,d≥1,b+c+d=a,则两次借出书后,1号书架剩有________本书.答案:3665.五个不同的数,两两之和依次等于3,4,5,6,7,8,11,12,13,15 则这五个数的平均数是________.答案:4.266.王明在早晨六点至七点之间外出晨练,锻炼时长不超过一小时,出门和回家的时候,时针与分针的夹角都是110°.则王明晨练的时间为________分钟.答案:4067.某人骑车沿直线旅行,先前进了a千米,休息了一段时间,又原路返回b千米(b﹤a),再前进c千米,则此人离起点的距离S与时间t的关系示意图是().答案:C68.某届运动会的十一天的比赛中,醒狮队拿了16块金牌,其中每天至少拿一枚金牌,则醒狮队拿金牌的不同的情况可能有________种.(假设金牌都是一样的)答案:300369.将正方形的每条边8等分,再以这些分点为顶点(不包括正方形的顶点),可以得到不同的三角形的个数是________.答案:313670.口袋中装有20个只有颜色不同其他都相同的球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么这样取法有________种.答案:1671.将若干红黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放________个球.答案:1572.在{1000,1001,1002,…,2000}中有________对相邻的数满足下列条件:每对中的两数相加时不需要进位.答案:15673.试求所有满足如下性质的四元实数组(a,b,c,d):组中的任一数都等于其余三个数中某两个数的乘积.(注:四元实数组中的数相同,顺序不同,算作同一组)答案:(0,0,0,0),(1,1,1,1),(-1,-1,1,1),(-1,-1,-1,1)74.将三位数A各个数位上的数字重新排列,得出的所有数的算术平均值等于A .这样的三位数A 共有________个. 答案:1575. 如图,6个人围成一圈做传球游戏,每个人接到球后传给和他不相邻的某一人(如:A 接到球后可以传给C 、D 或E ),开始时,球在A 的手中,若球被传递三次后又回到A ,此种情况出现的概率是________.答案:22776. 如图,△ABC 中,D 、E 分别是边BC 、AC 的中点,从这 8个图形△ABD 、△ACD 、△ABE 、△BCE 、△GAB 、△GAE 、△GBD 、四边形CEGD 中任取2个图形,取出的2个图形面积相等的概率是________.答案:2777. 按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作.如果操作进行四次才停止,那么x 的取值范围是________.答案:7<x ≤1978. 如图是一个正方体的平面展开图,若该正方体相对的两个面上的代数式的值相等,则x – y – z 的值是________.答案:379. 设)(n f 为正整数n (十进制)的各数位上的数字的平方之和,如14321)123(222 f .记)()(1n f n f ,))(()(1n f f n f k k ,k =1,2,3……,则2016(2016)f 的值是________. 答案:14580. 有16枚棋子,都是一面黑色,另一面白色,放在4×4的正方形网格里.最初,所有棋子都是黑面朝上.规定:每次操作,将一个2×2正方形中的4枚棋子都正反面翻转一次.那么,要得到如图所示的排列,至少需要经过________次操作.答案:6。
【精品】初一数学思维训练
5. 能被 7 整除:
①末三位上数字所组成的数与末三位以前的数字所组成数之差能被
7 整除。
②逐次去掉最后一位数字并减去末位数字的
2 倍后能被 7 整除。
6. 能被 11 整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被
11 整除。
②奇数位上的数字和与偶数位数的数字和的差能被
11 整除。
3 倍,烧完一根细蜡烛要 1 小时,
烧完一根粗蜡烛要 3 小时,同时点燃两根蜡烛多少分钟后两根蜡烛长度相等?
16 某校参加数学竞赛的女生比男生多 28 人, 男生全部得优,女生的 一共有 42 人,男女生参赛的各有多少人?
3 得优,男女生得各加工零件多少个?
62 个,王师傅加工零件个数的 1 比李师傅的 1 少 2 个,两人
21 一车从 A 到 B 如每小时加快 3 千米就可以早 2 小时到达。如每小时减慢 小时到求两地的路程?
