8字模型与飞镖模型
第一章 8字模型与飞镖模型(初中数学)
OD C BA 图12图E AB C D E F DC B A O O 图12图E AB C D EDC B A H GEF DC BA第一章 8字模型与飞镖模型模型1 角的“8”字模型 如图所示,AB 、CD 相交于点O , 连接AD 、BC 。
结论:∠A+∠D=∠B+∠C 。
模型分析8字模型往往在几何综合 题目中推导角度时用到。
模型实例观察下列图形,计算角度:(1)如图①,∠A+∠B+∠C+∠D+∠E= ; (2)如图②,∠A+∠B+∠C+∠D+∠E+∠F= 。
热搜精练1.(1)如图①,求∠CAD+∠B+∠C+∠D+∠E= ; (2)如图②,求∠CAD+∠B+∠ACE+∠D+∠E= 。
2.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H= 。
D C BA M D CB A O135E FD C BA 105OO120D C B A 模型2 角的飞镖模型 如图所示,有结论: ∠D=∠A+∠B+∠C 。
模型分析飞镖模型往往在几何综合 题目中推导角度时用到。
模型实例如图,在四边形ABCD 中,AM 、CM 分别平分∠DAB 和∠DCB ,AM 与CM 交于M 。
探究∠AMC 与∠B 、∠D 间的数量关系。
热搜精练 1.如图,求∠A+∠B+∠C+∠D+∠E+∠F= ;2.如图,求∠A+∠B+∠C+∠D = 。
O DC BA ODCB AO C B A模型3 边的“8”字模型如图所示,AC 、BD 相交于点O ,连接AD 、BC 。
结论:AC+BD>AD+BC 。
模型实例如图,四边形ABCD 的对角线AC 、BD 相交于点O 。
求证:(1)AB+BC+CD+AD>AC+BD ;(2)AB+BC+CD+AD<2AC+2BD.模型4 边的飞镖模型 如图所示有结论: AB+AC>BD+CD 。
OC B A ED C B A21P A BCP 图3A BC P 图21图PB模型实例如图,点O 为三角形内部一点。
三角形角度计算之八字型与飞镖模型.ppt
如图,求∠A+∠B+∠C+∠D=
解析:如图所示,连接BD ∠AED=∠A+∠3+∠1 ∠BFC=∠2+∠4+∠C ∠A+∠ABF+∠C+∠CDE =∠A+∠3+∠1+∠2+∠4+∠C=∠AED+∠BFC=220°
4、 如图,点O为△ABC内部一点 求证:(1)2(AO+BO+CO)>AB+BC+AC; (2)AB+BC+AC>AO+BO+CO
模型三:边的 8字模型
如图所示,AC,BD相交于点O 连接AD,BC结论:AC+BD>AD+BC
模型分析: ∵OA+OD>AD OB+OC>BC 以上两式进行相加即可得到 OA+OD+OB+OC>BC+AD 即AC+BD>AD+BC
例题讲解:
如图,四边形ABCD的对角线AC,BD相交于点O 求证:(1)AB+BC+CD+AD>AC+BD (2)AB+BC+CD+AD<2AC+2BD.
解析:( 1)∵ AB+BC >AC CD+AD >AC AB+AD >BD BC+CD >BD 以上式子相加即可得到 AB+BC+CD+AD >AC+BD (2)∵AD<OA+OD BC<OB+OC 两式相加即可得到 AD+BC<OA+OD+OB+OC ∴AD+BC< AC+BD( 边的8字模型 ) 同理可证: AB+CD<AC+BD ∴AB+BC+CD+AD< 2AC+2BD
三角形知识点飞镖模型及8字形
边的关系 1. 飞镖 模型
AB + AC > BD + CD
2. 8 字 模型
AD + BC > AB + CD
注意: 飞镖 模型 先证明再应用 8 字 模型的结论可以在小题中直接应用,但是在大题中必
角形
一 基本概念 1.定义:由 在同一条直线 2.表示方法: ∆ABC
的 条线段首尾 次连接组成的平面图形
3.边: 定义:组成 角形的线段 定理:1 角形任意两边之和大于第 边 2 角形任意两边之差小于第 边 4.内角 一个 角形有 3 个内角 定义: 角形 两边所组成的角 定理: 角形 个内角的和等于 180 ° 5.外角 一个 角形有 6 个外角 定义: 角形任意一边 另一边的反向延长线所组成的角 定理:1 2 3 6.分类 锐角 角形 直角 角形 钝角 角形 角形的外角和等于 360° 角形的任意一个外角等于 它 相邻的两个内角的和 角形的任意一个外角大于 它 相邻的任意一个内角
角形 按角分类
等边 角形 角形 按边分类 等腰 角形 边相等——等边 角形 7. 角形相关的线段 角平分线: 条角平分线的交点——内心 中线: 条中线的交点——重心 高线: 条高线的交点——垂心 8.周长 面积 两边相等
二
角的关系 1. 飞镖 模型
∠D = ∠A + ∠B + ∠C
2. 8 字 模型
A字型、8字模型、飞镖模型(解析版)中考数学满分突破
A 字型、8字模型、飞镖模型一、基础知识回顾三角形内角和定理:三角形三个内角和等于180°三角形外角性质:三角形的一个外角等于与它不相邻的两个内角之和。
二、模型的概述:A 字型模型:∠1+∠2=∠A +180°(结论)证明:∵∠1=∠A +∠ACB∴∠1=∠A +180°-∠2∴∠1+∠2=∠A +180°8字模型(基础):∠A +∠B =∠C +∠D (结论)证明:在∆ABO 中,∠A +∠B +∠AOB =180°在∆COD 中,∠C +∠D +∠COD =180°而∠AOB =∠COD∴∠A +∠B =∠C +∠D8字模型(变形):已知线段AP 平分∠BAD ,线段CP 平分∠BCD ,则∠P =12(∠B +∠D )证明:∵线段AP 平分∠BAD ,线段CP 平分∠BCD∴∠BAP =∠PAD , ∠BCP =∠PCD∵∠BCP +∠P =∠BAP +∠B ①∠PAD +∠P =∠PCD +∠D ②①+②得2∠P =∠B +∠D ,则∠P =12(∠B +∠D )飞镖模型(基础):∠C =∠A +∠B +∠D (结论)证明:1)延长AC 到点P2)延长BC 交AD 于点P3)连接BD飞镖模型(变形):已知线段BO平分∠ABC,线段OD平分∠ADC,则∠O=12(∠A+∠C)【基础过关练】1.如图,△ABC中,∠A=65°,直线DE交AB于点D,交AC于点E,则∠BDE+∠CED=().A.180°B.215°C.235°D.245°【答案】D【分析】根据三角形内角和定理求出∠ADE+∠AED,根据平角的概念计算即可.【详解】解:∵∠A=65°,∴∠ADE+∠AED=180°-65°=115°,∴∠BDE+∠CED=360°-115°=245°,故选:D.【点睛】本题考查的是三角形内角和定理的应用,掌握三角形内角和等于180°是解题的关键.2.如图,在△ABC中,∠B=90°,若按图中虚线剪去∠B,则∠1+∠2等于()A.90°B.135°C.270°D.315°【答案】C【分析】如图,根据题意可知∠1=90°+∠BNM,∠2=90°+∠BMN,然后结合三角形内角和定理即可推出∠1+∠2的度数.【详解】解:如图.∵△ABC为直角三角形,∠B=90°,∴∠BNM+∠BMN=90°,∵∠1=90°+∠BNM,∠2=90°+∠BMN,∴∠1+∠2=270°.故选:C.【点睛】本题主要考查三角形的外角性质、三角形内角和定理,关键在于得出∠1=90°+∠BNM,∠2=90°+∠BMN.3.如图,AB和CD相交于点O,∠A=∠C,则下列结论中不能完全确定正确的是()A.∠B=∠DB.∠1=∠A+∠DC.∠2>∠DD.∠C=∠D【答案】D【分析】利用三角形的外角性质,对顶角相等逐一判断即可.【详解】∵∠A+∠AOD+∠D=180°,∠C+∠COB+∠B=180°,∠A=∠C,∠AOD=∠BOC,∴∠B=∠D,∵∠1=∠2=∠A+∠D,∴∠2>∠D,故选项A,B,C正确,故选D.【点睛】本题考查了对顶角的性质,三角形外角的性质,熟练掌握并运用两条性质是解题的关键.4.如图,若∠EOC=115°,则∠A+∠B+∠C+∠D+∠E+∠F=____________.【答案】230°【分析】根据三角形外角的性质,得到∠EOC=∠E+∠2=115°,∠2=∠D+∠C,∠EOC=∠1+∠F =115°,∠1=∠A+∠B,即可得到结论.【详解】解:如图∵∠EOC=∠E+∠2=115°,∠2=∠D+∠C,∴∠E+∠D+∠C=115°,∵∠EOC=∠1+∠F=115°,∠1=∠A+∠B,∴∠A+∠B+∠F=115°,∴∠A+∠B+∠C+∠D+∠E+∠F=230°,故答案为:230°.【点睛】本题主要考查三角形内角和定理和三角形外角的性质,解决本题的关键是要熟练掌握三角形外角性质.5.如图所示,已知四边形ABDC,求证∠BDC=∠A+∠B+∠C.【答案】见解析【分析】方法1连接BC,根据三角形内角和定理可得结果;方法2作射线AD,根据三角形的外角性质得到∠3=∠B+∠1,∠4=∠C+∠2,两式相加即可得到结论;方法3延长BD,交AC于点E,两次运用三角形外角的性质即可得出结论.【详解】方法1如图所示,连接BC.在△ABC中,∠A+∠ABC+∠ACB=180°,即∠A+∠ABD+∠1+∠ACD+∠2=180°.在△BCD中,∵∠BDC+∠1+∠2=180°,∴∠BDC=∠A+∠ABD+∠ACD;方法2如图所示,连接AD并延长.∵∠3是△ABD的外角,∴∠3=∠1+∠ABD.同理,∠4=∠2+∠ACD.∴∠3+∠4=∠1+∠2+∠ABD+∠ACD.即∠BDC=∠A+∠ABD+∠ACD.方法3如图所示,延长BD,交AC于点E.∵∠DEC是△ABE的外角,∴∠DEC=∠A+∠ABD.∵∠BDC是△DEC的外角,∴∠BDC=∠DEC+∠ACD.∴∠BDC=∠A+∠ABD+∠ACD.【点睛】本题考查了三角形的外角性质:解题的关键是知道三角形的任一外角等于与之不相邻的两内角的和.也考查了三角形内角和定理.【提高测试】1.如图,∠1=60°,则∠A+∠B+∠C+∠D+∠E+∠F=()A.240°B.280°C.360°D.540°【答案】A【分析】根据三角形内角和定理得到∠B与∠C的和,然后在五星中求得∠1与另外四个角的和,加在一起即可.