第一章有理数练习题
人教版七年级数学上册《第一章有理数》测试卷-附含答案

人教版七年级数学上册《第一章有理数》测试卷-附含答案1.设|a |=4 |b |=2 且|a +b |=-(a +b ) 则a -b 所有值的和为( ) A .-8 B .-6 C .-4 D .-2点中可能是原点的为( )A .A 点B .B 点C .C 点D .D 点10010AB BC CD DE ===, 则数9910所对应的点在线段( )上.A .AB B .BC C .CD D .DE【详解】 AB BC =14AB ∴=4.计算202020222 1.5(1)3⎛⎫-⨯⨯- ⎪⎝⎭的结果是( )A .23B .32C .23-D .32-20202019 1.53⨯⋅⋅⋅⨯个个20193个在一个由六个圆圈组成的三角形里图中圆圈里 要求三角形每条边上的三个数的和S 都相等 那么S 的最大值是( )A .-9B .-10C .-12D .-13【答案】A【详解】解:六个数的和为:()()()()()()12345621-+-+-+-+-+-=- 最大三个数的和为:()()()1236-+-+-=- S=[(21)(6)]39-+-÷=-. 填数如图:故选A.6.|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|的最小值是a ||||||1a b ca b c++=-那么||||||||ab bc ac abcab bc ac abc+++的值为()A.﹣2B.﹣1C.0D.不确定【答案】45或23【详解】解:∵|x|=11 |y|=14 |z|=20∵x=±11 y=±14 z=±20.∵|x +y |=x +y |y +z |=﹣(y +z ) ∵x +y ≥0 y +z ≤0.∵x +y ≥0.∵x =±11 y =14. ∵y +z ≤0 ∵z =﹣20当x =11 y =14 z =﹣20时 x +y ﹣z =11+14+20=45; 当x =﹣11 y =14 z =﹣20时 x +y ﹣z =﹣11+14+20=23. 故答案为:45或23.8.若|a|+|b|=|a+b| 则a 、b 满足的关系是_____. 【答案】a 、b 同号或a 、b 有一个为0或同时为0 【详解】∵|a|+|b|=|a+b|∵a 、b 满足的关系是a 、b 同号或a 、b 有一个为0 或同时为0 故答案为a 、b 同号或a 、b 有一个为0 或同时为0.9.计算:11111111111111234201723420182342018⎛⎫⎛⎫⎛⎫----⋯-⨯+++⋯+-----⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11112342017⎛⎫⨯+++⋯+= ⎪⎝⎭_________.12017++=12018++=1111111111)]()[1()]()2017232018232018232017⨯+++--+++⨯+++++1[1(2018m -+)(2018m m -+a +2b +3c +4d 的最大值是_____. 【答案】81【详解】解:∵a b c d 表示4个不同的正整数 且a +b 2+c 3+d 4=90 其中d >1 ∵d 4<90 则d =2或3 c 3<90 则c =1 2 3或4b 2<90 则b =1 2 3 4 5 6 7 8 9a <90 则a =1 2 3 … 89 ∵4d ≤12 3c ≤12 2b ≤18 a ≤89 ∵要使得a +2b +3c +4d 取得最大值则a 取最大值时 a =90﹣(b 2+c 3+d 4)取最大值 ∵b c d 要取最小值 则d 取2 c 取1 b 取3 ∵a 的最大值为90﹣(32+13+24)=64 ∵a +2b +3c +4d 的最大值是64+2×3+3×1+4×2=81 故答案为:81.11.如图 将一个半径为1个单位长度的圆片上的点A 放在原点 并把圆片沿数轴滚动1周 点A 到达点A '的位置 则点A '表示的数是 _______;若起点A 开始时是与—1重合的 则滚动2周后点A '表示的数是______.【答案】 2π或2π- 41π-或41π--对数轴上分别表示数a和数b的两个点A B之间的距离进行了探究:(1)利用数轴可知5与1两点之间距离是;一般的数轴上表示数m和数n的两点之间距离为.问题探究:(2)请求出|x﹣3|+|x﹣5|的最小值.问题解决:(3)如图在十四运的场地建设中有一条直线主干道L L旁依次有3处防疫物资放置点A B C已知AB=800米BC=1200米现在设计在主干道L旁修建防疫物资配发点P问P建在直线L上的何处时才能使得配发点P到三处放置点路程之和最短?最短路程是多少?()1求A、B两点之间的距离;()2点C、D在线段AB上AC为14个单位长度BD为8个单位长度求线段CD的长;()3在()2的条件下动点P以3个单位长度/秒的速度从A点出发沿正方向运动同时点Q 以2个单位长度/秒的速度从D点出发沿正方向运动求经过几秒点P、点Q到点C的距离相等.)12a++b-=60b=;6)1218-=;在线段ABAC=AB=1418BC∴=18=CD BD()3设经过AD AB=①当点P的数学工具 它使数和数轴上的点建立起对应关系 揭示了数与点之间的内在联系 它是“数形结合”的基础.例如 式子2x -的几何意义是数轴上x 所对应的点与2所对应的点之间的距离;因为()+=--x 1x 1 所以1x +的几何意义就是数轴上x 所对应的点与-1所对应的点之间的距离.结合数轴与绝对值的知识回答下列问题:(1)若23x -= 则x = ;32x x -++的最小值是 .(2)若327x x -++= 则x 的值为 ;若43113x x x ++-++= 则x 的值为 .(3)是否存在x 使得32143x x x +-+++取最小值 若存在 直接写出这个最小值及此时x 的取值情况;若不存在 请说明理由.当P 在A 点左侧时2255PA PB PA AB PA +=+=+>;同理当P 在B 点右侧时2255PA PB PB AB PB +=+=+>;。
第1章有理数练习题及答案

第1章 有理数练习题及答案1.1 正数和负数第1课时 正数和负数1.下列各数是负数的是( ) A.23 B.-4 C.0 D.10%2.飞机在飞行过程中,如果上升23米记作“+23米”,那么下降15米应记作( ) A.-8米 B.+8米 C.-15米 D.+15米3.下列说法正确的是( ) A.气温为0℃就是没有温度B.收入+300元说明收入增加了300元C.向东骑行-500米说明向北骑行500米D.增长率为-20%等同于增长率为20%4.“牛牛”饮料公司的一种饮料包装上有“500±30mL ”字样,其中500表示标准容量是500mL.如果+30mL 表示超出标准容量30mL ,那么-30mL 表示 .5.把下列各数按要求分类:-18,227,2.7183,0,2020,-0.3·,-259,480.正数有: ; 负数有: ; 既不是正数也不是负数的有: .6.每袋精盐的标准质量为200g ,现有5袋精盐的质量如下:203g,198g,200g,202g,196g.如果超重部分用正数表示,请表示出这5袋精盐的超重数或不足数.第2课时 有理数及其分类1.下列各数中是负分数的是( ) A.-12 B.17C.-0.4·D.1.52.在0,14,-3,+10.2,15中,整数的个数是( )A.1个B.2个C.3个D.4个 3.对于-0.125的说法正确的是( ) A.是负数,但不是分数 B.不是分数,是有理数 C.是分数,不是有理数 D.是分数,也是负数 4.下列说法正确的是( ) A.整数可分为正整数和负整数 B.分数可分为正分数和负分数 C.0不属于整数也不属于分数 D.所有的整数都是正数5.在1,-0.3,+13,0,-3.3这五个数中,整数有 ,正分数有 ,非正有理数有 .6.把下列有理数填入相应的括号内:+4,-7,-54,0,3.85,-49%,-80,13,-4.95.正整数:{ …}; 负整数:{ …}; 正分数:{ …}; 负分数:{ …}; 负有理数:{ …}; 正有理数:{ …}.数轴、相反数和绝对值第1课时 数 轴1.下列所画数轴正确的是( )2.如图,点M 表示的数可能是( )A.1.5B.-1.5C.2.5D.-2.53.如图,点A 表示的有理数是3,将点A 向左移动2个单位长度后表示的有理数是( )A.-3B.1C.-1D.54.在数轴上,与表示数-1的点的距离为1的点所表示的数是 .5.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数的个数是 个.6.在数轴上表示下列各数,并有“>”号连接起来.1.8,-1,52,3.1,-2.6,0,1.第2课时 相反数1.-3的相反数是( ) A.-3 B.3 D.-13 D.132.下列各组数互为相反数的是( )A.4和-(-4)B.-3和13C.-2和-12D.0和03.如图,数轴上有A ,B ,C ,D 四个点,其中表示2的相反数的点是( )A.点AB.点BC.点CD.点D4.化简:(1)+(-1)= ;(2)-(-3)= ; (3)+(+2)= .5.写出下列各数的相反数:(1)-3.5的相反数为 ; (2)35的相反数为 ;(3)0的相反数为 ; (4)28的相反数为 ; (5)-2018的相反数为 .第3课时 绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )3.计算:(1)|7|= ; (2)|5.4|= ; (3)|-3.5|= ; (4)|0|= .4.已知|x -2017|+|y +2018|=0,则x = ,y = .1.3 有理数的大小1.在3,-9,412,-2四个有理数中,最大的是( )A.3B.-9C.412D.-2 2.下列各数中,小于-2的是( ) A.-12 B.-3C.-1D.13.如图,有理数a 在数轴上的位置如图所示,则( )A.a >2B.a >-2C.a <0D.-1>a 4.比较大小: (1)0 -0.5; (2)-5 -2; (3)-12 -23.5.小明通过科普读物了解到:在同一天世界各地的气温差别很大.若某时刻海南的气温是15℃,北京的气温为0℃,哈尔滨的气温为-5℃,莫斯科的气温是-17℃,则这四个气温中最低的是 ℃.6.在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514.有理数的加减有理数的加法1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.⎝⎛⎭⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝⎛⎭⎫-212=-3 D.(-71)+0=71 5.每袋大米以50kg 为标准,其中超过标准的千克数记为正数,低于标准的千克数记为负数,则图中第3袋大米的实际质量是 kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2018)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝⎛⎭⎫-718+⎝⎛⎭⎫-16.有理数的减法1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)⎝⎛⎭⎫-23-112.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?加、减混合运算1.把7-(-3)+(-5)-(+2)写成省略括号的和的形式为( ) A .7+3-5-2 B .7-3-5-2 C .7+3+5-2 D .7+3-5+22.算式“-3+5-7+2-9”的读法正确的是( ) A .3、5、7、2、9的和 B .减3正5负7加2减9C .负3,正5,减7,正2,减9的和D .负3,正5,负7,正2,负9的和 3.计算(-2)+(-3)-6的结果是( ) A .-1 B .-11 C .11 D .1 4.计算:(1)-3.5-(-1.7)+2.8-5.3; (2)⎝⎛⎭⎫-312-⎝⎛⎭⎫-523+713;(3)-0.5+⎝⎛⎭⎫-14-(-2.75)-12; (4)314+⎝⎛⎭⎫-718+534+718.5.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚的温度为-2℃,求该地清晨的温度.有理数的乘除有理数的乘法第1课时 有理数的乘法法则1.计算-3×2的结果为( ) A .-1 B .-5 C .-6 D .12.-74的倒数是( )A .-74B .74C .-47D .473.一种商品原价120元,按八折出售,则实际售价应为 元.4.填表(想法则,写结果):5.计算:(1)(-15)×13; (2)-218×0;(3)154×⎝⎛⎭⎫-1625; (4)(-2.5)×⎝⎛⎭⎫-73.第2课时 多个有理数相乘1.下列各式中积为负数的是( ) A .(+3)×(+4)×5 B .-13×(-6)×(-7)C .(-5)×0×2018D .(-2)×(-4)×8 2.计算-3×2×27的结果是( )A .127B .-127C .27D .-273.某件商品原价100元,先涨价20%,然后再降价20%出售,则现在的价格是 元.4.