3 千米就推迟 3
练习请结合具体题目归纳面积法
22 某次数学竞赛设一、二、三等奖。已知:
(1) 甲、乙两校获一等奖的人数相等;
(2) 甲校获一等奖的人数占该校获奖总人数的百分数与乙校相应的百分数的比为
13 客车从 A 站到 B 站要行 8 小时,货车从 B 站到 A 站要行 10 小时,现在两车同时从两站 相向开出,相遇时客车与货车距离中点 40 千米处相遇, AB 站相距多少公里?
14 出售一件商品, 现由于进货价降低了 8%,使得利润率提升了 10%,求原来出售 这件商品的利润率。
15 有一根粗蜡烛和一根细蜡烛,细蜡烛长度是粗蜡烛的
6 学校准备添置一批课桌椅,原订购 60 套,每套 100 元。店方表示 :如果多购, 可以优惠结果校方购了 72 套,每套减价 3 元,但商店获得同样多的利润。求每 套课桌的成本 ?
初中数学思维训练题
初中数学思维训练题一、填空题Ⅰ:(每题7分,共42分)1.1 1/2 +2 1/3 – 3 1/4 + 4 1/6 = 。
2.若A,1A,2A都是质数,则= 。
(1A 是指十位数字为1,个位数字为A 的两位数)3.请将1—9这九个数填入下图3*3表格中,使第1,2行三数的乘积分别是70,24;第1,2列三数的乘积分别是21,72。
4.计算:100-99+98-97+96-95+……+12-11+10= 。
5.下图中,甲的面积比乙的面积大平方厘米。
6.现有5个数,平均值是100,添上一个数后,平均值增加2,再添上第七个数,平均值又增加2,第七个数是。
二、填空题Ⅱ:(每题8分,共48分)7.1A87A2是2008的倍数,则A = 。
8.一根绳子,对折4次,在三个四等分点上,各剪一刀,将绳子简成若干段小绳子。
这些小绳子有两种长度,其中,较长的绳子有条,较短的绳子有条。
9.2008÷a = b…6,其中a、b都是自然数,则a有种不同的取值。
10.A、B两城相距240千米,一辆汽车原计划6小时从A到B.它每小时应该走千米?实际上汽车行驶了一半路程后,因故在途中停留了1小时.如果要按照原定的时间到达B城,汽车在后半段的速度是。
11.谍报人员从敌人的电台中截获了10个数据:14073,63136,29402,35862,84271,79588,42936,98174,50811,07145。
破译人员知道这是一个五位数的密码,每一组数据与这个密码,都只有一个数位上的数字相同,这个密码是。
12.如图,把大、小两个正方形拼在一起,它们的边长分别是8厘米和6厘米。
那么在左图和右图中阴影部分的面积分别是和平方厘米。
三、解答题Ⅲ:(每题10分,共60分)13.我们用[ ]表示自然数的约数的个数.例如,4有1,2,4三个约数,可以表示成[4]=3.计算: ([18]+[22])÷[7]=____.14.有4支足球队进行单循环比赛,每两队都赛一场。
最新完整版:七年级数学思维训练题
初一数学思维训练题(第一周)班级______________ 姓名_____________ 一、选择题:1.a 为任意自然数,包括a 在内的三个连续的自然数,可以表示为 ( )A .a -2,a -1,aB .a -3,a -2,a -1C .a ,a +1,a +2D .不同于A 、B 、C 的形式二、计算题:(动动脑筋,可能会有简便的解题方法!)1.____________________56875=⨯2.____________2006200420022000...12108642=+-+-+-+-+- 3.__________________8567785667855678=+++4.()()__________888...6428002...888488868888=++++-++++ 5.______________125.01712517125625.05.0171251753=⨯-⨯+⨯+ 6.______________12346123451234512345=÷7._________________31313131=-+-8._______________99163135115131=++++ 9._____________20042004...200432004220041=++++10._____________90197218561742163015201412136121=++++++++三、应用与创新:1.有一高楼,每上一层需要3分钟,每下一层需要1分30秒。
小贤于下午6时15分开始从最底层不断地向上走,到了最顶层后便立即往下走,中途没有停留,他在7时36分返回最底层。
这座高楼共有多少层?2.回答下列各题:(1)用1、2、3、4、5、6、7、8可组成多少个没有重复数字的五位数?(2)在15个连续自然数中最多有多少个质数?最少有多少个质数?(3)以下是一个数列,第一项是1,第二项是4,以后每一项是前两项相乘的积。
七年级的数学思维题
1.小明参加一次马拉松比赛,全程4
2.195公里,他跑了前30公里的
时间是2小时,那么他要跑多久才能完成整个比赛?