【详解】解:由三角形外角的性质得:∠3=∠A+∠E,∠2=∠F+∠D,∵∠1+∠2+∠3=180°,∠1=60°,∴∠2+∠3=120°,即:∠A+∠E+∠F+∠D=120°,∵∠B+∠C=120°,∴∠A+∠B+∠C+∠D+∠E+∠F=240°.故选A.【点睛】本题考查了三角形的外角和三角形的内角和的相关知识,解决本题的关键是将题目中的六个角分成两部分来分别求出来,然后再加在一起.2.如图,在由线段AB,CD,DF,BF,CA组成的平面图形中,∠D=28°,则∠A+∠B+∠C+∠F的度数为().A.62°B.152°C.208°D.236°【答案】C【分析】如图标记∠1,∠2,∠3,然后利用三角形的外角性质得∠1=∠B+∠F=∠D+∠3,∠2=∠A+∠C,再利用∠2,∠3互为邻补角,即可得答案.【详解】解:如下图标记∠1,∠2,∠3,∵∠1=∠B+∠F=∠D+∠3,∵∠D=28°,∴∠3=∠B+∠F-28°,又∵∠2=∠A+∠C,∴∠2+∠3=∠A+∠C+∠B+∠F-28°,∵∠2+∠3=180°∴180°=∠A+∠C+∠B+∠F-28°,∴∠A+∠C+∠B+∠F=180°+28°=208°,故选C.【点睛】此题考查了三角形的外角性质与邻补角的意义,熟练掌握并灵活运用三角形的外角性质与邻补角的意义是解答此题的关键.3.如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A.24°B.25°C.30°D.36°【答案】B【详解】∵∠A=20°,∠A+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=160°,∵∠ABC与∠ACB的角平分线交于D1,∴∠ABD1=12∠ABC,∠ACD1=12∠ACB∵∠ABD1与∠ACD1的角平分线交于点D2,∴∠ABD2=12∠ABD1=14∠ABC,∠ACD2=12∠ACD1=14∠ACB,同理可得:∠ABD5=132∠ABC,∠ACD5=132∠ACB,∴∠ABD5+∠ACD5=132×160°=5°,∴∠BCD5+∠CBD5=155°,∴∠BD5C=180°-∠BCD5-∠CBD5=25°,故选:B4.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=__.【答案】900°【分析】根据多边形的内角和,可得答案.【详解】解:连EF,GI,如图∵6边形ABCDEFK的内角和=(6-2)×180°=720°,∴∠A+∠B+∠C+∠D+∠E+∠F=720°-(∠1+∠2),即∠A+∠B+∠C+∠D+∠E+∠F+(∠1+∠2)=720°,∵∠1+∠2=∠3+∠4,∠5+∠6+∠H=180°,∴∠A+∠B+∠C+∠D+∠E+∠F∠H+(∠3+∠4)=900°,∴∠A+∠B+∠C+∠D+∠E+∠F(∠3+∠4)+∠5+∠6+∠H=720°+180°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=900°,故答案为:900°.【点睛】本题考查了n边形的内角和定理:n边形的内角和为(n-2)×180°(n≥3的整数).5.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=____________.【答案】720°##720度【分析】连接DH,利用三角形外角性质得∠1=∠A+∠F,∠2=∠3+∠5,再利用四边形内角和等于360°即可求解.【详解】解:如图,连接DH,∵∠1=∠A+∠F,∠2=∠3+∠5,∠1+∠2+∠B+∠C=360°∴∠A+∠F+∠3+∠5+∠B+∠C=360°,∵∠4+∠6+∠E+∠G=360°,∴∠A+∠F+∠3+∠5+∠B+∠C+∠4+∠6+∠E+∠G=720°,∵∠3+∠4=∠BHG,∠5+∠6=∠ADE,∴∠A+∠F+∠B+∠C+∠E+∠G+∠BHG+∠ADE=720°,故答案为:720°.【点睛】本题考查四边形内角和,三角形外角性质,将所求角转化成三角形与四边形的内角,利用四边形内角和定理和三角形外角性质求解是解题的关键.6.如图,BP平分∠ABC,交CD于点F,DP平分∠ADC交AB于点E,AB与CD相交于点G,∠A=42°.(1)若∠ADC=60°,求∠AEP的度数;(2)若∠C=38°,求∠P的度数.【答案】(1)72°;(2)40°.【分析】(1)根据角平分线的定义可得∠ADP=12∠ADC,然后利用三角形外角的性质即可得解;(2)根据角平分线的定义可得∠ADP=∠PDF,∠CBP=∠PBA,再根据三角形的内角和定理可得∠A+∠ADP=∠P+∠ABP,∠C+∠CBP=∠P+∠PDF,所以∠A+∠C=2∠P,即可得解.【详解】解:(1)∵DP平分∠ADC,∴∠ADP=∠PDF=12∠ADC,∵∠ADC=60°,∴∠ADP=30°,∴∠AEP=∠ADP+∠A=30°+42°=72°;(2)∵BP平分∠ABC,DP平分∠ADC,∴∠ADP=∠PDF,∠CBP=∠PBA,∵∠A+∠ADP=∠P+∠ABP,∠C+∠CBP=∠P+∠PDF,∴∠A+∠C=2∠P,∵∠A=42°,∠C=38°,∴∠P=1(38°+42°)=40°.2【点睛】本题考查了三角形的内角和定理及三角形外角的性质,角平分线的定义,熟记定理并理解“8字形”的等式是解题的关键.7.(1)已知:如图①的图形我们把它称为“8字形”,试说明:∠A+∠B=∠C+∠D.(2)如图②,AP,CP分别平分∠BAD,∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度数.(3)如图(3),直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是________;(4)如图(4),直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是________.【答案】(1)见解析;(2)26°;(3)∠P =90°+12∠B +∠D ;(4)∠P =180°-12∠B +∠D 【分析】(1)根据三角形的内角和等于180°和对顶角的性质即可得证;(2)设∠BAP =∠PAD =x ,∠BCP =∠PCD =y ,x +∠ABC =y +∠P x +∠P =y +∠ADC 解方程即可得到答案;(3)根据直线AP 平分∠BAD ,CP 平分∠BCD 的外角∠BCE ,得到∠PAB =∠PAD =12∠BAD ,∠PCB =∠PCE =12∠PCD 从而可以得到180°-2∠PAB +∠PCB +∠D =∠B ,再根据∠P +∠PAD =∠PCD +∠D ,∠BAD +∠B =∠BCD +∠D 得到∠P -∠B =∠PAD +∠PCB =∠PAB +∠PCB 即可求解;(4)连接PB ,PD 根据∠APB +∠PBA +∠PAB =180°,∠PCB +∠PBC +∠BPC =180°得到∠APC +∠ABC +∠PCB +∠PAB =360°,同理得到:∠APC +∠ADC +∠PCD +∠PAD =360°,再根据∠PCE +∠PCD =180°,∠PAB +∠PAF =180°,∠FAP =∠PAO ,∠PCE =∠PCB ,即可求解.【详解】解:(1)∵∠A +∠B +∠AOB =180°,∠C +∠D +∠COD =180°,∴∠A +∠B +∠AOB =∠C +∠D +∠COD .∵∠AOB =∠COD ,∴∠A +∠B =∠C +∠D ;(2)∵AP ,CP 分别平分∠BAD ,∠BCD ,设∠BAP =∠PAD =x ,∠BCP =∠PCD =y ,则有x +∠ABC =y +∠P x +∠P =y +∠ADC ,∴∠ABC -∠P =∠P -∠ADC ,∴∠P =12∠ABC +∠ADC =12(36°+16°)=26°(3)∵直线AP 平分∠BAD ,CP 平分∠BCD 的外角∠BCE ,∴∠PAB =∠PAD =12∠BAD ,∠PCB =∠PCE =12∠BCE ,∴2∠PAB +∠B =180°-2∠PCB +∠D ,∴180°-2∠PAB +∠PCB +∠D =∠B∵∠P+∠PAD=∠PCD+∠D,∠BAD+∠B=∠BCD+∠D ∴∠P+∠PAD-∠BAD-∠B=∠PCD-∠BCD∴∠P-∠PAB-∠B=∠PCB,∴∠P-∠B=∠PAB+∠PCB∴180°-2∠P-∠B+∠D=∠B,即∠P=90°+12∠B+∠D.(4)连接PB,PD∵直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠FAP=∠PAO,∠PCE=∠PCB,∵∠APB+∠PBA+∠PAB=180°,∠PCB+∠PBC+∠BPC=180°∴∠APC+∠ABC+∠PCB+∠PAB=360°同理得到:∠APC+∠ADC+∠PCD+∠PAD=360°∴2∠APC+∠ABC+∠ADC+∠PCB+∠PAB+∠PCD+∠PAD=720°∴2∠APC+∠ABC+∠ADC+∠PCE+∠PAB+∠PCD+∠PAF=720°∵∠PCE+∠PCD=180°,∠PAB+∠PAF=180°∴2∠APC+∠ABC+∠ADC=360°,∴∠APC=180°-12∠ABC+∠ADC【点睛】本题主要考查了角平分线的定义,三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.8.阅读材料:如图1,AB、CD交于点O,我们把△AOD和△BOC叫做对顶三角形.结论:若△AOD和△BOC是对顶三角形,则∠A+∠D=∠B+∠C.结论应用举例:如图2:求五角星的五个内角之和,即∠A+∠B+∠ACE+∠ADB+∠E的度数.解:连接CD,由对顶三角形的性质得:∠B+∠E=∠1+∠2,在△ACD中,∵∠A+∠ACD+∠ADC=180°,即∠A+∠3+∠1+∠2+∠4=180°,∴∠A+∠ACE+∠B+∠E+ADB=180°即五角星的五个内角之和为180°.