计算:(1)(-2)×7×(-4)×(-2.5);(2)23×⎝⎛⎭⎫-97×(-24)×⎝⎛⎭⎫+134;(3)(-4)×499.7×57×0×(-1);(4)(-3)×⎝⎛⎭⎫-79×(-0.8).有理数的除法第1课时 有理数的除法法则1.下列计算结果为负数的是( )A .0÷3B .5÷2C .-1÷(-2)D .-4÷22计算(-18)÷6的结果是( )A .-3B .3C .-13D .133.下列说法不正确的是( )A .0可以作被除数B .0可以作除数C .0的相反数是它本身D .两数的商为1,则这两数相等4.计算:(1)0÷(-3.4); (2)15÷(-3);(3)(-0.1)÷(-10); (4)-125÷35.5.列式计算:(1)两数的积是1,已知一个数是-0.5,求另一个数;(2)两数的商是-3,已知被除数是-157,求除数.第2课时 除法转化为乘法的运算1.计算(-8)÷⎝⎛⎭⎫-18的结果是( )A .-64B .64C .1D .-12.下列运算错误的是( )A .13÷(-3)=3×(-3)B .-5÷⎝⎛⎭⎫-12=-5×(-2)C .8÷(-2)=-8×12D .0÷3=03.如果▽×⎝⎛⎭⎫-45=2,则“▽”表示的有理数应是() A .-52 B .-58 C .52 D .584.若长方形的面积为112,长为338,则宽为 .5.计算:(1)(-6)÷14; (2)⎝⎛⎭⎫-53÷⎝⎛⎭⎫-52;(3)+56÷⎝⎛⎭⎫-13; (4)-34÷⎝⎛⎭⎫+76.乘、除混合运算1.简便计算2.25×(-7)×4×⎝⎛⎭⎫-37时,应运用的运算律是( ) A .加法交换律 B .加法结合律C .乘法交换律和结合律D .乘法分配律2.计算(-2)×3÷(-2)的结果是( )A .12B .3C .-3D .-123.计算3×⎝⎛⎭⎫13-12的结果是 . 4.计算:(1)36÷(-3)×⎝⎛⎭⎫-16; (2)27÷(-9)×527;(3)2-7×(-3)+10÷(-2); (4)916÷⎝⎛⎭⎫12-2×524;(5)5÷⎝⎛⎭⎫-87-5×98; (6)1011×1213×1112-1÷⎝⎛⎭⎫-132.有理数的乘方第1课时 有理数的乘方及混合运算1.-24表示( )A .4个-2相乘B .4个2相乘的相反数C .2个-4相乘D .2个4的相反数2.计算(-3)2的结果是( )A .-6B .6C .-9D .93.计算(-8)×3÷(-2)2的结果是( )A .-6B .6C .-12D .124.计算:(1)(-2)3; (2)-452; (3)-⎝⎛⎭⎫-372; (4)⎝⎛⎭⎫-233.5.计算:(1)9×(-1)12+(-8); (2)-9÷3+⎝⎛⎭⎫12-23×12+32;(3)8-2×32-(-2×3)2; (4)-14÷⎝⎛⎭⎫-122+2×3-0÷2243.第2课时科学记数法1.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×1072.长江三峡工程电站的总装机容量用科学记数法表示为1.82×107千瓦,把它写成原数是()A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦3.用科学记数法表示下列各数:(1)地球的半径约为6400000m;(2)赤道的总长度约为40000000m.近似数1.下面所列四个数据中,是准确数的是()A.小明的身高1.55mB.小明的体重38kgC.小明家离校1.5kmD.小明班里有23名女生2.用四舍五入法对0.7982取近似值,精确到百分位,正确的是()A.0.8B.0.79C.0.80D.0.7903.近似数5.0精确到()A.个位B.十分位C.百分位D.以上都不对4.求下列各数的近似数.(1)23.45(精确到十分位);(2)0.2529(精确到百分位);(3)13.50505(精确到十分位);(4)5.36×105(精确到万位).正数和负数第1课时 正数和负数1.B2.C3.B4.低于标准容量30mL5.227,2.7183,2020,480 -18,-0.3·,-2590 6.解:这5袋精盐的超重数或不足数分别为+3g ,-2g,0g ,+2g ,-4g.第2课时 有理数及其分类1.C2.C3.D4.B5.1,0 +13-0.3,0,-3.3 6.正整数:{+4,13,…}; 负整数:{ -7,-80,…};正分数:{3.85,…}; 负分数:⎩⎨⎧⎭⎬⎫-54,-49%,-4.95,…; 负有理数:⎩⎨⎧⎭⎬⎫-7,-54,-49%,-80,-4.95,…; 正有理数:{+4,3.85,13,…}.数轴、相反数和绝对值第1课时 数 轴1.C2.D3.B4.-2或05.46.解:在数轴上表示如下:由数轴可得3.1〉52〉1.8〉1〉0〉-1〉-2.6. 第2课时 相反数1.B2.D3.A4.(1)-1 (2)3 (3)25.(1)3.5 (2)-35(3)0 (4)-28 (5)2018 第3课时 绝对值1.C2.B3.(1)7 (2)5.4 (3)3.5 (4)04.2017 -20181.C2.B3.B4.(1)> (2)< (3)>5.-176.解:如图所示.-6<-514<-35<0<1.5<2. 有理数的加减有理数的加法1.B2.B3.B4.A5.49.36.解:(1)原式=-26.(2)原式=-6.(3)原式=-2018.(4)原式=0.(5)原式=4.(6)原式=-59. 有理数的减法1.A2.B3.B4.解:(1)原式=9+(+6)=9+6=15.(2)原式=-5+(-2)=-7.(3)原式=0+(-9)=-9.(4)原式=-812+⎝⎛⎭⎫-112=-34. 5.解:五天的温差分别如下:第一天:(-1)-(-7)=(-1)+7=6(℃);第二天:5-(-3)=5+3=8(℃);第三天:6-(-4)=6+4=10(℃);第四天:8-(-4)=8+4=12(℃);第五天:11-2=9(℃).由此看出,第四天的温差最大,第一天的温差最小.加、减混合运算1.A2.D3.B4.解:(1)原式=-3.5+1.7+2.8+(-5.3)=-4.3.(2)原式=⎝⎛⎭⎫-312+523+713=912.(3)原式=⎝⎛⎭⎫-12+⎝⎛⎭⎫-12+⎝⎛⎭⎫-14+234=32.(4)原式=314+534+⎝⎛⎭⎫-718+718=9.5.解:-2+5-8=-5(℃).答:该地清晨的温度为-5℃.有理数的乘除有理数的乘法第1课时 有理数的乘法法则1.C2.C3.964.表中从左到右、从上到下依次填:- 48 -48 - 80 -80 + 36 36 +160 1605.解:(1)原式=-5.(2)原式=0.(3)原式=-125.(4)原式=356.第2课时 多个有理数相乘1.B2.B3.964.解:(1)原式=-(2×7×4×2.5)=-140.(2)原式=23×97×24×74=36.(3)原式=0.(4)原式=73×⎝⎛⎭⎫-45=-2815.有理数的除法第1课时 有理数的除法法则1.D2.A3.B4.解:(1)原式=0.(2)原式=-5.(3)原式=0.01.(4)原式=-4.5.解:(1)1÷(-0.5)=-2,即另一个数为-2.(2)-157÷(-3)=57,即除数为57. 第2课时 除法转化为乘法的运算 1.B 2.A 3.A 4.435.解:(1)原式=(-6)×4=-24.(2)原式=53×25=23. (3)原式=-56×3=-52. (4)原式=-34×67=-914. 乘、除混合运算1.C2.B3.-124.解:(1)原式=-12×⎝⎛⎭⎫-16=2. (2)原式=-27×19×527=-59. (3)原式=2+21-5=18.(4)原式=916÷⎝⎛⎭⎫-32×524=-916×23×524=-38×524=-564. (5)原式=5×⎝⎛⎭⎫-78-5×98=5×⎝⎛⎭⎫-78-98=5×(-2)=-10. (6)原式=⎝⎛⎭⎫1011×1112×1213-1×⎝⎛⎭⎫-213=1012×1213+213=1013+213=1213. 有理数的乘方第1课时 有理数的乘方及混合运算1.B2.D3.A4.解:(1)原式=-8.(2)原式=-425. (3)原式=-949.(4)原式=-827. 5.解:(1)原式=9×1-8=1.(2)原式=-3+12×12-23×12+9=-3+6-8+9=4. (3)原式=8-2×9-(-6)2=8-18-36=-10-36=-46.(4)原式=-1÷14+6-0=-1×4+6=-4+6=2. 第2课时 科学记数法1.C2.C3.解:(1)6.4×106m.(2)4.0×107m.近似数1.D2.C3.B4.解:(1)23.45≈23.5.(2)0.2529≈0.25.(3)13.50505≈13.5.(4)5.36×105≈5.4×105(或540000).。
第一章-有理数单元测试题及答案

第一章有理数测试题一、选择题(每题3分,共30分)1、1999年国家财政收入达到11377亿元,用四舍五入法近似值为()亿元(A)(B)(C)(D)2、大于–3.5,小于2.5的整数共有( )个。
(A)6 (B)5 (C)4 (D)33、已知数在数轴上对应的点在原点两侧,并且到原点的位置相等;数是互为倒数,那么的值等于( )(A)2 (B)–2 (C)1 (D)–14、如果两个有理数的积是正数,和也是正数,那么这两个有理数()(A)同号,且均为负数(B)异号,且正数的绝对值比负数的绝对值大(C)同号,且均为正数(D)异号,且负数的绝对值比正数的绝对值大5、在下列说法中,正确的个数是()⑴任何一个有理数都可以用数轴上的一个点来表示⑵数轴上的每一个点都表示一个有理数⑶任何有理数的绝对值都不可能是负数⑷每个有理数都有相反数A、1B、2C、3D、46、下列代数式中,值一定是正数的是()A.x2 B.|-x+1| C.(-x)2+2 D。
-x2+17、下列说法正确的是( )A、几个有理数相乘,当因数有奇数个时,积为负;B、几个有理数相乘,当正因数有奇数个时,积为负;C、几个有理数相乘,当负因数有奇数个时,积为负;D、几个有理数相乘,当积为负数时,负因数有奇数个;8、将150000000千米用科学记数法表示为()A.0.15×千米B.1。
5×千米C.15×千米D.1。
5×千米9、下列计算正确的是()A.-22=-4 B。
-(-2)2=4 C。
(-3)2=6 D。
(-1)3=110、如果a〈0,那么a和它的相反数的差的绝对值等于()A。
a B.0 C。
-a D。
-2a二、填空题:(每题2分,共42分)1、.2、小明与小刚规定了一种新运算*:若a、b是有理数,则a*b = .小明计算出2*5=—4,请你帮小刚计算2*(-5)=。
3、若,则= ;4、大于-2而小于3的整数分别是_________________、5、(-3.2)3中底数是______,乘方的结果符号为______。
第一章有理数测试卷2

第一章有理数考试题1、已知a 是有理数,下列四个式子一定大于0的是( ) A.2)1(+a B. 12+a C.5+a D.a a +22.两个非零有理数的和为零,则它们的商是( ) A. 0 B. -1 C.+1 D.不能确定3.已知n 为正整数,则])1()1[(211+-+-n n 的值是( )A. -1 B. 1 C.2 D.04.下列几种说法中,正确的是( )A.0是最小的数B.最大的负有理数是-1C.任何有理数的绝对值都是正数D.0没有倒数5.如图所示,圆的周长为4个单位长度.在圆的4等分点处标上0,1,2, 3先让圆周上的0对应的数与数轴的数-1所对应的点重合,再让数轴按逆时针方向绕在该圆上.那么数轴上的-2007将与圆周上的数字( )重合A 、0B 、1C 、2D 、3310-1-2-3-46.如图,用一根质地均匀长30厘米的直尺和一些相同棋子做实验。
已知支点到直尺左右两端的距离分别为a 、b ,通过实验可得如下结论:左端棋子数⨯a=右端棋子数⨯b ,直尺就能平衡。
现在已知左端放了4枚棋子,右端2枚棋子,那么a 为多少时直尺才能平衡?( )(支点)baA.5cmB.10cmC.15cmD.20cm7.下列说法正确的是( )A 、近似数3.90与近似数3.9的精确度一样B 、近似数3.90与近似数3.9的有效数字一样C 、近似数2.0⨯106与近似数200万的精确度一样D 、近似数39.0与近似数3.9的精确度一样 8.下列各对数中,数值相等的是( )A.23-和2)3(- B.23与32 C. 32-和3)2(- D.3)24(⨯-与324⨯-9. 1011)2()2(-+-的值是( )A. 2- B.21)2(- C.0 D.102- 10.一个负数减去它的相反数后,再除以这个负数的绝对值所得到的商是( ) A. 0 B. 1 C. -2 D. 211.若0)3(22=-+-c b b a ,则c b a 2-+的值是( ) A.6c B. 7c C. 8c D. 9c12.若0≠ab ,则bb aa +的取值不可能是( )A. 0 B. 1 C.2 D.-2二、填空题1.绝对值大于1而小于4的整数有 ,其和为 .2.在数轴上,到表示-3的点的距离等于2008个单位长度的点所表示的数是 .3.若a,b 互为相反数,c,d 互为倒数,则43)(3)(cd b a -+= .4.平方等于本身的有理数是 ,立方等于本身的有理数是 .5.若,22m m -=- 3=m .则m= .6.已知x,y,z 是三个有理数,若,0,=+<y x y x 且0>xyz ,则z x + 0.7.将)2()7()3(20-++---中的减法改成加法并写成省略加号的代数和的形式应是 . 8. +-+-+-654321 20092008-+= .9.在数-5,1,-3,5,-2中任取三个相乘,其中最大的积是 ,最小的积是 . 10. 细菌每过20分钟便由一个分裂成2个,经过10小时后这种细菌由一个分裂成 (用乘方表示结果)个.11. 0.030精确到 分位(或精确到_____),有_____个有效数字,是__________。