2.有一个正方形草坪,边长为10米,现在要在其中设置一个圆形花坛,使得剩下的草坪面积最小,求这个圆形花坛的半径和最小面积。
3.水管里的水从一端到另一端需要15秒钟,如果将水管截为三段,
只保留其中一段,水从这一段流过需要12秒,求这一段管子长度占据了
整个水管长度的百分之几?
4.有5个人,分别抽到数值不同的5张纸牌,现在每个人要将纸牌随
机洗牌,并将自己的手牌排成一排,求可能的不同排列方式的总数。
5.有10个相同的球,其中有一个重量与其他球不同,用天平称两次,求找到这一个重球所用最少的球数和称法。
七年级数学思维训练题
七年级数学思维训练题
以下是一些适合七年级学生的数学思维训练题:
1. 小明和小红同时从甲、乙两地出发相向而行,小明每分钟走60米,小红每分钟走75米,相遇时,小明比小红少走25米,求小明和小红的行程时间各是多少?甲、乙两地的路程有多少米?
2. 甲、乙两人在环形跑道上以各自的不变速度跑步,如果两人同时从同地相背而跑,乙跑4分钟后两人第一次相遇,已知甲跑一周需6分钟,那么乙跑一周需多少分钟.
3. 小王每天晚上10:00睡觉,早上7:00起床,他每天睡多少时.
4. 教室里8盏灯,全部亮着,现在关掉了6盏灯,教室里还有多少盏灯.
5. 小芳晚上9:00睡觉,早上7:00起床,她每天睡多少时.
6. 一列火车上午8:00从甲地开往乙地,晚上11:00到达乙地,火车每小时行75千米,甲乙两地相距多少千米?
7. 小芳从家到学校,每分钟走60米,15分钟就能到学校.如果每分钟走75米,可以提前几分钟到学校?
8. 小刚每天晚上10:00睡觉,早上8:00起床,他每天睡多少时.
9. 小东每天晚上11:00睡觉,早上8:00起床,他每天睡多少时.
10. 一列火车上午9:30从甲地开往乙地,下午4:30到达乙地,火车每小时行75千米,甲乙两地相距多少千米?
这些题目旨在训练学生的数学思维能力和解决实际问题的能力。
7年级数学拓展思维训练题
7年级数学拓展思维训练题以下是一些适合7年级学生的数学拓展思维训练题:1.一家商店进行促销,规定每购买100元商品可以返还20元现金。
小明购买了250元的商品,他最多可以拿到多少返还现金?2.一个长方形的周长是40厘米,长是宽的3倍。
求这个长方形的面积。
3.一个两位数,十位数字是个位数字的2倍,将个位数字与十位数字调换,得到一个新的两位数。
这两个两位数的和是132,求这个两位数。
4.一个三角形和一个平行四边形等底等高,已知平行四边形的面积是25平方厘米,三角形的面积是多少?5.一列火车通过一条长1260米的隧道用了63秒,用同样的速度通过一条长2010米的隧道用了93秒。
求这列火车的速度和车长。
6.一根绳子绕木桩3圈后余下2分米,如果绕4圈还差2分米。
这根绳子有多长?7.一项工程,甲单独做要10天完成,乙单独做要15天完成。
两人合做这项工程,多少天后还剩下这项工程的1/4?8.一个数去除55l0,8120,13115,16395这4个数,余数都相同。
问这个数最大可能是多少?9.有50名学生参加联欢会。
第一个到会的女生同全部男生握过手,第二个到会的女生只差一个男生没握过手,第三个到会的女生只差二个男生没握过手,……就这样,最后一个到会的女生同7个男生握过手,问这50名同学中有多少个男生?10.甲乙丙丁四人共同购买了一台液晶电视。
已知甲出的钱是其它三人总钱数的1/3,乙出的钱是其余三人总钱数的1/4,丙出的钱是其余三人总钱数的1/5,丁出了2070元,则这台电视的价格是多少元?这些问题涵盖了不同的数学领域和难度级别,旨在帮助学生提高他们的数学思维和解决问题的能力。
七年级数学思维训练题
七年级数学思维训练题在七年级的数学学习中,培养学生的数学思维能力是非常重要的。
数学思维训练题是一种常见的练习方式,通过解决一系列的问题,可以帮助学生提高他们的逻辑思维、推理能力以及解决问题的能力。
本文将针对七年级数学思维训练题进行讨论和解答,帮助学生更好地理解和掌握相关知识。
1. 一只小猴子从一棵树上摘了三个桃子,然后将桃子分成相等的三堆。
第一堆的桃子比第二堆多一个,第二堆的桃子比第三堆多一个。
问小猴子一共摘了多少个桃子?解析:假设第三堆的桃子有x个,根据题意可以得出第二堆的桃子有x+1个,第一堆的桃子有x+2个。
根据题意,三堆桃子的总数等于x+(x+1)+(x+2)=3x+3个。
由于小猴子一共摘了三个桃子,所以3x+3=3,解得x=0。