解决问题:(1)如图①,∠A+∠B+∠C+∠D+∠E+∠F= ;(2)如图②,∠A+∠B+∠C+∠D+∠E+∠F+∠G= ;(3)如图③,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H= ;(4)如图④,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N= ;请你从图③或图④中任选一个,写出你的计算过程.【答案】(1)360°;(2)540°;(3)720°;(4)1080°;过程见解析【分析】(1)连接CD,由对顶角三角形可得∠A+∠B=∠BDC+∠ACD,再由四边形的内角和定理得出结论;(2)连接ED,由对顶角三角形可得∠A+∠B=∠BED+∠ADE,再由五边形的内角和定理得出结论;(3)连接BH、DE,由对顶角三角形可知∠EBH+∠BHD=∠HDE+∠BED,再根据五边形的内角和定理得出结论;(4)连接ND、NE,由对顶角三角形可知∠1+∠2=∠NGH+∠EHG,再由六边形的内角和定理得出结论.【详解】解:(1)连接CD,由对顶角三角形可得∠A+∠B=∠BDC+∠ACD,则∠A+∠B+∠C+∠D +∠E+∠F=360°;(2)连接ED,由对顶角三角形可得∠A+∠B=∠BED+∠ADE,则∠A+∠B+∠C+∠D+∠E+∠F+∠G=540°;(3)连接BH、DE,∵由对顶角三角形可知∠EBH+∠BHD=∠HDE+∠BED,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=五边形CDEFG的内角和+△ABH的内角和= 540°+180°=720°;(4)连接ND、NE,∵由对顶角三角形可知∠1+∠2=∠NGH+∠EHG,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=六边形BCFGHM的内角和+△AND的内角和+△NDE的内角和=(6-2)×180°+360°=1080°.故答案为:360°;540°;720°;1080°.【点睛】本题考查的是三角形内角和定理,根据题意作出辅助线,利用△AOD和△BOC叫做对顶三角形的性质及多边形的内角和定理解答是解答此题的关键.9.模型规律:如图1,延长CO交AB于点D,则∠BOC=∠1+∠B=∠A+∠C+∠B.因为凹四边形ABOC形似箭头,其四角具有“∠BOC=∠A+∠B+∠C”这个规律,所以我们把这个模型叫做“箭头四角形”.模型应用(1)直接应用:①如图2,∠A=60°,∠B=20°,∠C=30°,则∠BOC=__________°;②如图3,∠A +∠B +∠C +∠D +∠E +∠F =__________°;(2)拓展应用:①如图4,∠ABO 、∠ACO 的2等分线(即角平分线)BO 1、CO 1交于点O 1,已知∠BOC =120°,∠BAC =50°,则∠BO 1C =__________°;②如图5,BO 、CO 分别为∠ABO 、∠ACO 的10等分线(i =1,2,3,⋯,8,9).它们的交点从上到下依次为O 1、O 2、O 3、⋯、O 9.已知∠BOC =120°,∠BAC =50°,则∠BO 7C =__________°;③如图6,∠ABO 、∠BAC 的角平分线BD 、AD 交于点D ,已知∠BOC =120°,∠C =44°,则∠ADB =__________°;④如图7,∠BAC 、∠BOC 的角平分线AD 、OD 交于点D ,则∠B 、∠C 、∠D 之同的数量关系为__________.【答案】(1)①110;②260;(2)①85;②99;③142;④∠B -∠C +2∠D =0【分析】(1)①根据题干中的等式直接计算即可;②同理可得∠A +∠B +∠C +∠D +∠E +∠F =∠BOC +∠DOE ,代入计算即可;(2)①同理可得∠BO 1C =∠BOC -∠OBO 1-∠OCO 1,代入计算可得;②同理可得∠BO 7C =∠BOC -17(∠BOC -∠A ),代入计算即可;③利用∠ADB =180°-(∠ABD +∠BAD )=180°-12(∠BOC -∠C )计算可得;④根据两个凹四边形ABOD 和ABOC 得到两个等式,联立可得结论.【详解】解:(1)①∠BOC =∠A +∠B +∠C =60°+20°+30°=110°;②∠A +∠B +∠C +∠D +∠E +∠F =∠BOC +∠DOE =2×130°=260°;(2)①∠BO 1C =∠BOC -∠OBO 1-∠OCO 1=∠BOC -12(∠ABO +∠ACO )=∠BOC -12(∠BOC -∠A )=∠BOC -12(120°-50°)=120°-35°=85°;②∠BO 7C =∠BOC -310(∠BOC -∠A )=120°-310(120°-50°)=120°-21°=99°;③∠ADB =180°-(∠ABD +∠BAD )=180°-310(∠BOC-∠C)=180°-12(120°-44°)=142°;④∠BOD=12∠BOC=∠B+∠D+12∠BAC,∠BOC=∠B+∠C+∠BAC,联立得:∠B-∠C+2∠D=0.【点睛】本题主要考查了新定义-箭头四角形,利用了三角形外角的性质,还考查了角平分线的定义,图形类规律,解题的关键是理解箭头四角形,并能熟练运用其性质.10.如图,ΔABC中,(1)若∠ABC、∠ACB的三等分线交于点O1、O2,请用∠A表示∠BO1C、∠BO2C;(2)若∠ABC、∠ACB的n等分线交于点O1、O2⋅⋅⋅⋅⋅⋅O n-1(O1、O2⋅⋅⋅⋅⋅⋅O n-1依次从下到上),请用∠A表示∠BO1C,∠BO n-1C.【答案】(1)∠BO1C=120°+13∠A,∠BO2C=60°+23∠A,(2)∠BO1C=180°n-1n+1n∠A,∠BO n-1C=180°n+n-1n∠A【分析】(1)根据三角形的内角和定理可得∠ABC+∠ACB=180°-∠A,再由∠ABC、∠ACB的三等分线交于点O1、O2,可得∠O1BC+∠O1CB=13(180°-∠A),∠O2BC+∠O2CB=23(180°-∠A),再根据三角形的内角和定理,即可求解;(2)根据三角形的内角和定理可得∠ABC+∠ACB=180°-∠A,再由∠ABC、∠ACB的n等分线交于点O1、O2⋅⋅⋅⋅⋅⋅O n-1,可得∠O1BC+∠O1CB=1n(180°-∠A),∠O n-1BC+∠O n-1CB=n-1n(180°-∠A),再根据三角形的内角和定理,即可求解.【详解】(1)解:∵∠A+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=180°-∠A,∵∠ABC、∠ACB的三等分线交于点O1、O2,∴∠O1BC+∠O1CB=13(180°-∠A),∠O2BC+∠O2CB=23(180°-∠A),∴∠BO1C=180°-(∠O1BC+∠O1CB)=180°-13(180°-∠A)=120°+13∠A,∠BO2C=180°-(∠O2BC+∠O2CB)=180°-23(180°-∠A)=60°+23∠A;(2)解:∵∠A+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=180°-∠A,∵∠ABC、∠ACB的n等分线交于点O1、O2⋅⋅⋅⋅⋅⋅O n-1,∴∠O1BC+∠O1CB=1n (180°-∠A),∠O n-1BC+∠O n-1CB=n-1n(180°-∠A),∴∠BO1C=180°-∠O1BC+∠O1CB=180°-1n(180°-∠A)=180°n-1n+1n∠A,∠BO n-1C=180°-∠O n-1BC+∠O n-1CB=180°-n-1n(180°-∠A)=180°n+n-1n∠A.【点睛】本题主要考查了有关角平分线三角形的内角和问题,熟练掌握三角形的内角和定理,并利用类比思想解答是解题的关键.11.探究与发现:如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX=_____°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,则∠DCE=_____°;③如图4,∠ABD,∠ACD的10等分线相交于点G1,G2,⋯,G9,若∠BDC=140°,∠BG1C=77°,求∠A的度数.【答案】(1)∠BDC=∠BAC+∠B+∠C(2)①40,②90,③70°【分析】(1)根据题意观察图形连接AD并延长至点F,根据一个三角形的外角等于与它不相邻的两个内角的和即可证明;(2)①由(1)的结论可得∠ABX+∠ACX+∠A=∠BXC,然后把∠A=50°,∠BXC=90°代入上式即可得到∠ABX+∠ACX的值;②结合图形可得∠DBE=∠DAE+∠ADB+∠AEB,代入∠DAE= 50°,∠DBE=130°即可得到∠ADB+∠AEB的值,再利用上面得出的结论可知∠DCE=1 2∠ADB+∠AEB+∠A,易得答案.③由②方法,进而可得答案.【详解】(1)∠BDC=∠BAC+∠B+∠C,理由如下:连接AD并延长至点F,由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,∵∠BDC=∠BDF+∠CDF,∴∠BDC=∠BAD+∠B+∠C+∠CAD,∵∠BAC=∠BAD+∠CAD,∴∠BDC=∠BAC+∠B+∠C;(2)①由(1)的结论易得:∠ABX+∠ACX+∠A=∠BXC,∵∠A=50°,∠BXC=90°,∴∠ABX+∠ACX=90°-50°=40°,故答案是:40;②由(1)的结论易得∠DBE=∠DAE+∠ADB+∠AEB,∠DCE=∠ADC+∠AEC+∠A,∵∠DAE=50°,∠DBE=130°,∴∠ADB+∠AEB=80°;∵DC平分∠ADB,EC平分∠AEB,∴∠ADC=12∠ADB,∠AEC=12∠AEB,∴∠DCE=12∠ADB+∠AEB+∠A=40°+50°=90°;③由②知,∠BG1C=110∠ABD+∠ACD+∠A,∵∠BG1C=77°,∴设∠A为x°,∵∠ABD+∠ACD=140°-x°,∴1 10140-x+x=77,∴x=70,∴∠A为70°.