第一章《有理数》全章 练习题 (含答案)

第一章《有理数》全章 练习题 (含答案)一、选择题1. 2024的倒数是( )A .2024B .2024−C .12024−D .120242. 中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,将这个数用科学记数法表示为( )A .84410⨯B .84.410⨯C .94.410⨯D .104.410⨯3.如图,数轴上点A 和点B 分别表示数a 和b ,则下列式子正确的是( )A .0a >B .0ab >C .0a b −>D .0a b +<4.下列几种说法中,不正确的有( )个.①绝对值最小的数是0;②最大的负有理数是﹣1;③数轴上离原点越远的点表示的数就越小;④平方等于本身的数只有0和1;⑤倒数是本身的数是1和﹣1.A .4B .3C .2D .15. 若|m ﹣2|+(n +3)2=0,则m ﹣n 的值为( )A .﹣5B .﹣1C .1D .56. 如图是嘉淇同学的练习题,他最后得分是( )A .20分B .15分C .10分D .5分6. 如图,数轴上,A B 两点分别对应有理数,a b ,则下列结论:①0ab <;②0a b +>;③1a b −>;④||||0a b −<,⑤220a b −<.其中正确的有( )A .1个B .2个C .3个D .4个8.如图是一个数值转换机, 若输入x 的值是1−, 则输出的结果y 为( )A .7B .8C .10D .129. 观察1211−=,2213−=,3217−=,42115−=,52131−=,⋯,归纳各计算结果中的个位数字的规律,猜测202221−的个位数字是( )A .1B .3C .7D .510. 计算 1111111111131422363524⎡⎤⎛⎫⎛⎫−+÷÷−⨯+−÷ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的值为( ) A .2514 B .2514− C .114 D .114− 二、填空题(本大题共6小题)11. -56____ -67(填>,<,=) 12. 如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分80分应记作_____13. 数轴上,点A 表示的数是-3,距点A 为4个单位长度的点所表示的数是______.14. 若a 与b 互为相反数,m 与n 互为倒数,则()()220212022b a b mn a ⎛⎫+−+= ⎪⎝⎭ . 15.已知|a |=3,|b |=5,且ab <0,则a +b 的值16. 已知m 、n 两数在数轴上位置如图所示,将m 、n 、﹣m 、﹣n 用“<”连接:____________17.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为 . 18 .若x 是不等于1的实数,我们把11x−称为x 的差倒数, 如2的差倒数是1112=−−,-1的差倒数为()11112=−−, 现已知113x =−,2x 是1x 的差倒数,3x 是2x 的差倒数,4x 是3x 的差倒数,…,依此类推,则2022x = .三、解答题19. 把下列各数填在相应的括号里:﹣8,0.275,227 ,0,﹣1.04,﹣(﹣3),﹣13,|﹣2| 正数集合{ …}负整数集合{ …}分数集合{ …}负数集合{ …}.20 画一条数轴,在数轴上表示下列有理数,并用“<”号把各数连接起来:2.5−,0,-2,-(-4),-3.5,321. (1)(-534)+(+237)+(-114)-(-47) (2)()155********⎛⎫−+−⨯− ⎪⎝⎭ (3)-14+14×[2×(-6)-(-4)2] (4)(-2)3×(-34)+30÷(-5)-│-3│22. 已知a ,b 互为相反数,c ,d 互为倒数,|m |=2,求代数式2m ﹣(a +b ﹣1)+3cd 的值. .23. 已知x 是最小正整数,y ,z 是有理数,且有| y ﹣2|+|z+3|=0,计算:(1)求x ,y ,z 的值.(2)求3x ﹢y ﹣z 的值.24. 某一出租车一天下午以鼓楼为出发点,在东西方向上营运,向东为正,向西为负, 行车依先后次序记录如下:(单位:km )+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+7(1)将最后一名乘客送到目地,出租车离鼓楼出发点多远?在鼓楼什么方向?(2)若每千米的价格为2.4元,司机一下午的营业额是多少元?25.已知数轴上三点M ,O ,N 对应的数分别为﹣1,0,3,点P 为数轴上任意点,其对应的数为x .(1)MN 的长为 ; (2)如果点P 到点M 、点N 的距离相等,那么x 的值是: ; (3)如果点P 以每分钟2个单位长度的速度从点O 向左运动,同时点M 和点N 分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动. 设t 分钟时点P 到点M 、点N 的距离相等,求t 的值.参 考 解 答:一、选择题1.D . 2 .C 3.D 4.C 5.D 6.B 7.D 8.A . 9 .B . 10..C二、填空题11. > 12 .-3分 13.1或-7 14.0 15.-2或2 16 .m <﹣n <n <﹣m 17.9900 18 .4三、解答题19. 解:正数集合{ 0.275,227,()3−−,2− …};负整数集合{8−…};分数集合{ 0.275, 227, 1.04−,13− …};负数集合{8−, 1.04−,13− …}.20 解:()2.5 2.5,44,−=−−=在数轴上表示各数如下:∴ 3.5−<2−<0< 2.5−<3<()4−−21. 解:(1)(-534)+(+237)+(-114)-(-47)3134=5124477⎡⎤⎛⎫⎛⎫⎛⎫−+−++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 734=−+=−(2)()155********⎛⎫−+−⨯− ⎪⎝⎭ ()()()()15573636363629612=⨯−−⨯−+⨯−−⨯− 182030217=−+−+=−(3)-14+14×[2×(-6)-(-4)2] ()1112164=−+⨯−− ()178=−+−=−(4)(-2)3×(-34)+30÷(-5)-│-3│ ()38634⎛⎫=−⨯−+−− ⎪⎝⎭6633=−−=−22. 解:a ,b 互为相反数,c ,d 互为倒数,|m |=2,∴0a b +=,1cd =,2m =±,∴原式=()2201314138⨯−−+⨯=++=或 原式=()()2201314130⨯−−−+⨯=−++=.23. 解:(1)∵x 是最小正整数∴x=1∵|y ﹣2|≥0,|z+3|≥0,且|y ﹣2|+|z+3|=0∴|y ﹣2|=0,|z+3|=0∴y ﹣2=0,z+3=0∴y=2,z=-3.(2)∵x=1,y=2,z=-3∴3x ﹢y ﹣z=3×1+2-(-3)=3+2+3=8.24. 解:(1)9-3-5+4-8+6-3-6-4+7=-3(千米)答:最后出租车离鼓楼出发点3千米,在鼓楼的西方;(2)()9+-3+-5+4+-8++6+-73+6+-4+ 2.4132+−⨯=(元), 答:若每千米的价格为2.4元,司机一个下午的营业额是132元.25.解:(1)MN 的长为3﹣(﹣1)=4.(2)x =(3﹣1)÷2=1;(3)①点P 是点M 和点N 的中点.根据题意得:(3﹣2)t =3﹣1,解得:t =2.②点M 和点N 相遇.根据题意得:(3﹣2)t =3+1,解得:t =4.故t 的值为2或4.故答案为4;1.。
第一章 有理数 单元练习(含答案)2024-2025年人教版数学七年级上册

2024-2025年人教版数学七年级上册第一章有理数单元练习一、选择题1.在生产生活中,正数和负数都有现实意义.例如收20元记作+20元,则支出10元记作()A.+10元B.﹣10元C.+20元D.﹣20元2.在数,,,中,有理数的个数有()A.4个B.3个C.2个D.1个3.如图是单位长度为1的数轴,点,是数轴上的点,若点表示的数是,则点表示的数是()A.B.0C.1D.24.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是()A.B.C.D.5.如图,数轴上点A 所表示的数的相反数是()A.9B.C.D.6.下列各对数中,互为相反数的是()A.-(-3)和3B.+(-5)和-[-(-5)]C.和-3D.-(-7)和-|-7|7.有理数,,0,中,绝对值最大的数是()A.B.C.0D.8.的绝对值的相反数是()A.B.3C.D.0二、填空题9.有理数中,最大的负整数是.10.在,,,0,中,负数共有个.11.绝对值小于2.5的整数有.12.若a与互为相反数,则a的值为.13.如果一个数的绝对值是10,那么这个数是.三、解答题14.小明在超市买一食品,外包装上印有“总净含量”的字样请问“”表示什么意义?小明拿去称了一下,发现只有问食品生产厂家有没有欺诈行为?15.把下列各数填在相应的集合中:8,-1,-0.4,,0,,,,.正数集合{…};负数集合{…};整数集合{…};分数集合{…};非负有理数集合{…}.16.求,-2.35,0,的相反数和绝对值.17.把下列各数和它们的相反数在数轴上表示出来.+3,-1.5,0,18.已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与-1表示的点重合,则-2表示的点与何数表示的点重合;(2)若-1表示的点与5表示的点重合,0表示的点与何数表示的点重合;(3)若-1表示的点与5表示的点之间的线段折叠2次,展开后,请写出所有的折点表示的数?参考答案1.B 2.B 3.C 4.B 5.D 6.D 7.A 8.A 9.-110.211.±2;±1;012.13.14.解:由题意可知:“”表示总净含量的浮动范围为上下5g,即含量范围在克到克之间,故总净含量为297在合格的范围内,食品生产厂家没有欺诈行为.15.8,,,;-1,-0.4,,;8,-1,0,;-0.4,,,,;8,,0,,16.解:相反数分別是:;绝对值分别是:.17.解:+3的相反数为:-3,-1.5的相反数为:1.5,0的相反数为:0,的相反数为:,在数轴上表示如下:.18.(1)解:若1表示的点与-1表示的点重合,则-2表示的点与2表示的点重合;(2)解:若-1表示的点与5表示的点重合,0表示的点与4表示的点重合;(3)解:若-1表示的点与5表示的点重合,则对称中心是2表示的点,第2次对折:-1表示的点与2表示的点重合,则对称中心是0.5表示的点;2表示的点与5表示的点重合,则对称中心是3.5表示的点;∴展开后,所有的折点表示的数:0.5,2,3.5.。
第一章有理数一颗一练(课本同步含答案)

第一章有理数1.1 正数和负数1.下列各数是负数的是( )A.23B.-4C.0D.10%2.放风筝是民间传统游戏之一.在放风筝的过程中,如果风筝上升10米记作+10米,那么风筝下降6米应记作( )A.-4米B.+16米C.-6米D.+6米3.下列说法正确的是( )A.气温为0℃就是没有温度B.收入+300元表示收入增加了300元C.向东骑行-500米表示向北骑行500米D.增长率为-20%等同于增长率为20%4.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示.5.课间休息时,李明和小伙伴们做游戏,部分场景如下:刘阳提问:“从F 出发前进3下.”李强回答:“F遇到+3就变成了L.”余英提问:“从L出发前进2下.”……依此规律,当李明回答“Q遇到-4就变成了M”时,赵燕刚刚提出的问题应该是.6.把下列各数按要求分类:-18,227,2.7183,0,2020,-0.333…,-259,480.正数有;负数有;既不是正数,也不是负数的有.1.2 有理数1.2.1 有理数1.在0,14,-3,+10.2,15中,整数的个数是( )A.1B.2C.3D.42.下列各数中是负分数的是( )A.-12B.1 7C.-0.444…D.1.53.对于-0.125的说法正确的是( )A.是负数,但不是分数B.不是分数,是有理数C.是分数,不是有理数D.是分数,也是负数4.在1,-0.3,+13,0,-3.3这五个数中,整数有,正分数有,非正有理数有.5.把下列有理数填入它属于的集合的大括号内:+4,-7,-54,0,3.85,-49%,-80,+3.1415…,13,-4.95.正整数集合:{ …};负整数集合:{ …};正分数集合:{ …};负分数集合:{ …};非负有理数集合:{ …};非正有理数集合:{ …}.1.下列所画数轴中正确的是( )2.如图,点M表示的数可能是( )A.1.5B.-1.5C.2.5D.-2.53.如图,点A表示的有理数是3,将点A向左移动2个单位长度,这时A点表示的有理数是( )A.