所以第三堆桃子有0个,第二堆桃子有1个,第一堆桃子有2个。
因此小猴子一共摘了2+1+0=3个桃子。
2. 甲、乙、丙三个数的和是17,其中甲和乙的和是丙的两倍,丙的两倍与乙的和的和是甲的四倍。
求甲、乙、丙三个数。
解析:设甲、乙、丙分别为x、y、z,根据题意可以得到以下等式:x + y + z = 17x + y = 2z2z + (x + y) = 4x将第一个等式代入第二个等式中,得到x + y = 2z,将x + y的值代入第三个等式中,得到2z + 2z = 4x,即4z = 4x,可以得出z = x。
代入第一个等式中,得到2x + z = 17,化简得到3x = 17,解得x = 17/3。
将x的值代入第二个等式中,得到y = 2z - x = 2(17/3) - 17/3 = 17/3。
所以甲、乙、丙三个数分别为17/3、17/3、17/3。
3. 有一只小猫和一只小狗一起玩,小猫的年龄是小狗的一半,当小猫6岁的时候,小狗多少岁?解析:假设小狗的年龄为x岁,根据题意可以得到以下等式:x = 2 * 6x = 12所以小狗的年龄为12岁。
4. 甲、乙、丙三个数的和是24,其中甲和乙的和是丙的两倍,丙的两倍与乙的和的和是甲的三倍。
7年级上册思维题
7年级上册思维题一、有理数运算相关思维题1. 计算:公式解析:我们可以将相邻的两项看作一组,例如公式,公式,公式等等。
从1到100共有100个数,两两一组,可以分成公式组。
所以原式的值为公式。
2. 若公式,求公式的值。
解析:因为绝对值一定是非负的,一个数的平方也是非负的。
要使公式成立,那么必须满足公式且公式。
由公式可得公式,即公式;由公式可得公式,即公式。
所以公式。
二、整式相关思维题1. 已知多项式公式,公式,求公式。
解析:将公式,公式代入公式中。
得到公式。
展开式子:公式。
合并同类项:公式。
2. 若关于公式的多项式公式的次数是2,求公式和公式的值。
解析:因为多项式的次数是由次数最高的项的次数决定的。
已知这个多项式的次数是2。
对于公式,由于多项式的次数为2,所以公式的系数公式,解得公式。
同时,公式,因为只有当公式时,多项式中最高次项的次数才是2。
三、一元一次方程相关思维题1. 解方程:公式解析:设公式,则原方程可化为公式。
移项可得公式,即公式,解得公式。
因为公式,所以公式。
方程两边同时乘以2得公式。
解得公式。
2. 某班有学生45人,会下象棋的人数是会下围棋人数的3.5倍,两种棋都会及两种棋都不会的人数都是5人,求只会下围棋的人数。
解析:设会下围棋的有公式人,则会下象棋的有公式人。
全班人数等于会下象棋的人数加上会下围棋的人数减去两种棋都会下的人数再加上两种棋都不会下的人数。
可列方程:公式。
合并同类项得公式。
解得公式。
只会下围棋的人数等于会下围棋的人数减去两种棋都会下的人数,即公式人。
初一数学思维测试题及答案
初一数学思维测试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于它本身,那么这个数可能是:A. 1B. -1C. 0D. A和C3. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数C. 非负数D. 非正数4. 以下哪个表达式的结果不是整数?A. \( \frac{7}{2} \)B. \( 5 - 3 \)C. \( 4 \div 2 \)D.\( 3 + 4 \)5. 一个数的相反数是它自己,这个数是:A. 0B. 1C. -1D. 2二、填空题(每题2分,共10分)6. 一个数的平方是16,这个数可能是______。
7. 如果\( a \)和\( b \)互为相反数,那么\( a + b = _______ \)。
8. 一个数的绝对值等于4,这个数可能是______。
9. 一个数的立方等于它自身,这个数可能是______。
10. 如果\( x \)是最小的正整数,那么\( x + 1 \)是______。
三、解答题(每题5分,共20分)11. 已知一个数的立方是-27,求这个数。
12. 一个数的平方加上8等于这个数本身,求这个数。
13. 一个数的绝对值是它自己,这个数可能是哪些?14. 如果\( x \)是最小的正整数,\( y \)是最大的负整数,求\( x- y \)。
四、应用题(每题10分,共30分)15. 一个班级有40名学生,其中一半是男生。