故答案是:70°.【点睛】本题考查三角形外角的性质,三角形的内角和定理的应用,能求出∠BDC=∠A+∠B+∠C是解答的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.12.如图1的图形我们把它称为“8字形”,显然有∠A +∠B =∠C +∠D ;阅读下面的内容,并解决后面的问题:(1)如图2,AP 、CP 分别平分∠BAD 、∠BCD ,若∠ABC =36°,∠ADC =16°,求∠P 的度数;(2)①在图3中,直线AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE ,猜想∠P 与∠B 、∠D 的关系,并说明理由.②在图4中,直线AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE ,猜想∠P 与∠B 、∠D 的关系,直接写出结论,无需说明理由.③在图5中,AP 平分∠BAD ,CP 平分∠BCD 的外角∠BCE ,猜想∠P 与∠B 、∠D 的关系,直接写出结论,无需说明理由.【答案】(1)∠P =26°(2)①∠P =12(∠B +∠D ),理由见解析;②∠P =180°-12(∠B +∠D );③∠P =90°+12(∠B +∠D )【分析】(1)根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠P +∠3=∠1+∠ABC ,∠P +∠2=∠4+∠ADC ,相加得到2∠P +∠2+∠3=∠1+∠4+∠ABC +∠ADC ,继而得到2∠P =∠ABC +∠ADC ,代入数据得∠P 的值;(2)①按解析图标记好∠1,∠2,∠3,∠4,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠PAD +∠P =∠PCD +∠D ,∠PAB +∠P =∠4+∠B ,分别用∠2,∠3表示出∠PAD 和∠PCD ,再整理即可得解;②按解析图标记好∠1,∠2,∠3,∠4,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠BAP +∠P +∠4+∠B =360°,∠2+∠P +∠PCD +∠D =360°,分别用∠2,∠3表示出∠BAP 和∠PCD ,再整理即可得解;③按解析图标记好∠1,∠2,∠3,∠4,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠BAD +∠B =∠BCD +∠D ,∠2+∠P =∠PCD +∠D ,分别用∠2,∠3表示出∠BAD 、∠BCD 和∠PCD ,再整理即可得解;(1)解:∵AP 、CP 分别平分∠BAD 、∠BCD ,∴∠1=∠2,∠3=∠4,∴∠2+∠3=∠1+∠4,由(1)的结论得:∠P +∠3=∠1+∠ABC ①,∠P +∠2=∠4+∠ADC②,①+②,得2∠P +∠2+∠3=∠1+∠4+∠ABC +∠ADC ,∴2∠P =∠ABC +∠ADC ,∴∠P =12(∠ABC +∠ADC )=12(36°+16°)=26°.(2)∠P =12(∠B +∠D ),理由如下:①∵AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE ,∴∠1=∠2,∠3=∠4.由(1)的结论得:∠PAD +∠P =∠PCD +∠D ③,∠PAB +∠P =∠4+∠B ④,∵∠PAB =∠1,∠1=∠2,∴∠PAB =∠2,∴∠PAD =∠PAB +∠BAD =∠2+180°-2∠2=180°-∠2,∴∠2+∠P =∠3+∠B ⑤,③+⑤得∠2+∠P +∠PAD +∠P =∠3+∠B +∠PCD +∠D ,∴∠2+∠P +180°-∠2+∠P =∠3+∠B +180°-∠3+∠D即2∠P +180°=∠B +∠D +180°,∴∠P =12(∠B +∠D ).②∠P =180°-12(∠B +∠D ),理由如下:如图4,∵AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE ,∴∠1=∠2,∠3=∠4,∠BAD =180°-2∠1,∠BCD =180°-2∠3,由题干可知:∠BAD +∠B =∠BCD +∠D ,∴(180°-2∠1)+∠B =(180°-2∠3)+∠D ,在四边形APCB中,∠BAP+∠P+∠3+∠B=360°,即(180°-∠2)+∠P+∠3+∠B=360°,⑥在四边形APCD中,∠2+∠P+∠PCD+∠D=360°,即∠2+∠P+(180°-∠3)+∠D=360°,⑦⑥+⑦得:2∠P+∠B+∠D+∠2-∠2+∠3-∠3=360°∴2∠P+∠B+∠D=360°,∴∠P=180°-12(∠B+∠D);③∠P=90°+12(∠B+∠D),理由如下:如图5,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,由题干结论得:∠BAD+∠B=∠BCD+∠D,即2∠2+∠B=(180°-2∠3)+∠D⑧,∠2+∠P=∠PCD+∠D,即∠2+∠P=(180°-∠3)+∠D⑨,⑨×2-⑧得:2∠P-∠B=180°+∠D,∴∠P=90°+12(∠B+∠D).【点睛】本题考查了三角形的内角和定理,角平分线的定义,准确识图并运用好“8”字形的结论,然后列出两个等式是解题的关键,用阿拉伯数字加弧线表示角更形象直观.。
A字型、8字模型、飞镖模型(学生版)-中考数学满分突破
A 字型、8字模型、飞镖模型一、基础知识回顾三角形内角和定理:三角形三个内角和等于180°三角形外角性质:三角形的一个外角等于与它不相邻的两个内角之和。
二、模型的概述:A 字型模型:∠1+∠2=∠A +180°(结论)证明:∵∠1=∠A +∠ACB∴∠1=∠A +180°-∠2∴∠1+∠2=∠A +180°8字模型(基础):∠A +∠B =∠C +∠D (结论)证明:在∆ABO 中,∠A +∠B +∠AOB =180°在∆COD 中,∠C +∠D +∠COD =180°而∠AOB =∠COD∴∠A +∠B =∠C +∠D8字模型(变形):已知线段AP 平分∠BAD ,线段CP 平分∠BCD ,则∠P =12(∠B +∠D )证明:∵线段AP 平分∠BAD ,线段CP 平分∠BCD∴∠BAP =∠PAD , ∠BCP =∠PCD∵∠BCP +∠P =∠BAP +∠B ①∠PAD +∠P =∠PCD +∠D ②①+②得2∠P =∠B +∠D ,则∠P =12(∠B +∠D )飞镖模型(基础):∠C =∠A +∠B +∠D (结论)证明:1)延长AC 到点P2)延长BC 交AD 于点P3)连接BD飞镖模型(变形):已知线段BO平分∠ABC,线段OD平分∠ADC,则∠O=12(∠A+∠C)【基础过关练】1.如图,△ABC中,∠A=65°,直线DE交AB于点D,交AC于点E,则∠BDE+∠CED=().A.180°B.215°C.235°D.245°2.如图,在△ABC中,∠B=90°,若按图中虚线剪去∠B,则∠1+∠2等于()A.90°B.135°C.270°D.315°3.如图,AB和CD相交于点O,∠A=∠C,则下列结论中不能完全确定正确的是()A.∠B=∠DB.∠1=∠A+∠DC.∠2>∠DD.∠C=∠D4.如图,若∠EOC=115°,则∠A+∠B+∠C+∠D+∠E+∠F=____________.5.如图所示,已知四边形ABDC,求证∠BDC=∠A+∠B+∠C.【提高测试】1.如图,∠1=60°,则∠A+∠B+∠C+∠D+∠E+∠F=()A.240°B.280°C.360°D.540°2.如图,在由线段AB,CD,DF,BF,CA组成的平面图形中,∠D=28°,则∠A+∠B+∠C+∠F的度数为().A.62°B.152°C.208°D.236°3.如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A.24°B.25°C.30°D.36°4.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=__.5.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=____________.6.如图,BP平分∠ABC,交CD于点F,DP平分∠ADC交AB于点E,AB与CD相交于点G,∠A=42°.(1)若∠ADC=60°,求∠AEP的度数;(2)若∠C=38°,求∠P的度数.7.(1)已知:如图①的图形我们把它称为“8字形”,试说明:∠A+∠B=∠C+∠D.(2)如图②,AP,CP分别平分∠BAD,∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度数.(3)如图(3),直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是________;(4)如图(4),直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是________.8.阅读材料:如图1,AB、CD交于点O,我们把△AOD和△BOC叫做对顶三角形.结论:若△AOD和△BOC是对顶三角形,则∠A+∠D=∠B+∠C.结论应用举例:如图2:求五角星的五个内角之和,即∠A+∠B+∠ACE+∠ADB+∠E的度数.解:连接CD,由对顶三角形的性质得:∠B+∠E=∠1+∠2,在△ACD中,∵∠A+∠ACD+∠ADC=180°,即∠A+∠3+∠1+∠2+∠4=180°,∴∠A+∠ACE+∠B+∠E+ADB=180°即五角星的五个内角之和为180°.