-3B.1C.-1D.54.在数轴上,与表示数-1的点的距离为1的点表示的数是.5.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是.6.在数轴上表示下列各数:1.8,-1,52,3.1,-2.6,0,1.1.-3的相反数是( )A.-3B.3C.-13D.132.下列各组数中互为相反数的是( )A.4和-(-4)B.-3和1 3C.-2和-12D.0和03.若一个数的相反数是1,则这个数是.4.化简:(1)+(-1)=;(2)-(-3)=;(3)+(+2)=.5.求出下列各数的相反数:(1)-3.5;(2)35;(3)0;(4)28;(5)-2018.6.画出数轴表示出下列各数和它们的相反数:1,-5,-3.5.1.2.4 绝对值第1课时绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.化简-|-5|的结果是( )A.5B.-5C.0D.不确定3.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )4.若一个负有理数的绝对值是310,则这个数是.5.写出下列各数的绝对值:7,-58,5.4,-3.5,0.6.已知|x+1|+|y-2|=0,求x,y的值.第2课时有理数大小的比较1.在3,-9,412,-2四个有理数中,最大的是( )A.3B.-9C.412D.-22.有理数a在数轴上的位置如图所示,则( )A.a>2B.a>-2C.a<0D.-1>a3.比较大小:(1)0 -0.5;(2)-5 -2;(3)-12-23.4.小明通过科普读物了解到:在同一天世界各地的气温差别很大,若某时刻海南的气温是15℃,北京的气温为0℃,哈尔滨的气温为-5℃,莫斯科的气温是-17℃,则这四个气温中最低的是℃.5.在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514.1.3.1 有理数的加法 第1课时 有理数的加法法则1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.211-+0.5=-1 B.(-2)+(-2)=4C.(-1.5)+⎪⎭⎫ ⎝⎛-212=-3 D.(-71)+0=715.如图,每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是 kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2019)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)187-+⎪⎭⎫ ⎝⎛-61.第2课时有理数加法的运算律及运用1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( )A.加法交换律B.加法结合律C.分配律D.加法交换律与加法结合律2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法律)=[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法律)=( )+( )=.3.简便计算:(1)(—6)+8+(—4)+12; (2)147+⎪⎭⎫⎝⎛-312+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某村有10块小麦田,今年收成与去年相比(增产为正,减产为负)的情况如下:55kg,77kg,-40kg,-25kg,10kg,-16kg,27kg,-5kg,25kg,10kg.今年小麦的总产量与去年相比是增产还是减产?增(减)产多少?1.3.2 有理数的减法 第1课时 有理数的减法法则1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)32--112-⎪⎭⎫⎝⎛-41.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?第2课时 有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为( ) A.7+3-5-2 B.7-3-5-2 C.7+3+5-2 D.7+3-5+22.算式“-3+5-7+2-9”的读法正确的是( ) A.3、5、7、2、9的和 B.减3正5负7加2减9C.负3,正5,减7,正2,减9的和D.负3,正5,负7,正2,负9的和 3.计算8+(-3)-1所得的结果是( ) A.4 B.-4 C.2 D.-2 4.计算:(1)-3.5-(-1.7)+2.8-5.3; (2)-321-⎪⎭⎫ ⎝⎛-325+713;(3)-0.5+⎪⎭⎫⎝⎛-41-(-2.75)-12; (4)314+⎪⎭⎫ ⎝⎛-817+534+718.5.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.1.4.1 有理数的乘法第1课时有理数的乘法法则1.计算-3×2的结果为( )A.-1B.-5C.-6D.12.下列运算中错误的是( )A.(+3)×(+4)=12B.-13×(-6)=-2C.(-5)×0=0D.(-2)×(-4)=83.(1)6的倒数是;(2)-12的倒数是.4.填表(想法则,写结果):5.计算:(1)(-15)×13; (2)-218×0;(3)334×⎪⎭⎫⎝⎛-2516; (4)(-2.5)×⎪⎭⎫⎝⎛-312.第2课时多个有理数相乘1.下列计算结果是负数的是( )A.(-3)×4×(-5)B.(-3)×4×0C.(-3)×4×(-5)×(-1)D.3×(-4)×(-5)2.计算-3×2×27的结果是( )A.127B.-127C.27D.-273.某件商品原价100元,先涨价20%,然后降价20%出售,则现在的价格是元.4.计算:(1)(-2)×7×(-4)×(-2.5); (2)23×⎝⎛⎭⎪⎫-97×(-24)×⎝⎛⎭⎪⎫+134;(3)(-4)×499.7×57×0×(-1); (4)(-3)×⎝⎛⎭⎪⎫-79×(-0.8).第3课时 有理数乘法的运算律1.简便计算2.25×(-7)×4×⎝ ⎛⎭⎪⎫-37时,应运用的运算律是( )A.加法交换律B.加法结合律C.乘法交换律和结合律D.乘法分配律 2.计算(-4)×37×0.25的结果是( )A.-37B.37C.73D.-733.下列计算正确的是( ) A.-5×(-4)×(-2)×(-2)=80 B.-9×(-5)×(-4)×0=-180 C.(-12)×⎝ ⎛⎭⎪⎫13-14-1=(-4)+3+1=0D.-2×(-5)+2×(-1)=(-2)×(-5-1)=12 4.计算(-2)×⎝ ⎛⎭⎪⎫3-12,用分配律计算正确的是( )A.(-2)×3+(-2)×⎝ ⎛⎭⎪⎫-12B.(-2)×3-(-2)×⎝ ⎛⎭⎪⎫-12C.2×3-(-2)×⎝ ⎛⎭⎪⎫-12D.(-2)×3+2×⎝ ⎛⎭⎪⎫-125.填空:(1)21×⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-621×(-10)=21×( )×( )×(-10)(利用乘法交换律) =[21×( )]×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-45×( )(利用乘法结合律) =( )×( )= ;(2)⎝ ⎛⎭⎪⎫14+18+12×(-16)=14× +18× +12× (分配律) = = .1.4.2 有理数的除法 第1课时 有理数的除法法则1计算(-18)÷6的结果是( ) A.-3 B.3 C.-13 D.132.计算(-8)÷⎝ ⎛⎭⎪⎫-18的结果是( )A.-64B.64C.1D.-1 3.下列运算错误的是( )A.13÷(-3)=3×(-3)B.-5÷⎝ ⎛⎭⎪⎫-12=-5×(-2) C.8÷(-2)=-8×12 D.0÷3=04.下列说法不正确的是( ) A.0可以作被除数 B.0可以作除数C.0的相反数是它本身D.两数的商为1,则这两数相等 5.若▽×⎝ ⎛⎭⎪⎫-45=2,则“▽”表示的有理数应是( )A.-52B.-58C.52D.586.计算:(1)(-6)÷14; (2)0÷(-3.14);(3)⎝ ⎛⎭⎪⎫-123÷⎝ ⎛⎭⎪⎫-212; (4)⎝ ⎛⎭⎪⎫-34÷⎝ ⎛⎭⎪⎫-37÷⎝⎛⎭⎪⎫-116.第2课时 分数的化简及有理数的乘除混合运算1.化简:(1)-162= ; (2)12-48= ;(3)-56-6= . 2.计算(-2)×3÷(-2)的结果是( ) A.12 B.3 C.-3 D.-123.计算43÷⎝ ⎛⎭⎪⎫-13×(-3)的结果是( )A.12B.43C.-43 D.-124.计算:(1)36÷(-3)×⎝ ⎛⎭⎪⎫-16;(2)27÷(-9)×527;(3)30÷334×38÷(-12).第3课时 有理数的加、减、乘、除混合运算1.计算12×(-3)+3的结果是( ) A.0 B.12 C.-33 D.392.计算3×⎝ ⎛⎭⎪⎫13-12的结果是 .3.计算:(1)2-7×(-3)+10÷(-2); (2)916÷⎝ ⎛⎭⎪⎫12-2×524;(3)5÷⎝ ⎛⎭⎪⎫-87-5×98; (4)1011×1213×1112-1÷⎝ ⎛⎭⎪⎫-132.4.已知室温是32℃,小明开空调后,温度下降了6℃,关掉空调1小时后,室温回升了2℃,求关掉空调2小时后的室温.1.5.1 乘 方 第1课时 乘 方1.-24表示( )A.4个-2相乘B.4个2相乘的相反数C.2个-4相乘D.2个4相乘的相反数 2.计算(-3)2的结果是( ) A.-6 B.6 C.-9 D.93.下列运算正确的是( )A.-(-2)2=4 B.-(32-)2=49C.(-3)4=34D.(-0.1)2=0.14.下列各组中两个式子的值相等的是( ) A.32与-32 B.(-2)2与-22 C.|-2|与-|+2| D.(-2)3与-235.把34×34×34×34写成乘方的形式为 ,读作 .6.计算:(1)(-1)5= ; (2)-34= ;(3)07= ; (4)⎪⎭⎫⎝⎛253= .7.计算:(1)(-2)3; (2)-452; (3)-⎪⎭⎫ ⎝⎛-732; (4)⎪⎭⎫ ⎝⎛-323.第2课时 有理数的混合运算1.计算2÷3×(5-32)时,下列步骤最开始出现错误的是( ) 解:原式=2÷3×(5-9)…① =2÷3×(-4)…② =2÷(-12)…③ =-6.…④ A.① B.② C.③ D.④2.计算(-8)×3÷(-2)2的结果是( ) A.-6 B.6 C.-12 D.123.按照下图所示的操作步骤,若输入x 的值为-3,则输出的值为 . 输入x →平方→乘以2→减去5→输出4.计算:(1)9×(-1)12+(-8); (2)-9÷3+⎝ ⎛⎭⎪⎫12-23×12+32;(3)8-2×32-(-2×3)2; (4)-14÷⎝ ⎛⎭⎪⎫-122+2×3-0÷2243.1.5.2 科学记数法1.下列各数是用科学记数法表示的是( )A.65×106B.0.05×104C.-1.560×107D.a×10n2.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A.1.3×104B.1.3×105C.1.3×106D.1.3×1073.长江三峡工程电站的总装机容量用科学记数法表示为1.82×107千瓦,把它写成原数是( )A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦4.(1)南京青奥会期间,约有1020000人次参加了青奥文化教育运动,将1020000用科学记数法表示为;(2)若12300000=1.23×10n,则n的值为;(3)若一个数用科学记数法表示为2.99×108,则这个数是.5.用科学记数法表示下列各数:(1)地球的半径约为6400000m;(2)赤道的总长度约为40000000m.1.5.3 近似数1.下列四个数据中,是精确数的是( )A.小明的身高1.55mB.小明的体重38kgC.小明家离校1.5kmD.小明班里有23名女生2.用四舍五入法对0.7982取近似值,精确到百分位,正确的是( )A.0.8B.0.79C.0.80D.0.7903.近似数5.0精确到( )A.个位B.十分位C.百分位D.以上都不对4.数据2.7×103万精确到了位,它的大小是.5.求下列各数的近似数:(1)23.45(精确到十分位); (2)0.2579(精确到百分位);(3)0.50505(精确到十分位); (4)5.36×105(精确到万位).第一章 有理数1.1 正数和负数1.B2.C3.B4.输1场5.从Q 出发后退4下6.227,2.7183,2020,480 -18,-0.333…,-259 0 1.2 有理数1.2.1 有理数1.C2.C3.D4.0,1 +13-0.3,0,-3.3 5.正整数集合:{+4,13,…};负整数集合:{-7,-80,…};正分数集合:{3.85,…};负分数集合:{-54,-49%,-4.95,…}; 非负有理数集合:{+4,0,3.85,13,…};非正有理数集合:{-7,0,-80,-54,-49%,-4.95,…}. 1.2.2 数 轴1.C2.D3.B4.-2或05.-1,0,1,26.