如果班级平均成绩是85分,求男生的平均成绩。
16. 一个长方形的长是宽的两倍,面积是48平方厘米。
求长方形的长和宽。
17. 一个数列的前三项是1, 3, 6,每一项都是前一项的两倍。
求第10项的值。
五、结束语通过以上初一数学思维测试题的练习,同学们可以检验自己的数学基础知识和逻辑思维能力。
希望这些题目能够帮助大家更好地理解和掌握数学概念,提高解题技巧。
数学是一门需要不断练习和思考的学科,希望同学们能够保持好奇心和探索精神,不断挑战自己,享受数学带来的乐趣。
初一数学思维训练题
初一数学思维训练题(第一周)班级______________ 姓名_____________ 一、选择题:1.a 为任意自然数,包括a 在内的三个连续的自然数,可以表示为 ( )A .a -2,a -1,aB .a -3,a -2,a -1C .a ,a +1,a +2D .不同于A 、B 、C 的形式二、计算题:(动动脑筋,可能会有简便的解题方法!)1.____________________56875=⨯2.____________2006200420022000...12108642=+-+-+-+-+- 3.__________________8567785667855678=+++4.()()__________888...6428002...888488868888=++++-++++5.______________125.01712517125625.05.0171251753=⨯-⨯+⨯+ 6.______________12346123451234512345=÷7._________________31313131=-+-8._______________99163135115131=++++ 9._____________20042004...200432004220041=++++ 10._____________90197218561742163015201412136121=++++++++三、应用与创新:1.有一高楼,每上一层需要3分钟,每下一层需要1分30秒。
小贤于下午6时15分开始从最底层不断地向上走,到了最顶层后便立即往下走,中途没有停留,他在7时36分返回最底层。
这座高楼共有多少层?2.回答下列各题:(1)用1、2、3、4、5、6、7、8可组成多少个没有重复数字的五位数?(2)在15个连续自然数中最多有多少个质数?最少有多少个质数?(3)以下是一个数列,第一项是1,第二项是4,以后每一项是前两项相乘的积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学思维训练题(第一周)班级 _______________ 姓名 _________________________ 一、选择题:1. a 为任意自然数,包括 a 在内的三个连续的自然数,可以表示为( )A . a — 2, a — 1, a C . a , a + 1, a + 2、计算题:(动动脑筋,可能会有简便的解题方法!)875 56 二2 - 4 6 - 8 10 -12 …-2000 2002 -2004 2006 二 5678 6785 7856 8567 -8888 8886 8884 ... 8002 [「[2 4 6 ... 888 二 51212 12 3 5 0.5 0.625 5 5 0.12517 1717171234512345 “12345 竺上12346 1 3——3丄丄丄1111167 8 9—= 2030 42 56 72 90三、应用与创新:1 .有一高楼,每上一层需要 3分钟,每下一层需要 1分30秒。
小贤于下午 6时15分开始从最底层不断地向上走,到了最顶层后便立即往下走,中途没有停留,他在 7时36分返回最底层。
这座高楼共有多少层?2. 回答下列各题:(1 )用1、2、3、4、5、6、7、8可组成多少个没有重复数字的五位数? (2) 在15个连续自然数中最多有多少个质数?最少有多少个质数?(3) 以下是一个数列,第一项是 1,第二项是4,以后每一项是前两项相乘的积。
求 第2004B . a — 3, a — 2, a — 1 D .不同于A 、B 、C 的形式3 15 35 63 99丄丄20042004 •丄200420042004 10. 1 112— 3 4 6 12项被7除的余数。