解决问题:(1)如图①,∠A+∠B+∠C+∠D+∠E+∠F= ;(2)如图②,∠A+∠B+∠C+∠D+∠E+∠F+∠G= ;(3)如图③,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H= ;(4)如图④,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N= ;请你从图③或图④中任选一个,写出你的计算过程.9.模型规律:如图1,延长CO交AB于点D,则∠BOC=∠1+∠B=∠A+∠C+∠B.因为凹四边形ABOC形似箭头,其四角具有“∠BOC=∠A+∠B+∠C”这个规律,所以我们把这个模型叫做“箭头四角形”.模型应用(1)直接应用:①如图2,∠A=60°,∠B=20°,∠C=30°,则∠BOC=__________°;②如图3,∠A+∠B+∠C+∠D+∠E+∠F=__________°;(2)拓展应用:①如图4,∠ABO、∠ACO的2等分线(即角平分线)BO1、CO1交于点O1,已知∠BOC=120°,∠BAC=50°,则∠BO1C=__________°;②如图5,BO、CO分别为∠ABO、∠ACO的10等分线(i=1,2,3,⋯,8,9).它们的交点从上到下依次为O1、O2、O3、⋯、O9.已知∠BOC=120°,∠BAC=50°,则∠BO7C=__________°;③如图6,∠ABO、∠BAC的角平分线BD、AD交于点D,已知∠BOC=120°,∠C=44°,则∠ADB=__________°;④如图7,∠BAC、∠BOC的角平分线AD、OD交于点D,则∠B、∠C、∠D之同的数量关系为__________.10.如图,ΔABC中,(1)若∠ABC、∠ACB的三等分线交于点O1、O2,请用∠A表示∠BO1C、∠BO2C;(2)若∠ABC、∠ACB的n等分线交于点O1、O2⋅⋅⋅⋅⋅⋅O n-1(O1、O2⋅⋅⋅⋅⋅⋅O n-1依次从下到上),请用∠A表示∠BO1C,∠BO n-1C.11.探究与发现:如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX=_____°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,则∠DCE=_____°;③如图4,∠ABD,∠ACD的10等分线相交于点G1,G2,⋯,G9,若∠BDC=140°,∠BG1C=77°,求∠A的度数.12.如图1的图形我们把它称为“8字形”,显然有∠A+∠B=∠C+∠D;阅读下面的内容,并解决后面的问题:(1)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度数;(2)①在图3中,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,并说明理由.②在图4中,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论,无需说明理由.③在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论,无需说明理由.。
中考必会几何模型:8字模型与飞镖模型
相似之处
两种模型都是几何分析的重要工具,能帮助学生更 好地理解和解决中考几何题。
应用范围
8字模型更侧重于分析三角形和四边形的相关特性, 而飞镖模型主要用于探讨角度和距离关系。
基本结构
8字模型由两个相交的圆弧组成,而飞镖模型由两条 垂直交叉的线段构成,呈现不同的几何形状。
解题技巧
两种模型都需要熟练掌握绘制方法和核心特点,并 灵活应用于几何问题的分析解决中。
借助AR/VR技术,学生可以在虚拟环 境中更直观地操纵和理解8字模型 与飞镖模型,激发创新思维。
智能辅助
结合人工智能技术,未来将有智能 化几何助手,即时分析学生操作并 给出针对性指导,提高解题效率。
8字模型与飞镖模型的综合评价
全面视角
8字模型和飞镖模型可以从多个角 度对几何问题进行全面分析,为解 决问题提供丰富视角。
灵活应用模型
在解决几何题时,善用8字模型分析 图形的性质和关系,有助于找到高 效的解题思路。
飞镖模型
飞镖模型是中考几何必备的另一种重要知识点。它以飞镖形状为基 础,展现了一些特殊的几何关系,在解决涉及角度、距离等题目时很 有帮助。掌握飞镖模型的特点和应用技巧对于提高中考成绩同样重 要。
飞镖模型的定义
几何证明
飞镖模型的垂直、对角等特点,能为几何证明题提 供直观的几何依据,帮助学生理解和解决这类题目 。
距离计算
飞镖模型可用于计算几何图形中的距离,如点到线 的距离、线段长度等,为解决相关问题提供依据。
中考应用
飞镖模型在中考几何试题中经常出现,掌握它的应 用能够有效提高考试成绩,是中考必备的几何知识 。
2 灵活运用
根据几何问题的实际需求,灵活选择或组合使用8 字模型和飞镖模型,提高分析和解题的效率。
模型02 飞镖、8字模型(解析版)
模型一:飞镖模型 (1)角的飞镖模型结论:C B A BDC ∠+∠+∠=∠解答:①方法一:延长BD 交AC 于点E 得证②方法二:延长CD 交AB 于点F 得证③方法三:延长AD 到在其延长方向上任取一点为点G 得证总结:利用三角形外角的性质证明 (2)边的飞镖模型结论:CD BD AC AB +>+解答:延长BD 交AC 于点E +三角形三边关系+同号不等式 大的放左边,小的放在右边得证模型二:8在模型 (1)角的8字模型结论:D C B A ∠+∠=∠+∠ 解答:①方法一:三角形内角和得证 ②方法二:三角形外角BOD ∠的性质得证总结:①利用三角形内角和等于180证明推出②利用三角形外角的性质证明模型介绍大 招飞镖模型和8字模型(2)边的8字模型结论:BC AD CD AB +<+解答:三角形三边关系+同号不等式得证总结:①三角形两边之和大于第三边考点一:飞镖模型【例1】.如图,∠A =70°,∠B =40°,∠C =20°,则∠BOC=_______解:延长BO ,交AC 于点D ,∵∠BOC =∠C +∠ODC ,∠ODC =∠A +∠B ,∠A =70°,∠B =40°,∠C =20°, ∴∠BOC =∠C +∠A +∠B =20°+70°+40° =130° ➢变式训练【变式1-1】.如图,∠ABD 、∠ACD 的角平分线交于点P ,若∠A =55°,∠D =15°,则∠P 的度数为( )A .15°B .20°C .25°D .30°例题精讲解:如图,延长PC交BD于E∵∠ABD,∠ACD的角平分线交于点P∴∠1=∠2,∠3=∠4由三角形的内角和定理得,∠A+∠1=∠P+∠3①在△PBE中,∠5=∠2+∠P在△DCE中,∠5=∠4﹣∠D∴∠2+∠P=∠4﹣∠D②①﹣②得,∠A﹣∠P=∠P+∠D∴∠P=(∠A﹣∠D)∵∠A=55°,∠D=15°∴∠P=(55°﹣15°)=20°故选:B【变式1-2】.在△ABC中,∠ABC与∠ACB的平分线交于点I,∠ABC+∠ACB=100°,则∠BIC的度数为()A.80°B.50°C.100°D.130°解(1)∵∠ABC与∠ACB的平分线交于点I∴∠BCI=∠ACB∠CBI=∠ABC∴∠BIC=180°﹣∠BCI﹣∠CBI=180°﹣100°=130°故选:D【变式1-3】.如图,已知∠BOF=120°,则∠A+∠B+∠C+∠D+∠E+∠F的度数。
中考专题复习微专题1 “8”字模型及飞镖模型人教版
【解析】如图,将AC平移至BF,AD的延长线与BF相交于点G,连
∴AB+BC+CD+AD< 2AC+2BD.
2(AB+BC+CD+AD)>2(AC+BD),
例1 观察下列图形,计算:∠A+∠B+∠C+∠D+∠E=
∵AB+AC=AB+AE+EC,AB+AE>BE,
∴BE+EC>BD+CD.
角、边的“ 8”字模型
第6章
微专题1
“8”Байду номын сангаас模型及飞镖模型
1.角、边的“ 8”字模型
如图所示,线段AD,BC相交于点O,结论:
∠A+∠B=∠C+∠D.
考向突破
【模型分析】因为这个图形像数字8,所以我们往往把这个模
型称为“ 8”字模型.“ 8”字模型往往在几何综合题目中推导角
度时用到.
【模型推理】∵∠AOC是△AOB的外角,
由①②可得AB+AC>BD+CD.
∴∠A+∠1+∠3=180°-(∠2+∠4).
例5 如图,在四边形ABCD中,AM,CM分别平分∠DAB和∠DCB,AM与CM交于M,探究∠AMC与∠B,∠D间的数量关系.
【模型分析】因为这个图形像数字8,所以我们往往把这个模型称为“ 8”字模型.
∴∠D=∠A+∠1+∠3.
°-(∠+∠)
°-∠+∠
+∠ADC.(四边形内角和是 360°)
.
∴2∠AMC+∠B-∠ADC=360°.
三角形角度计算之八字型与飞镖模型
剖析一 角的 8 字模型
经典例题
解法二:利用角的8字模型 如图⑥,连接DE, ∵∠AOE是△AOB的外角 ∴∠A+∠B=∠AOE ∵∠AOE是△OED的外角 ∴∠1+∠2=∠AOE ∴∠A+∠B=∠1+∠2(角的8字模型) ∴∠A+∠B+∠C+∠ADC+∠FEB+∠F=360°
剖析一 角的 8 字模型
剖析一 角的 8 字模型
经典例题
解法二:如图④,利用三角形外角和定理, ∵∠1是△FCE的外角 ∴∠1=∠C+∠E ∵∠2是△GBD的外角, ∴∠2=∠B+∠D ∴∠A+∠B+∠C+∠D+∠E =∠A+∠1+∠2=180°
剖析一 角的 8 字模型
经典例题
(1) 解法一:利用角的8字模型,如图⑤ ∵∠AOP是△AOB的外角 ∴∠A+∠B=∠AOP ∵∠AOP是△OPQ的外角 ∴∠1+∠3=∠AOP ∴∠A+∠B=∠1+∠3 同理可得:∠C+∠D=∠1+∠2 ∠E+∠F=∠2+∠3.
03
边的8字模型
结论1:如图所示,AC,BD相交于点O 连接AD,BC结论:AC+BD>AD+BC
剖析三 边的 8 字模型
模型分析: ∵OA+OD>AD OB+OC>BC 以上两式进行相加即可得到 OA+OD+OB+OC>BC+AD 即AC+BD>AD+BC
剖析三 边的 8 字模型
经典例题
如图,四边形ABCD的对角线AC,BD相交于点O 求证:(1)AB+BC+CD+AD>AC+BD (2)AB+BC+CD+AD<2AC+2BD.