解:在数轴上表示如下.1.2.3 相反数1.B2.D3.-14.(1)-1 (2)3 (3)25.解:(1)-3.5的相反数是3.5.(2)35的相反数是-35. (3)0的相反数是0.(4)28的相反数是-28.(5)-2018的相反数是2018.6.解:如图所示.1.2.4 绝对值第1课时 绝对值1.C2.B3.B4.-3105.解:|7|=7,⎪⎪⎪⎪-58=58,|5.4|=5.4,|-3.5|=3.5,|0|=0. 6.解:因为|x +1|+|y -2|=0,且|x +1|≥0,|y -2|≥0,所以x +1=0,y -2=0,所以x =-1,y =2.第2课时 有理数的大小比较1.C2.B3.(1)> (2)< (3)>4.-175.解:如图所示:由数轴可知,它们从小到大排列如下:-6<-514<-35<0<1.5<2. 1.3 有理数的加减法1.3.1 有理数的加法第1课时 有理数的加法法则1.B2.B3.B4.A5.49.36.解:(1)原式=-26.(2)原式=-6.(3)原式=-2019.(4)原式=0.(5)原式=4.(6)原式=-59. 第2课时 有理数加法的运算律及运用1.D2.交换 结合 -17 +19 23.解:(1)原式=[(-6)+(-4)]+(8+12)=-10+20=10.(2)原式=⎝⎛⎭⎫147+37+⎣⎡⎦⎤⎝⎛⎭⎫-213+13=2+(-2)=0. (3)原式=(0.36+0.64)+[(-7.4)+(-0.6)]+0.3=1+(-8)+0.3=-6.7.4.解:根据题意得55+77+(-40)+(-25)+10+(-16)+27+(-5)+25+10=(55+77+10+27+10)+[(-25)+25]+[(-40)+(-16)+(-5)]=179+(-61)=118(kg).所以今年小麦的总产量与去年相比是增产的,增产118kg.1.3.2 有理数的减法第1课时 有理数的减法法则1.A2.B3.B4.解:(1)原式=9+(+6)=9+6=15.(2)原式=-5+(-2)=-7.(3)原式=0+(-9)=-9.(4)原式=-812-112+312=-12. 5.解:五天的温差分别如下:第一天:(-1)-(-7)=(-1)+7=6(℃);第二天:5-(-3)=5+3=8(℃);第三天:6-(-4)=6+4=10(℃);第四天:8-(-4)=8+4=12(℃);第五天:11-2=9(℃).由此看出,第四天的温差最大,第一天的温差最小.第2课时 有理数的加减混合运算1.A2.D3.A4.解:(1)原式=-3.5+1.7+2.8-5.3=-4.3.(2)原式=-312+523+713=912.(3)原式=⎝⎛⎭⎫-12+⎝⎛⎭⎫-12+⎝⎛⎭⎫-14+234=112.(4)原式=314+534+⎝⎛⎭⎫-718+718=9.5.解:-2+5-8=-5(℃).答:该地清晨的温度为-5℃.1.4 有理数的乘除法1.4.1 有理数的乘法第1课时 有理数的乘法法则1.C2.B3.(1)16 (2)-24.- 48 -48 - 80 -80 + 36 36 + 160 1605.解:(1)原式=-5.(2)原式=0.(3)原式=-125.(4)原式=356.第2课时 多个有理数相乘1.C2.B3.964.解:(1)原式=-(2×7×4×2.5)=-140.(2)原式=23×97×24×74=36.(3)原式=0.(4)原式=73×⎝⎛⎭⎫-45=-2815. 第3课时 有理数乘法的运算律1.C2.A3.A4.A5.(1)-621 -45 -621-10 -6 8 -48 (2)(-16) (-16) (-16) -4-2-8 -141.4.2 有理数的除法第1课时 有理数的除法法则1.A2.B3.A4.B5.A6.解:(1)原式=(-6)×4=-24.(2)原式=0.(3)原式=⎝⎛⎭⎫-53÷⎝⎛⎭⎫-52=53×25=23.(4)原式=-34×73×67=-32. 第2课时 分数的化简及有理数的乘除混合运算 1.(1)-8 (2)-14 (3)2832.B3.A4.解:(1)原式=-12×⎝⎛⎭⎫-16=2. (2)原式=-27×19×527=-59. (3)原式=-30×415×38×112=-14. 第3课时 有理数的加、减、乘、除混合运算 1.C 2.-123.解:(1)原式=2+21-5=18.(2)原式=916÷⎝⎛⎭⎫-32×524=-916×23×524=-38×524=-564. (3)原式=5×⎝⎛⎭⎫-78-5×98=5×⎝⎛⎭⎫-78-98=5×(-2)=-10. (4)原式=⎝⎛⎭⎫1011×1112×1213-1×⎝⎛⎭⎫-213=1012×1213+213=1013+213=1213. 4.解:32-6+2×2=30(℃).答:关掉空调2小时后的室温为30℃.1.5 有理数的乘方1.5.1 乘 方第1课时 乘 方1.B2.D3.C4.D5.⎝⎛⎭⎫344 34的4次方⎝⎛⎭⎫或34的4次幂 6.(1)-1 (2)-81 (3)0 (4)12587.解:(1)原式=-8.(2)原式=-425. (3)原式=-949.(4)原式=-827. 第2课时 有理数的混合运算1.C2.A3.134.解:(1)原式=9×1-8=1.(2)原式=-3+12×12-23×12+9=-3+6-8+9=4. (3)原式=8-2×9-(-6)2=8-18-36=-10-36=-46.(4)原式=-1÷14+6-0=-1×4+6=-4+6=2. 1.5.2 科学记数法1.C2.C3.C4.(1)1.02×106 (2)7 (3)2990000005.解:(1)6.4×106m.(2)4.0×107m.1.5.3 近似数1.D2.C3.B4.百万 270000005.解:(1)23.45≈23.5.(2)0.2579≈0.26.(3)0.50505≈0.5.(4)5.36×105≈5.4×105(或54万).。
第一章-有理数全章综合测试(含答案)

第一章有理数全章综合测试一、选择题:1.下列说法正确的是()A.所有的整数都是正数B.不是正数的数一定是负数C.0 不是最小的有理数D.正有理数包括整数和分数2.12的相反数的绝对值是()A.-12B.2 C.一 2D.123.有理数a、b 在数轴上的位置如图所示,那么下列式子中成立的是()A.a>b B.a <b C.ab>0 D.ab>04.在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非正数D.非负数5.如果一个有理数的绝对值是正数,那么这个数必定是()A.是正数B.不是0 C.是负数D.以上都不对6.下列各组数中,不是互为相反意义的量的是()A.收入200 元与支出20 元B.上升l0 米和下降7 米C.超过0.05mm 与不足0.03m D.增大 2 岁与减少 2 升7.下列说法正确的是()A.-a 一定是负数;B. a 定是正数;C. a 一定不是负数;D.-a 一定是负数8.如果一个数的平方等于它的倒数.那么这个数一定是()A.0 B.1 C.-1 D.±19.如果两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数()A.互为相反数但不等于零B.互为倒数C.有一个等于零D.都等于零2 10.若 0<m<1,m、m、1m的大小关系是()2 A.m<m <1m1B. mmC.1m2 D.1<m<mm<m2<m2<m11.4604608 取近似值,保留三个有效数字,结果是()6 B.4600000 C.4.61 ×106 D.4.605 ×106A.4.60 ×10- 1 -A.a+b 一定大于a-b B.若- ab<0,则 a、b 异号3=b3,则 a=b D.若 a2=b2,则 a=b C.若 a13.下列运算正确的是()2÷(一2)2=lB.A.-2 2133=-8127C.-5÷13×35=-25D.314×(-3.25)-634×3.25=-32.5.2,b=(-2×3)14.若 a=-2×3 2,c=-(2×4)2,则下列大小关系中正确的是()A.a>b>0 B.b>c>a C.b>a>c D.c>a>b15.若x =2,y =3,则x y 的值为()A.5 B.-5 C.5 或 1 D.以上都不对二、填空题1.某地气温不稳定,开始是6℃,一会儿升高4℃,再过一会儿又下降1l℃,这时气温是____。
第一章 有理数 单元练习(含答案) 人教版(2024)数学七年级上册

人教版(2024)数学七年级上册第一章有理数单元练习一、选择题1.在中国古代数学著作《九章算术》中记载了用算筹表示正负数的方法,即“正算赤,负算黑”.如果向东走30米记作“米”,那么向西走70米记作()A.米B.米C.米D.米2.在,1,0,这四个数中,是负数的是()A.B.1C.0D.3.的相反数是()A.B.C.D.4.如图,数轴上点P表示的数是()A.-1B.0C.1D.25.下列结论中正确的是()A.0既是正数,又是负数B.0是最小的正数C.0是最大的负数D.0既不是正数,也不是负数6.在,0,,和2024这五个有理数中,正数有()A.1个B.2个C.3个D.4个7.有理数,,0,中,绝对值最大的数是()A.B.C.0D.8.如图,数轴上点A所表示的数的相反数是()A.9B.C.D.二、填空题9.若月球表面的白天平均温度零上,记为,则月球表面的夜间平均温度零下记为.10.大于而小于的整数共有个;11.在数轴上,到原点的距离等于个单位长度的点所表示的有理数是.12.若a与互为相反数,则a的值为.13.如果|m|=4,且m<0,那么m=.三、解答题14.把下列各数填在相应的大括号里.,4,,,,,,,0,.(1)整数集合{…}(2)分数集合{…}(3)非负数集合{…}(4)正有理数集合{…}(5)负有理数集合{…}15.某汽车制造厂本周计划每天生产400辆家用轿车,由于每天上班人数和操作原因,每天实际生产量分别为405辆,393辆,397辆,410辆,391辆,385辆,405辆.用正、负数表示每日实际生产量和计划量的增减情况.16.数轴上A点表示的数为+4,B、C两点所表示的数互为相反数,且C到A的距离为2,点B和点C各表示什么数.17.把下列各数及它们的相反数在数轴上表示出来,并用“<”把所有数都连接起来.2,﹣1.5,0,﹣4.18.张师傅要从5个圆形机器零件中选取2个拿去使用,经过检验,把比规定直径长的数记为正数,比规定直径短的记为负数,记录如下(单位:毫米):,,,,.你认为张师傅会拿走哪2个零件?请你用绝对值的知识加以解释.参考答案1.C2.A3.A4.A5.D6.B7.A8.D9.10.611.12.13.﹣414.(1),4,,,0(2),,,(3)4,,,,,0,(4)4,,,,(5),,15.解:+5,-7,-3,+10,-9,-15,+5 16.解:∵A点表示的数为+4,C到A的距离为2,∴C点表示的数是2或6;又∵B、C两点所表示的数互为相反数∴B点所表示的数是-2,或-6.17.解:如图,﹣4<﹣2<﹣1.5<0<1.5<2<418.解:张师傅会拿走记录为和的2个零件.理由:利用数据的绝对值的判断零件的质量,绝对值越小的说明越接近规定标准.因为.所以张师傅会拿走记录为和的2个零件。
2024-2025学年人教版七年级数学上册《第1章有理数》自主学习选择同步练习题(附答案)

2024-2025学年人教版七年级数学上册《第1章有理数》自主学习选择同步练习题(附答案)1.下列选项中具有相反意义的量是()A.胜1局和亏损2万元B.向东行驶5km与向北行驶10kmC.运进6kg苹果与卖完5kg苹果D.水位上升0.6米与水位下降1米2.在中国古代数学著作《九章算术》中记载了用算筹表示正负数的方法,即“正算赤,负算黑”.如果向西走80米记作“−80米”,那么向东走40米记作()A.+40米B.+80米C.−80米D.−40米3.人体的正常体温大约为36.5℃,如果低于正常体温0.5℃记作−0.5℃;那么高于正常体温0.8℃应该记作()A.−0.8℃B.+0.8℃C.−37.3℃D.+37.3℃4.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,如果收入100元记作+100,那么−40表示为()A.收入40元B.支出40元C.收入60元D.支出60元5.下列说法中不正确的是()A.任何一个有理数都可以用数轴上的一个点表示B.一个负数的绝对值等于它的相反数C.在数轴上,到原点距离越远的点所表示的数一定越大D.任何有理数都有相反数6.古人都讲“四十不惑”,如果以40岁为基,张明60岁,记为+20岁,那么王横25岁,记为()A.25岁B.−25岁C.−15岁D.+15岁7.一袋面粉的标准质量是15kg,如果把一袋面粉15.5kg记为+0.5kg,那么另一袋面粉14.7kg记为()A.−14.7kg B.+14.7kg C.-0.3kg D.+0.3kg8.下列各数中,最小的数是().A.1B.2C.−12D.−39.下列各数中是负数的是()A.−3B.−(−1)C.0D.−210.在下列数−56,+1,6.7,0,722,−5,25%中整数有()A.2个B.3个C.4个D.5个11.下列四个数在数轴上表示的点,距离原点最近的是()A.−1B.−1.5C.+0.5D.+112.下列比较大小正确的是()A.−3=−−73B.−56<−45C.−−21<+−21D.−|−10|>813.下列各组数中,互为相反数的一组是()A.+−2和−+2B.−−2和+2C.−−2和−2D.