项数 第1项 项 …… 第2004项 数字 1464……?初一数学思维训练题(第二周)2005.9班级 _______________ 姓名 _______________________ 一、填空题:1 •已知4个矿泉水的空瓶可换矿泉水一瓶, 现有15个矿泉水空瓶,若不交钱,最多可换 ______________ 瓶矿泉水喝。
2 .有A 、B 、C 、三种不同的树苗若干,现要将它们植在如图所示的四个正方形空地中,要求:相邻的两棵不能相同,而对角的两棵可以相同,问共有多少种不同的植法? _________________14 .若分数 丄的分子加上a ,则它的分母上应加 ______________ 才能保证分数的值不变。
m、计算题:3 6 6 12 9 18 12 24 15 30、应用与创新:1. 某办事处由 A 、B 、C 、D 、E 、F 六人轮流值夜班,规定轮班次序是 A T B D T E T F T A TB ……,在2005年的第一个星期里,元月 1日恰是星期六,由 A 值班,问2005 年9月1日是谁值日? 2. 1898年6月9日英国强迫清政府签约将香港 975.1平方公里土地租借给英国 99年,1997年7月1日香港回归祖国,中国人民终于洗刷了百年耻辱,已知 1997年7月1日是 星期二,那么1898年6月9日是星期几?(注: 公历纪年,凡年份是 4的倍数但不是100的倍数的那年为闰年,年约为400的倍数的那么也为闰年,闰年的二月有 29天,平年的二月有 28天。
) 3. 一次考试有若干考生,顺序编号为 1、2、3 ,考试那天有一人缺考,剩下考 生的编号和为2005,求考生人数以及缺考的学生的编号。
初一思维训练题(第三周)2005.9.15163个车站方可到达 B 站,那么在A 、B 两站之间共 2. 3.a b j 亠 i2a 2b ... 8a 8b 1+丄+1+2 2 42 46丄.丄.丄1 6 6 11 11 16+2 4 6 ... 100 51 564.2 3 4 6 6 9 8 12 10 15 班级 ________________ 一、填空题:姓名 ________________3 .乘火车从A 站出 安排 _____________1. 若 b = a + 5, b = c + 10,贝U a 、c 的关系是 ________________ 。
2•如果一个自然数a 与另一个自然数b 的商恰好是其中一个数,那么b = _____________ ,或者满足条件 ______________________________3. 若|a — 1| = 1 — a ,那么a 的取值条件是 _______________________ 。
4. __________________________________________________________ 若|a + b| = |a + |b|,那么a 、b 应满足的条件是 ____________________________________ 。
5. a 、b 、c 在数轴的位置如图所示, 则化简:|a — |a + b|+ |c — b|+ |a + c|的结果 是 _________________ 。
a b o 〉c6. 若 |x — 2|+ |y + 1| = 0,贝y x = ____________ , y = _____________ 。
二、 化简:1 .若 x < — 2,试化简:|x + 2|+ |x — 1| 2. 若 x < — 3,化简:|3+ |2— |1 + x||| 三、 解方程:1. |2x — 1| = 3 四、应用与创新:1. 仿照下面的运算 例:(x + 2)( y + 3) =x •(y + 2)+ 2 (y + 3)=x y + 2x + 2y + 6(1) ( a + 21)( a — 9)= (2) ( a + b ) 2 = (3) ( a + b + c ) 2 =2. 圆周上有m 个红点,n 个蓝点,(m H n ),当中相邻两点皆红色的有a 组, 当中相邻两点为蓝色的有b 组,试说明m + b = n + a 这个等式是成立的。