中考数学必会几何模型:8字模型与飞镖模型
8字模型与飞镖模型模型1:角的8字模型如图所示,AC 、BD 相交于点O ,连接AD 、BC . 结论:∠A +∠D =∠B +∠C .ODC BA模型分析 证法一:∵∠AOB 是△AOD 的外角,∴∠A +∠D =∠AOB .∵∠AOB 是△BOC 的外角, ∴∠B +∠C =∠AOB .∴∠A +∠D =∠B +∠C . 证法二:∵∠A +∠D +∠AOD =180°,∴∠A +∠D =180°-∠AOD .∵∠B +∠C +∠BOC =180°, ∴∠B +∠C =180°-∠BOC .又∵∠AOD =∠BOC ,∴∠A +∠D =∠B +∠C . (1)因为这个图形像数字8,所以我们往往把这个模型称为8字模型. (2)8字模型往往在几何综合题目中推导角度时用到.模型实例观察下列图形,计算角度:(1)如图①,∠A +∠B +∠C +∠D +∠E =________;图图①FD C BAE EBCDA图③21O AB图④G F 12AB E解法一:利用角的8字模型.如图③,连接CD .∵∠BOC 是△BOE 的外角, ∴∠B +∠E =∠BOC .∵∠BOC 是△COD 的外角,∴∠1+∠2=∠BOC .∴∠B +∠E =∠1+∠2.(角的8字模型),∴∠A +∠B +∠ACE +∠ADB +∠E =∠A +∠ACE +∠ADB +∠1+∠2=∠A +∠ACD +∠ADC =180°.解法二:如图④,利用三角形外角和定理.∵∠1是△FCE 的外角,∴∠1=∠C +∠E . ∵∠2是△GBD 的外角,∴∠2=∠B +∠D .∴∠A +∠B +∠C +∠D +∠E =∠A +∠1+∠2=180°.(2)如图②,∠A +∠B +∠C +∠D +∠E +∠F =________.图②FDCBAE312图⑤P O QA BFC D图⑥21EDCFOBA(2)解法一:如图⑤,利用角的8字模型.∵∠AOP 是△AOB 的外角,∴∠A +∠B =∠AOP .∵∠AOP 是△OPQ 的外角,∴∠1+∠3=∠AOP .∴∠A +∠B =∠1+∠3.①(角的8字模型),同理可证:∠C +∠D =∠1+∠2.② ,∠E +∠F =∠2+∠3.③ 由①+②+③得:∠A +∠B +∠C +∠D +∠E +∠F =2(∠1+∠2+∠3)=360°. 解法二:利用角的8字模型.如图⑥,连接DE .∵∠AOE 是△AOB 的外角, ∴∠A +∠B =∠AOE .∵∠AOE 是△OED 的外角,∴∠1+∠2=∠AOE . ∴∠A +∠B =∠1+∠2.(角的8字模型)∴∠A +∠B +∠C +∠ADC +∠FEB +∠F =∠1+∠2+∠C +∠ADC +∠FEB +∠F =360°.(四边形内角和为360°) 练习:1.(1)如图①,求:∠CAD +∠B +∠C +∠D +∠E = ;图图①OOEEDDCCBBAA解:如图,∵∠1=∠B+∠D ,∠2=∠C+∠CAD , ∴∠CAD+∠B+∠C+∠D+∠E=∠1+∠2+∠E=180°. 故答案为:180° 解法二:(2)如图②,求:∠CAD +∠B +∠ACE +∠D +∠E = .图②OEDCBA解:由三角形的外角性质,知∠BAC=∠E+∠ACE ,∠EAD=∠B+∠D ,又∵∠BAC+∠CAD+∠EAD=180°,∴∠CAD +∠B +∠ACE +∠D +∠E =180°解法二:2.如图,求:∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H = .HGFEDCBA解:∵∠G+∠D=∠3,∠F+∠C=∠4,∠E+∠H=∠2,∴∠G+∠D+∠F+∠C+∠E+∠H=∠3+∠4+∠2, ∵∠B+∠2+∠1=180°,∠3+∠5+∠A=180°,∴∠A+∠B+∠2+∠4+∠3=360°, ∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=360° 解法二:模型2:角的飞镖模型如图所示,有结论:∠D =∠A +∠B +∠C .ADC图①4321AD 4321AD模型分析解法一:如图①,作射线AD .∵∠3是△ABD 的外角,∴∠3=∠B +∠1,∵∠4是△ACD 的外角,∴∠4=∠C +∠2 ∴∠BDC =∠3+∠4,∴∠BDC =∠B +∠1+∠2+∠C ,∴∠BDC =∠BAC +∠B +∠C 解法二:如图②,连接BC .∵∠2+∠4+∠D =180°,∴∠D =180°-(∠2+∠4)∵∠1+∠2+∠3+∠4+∠A =180°,∴∠A +∠1+∠3=180°-(∠2+∠4) ∴∠D =∠A +∠1+∠3.(1)因为这个图形像飞镖,所以我们往往把这个模型称为飞镖模型. (2)飞镖模型在几何综合题目中推导角度时使用. 模型实例如图,在四边形ABCD 中,AM 、CM 分别平分∠DAB 和∠DCB ,AM 与CM 交于M ,探究∠AMC 与∠B 、∠D 间的数量关系.解答:利用角的飞镖模型如图所示,连接DM 并延长.∵∠3是△AMD 的外角,∴∠3=∠1+∠ADM , ∵∠4是△CMD 的外角,∴∠4=∠2+∠CDM ,∵∠AMC =∠3+∠4∴∠AMC =∠1+∠ADM +∠CDM +∠2,∴∠AMC =∠1+∠2+∠ADC .(角的飞镖模型)∵AM 、CM 分别平分∠DAB 和∠DCB ,∴12BAD ∠∠=,22BCD∠∠=, ∴22BAD BCDAMC ADC ∠∠∠=++∠,∴()3602B ADC AMC ADC ︒-∠+∠∠=+∠(四边形内角和360°),∴3602B ADCAMC ︒-∠+∠∠=,∴2∠AMC +∠B -∠ADC =360°.练习:1.如图,求∠A+∠B+∠C+∠D+∠E+∠F= .DE【答案】230°提示:∠C+∠E+∠D=∠EOC=115º.(飞镖模型),∠A+∠B+∠F=∠BOF=115º.∠A+∠B+∠C+∠D+∠E+∠F=115º+115º=230º 2.如图,求∠A+∠B+∠C+∠D= .AA【答案】220°提示:如图所示,连接BD.∠AED=∠A+∠3+∠1,∠BFC=∠2+∠4+∠C ,∠A+∠ABF+∠C+∠CDE=∠A+∠3+∠1+∠2+∠4+∠C=∠AED+∠BFC=220º模型3 边的“8”字模型如图所示,AC 、BD 相交于点O ,连接AD 、BC .结论AC+BD>AD+BC.CAD模型分析∵OA+OD>AD ①, OB+OC>BC ②, 由①+②得: OA+OD+OB+OC>BC+AD 即:AC+BD>AD+BC.模型实例如图,四边形ABCD 的对角线AC 、BD 相交于点O 。
几何经典模型:8字模型与飞镖模型
=360°.(四边形内角和为 360°)
练习:
1.(1)如图①,求:∠CAD+∠B+∠C+∠D+∠E=
;
E A
A
E
B
O
B
O
C
C
D
图①
D 图②
解:如图,∵∠1=∠B+∠D,∠2=∠C+∠CAD, ∴∠CAD+∠B+∠C+∠D+∠E=∠1+∠2+∠E=180°. 故答案为:180° 解法二:
(2)如图②,求:∠CAD+∠B+∠ACE+∠D+∠E=
本文为 word 版资料,可以任意编辑修改 本文为 word 版资料,可以任意编辑修 本文为 word 版资料,可以任意编辑修
模型 1:角的 8 字模型 如图所示,AC、BD 相交于点 O,连接 AD、BC.
结论:∠A+∠D=∠B+∠C.
A
D
O
B
C
模型分析
证法一:
∵∠AOB 是△ AOD 的外角,∴∠A+∠D=∠AOB.∵∠AOB 是△ BOC 的外角,
∠A+∠B+∠C+∠D+∠E+∠F=115º+115º=230º
2.如图,求∠A+∠B+∠C+∠D=.Dຫໍສະໝຸດ 105°AC
115°
BA
D
2
1 105°
C
115° 4 3
∵∠4 是△CMD 的外角,∴∠4=∠2+∠CDM,∵∠AMC=∠3+∠4
∴∠AMC=∠1+∠ADM+∠CDM+∠2,∴∠AMC=∠1+∠2+∠ADC.(角的飞镖模型)
∵AM、CM 分别平分∠DAB 和∠DCB,∴ 1 BAD , 2 BCD ,
三角形中角度计算相关的模型(飞镖模型、8字模型、角分线模型)
三角形中与角度计算相关的模型两个定理:一、平面内,三角形的三个内角和为180°。
二、平面内,三角形的一个外角等于其不相邻的两个外角和。
由上述两个定理可导出本文如下说要讲述的相关模型:8字模型、飞镖模型、两内角角平分线模型、两外角角平分线模型、内外角角平分线模型、共顶点的角平分线与高线夹角模型。
下面一一推导证明。
条件:AD、BC相交于点O。
结论:∠A+∠B=∠C+∠D。
(上面两角之和等于下面两角之和)证明:在∠ABO中,由内角和定理:∠A+∠B+∠BOA=180°在∠CDO中,∠C+∠D+∠COD=180°,∠∠A+∠B+∠BOA=180°=∠C+∠D+∠COD,由对顶角相等:∠BOA=∠COD故有∠A+∠B=∠C+∠D应用:如下左图所示,五角星中,∠A+∠B+∠C+∠D+∠E=180°条件:四边形ABDC如上左图所示。
结论:∠D=∠A+∠B+∠C。
(凹四边形凹外角等于三个内角和)证明:如上右图,连接AD并延长到E,则:∠BDC=∠BDE+∠CDE=(∠B+∠1)+(∠2+∠C)=∠B+∠BAC+∠C。
本质为两个三角形外角和定理证明。
应用:如下左图,则∠A+∠B+∠C+∠D+∠E+∠F=260°(下右图中两个飞镖)。
条件:△ABC 中,BI 、CI 分别是∠ABC 和∠ACB 的角平分线,且相交于点I 。
结论:A I ∠+︒=∠2190 证明: ∵BI 是∠ABC 平分线,∴ABC ∠=∠212 ∵CI 是∠ACB 平分线,∴ACB ∠=∠213由A →B →I →C →A 的飞镖模型可知: ∠I =∠A +∠2+∠3=∠A +ABC ∠21+ACB ∠21=∠A +)180(21A ∠-︒=A ∠+︒2190. 应用:如上图,BI 、CI 分别是∠ABC 和∠ACB 的角平分线,且相交于点I 。
(1) 若∠A =60° ,则∠I =120° (2) 若∠I =110°,则∠A =40° (3) 若∠A =α,则∠I =α2190+︒。
中考数学模型:飞镖模型与8字型模型
8字模型与飞镖模型8字型与飞镖型是中考几何模型中常见的两种结构,熟悉这两种结构对于我们快速解题有着极其重要的帮助。