−+2和−+214.下列化简正确的是()A.−+2=2B.−−2=−2C.+−2=−2D.−+2=2 15.在−1,0,53,−6.8和2024这五个有理数中,正数有()A.1个B.2个C.3个D.4个16.在−2,0,3.14,102,3,−−2021,100%中,非负整数的个数有()A.2个B.3个C.4个D.5个17.如果在数轴上A点表示−3,那么在数轴上与点A距离2个长度单位的点所表示的数是()A.−1B.−1和−5C.+1或−5D.−518.液体沸腾时的温度叫做沸点,下表是几种物质在标准大气压下的沸点,则沸点最低的物质是()物质酒精液态甲醛液态一氧化碳花生油沸点/℃78−19.5−191.5335A.液态一氧化碳B.液态甲醛C.酒精D.花生油19.若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是()A.+0.9B.−3.5C.−0.5D.+2.520.实数a、b在数轴上的位置如图所示,则下列结论正确的是()A.>B.−>−C.>D.−>−参考答案1.解:A、胜1局和亏损2万元不具有相反意义的量,故选项不合题意;B、向东行驶5km与向北行驶10km不具有相反意义的量,故选项不合题意;C、运进6kg苹果与卖完5kg苹果不具有相反意义的量,故选项不合题意;D、水位上升0.6米与水位下降1米是一对意义相反的量,故选项符合题意.故选:D.2.解:∵向东走与向西走是一对意义相反的量,∴如果向西走80米记作“−80米”,∴向东走40米记作+40米,故选:A.3.解:体温低于正常体温0.5℃记作−0.5℃;那么高于正常体温0.8℃应该记作+0.8℃,故选:B.4.解:如果收入100元记作+100,那么−40表示为支出40元.故选:B.5.解:∵实数与数轴上的点一一对应,故选项A正确;∵负数的绝对值等于它的相反数,∴一个负数的绝对值等于它的相反数,故选项B正确;∵在数轴的负半轴上,到原点距离越远的点所表示的数一定越小,故选项C不正确;∵任何有理数都有相反数,故选项D正确.故选:C.6.解:由题意得:王横25岁,记为−15岁,故选:C.7.解:一袋面粉15.5kg记为+0.5kg,那么另一袋面粉14.7kg记为-0.3kg.故选:C.8.解:∵−3<−12<1<2,∴所给的各数中,最小的数是−3.故选:D9.解:A.−3=3是正数,不符合题意;B.−(−1)=1是正数,不符合题意;C.0既不是正数,也不是负数,不符合题意;D.−2是负数,符合题意;故选:D.10.解:−56,+1,6.7,0,722,−5,25%中整数有:+1,0,−5,共3个,故选:B.11.解:∵−1=1,−1.5=1.5,+0.5=0.5,+1=1,∴−1.5>−1=+1>+0.5,∴+0.5的位置距离原点最近,故选:C.12.解:A、∵−=−723,−−7=723,∴−<−−7符合题意;B、∵−=56=2530,−=45=2430,∴−56<−45,故本选项正确,符合题意;C、∵−−21=21,+−21=−21,∴−−21>+−21,故本选项错误,不符合题意;D、∵−|−10|=−10,∴−|−10|<8,故本选项错误,不符合题意.故选:B.13.解:A、+−2=−2,−+2=−2,故两数不是相反数,不符合题意;B、−−2=−2,+2=2,两数互为相反数,符合题意;C、−−2=2,−2=2,故两数不是相反数,不符合题意;D、−+2=−2,−+2=−2,故两数不是相反数,不符合题意.故选:B.14.解:A、−+2=−2,此选项化简错误,不符合题意;B、−−2=2,此选项化简错误,不符合题意;C、+−2=−2,此选项化简正确,符合题意;D、−+2=−2,此选项化简错误,不符合题意;故选:C.15.解:正数有:53和2024,有2个正数.故选B.16.解:−2为负数,不符合题意;0为非负整数,符合题意;3.14为小数,不符合题意;102=5为非负整数,符合题意;3为小数,不符合题意;−−2021=2021为非负整数,符合题意;100%=1为非负整数,符合题意;综上所述,非负整数的个数有4个,故选:C.17.解:如图所示,∴在数轴上与点A距离2个长度单位的点所表示的数是−1和−5.故选B.18.解:∵−191.5>−19.5,∴−191.5<−19.5<78<335,∴沸点最低的液体是液态一氧化碳.故选A.19.解:+0.9=0.9,−3.5=3.5,−0.5=0.5,+2.5=2.5,∵0.5<0.9<2.5<3.5,∴从轻重的角度看,最接近标准的是−0.5,故选:C.20.解:由图可得:0<<,且|U<|U,∴A、<,故此选项不符合题意;B、−>−,故此选项符合题意;C、|U<|U,故此选项不符合题意;D、|−U<|−U,故此选项不符合题意;故选:B.。
人教版初中七年级数学上册第一章《有理数》经典习题(含答案解析)

1.若12a =,3b =,且0a b <,则+a b 的值为( ) A .52 B .52- C .25± D .52± D 解析:D【分析】 根据a b判断出a 和b 异号,然后化简绝对值,分两种情况求解即可. 【详解】 ∵0a b< ∴a 和b 异号又∵12a =,3b = ∴12a =,3b =-或12a =-,3b = 当12a =,3b =-时,15322+-=-a b = 当12a =-,3b =时,15322+-+=a b = 故选D .【点睛】 本题考查了绝对值,有理数的除法,和有理数的加法,关键是根据a b判断出a 和b 异号. 2.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( )A .2个B .3个C .4个D .5个A解析:A【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a 不一定是负数,若a 为负数,则-a 就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A .【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.3.丁丁做了4道计算题:① 2018(1)2018-=;② 0(1)1--=-;③ 1111326-+-=;④11()122÷-=-请你帮他检查一下,他一共做对了( )道 A .1道B .2道C .3道D .4道A 解析:A【分析】根据乘方的意义以及有理数的减法、乘法、除法法则,有理数加减混合运算法则即可判断.【详解】①2018(1)1-=,故本小题错误;②0(1)1--=,故本小题错误; ③1113267-+-=-,故本小题错误; ④11()122÷-=-,正确; 所以,他一共做对了1题.故选A .【点睛】本题考查了有理数的乘方、加法以及除法法则,熟练掌握运算法则是解题关键. 4.数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B .6个单位长度C .4个单位长度或8个单位长度D .6个单位长度或8个单位长度C解析:C【分析】A 点移动后可以在B 点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C .本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.5.在-1,2,-3,4,这四个数中,任意三数之积的最大值是( )A .6B .12C .8D .24B解析:B【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大.【详解】∵乘积最大时一定为正数∴-1,-3,4的乘积最大为12故选B .【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.6.已知a 、b 在数轴上的位置如图所示,将a 、b 、-a 、-b 从小到排列正确的一组是( )A .-a <-b <a <bB .-b <-a <a <bC .-b <a <b <-aD .a <-b <b <-a D 解析:D【解析】【分析】根据数轴表示数的方法得到a <0<b ,且|a|>b ,则-a >b ,-b >a ,然后把a ,b ,-a ,-b 从大到小排列.【详解】∵a <0<b ,且|a|>b ,∴a <-b <b <-a ,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.7.若21(3)0a b -++=,则b a -=( )A .-412B .-212C .-4D .1C解析:C【解析】根据非负数的性质可得a-1=0,b+3=0,求出a 、b 后代入式子进行计算即可得.【详解】由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.8.若一个数的绝对值的相反数是17-,则这个数是( ) A .17- B .17+ C .17± D .7± C解析:C【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可.【详解】∵相反数为17-的数是17,而17-或17的绝对值都是17, ∴这个数是17-或17. 故选C.【点睛】熟知“绝对值的代数意义和相反数的定义”是解答本题的关键.9.下列算式中,计算结果是负数的是( )A .3(2)⨯-B .|1|-C .(2)7-+D .2(1)- A 解析:A【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】解:3(2)6,故选项A 符合题意,|1|1-=,故选项B 不符合题意,(2)75-+=,故选项C 不符合题意,2(1)1-=,故选项D 不符合题意,故选:A .【点睛】题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.10.下列有理数大小关系判断正确的是( )A .11910⎛⎫-->-⎪⎝⎭ B .010>- C .33-<+D .10.01->- A 解析:A【分析】先化简各式,然后根据有理数大小比较的方法判断即可.【详解】 ∵1199⎛⎫--= ⎪⎝⎭,111010--=-,11910>-, ∴11910⎛⎫-->-- ⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=, ∴33-=+,故选项C 不正确; ∵11-=,0.010.01-=,10.01>,∴10.01-<-,故选项D 不正确.故选:A .【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.11.下列运算正确的是( )A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=- D 解析:D【分析】 根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D .【详解】A 、()22-2-2441÷=-÷=-,该选项错误;B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误; D 、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确; 故选:D .【点睛】 本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 12.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >0C解析:C【解析】从数轴可知m 小于0,n 大于0,从而很容易判断四个选项的正误.解:由已知可得n 大于m ,并从数轴知m 小于0,n 大于0,所以mn 小于0,则A ,B ,D 均错误.故选C .13.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( ) A .18B .1-C .18-D .2C 解析:C【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解.【详解】∵一个数比10的相反数大2,∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意;故选:C .【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.14.计算(-2)2018+(-2)2019等于( )A.-24037B.-2 C.-22018D.22018C 解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.15.下列计算结果正确的是()A.-3-7=-3+7=4B.4.5-6.8=6.8-4.5=2.3C.-2-13⎛⎫-⎪⎝⎭=-2+13=-213D.-3-12⎛⎫-⎪⎝⎭=-3+12=-212D解析:D【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误.【详解】A选项:3710--=-,故错误;B选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C选项:1122()21333---=-+=-,故错误;D选项运算正确.故选:D.【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.1.