3. 在1、2、3、……、2005这2005个数的前面任意添加一个正号或负号,组 成一个算式,能否使最后的结果为0,如能,写出其表达式;如不能,请说明理由初一数学思维训练题(第四周)2005.9.22班级 _______________ 姓名 ______________________一、判断:① a m • a n = a m +n (m 、n 是正整数,a 是有理数) 购(a - b ) n = a n • b n ( ) 3( a m ) n = a mn ()④a m 十a n = a m —n (其中 m>n , a H 0)( )2. |2x — 5| = |x — 1|(乘法对加法的分配律) (乘法的分配律、交换⑤旦竺上b d bd .竺bdad 二bebda c a d ad z 、 ⑥( )b dbebe⑦ a + b —定大于a — b ( ) ⑧ 任何数的平方都是正数( )⑨ x 的倒数是-()x ⑩4与一5互为负倒数( )543. (— 0.2) 6 • 5006 —(— 1.25) 3 •(8000) 3 5.(— 0.125) 15X( 215) 336 .已知 2a — b = 4,求 2 (b — 2a ) —( b — 2a )三、应用与创新:1. 将一个正整数分成若干个连续整数的和 例:①15 = 3X 515 = 4+ 5+ 6或 15 = 1 + 2 + 3 + 4+ 5 ② 10 = 5X 210 = 1+ 2+ 3+ 4③8 = 2X 2X 2 (无奇因数8不能拆分成若干个连续整数之和 试将下列各整数进行拆分: ① 2005 ②2008 ③ 642. 1000以内既不能被5整除,也不能被7整除的自然数共有多少个?3 .试说明在数12008的两个0之间无论添多少个3,所得的数总可以被19整 除。
初一数学思维训练题(第五周)2005.10班级 _______________ 姓名 __________________________一、判断:1. 52 = 5X 2 ................................................................................................................... ( )2. 54 = 45 ....................................................................................................................... ( )3. ( 5ab ) 2=10a 2b 2 ................................................................................................... ( )4. 32x 5y 5 = (2xy ) 5 ..................................................................................................... ( )5. ( 2+ 3) 2 = 22+ 32 ................................................................................................. ( )6. ( a + b )( a — b ) = a 2 — b 2 ................................................................................... ( )7. ( a + b ) 2 = a 2+ 2ab + b 2 ..................................................................................... () x 38 .由 3x = 2y 可得-=- ........................................................ ()y 21.SI 2.;,2^C! ;,25+< 4 812 丿 I 7丿< 2丿 I 3丿< 6丿113丿 \、 5丿2+ 2 (2a — b ) + 1 的值、计算:4.于 J999厂.2000、计算:1 . 100 • 10n TO”1 3.(— 32)n +1- 16X( -2) 2(n 是奇数) 三、应用与创新:1. 去括号法则:去掉紧接在正号后面的括号时,括号里的各项都不变,去掉 紧接负号后边的括号时,括号里的各项都要变号。