模型1:角的8字模型如图所示,AC 、BD 相交于点O ,连接AD 、BC . 结论:∠A +∠D =∠B +∠C .ODC BA模型分析 证法一:∵∠AOB 是△AOD 的外角,∴∠A +∠D =∠AOB .∵∠AOB 是△BOC 的外角, ∴∠B +∠C =∠AOB .∴∠A +∠D =∠B +∠C . 证法二:∵∠A +∠D +∠AOD =180°,∴∠A +∠D =180°-∠AOD .∵∠B +∠C +∠BOC =180°, ∴∠B +∠C =180°-∠BOC .又∵∠AOD =∠BOC ,∴∠A +∠D =∠B +∠C . (1)因为这个图形像数字8,所以我们往往把这个模型称为8字模型. (2)8字模型往往在几何综合题目中推导角度时用到.模型实例观察下列图形,计算角度:(1)如图①,∠A +∠B +∠C +∠D +∠E =________;图图①FD C BAE EBCDA图③21O AB图④G F 12AB E解法一:利用角的8字模型.如图③,连接CD .∵∠BOC 是△BOE 的外角, ∴∠B +∠E =∠BOC .∵∠BOC 是△COD 的外角,∴∠1+∠2=∠BOC . ∴∠B +∠E =∠1+∠2.(角的8字模型),∴∠A +∠B +∠ACE +∠ADB +∠E=∠A +∠ACE +∠ADB +∠1+∠2=∠A +∠ACD +∠ADC =180°.解法二:如图④,利用三角形外角和定理.∵∠1是△FCE 的外角,∴∠1=∠C +∠E .∵∠2是△GBD 的外角,∴∠2=∠B +∠D .∴∠A +∠B +∠C +∠D +∠E =∠A +∠1+∠2=180°.(2)如图②,∠A +∠B +∠C +∠D +∠E +∠F =________.图②FDCBAE312图⑤P O QA BEFC D图⑥21EDCFOBA(2)解法一: 如图⑤,利用角的8字模型.∵∠AOP 是△AOB 的外角,∴∠A +∠B =∠AOP . ∵∠AOP 是△OPQ 的外角,∴∠1+∠3=∠AOP .∴∠A +∠B =∠1+∠3.①(角的8字模型),同理可证:∠C +∠D =∠1+∠2.② ,∠E +∠F =∠2+∠3.③由①+②+③得:∠A +∠B +∠C +∠D +∠E +∠F =2(∠1+∠2+∠3)=360°.解法二:利用角的8字模型.如图⑥,连接DE .∵∠AOE 是△AOB 的外角, ∴∠A +∠B =∠AOE .∵∠AOE 是△OED 的外角,∴∠1+∠2=∠AOE . ∴∠A +∠B =∠1+∠2.(角的8字模型)∴∠A +∠B +∠C +∠ADC +∠FEB +∠F =∠1+∠2+∠C +∠ADC +∠FEB +∠F=360°.(四边形内角和为360°) 练习:1.(1)如图①,求:∠CAD +∠B +∠C +∠D +∠E = ;图图①OOEEDDCCBBAA解:如图,∵∠1=∠B+∠D ,∠2=∠C+∠CAD ,∴∠CAD+∠B+∠C+∠D+∠E=∠1+∠2+∠E=180°. 故答案为:180° 解法二:(2)如图②,求:∠CAD +∠B +∠ACE +∠D +∠E = .图②OEDCBA解:由三角形的外角性质,知∠BAC=∠E+∠ACE,∠EAD=∠B+∠D,又∵∠BAC+∠CAD+∠EAD=180°,∴∠CAD +∠B +∠ACE +∠D +∠E=180° 解法二:2.如图,求:∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H = .HGFEDCBA解:∵∠G+∠D=∠3,∠F+∠C=∠4,∠E+∠H=∠2,∴∠G+∠D+∠F+∠C+∠E+∠H=∠3+∠4+∠2,∵∠B+∠2+∠1=180°,∠3+∠5+∠A=180°,∴∠A+∠B+∠2+∠4+∠3=360°, ∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=360°解法二:模型2:角的飞镖模型如图所示,有结论:∠D =∠A +∠B +∠C .ADC图①4321AD 4321AD模型分析解法一:如图①,作射线AD .∵∠3是△ABD 的外角,∴∠3=∠B +∠1,∵∠4是△ACD 的外角,∴∠4=∠C +∠2∴∠BDC =∠3+∠4,∴∠BDC =∠B +∠1+∠2+∠C ,∴∠BDC =∠BAC +∠B +∠C解法二:如图②,连接BC .∵∠2+∠4+∠D =180°,∴∠D =180°-(∠2+∠4)∵∠1+∠2+∠3+∠4+∠A =180°,∴∠A +∠1+∠3=180°-(∠2+∠4) ∴∠D =∠A +∠1+∠3.(1)因为这个图形像飞镖,所以我们往往把这个模型称为飞镖模型. (2)飞镖模型在几何综合题目中推导角度时使用. 模型实例如图,在四边形ABCD 中,AM 、CM 分别平分∠DAB 和∠DCB ,AM 与CM 交于M ,探究∠AMC 与∠B 、∠D 间的数量关系.解答:利用角的飞镖模型如图所示,连接DM 并延长.∵∠3是△AMD 的外角,∴∠3=∠1+∠ADM , ∵∠4是△CMD 的外角,∴∠4=∠2+∠CDM ,∵∠AMC =∠3+∠4 ∴∠AMC =∠1+∠ADM +∠CDM +∠2,∴∠AMC =∠1+∠2+∠ADC .(角的飞镖模型)∵AM 、CM 分别平分∠DAB 和∠DCB ,∴12BAD ∠∠=,22BCD∠∠=, ∴22BAD BCDAMC ADC ∠∠∠=++∠,∴()3602B ADC AMC ADC ︒-∠+∠∠=+∠(四边形内角和360°),∴3602B ADCAMC ︒-∠+∠∠=,∴2∠AMC +∠B -∠ADC =360°.练习:1.如图,求∠A+∠B+∠C+∠D+∠E+∠F= .E【答案】230°提示:∠C+∠E+∠D=∠EOC=115º.(飞镖模型),∠A+∠B+∠F=∠BOF=115º.∠A+∠B+∠C+∠D+∠E+∠F=115º+115º=230º 2.如图,求∠A+∠B+∠C+∠D= .AA【答案】220°提示:如图所示,连接BD.∠AED=∠A+∠3+∠1,∠BFC=∠2+∠4+∠C ,∠A+∠ABF+∠C+∠CDE=∠A+∠3+∠1+∠2+∠4+∠C=∠AED+∠BFC=220º模型3 边的“8”字模型如图所示,AC 、BD 相交于点O ,连接AD 、BC .结论AC+BD>AD+BC.CA模型分析∵OA+OD>AD ①, OB+OC>BC ②, 由①+②得: OA+OD+OB+OC>BC+AD 即:AC+BD>AD+BC.模型实例如图,四边形ABCD 的对角线AC 、BD 相交于点O 。
三角形角度计算之八字型与飞镖模型
模型一:角的8字模型
证法二:∵∠A+∠D+∠AOD=180° ∴∠A+∠D=180°-∠AOD ∵∠B+∠C+∠BOC=180° ∴∠B+∠C=180°-∠BOC 又∵∠AOD=∠BOC ∴∠A+∠D=∠B+∠C. 以上两种证明方法都比较常用,因为这个图形像数 字8,所以我们把这个模型称为8字模型。 如图所示,AC,BD相交于点O,连接AD、BC 结论:∠A+∠D=∠B+∠C. 证法一:∵∠AOB是△AOD的外角, ∴∠A+∠D=∠AOB ∵∠AOB是△BOC的外角 ∴∠B+∠C=∠AOB ∴∠A+∠D=∠B+∠C.
解析:(1)∵AB+BC>AC CD+AD>AC AB+AD>BD BC+CD>BD 以上式子相加即可得到AB+BC+CD+AD>AC+BD (2)∵AD<OA+OD BC<OB+OC 两式相加即可得到AD+BC<OA+OD+OB+OC ∴AD+BC<AC+BD(边的8字模型) 同理可证:AB+CD<AC+BD ∴AB+BC+CD+AD<2AC+2BD
解法一,如图①,作射线AD ∵∠3是△ABD的外角 ∴∠3=∠B+∠1 ∵∠4是△ACD的外角 ∴∠4=∠C+∠2 ∴∠BDC=∠3+∠4 ∴∠BDC=∠B+∠1+∠2+∠C∴∠BDC=∠BAC+∠B+∠C
解法二:如图②,连接BC ∵∠2+∠4+∠D=180° ∴∠D=180°-(∠2+∠4) ∵∠1+∠2+∠3+∠4+∠A=180° ∴∠A+∠1+∠3=180°-(∠2+∠4) ∴∠D=∠A+∠1+∠3
中考数学重点几何模型:8字型、飞镖模型和三垂直全等模型 讲义(无答案)
微专题:8字模型与飞镖模型模型一:角的八字模型典型例题:观察图形,计算角度:(1)如图①,∠A+∠B+∠C+∠D+∠E=.(2)如图②,∠A+∠B+∠C+∠D+∠E+∠F= .作业训练:1.(1)如图①,∠CAD+∠B+∠C+∠D+∠E= .(2)如图②,∠CA+D ∠B+∠ACE+∠D+∠E= .如图所示,AC 、BD 相交于点O ,连接AD 、BC.结论:∠A+∠D=∠B+∠C模型二:角的飞镖模型典型例题:1.如图,在四边形ABCD 中,AM 、CM 分别平分∠DAB 和∠DCB ,AM 与CM 交于M ,探究∠AMC 与∠B 、∠D 间的数量关系.作业训练:1.如图,求∠A+∠B+∠C+∠D+∠E+∠F= .2. 如图,求∠A+∠B+∠C+∠D= .微专题:三垂直全等模型如图所示,有结论:∠D=∠A+∠B+∠C模型:三垂直全等模型模型拓展:典型例题:例1:如图,AB ⊥BC ,CD ⊥BC ,AE ⊥DE ,AE=DE.求证:AB+CD=BC.例2:如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD=2.5cm ,BE=0.8cm ,则DE 的长为多少? 如图,∠D=∠BCA=∠E=90°,BC=AC.结论:Rt △BCD ≌Rt △CAE.作业训练:1.如图,正方形ABCD,BE=CF.求证(1)AE=BF;(2)AE⊥BF.2.如图,直线l上有三个正方形ca,,,若a、c的面积分别是5和11,则b的面积是.b3.如图①,已知在△ABC中,∠BAC=90°,AB=AC,点P为BC上一动点(BP<CP),分别过B、C作BE⊥AP于E、CF⊥AP于F.(1)求证:EF=CF-BE;(2)如图②,若P为BC延长线上一点,其他条件不变,则线段BE、CF、EF是否存在某种确定的数量关系?画图并直接写出你的结论.4.如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,设∠BCD=α,以D为旋转中心,将腰DC绕点D逆时针旋转90°至DE.(1)当α=45°时,求△EAD的面积;(2)当α=30°时,求△EAD的面积;(3)当0°<α<90°,猜想△EAD的面积与α大小有无关系.若有关,写出△EAD的面积S与α的关系式;若无关,请证明你的结论.5.如图,向△ABC的外侧作正方形ABDE、正方形ACFG,过A作AH⊥BC于H,AH的方向延长线于EG交于点P.求证:BC=2AP.。
初中数学常见模型之8字模型与飞镖模型
8字模型与飞镖模型
模型1:角的“8”字模型
如图所示,AB、CD相交于点O,连接AD、BC。 结论:∠A+∠D=∠B+∠C
A
D
O
B
C
模型分析:8字模型往往在几何综合题目中推导角度时用到
模型实例:
观察下列图形,计算角度:
(1)如图①,∠A+∠B+∠C+∠D+∠E=
;
(2)如图②,∠A+∠B+∠C+∠D+∠E+∠F=
;
2.如图②,求∠A+∠B+∠C+∠D =
。
A
E
135O
C
B
图① D
F
D
105O A
C 120O
B
图②
模型3 边的“8”字模型
A
如图所示,AC、BD相交于点O,连接AD、BC。
B
结论:AC+BD>AD+BC。
D O
C
典例精选
如图,四边形ABCD的对角线AC、BD相交于点O。 求证:(1)AB+BC+CD+AD>AC+BD;
。
A B
E
C D
图1
A
B
F C
E
D
图2
典例精选
1.(1)如图①,求∠CAD+∠B+∠C+∠D+∠E=
.
(2)如图②,求∠CAD+∠B+∠ACE+∠D+∠E=
.