若a、b、c、d、e都是大于1、且是不全相等的五个整数,它们的乘积2000abcde=,则它们的和a b c d e++++的最小值为__.【分析】先把abcde=2000化为abcde=2000=24×53的形式再根据整数abcde都大于1得到使a+b+c+d+e尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000=解析:【分析】先把abcde=2000化为abcde=2000=24×53的形式,再根据整数a,b,c,d,e都大于1,得到使a+b+c+d+e尽可能小时各未知数的取值,求出最小值即可.【详解】解:abcde=2000=24×53,为使a+b+c+d+e尽可能小,显然应取a=23,b=2,c=d=e=5或a=22,b=22,c=d=e=5,前者S=8+2+15=25,后者S=4+4+15=23,故最小值S=23.故答案为:23.【点睛】本题考查的是质因数分解,能把原式化为abcde=2000=24×53的形式是解答此题的关键.2.已知四个互不相等的整数a,b,c,d满足abcd=77,则a+b+c+d=___________.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4±【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a、b、c、d的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.3.数轴上表示有理数-3.5与4.5两点的距离是___________.8【解析】试题分析:有理数-35与45两点的距离实为两数差的绝对值解:由题意得:有理数−35与45两点的距离为|−35−45|=8故答案为8解析:8【解析】试题分析:有理数-3.5与4.5两点的距离实为两数差的绝对值.解:由题意得:有理数−3.5与4.5两点的距离为|−3.5−4.5|=8.故答案为8.4.在数轴上,若点A与表示3-的点相距6个单位,则点A表示的数是__________.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.5.全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是_____.【解析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值大于10时n是正数;当原数的绝对解析:71.610⨯【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.16000000 =71.610⨯.6.绝对值小于2018的所有整数之和为________.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.7.运用加法运算律填空:212+1(3)3-+612+2(8)3-=1(22+____)+[ ____+2(8)3-].【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可【详解】解:2++6+=)++故答案为:;【点睛】本题考查了有理数的加法掌握加法法则和运算律是解题的关键解析:1621(3)3-【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可.【详解】解:212+1(3)3-+612+2(8)3-=1(22+162)+[1(3)3-+2(8)3-].故答案为:162;1(3)3-. 【点睛】本题考查了有理数的加法,掌握加法法则和运算律是解题的关键.8.填空:166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则解析:1 6 6 -18 -18 0 0【分析】由有理数的乘法和除法运算法则进行计算,即可得到答案.【详解】解:根据题意,则331÷=,1313⨯=; (12)(2)6-÷-=,1(12)()62-⨯-=; 1(9)182-÷=-,(9)218-⨯=-; 0( 2.3)0÷-=,100()023⨯-=; 故答案为:1;1;6;6;-18;-18;0;0.【点睛】本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.9.在括号中填写题中每步的计算依据,并将空白处补充完整:(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125______=-(4×2.5)×(8×125)______=____×____=____.乘法交换律乘法结合律-101000-10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可【详解】(-4)×8×(-25)×(-125)=-4×8×25×125=-4×25×8×解析:乘法交换律乘法结合律 -10 1000 -10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可.【详解】(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125(乘法交换律)=-(4×2.5)×(8×125)(乘法结合律)=-10×1000=-10000.故答案为:乘法交换律,乘法结合律,-10,1000,-10000.【点睛】本题主要考查了有理数的乘法运算和乘法运算律,正确掌握运算法则和乘法运算律是解题的关键.++-+++-++++-=_____.【分析】第1 10.计算:(1)(2)(3)(4)(2019)(2020)个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两-解析:1010【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】=-+-++-=-----=-.原式(12)(34)(20192020)11111010-.故答案为:1010【点睛】本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.11.分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运解析:0【分析】根据图表运算程序,把输入的值-1,-2分别代入进行计算即可得解.【详解】当输入1-时,输出的结果为14(3)514351-+---=-++-=;当输入2-时,输出的结果为24(3)524350-+---=-++-=.故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算,是基础题,读懂图表理解运算程序是解题的关键. 1.计算:(1)2×(-3)3-4×(-3)(2)-22÷(12-13)×(-58) 解析:(1)-42;(2)15【分析】(1)先算乘方、乘法,再算加减法即可;(2)先算括号和乘方,再算乘除即可.【详解】(1)原式 =2(27)12⨯-+=-54+12= 42-.(2)原式 =154()68-÷⨯- =5468⨯⨯=15.【点睛】本题考查了有理数的运算,掌握运算法则及运算顺序是关键.2.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值; (2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).解析:(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 【分析】(1)根据平方数和绝对值的非负性计算即可;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可;(4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可;【详解】 (1)∵()()22141268+++=----a b c d ,∴()()221412+6+80+++--=a b c d , ∴14a =-,12b =-,6c =,8d =;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+,∵2BD AC =, ∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=;①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-; ∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键.3.给出四个数:3,4--,2,6,计算“24点”,请列出四个符合要求的不同算式. (可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24⨯++=与(213)424++⨯=只是顺序不同,属同一个算式.)算式1:_________________;算式2_______________;算式3:_________________;算式4_______________;解析:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【分析】由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-,可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案.【详解】解:算式1:()()3426121224,-⨯-+⨯=+=算式2:()()()()34263824,-⨯-+-=-⨯-=算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-=故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维.4.计算:(1)13 |38|44⎛⎫--+- ⎪⎝⎭(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦解析:(1)4;(2)13;(3)14-;(4)26.【分析】(1)先把绝对值化简,再进一步计算可得答案;(2)先计算乘方、除法转化为乘法,再进一步计算即可;(4)先算括号里面的,再把除法化为乘法,进一步计算即可;(4)利用乘法分配律展开,再进一步计算即可.【详解】(1)13 |38|44⎛⎫--+- ⎪⎝⎭=13 544 --=5-1 =4;(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭=1 1269-+⨯⨯=-1+4 3=13;(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭=211 1()1 369⨯-÷=519() 3610⨯-⨯=14 -;(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦=157 (48)()(48)(48)2812 -⨯---⨯+-⨯=24+30-28=26.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.。
2022-2023学年人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)