2.如图③,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=
三角形两大模型飞镖模型与8字模型
三角形两大模型“飞镖”模型BDC A B C ∠=∠+∠+∠“8”字模型 A B C D ∠+∠=∠+∠思路导航知识互联网题型一:三角形的两大模型之角度关系DCBAABDCO【引例】 如图,45B ∠=°,30A ∠=°,25C ∠=°,试求ADC ∠的角度.(二分期中)【例1】 ⑴如图1,则A B C D E ∠+∠+∠+∠+∠= .⑵如图2,则A B C D E F ∠+∠+∠+∠+∠+∠= .图1 图2【例2】 ⑴如图1,求A B C D E F ∠+∠+∠+∠+∠+∠= .⑵如图2,求A B C D ∠+∠+∠+∠= .图1 图2【例3】 已知:如图34B ∠=°,40D ∠=°,AM ,CM 分别平分BAD ∠和BCD ∠.EF DC BA典题精练例题精讲E D CB A105°F ED CB A 120︒100︒DCBADC BA⑴ 求M ∠的大小;⑵ 当B ∠,D ∠为任意角时,探索M ∠与B ∠,D ∠间的数量关系, 并对你的结论加以证明.【例4】 如图,ADE △和ABC △中,45EAD AED BAC BCA ∠=∠=∠=∠=°,又有BAD BCF ∠=∠. ⑴求ECF DAC ECA ∠+∠+∠的度数;⑵判断ED 与FC 的位置关系,并对你的结论加以证明.(四中期中考试)213456B C D E GF M FDCEAB“飞镖”模型 AB AC BD CD +>+“8”字模型 AB CD AD BC +<+【例5】 如图,求证: AB AE BC CD DE +>++.【例6】 如图,AC 、BD 是四边形ABCD 的对角线,且AC 、BD 相交于点O .求证:典题精练思路导航题型二:三角形的两大模型之边的关系D C B AAB DCO O D C BA E D C BA⑴ AB CD AC BD +<+.⑵1()2AC BD AB BC CD AD +>+++.【例7】 三角形不等式是指一个三角形的两边长度之和大于第三边的长度.在下图中,E 位于线段CA 上,D 位于线段BE 上.⑴ 说明为什么AB AE DB DE +>+.⑵ 说明为什么AB AC DB DC +>+.⑶ AB BC CA ++与2()DA DB DC ++,哪一个更大?证明你的答案;⑷ AB BC CA ++与DA DB DC ++,哪一个更大?证明你 的答案.题型一 三角形的两大模型之角度关系 巩固练习 【练习1】如图∠A=30°,求∠B+∠C+∠D+∠E 的度数.【练习2】如图,在ABC △中,1∠是它的一个外角,E 为边AC 上一点,延长BC 到D ,连接DE , 求证:12∠>∠.复习巩固E C DBA ED C B A 21BCDE【练习3】如图,已知D 是△ABC 的BC 边延长线上一点,DF ⊥AB ,交AB 于F ,交AC 于E ,∠A =40°, ∠D =30°,求∠ACB 的度数.【练习4】 将图1中线段AD 上一点E (点A 、D 除外)向下拖动,依次可得图2、图3、图4.分别探究图2、图3、图4中A ∠、B ∠、C ∠、D ∠、E ∠(AED ∠)之间有什么关系?→→→图1 图2 图3 图4题型二 三角形两大模型之边的关系 巩固练习【练习5】如图,在四边形ABCD 中,90B ∠=︒.问BC CD AD <+成立吗?为什么?EDCBADCBA图321EABCD12ADBCE图521ABCDEDCBA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模型分析
模型分析
(1)因为这个图形像数字8,所以我们往 往把这个模型称为8字模型. (2)8字模型往往在几何综合题目中推导 角度时用到.
模型实例
观察下列图形,计算角度: (1)如图①,∠A+∠B+∠C+∠D+∠E=________;
A
A
B
E
B F
C
D
图①
E 图②
A
E B
1O 2
C
D
图③
解法一:利用角的8字模型.如图③,连接 CD. ∵∠BOC是△BOE的外角, ∴∠B+∠E=∠BOC. ∵∠BOC是△COD的外角, ∴∠1+∠2=∠BOC. ∴∠B+∠E=∠1+∠2.(角的8字模型),∴∠A +∠B+∠ACE+∠ADB+∠E =∠A+∠ACE+∠ADB+∠1+∠2 =∠A+∠ACD+∠ADC=180°.
E
D ①
A
B
F E
C
D 图②
A
B
O
F
123
P
Q
E 图⑤
C D
(2)解法一: 如图⑤,利用角的8字模型. ∵∠AOP是△AOB的外角, ∴∠A+∠B=∠AOP. ∵∠AOP是△OPQ的外角, ∴∠1+∠3=∠AOP. ∴∠A+∠B=∠1+∠3.①(角的8字模型), 同理可证:∠C+∠D=∠1+∠2.② ,
模型实例
如图,在四边形ABCD中,AM、CM分别平分∠DAB和∠DCB,AM与 CM交于M,探究∠AMC与∠B、∠D间的数量关系.
A 1 D
3M B
4
2
C
练习:
1.如图,求∠A+∠B+∠C+∠D+∠E+∠F=
.
2.如图,求∠A+∠B+∠C+∠D=
.
模型三:边的8字模型
如图所示,AC、BD相交于点O,连接AD、BC.结论AC+BD>AD+BC.
解法二:如图②,连接BC. ∵∠2+∠4+∠D=180°, ∴∠D=180°-(∠2+∠4) ∵∠1+∠2+∠3+∠4+∠A=180°, ∴∠A+∠1+∠3=180°-(∠2+∠4) ∴∠D=∠A+∠1+∠3. (1)因为这个图形像飞镖,所以我们往往把这 个模型称为飞镖模型.
(2)飞镖模型在几何综合题目中推导角度时使 用.
A
F 12 G E B
C
D
图④
解法二:如图④,利用三角形外角和定 理. ∵∠1是△FCE的外角, ∴∠1=∠C+∠E. ∵∠2是△GBD的外角, ∴∠2=∠B+∠D. ∴∠A+∠B+∠C+∠D+∠E =∠A+∠1+∠2=180°.
(2)如图②,∠A+∠B+∠C+∠D+∠E+∠F=________.
练习:
1.(1)如图①,求:∠CAD+∠B+∠C+∠D+∠E=
;
解:如图,∵∠1=∠B+∠D,∠2=∠C+∠CAD, ∴∠CAD+∠B+∠C+∠D+∠E=∠1+∠2+∠E=180°. 故答案为:180° 解法二:
(2)如图②,求:∠CAD+∠B+∠ACE+∠D+∠E=
.
解:由三角形的外角性质,知∠BAC=∠E+∠ACE,∠EAD=∠B+∠D, 又∵∠BAC+∠CAD+∠EAD=180°,∴∠CAD+∠B+∠ACE+∠D+∠E=180° 解法二:
∴AB+BC+CD+AD< 2AC+2BD.
模型4 边的飞镖模型
如图所示有结论:AB+AC> BD+CD.
模型分析
如图,延长BD交AC于点E。 ∵AB+AC=AB+AE+EC,AB+AE>BE, ∴AB+A C>BE+EC.① , ∵BE+EC=BD+DE+EC,
DE+EC> CD,∴BE+EC>BD+CD. ② ,
2.如图,求:∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=
.
解:∵∠G+∠D=∠3,∠F+∠C=∠4,∠E+∠H=∠2,∴∠G+∠D+∠F+∠C+∠E+∠H=∠3+∠4+∠2, ∵∠B+∠2+∠1=180°,∠3+∠5+∠A=180°,∴∠A+∠B+∠2+∠4+∠3=360°, ∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=360°
8字模型与飞镖模型
模型一:角的8字模型
如图所示,AC、BD相交于点O,连接AD、BC. 结论:∠A+∠D=∠B+∠C.
A
D
O
B
C
模型分析
证法一: ∵∠AOB是△AOD的外角, ∴∠A+∠D=∠AOB. ∵∠AOB是△BOC的外角, ∴∠B+∠C=∠AOB. ∴∠A+∠D=∠B+∠C.
证法二: ∵∠A+∠D+∠AOD=180° ∴∠A+∠D=180°-∠AOD ∵∠B+∠C+∠BOC=180° ∴∠B+∠C=180°-∠BOC 又∵∠AOD=∠BOC ∴∠A+∠D=∠B+∠C.
解法二:
模型二:角的飞镖模型
如图所示,有结论:∠D=∠A+∠B+∠C.
模型分析
解法一:如图①,作射线AD. ∵∠3是△ABD的外角, ∴∠3=∠B+∠1, ∵∠4是△ACD的外角, ∴∠4=∠C+∠2 ∴∠BDC=∠3+∠4, ∴∠BDC=∠B+∠1+∠2+∠C, ∴∠BDC=∠BAC+∠B+∠C
模型分析 ∵OA+OD>AD①, OB+OC>BC②, 由①+②得:
OA+OD+OB+OC>BC+AD 即:AC+BD>AD+BC.
模型实例
如图,四边形ABCD的对角线AC、BD相交于点O。 求证:(1) AB+BC+CD+AD>AC+BD;
(2) AB+BC+CD+AD <2AC+2BD.
证明:(1)∵AB+BC>AC①, CD+AD>AC②, AB+AD>BD③, BC+CD> BD④
∠E+∠F=∠2+∠3.③ 由①+②+③得:∠A+∠B+∠C+∠D+∠E +∠F=2(∠1+∠2+∠3)=360°.
F E
A
B
O C
1 图⑥
2 D
解法二:利用角的8字模型.如图⑥,连 接DE. ∵∠AOE是△AOB的外角, ∴∠A+∠B=∠AOE. ∵∠AOE是△OED的外角, ∴∠1+∠2=∠AOE. ∴∠A+∠B=∠1+∠2.(角的8字模型) ∴∠A+∠B+∠C+∠ADC+∠FEB+∠F=∠1 +∠2+∠C+∠ADC+∠FEB+∠F =360°.(四边形内角和为360°)
由①+②+③+④得: 2 (AB+BC+CD+AD)>2(AC+BD). 即AB+BC+CD+AD >AC+BD.
(2) ∵AD<OA+OD① , BC<OB+OC②, 由①+②得: AD+BC< OA+OD+OB+OC.
∴AD+BC<AC+BD.(边的8字模型), 同理可证:AB+CD <AC+BD.