2022-2023学年人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)一.选择题1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入80元记作+80元,则﹣50元表示()A.收入50元B.收入30元C.支出50元D.支出30元2.下列式子简化不正确的是()A.+(﹣5)=﹣5B.﹣(﹣0.5)=0.5C.﹣(+1)=1D.﹣|+3|=﹣33.数轴上表示﹣6和4的点分别是A和B,则线段AB的长度是()A.﹣2B.2C.﹣10D.104.下列结论中不正确的是()A.最小的正整数为1B.最大的负整数为﹣1C.绝对值最小的有理数为0D.倒数等于它本身的数为15.﹣的倒数的绝对值是()A.﹣2021B.C.2021D.﹣6.在算式3﹣|﹣1□2|中的“□”里,选择一个运算符号,使得算式的值最大()A.+B.﹣C.×D.÷7.以下说法,正确的是()A.数据475301精确到万位可表示为480000B.王平和李明测量同一根钢管的长,按四舍五入法得到结果分别是0.80米和0.8米,这两个结果是相同的C.近似数1.5046精确到0.01,结果可表示为1.50D.小林称得体重为42千克,其中的数据是准确数8.有一种放射性物质,它的质量缩减为原来的一半所用的时间是一个不变的量﹣﹣120年,它的质量由96克变为6克,所需要的时间是()A.240年B.480年C.600年D.960年二.填空题9.如果规定从原点出发,向南走为正,那么﹣100m表示的意义是.10.(﹣2)2|﹣3|(用“>”或“<”填空).11.在﹣5,,0,1.6这四个有理数中,整数是.12.在数轴上,如果点A所表示的数是﹣2,那么到点A距离等于3个单位的点所表示的数是.13.计算:﹣32×(﹣2)3=.14.计算(﹣9)÷×的结果是.15.计算:=.16.在迎来中国共产党成立一百周年的重要时刻,我国脱贫攻坚战取得了全面胜利,现行标准下98990000农村贫困人口全部脱贫,将数据98990000用科学记数法表示为.17.把有理数130542按四舍五入法精确到千位的近似值为.18.某公交车原坐有22人,经过4个站点时上下车情况如下(上车为正,下车为负):(+4,﹣8),(﹣5,+6),(﹣3,+2),(+1,﹣7),则车上还有人.三.解答题19.把下列各数分别填在相应的大括号里.13,,﹣31,0.21,﹣3.14,0,21%,,﹣2020.负有理数:{…};正分数:{…};非负整数:{…}.20.(每题要写出必要的解题步骤)(1)(﹣3.1)+(6.9)(2)90﹣(﹣3)(3)(4)﹣7+13﹣6+20(5)(﹣2)4+3×(﹣1)6﹣(﹣2)(6)﹣8721+53﹣1279+43(7)(8).21.请把下面不完整的数轴补充完整,并在数轴上标出下列各数:﹣,﹣(﹣2),3,﹣150%,|﹣0.5|.22.某服装店购进10件羊毛衫,实际销售情况如表所示:(售价超出成本为正,不足记为负)件数(件)32212钱数(元/件)﹣10﹣20+20+30+40(1)这批羊毛衫销售中,最高售价的一件与最低售价的一件相差多少元?(2)通过计算求出这家服装店在这次销售中盈利或者亏损多少元?23.小明觉得像0.0000057这样的数写起来很麻烦,当他学习了科学记数法以后,发现0.0000057==,所以发明了一种“类科学记数法”,类比科学记数法,将0.0000057写成5.7÷106.(1)将下列各数用“类科学记数法”表示,0.02=;0.000407=;(2)若一个数0.0……035用“类科学记数法”表示为3.5÷106,则原数中“0”的个数为;(3)比较大小:9÷1081÷107,0.000106 9.8÷105;(4)纳米是长度度量单位.1纳米=1.0÷109米,一种病毒的直径平均为200纳米.200纳米这个数据用“类科学记数法”可表示为米.24.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+(b﹣4)2=0.(1)点A表示的数为;点B表示的数为;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以3个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,甲小球到原点的距离=;乙小球到原点的距离=;当t=2时,甲小球到原点的距离=;乙小球到原点的距离=;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由若能,请求出甲,乙两小球到原点的距离相等时t的值.③若当甲和乙开始运动时,挡板也从原点以1个单位/秒的速度向右运动,直接写出甲,乙两小球到挡板的距离相等时t的值.参考答案一.选择题1.解:根据题意,若收入80元记作+80元,则﹣50元表示支出50元.故选:C.2.解:A、+(﹣5)=﹣5,计算正确,故此选项不合题意;B、﹣(﹣0.5)=0.5,计算正确,故此选项不合题意;C、﹣(+1)=﹣1,原计算错误,故此选项符合题意;D、﹣|+3|=﹣3,计算正确,故此选项不合题意;故选:C.3.解:AB=4﹣(﹣6)=10.故选:D.4.解:最小的正整数为1,是正确的;最大的负整数为﹣1于是正确的;绝对值最小的有理数为0,其它数的绝对值都大于0,因此选项C是正确的;倒数等于它本身的数为±1,因此选项D是错误的;故选:D.5.解:﹣的倒数为﹣2021,﹣2021的绝对值为2021,故选:C.6.解:在算式3﹣|﹣1□2|中的“□”里,要使得算式的值最大,就要使﹣1□2的绝对值最小,∴选择的运算符号是÷.故选:D.7.解:A、数据475301精确到万位可表示为4.8×105,所以A选项错误;B、0.80m精确到0.01m,而0.8m精确到0.1m,所以B选项错误;C、近似数1.5046精确到0.01,结果可表示为1.50,所以C选项正确;D、小林称得体重为42千克,其中的数据是近似数.故选:C.8.解:减少一半为一个半衰期,设经过x个半衰期,根据题意,得:96×=6,,x=4,一个半衰期120年.所以需要的时间是4×120=480(年).故选:B.二.填空题9.解:如果规定从原点出发,向南走为正,那么﹣100m表示的意义是向北走100米.故答案为:向北走100米.10.解:∵(﹣2)2=4,|﹣3|=3,∴(﹣2)2>|﹣3|.故答案为:>.11.解:在﹣5,,0,1.6这四个有理数中,在,1.6是分数,﹣5、0是整数.故答案是:﹣5、0.12.解:﹣2+3=1,﹣2﹣3=﹣5,则A表示的数是:1或﹣5.故答案为:1或﹣513.解:﹣32×(﹣2)3=﹣9×(﹣8)=72.故答案为:72.14.解:(﹣9)÷×=(﹣9)××=﹣6×=﹣4,故答案为:﹣4.15.解:原式=﹣×(﹣)==10.故答案为:10.16.解:98990000=9.899×107,故答案为:9.899×107.17.解:130542≈1.31×105(精确到千位),故答案为:1.31×105.18.解:由题意,得22+4+(﹣8)+6+(﹣5)+2+(﹣3)+1+(﹣7)=12(人),故答案为:12三.解答题19.解:负有理数:{,﹣31,﹣3.14,﹣2020…};正分数:{0.21,21%,…};非负整数:{13,0…}.故答案为:,﹣31,﹣3.14,﹣2020;0.21,21%,;13,0.20.解:(1)(﹣3.1)+(6.9),=+(6.9﹣3.1),=3.8;(2)90﹣(﹣3),=90+3,=93;(3)(﹣)×8=﹣6;(4)﹣7+13﹣6+20,=﹣13+33,=20;(5)(﹣2)4+3×(﹣1)6﹣(﹣2),=16+3×1+2,=16+3+2,=21;(6)﹣8721+53﹣1279+43,=﹣8721﹣1279+53+43,=﹣10000+97,=﹣9903;(7)﹣22×(﹣)+8÷(﹣2)2,=﹣4×(﹣)+8÷4,=2+2,=4;(8)﹣12+3×(﹣2)3+(﹣6)÷(﹣)2,=﹣1+3×(﹣8)+(﹣6)×9,=﹣1﹣24﹣54,=﹣79.21.解:数轴补充完整如下图所示:22.解:(1)40﹣(﹣20)=60(元),答:最高售价的一件与最低售价的一件相差60元;(2)3×(﹣10)+2×(﹣20)+2×20+1×30+2×40=80(元),答:该这家服装店在这次销售中是盈利了,盈利80元.23.解:(1)0.02=2÷102,0.000407=4.07÷104,故答案为:2÷102;4.07÷104;(2)∵3.5÷106=0.0000035,∴原数中“0”的个数为6个,故答案为:6;(3)9÷108=0.00000009,1÷107=0.0000007,∵0.00000009<0.0000007,∴9÷108<1÷107,9.8÷105=0.000098,∵0.000106>0.000098,∴0.000106>9.8÷105,故答案为:<;>;(4)∵1纳米=1.0÷109米,∴200纳米=200×1.0÷109=2.0÷107米,故答案为:2.0÷107.24.解:(1)∵|a+2|+|b﹣4|=0,∴a=﹣2,b=4,∴点A表示的数为﹣2,点B表示的数为4,故答案为:﹣2,4;(2)①当t=1时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球1秒钟向左运动1个单位,此时,甲小球到原点的距离=2+1=3,∵一小球乙从点B处以3个单位/秒的速度也向左运动,∴乙小球1秒钟向左运动3个单位,此时,乙小球到原点的距离=4﹣3=1,当t=2时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球1秒钟向左运动2个单位,此时,甲小球到原点的距离=2+2=4,∵一小球乙从点B处以3个单位/秒的速度也向左运动,∴乙小球1秒钟向左运动6个单位,此时,乙小球到原点的距离=3×2﹣4=2,故答案为:3,1,4,2;②当0<t≤2时,得t+2=4﹣2t,解得t=;当t>2时,得t+2=2t﹣4,解得t=6;故当t=秒或t=6秒时,甲乙两小球到原点的距离相等;(3)B碰到挡板需要4÷(3+1)=1(秒),A碰到挡板需要2÷2=1(秒),∴t=1时,甲,乙两小球到挡板的距离相等,①都向左运动时,则2+t+t=4﹣3t﹣t,即6t=2,解得t=,②反弹时,则t﹣1+t﹣1=(3﹣1)(t﹣1),即2t=2t,∴当t≥1时,甲,乙两小球到挡板的距离相等,∴t值为或t≥1时,甲,乙两小球到挡板的距离相等.。
2023-2024学年人教版七年级数学上册《第一章-有理数》同步练习题带答案

2023-2024学年人教版七年级数学上册《第一章有理数》同步练习题带答案学校:___________班级:___________姓名:___________考号:___________ 一、选择题1.下列各数:6,−15,12,−3.5,427,−910和4.5,负分数的个数是()A.1个B.2个C.3个D.4个2.2023的相反数是()A.12023B.−12023C.2023 D.-20233.如图,数轴上的整数a被星星遮挡住了,则-a的值是()A.1 B.2 C.-2 D.-14.下列四个数中不是有理数的是()A.−1.51B.125C.πD.100%5.如图,数轴上有三个点A,B,C,若点A,B表示的数互为相反数,且AB=4,则点C表示的数是()A.6 B.4 C.2 D.06.数1,-2,0,-1中,最小的数是()A.1 B.-2 C.0 D.-17.有理数m,n在数轴上的对应点的位置如图所示,则正确的结论是()A.n>3B.m<−1C.m>−n D.|m|>|n|8.式子|x−1|−3取最小值时,x等于()A.1 B.2 C.3 D.4二、填空题9.有理数+3, 7.5,-0.05, 0, -2019 ,23中,非负数有个.10.数轴上表示不小于﹣3且小于2的整数是.11.若5与a-3互为相反数,则a的值为.12.若|m|=7,则m=.13.已知a,b两数在数轴上对应的点如图所示,化简|b−a|−a的结果是.三、解答题和14.先画出数轴,并在数轴上表示出下列各数,然后用“<”把各数连接起来 1.5,-1,0,−313 |−4|.15.把下列各数分别填入相应的集合里.与 5, 3.14,π, -3和0.15.0,−224( 1 )整数集合:{ ……};( 2 )分数集合:{ ……};( 3 )有理数集合:{ ……};( 4 )非负数集合:{ ……}.16.若|x﹣2|+|y+2|=0,求x﹣y的相反数.17.已知实数a,b,c在数轴上的位置如图所示,且满足|a|=|b|=2|﹣c|=4.(1)求a,b,c的值;(2)求|a﹣2b|+|﹣b+c|+|c﹣3a|的值.参考答案1.【答案】C2.【答案】D3.【答案】C4.【答案】C5.【答案】B6.【答案】B7.【答案】C8.【答案】A9.【答案】410.【答案】−3、−2、−1、0、111.【答案】-212.【答案】±713.【答案】-b14.【答案】解:|−4|=4<−1<0<1.5<|−4|.−31316.【答案】∵|x﹣2|+|y+2|=0∴x﹣2=0,y+2=0解得x=2,y=﹣2∴x﹣y=2﹣(﹣2)=4∴x﹣y的相反数是﹣4.17.【答案】(1)解:∵a<0,b>0,c>0,且满足|a|=|b|=2|﹣c|=4 ∴a=﹣4,b=4,c=2(2)解:|a﹣2b|+|﹣b+c|+|c﹣3a| =|﹣4﹣8|+|﹣4+2|+|2+12|=12+2+14=28.。
人教版七年级上册 第1章 有理数 单元练习试题(解析版)

第1章有理数一、选择题1.小明的家,学校和书店依次坐落在一条南北方向的大街上,学校在家南边20米,书店在家北边100米,小明从家出来向北走了50米,又向北走了﹣70米,此时,小明的位置在()A.家B.学校C.书店D.不在上述地方2.下列各对数中,互为相反数的是()A.+(﹣5.2)与﹣5.2B.+(+5.2)与﹣5.2C.﹣(﹣5.2)与5.2D.5.2与+(+5.2)3.在|x|、|x+100|、﹣x2+100、﹣x2﹣1中,一定不是0的有()个.A.1B.2C.3D.44.下列各组数中,数值相等的是()A.32和23B.﹣23和(﹣2)3C.﹣32和(﹣3)2D.﹣3×22和(﹣3×2)25.如果a+b>0,a•b<0,那么()A.a>0,b>0B.a、b异号且负数的绝对值较大C.a<0,b<0D.a、b异号且负数的绝对值较小6.由点组成的正方形,每条边上的点数n与总点数s的关系如图所示,则当n=60时,计算s的值为()A.220B.236C.240D.216二、填空题7.﹣的倒数为,相反数为,绝对值是.8.用科学记数法表示13040000应记作,若保留3个有效数字,则近似值为.9.如果数轴上的点A对应的数为﹣1.5,那么与A点相距3个单位长度的点所对应的有理数为.10.倒数是它本身的数是;相反数是它本身的数是;绝对值是它本身的数是.11.比较大小:﹣3.14﹣π,.12.把下列各数填入相应的大括号里:﹣2,,2.3,0,,5,,2005,﹣0.3.整数集合:{};非负整数集合:{};负分数集合:{}.13.如果|x+8|=5,那么x=;绝对值大于2而不大于5的整数有个.14.计算:(﹣4)2017×(﹣0.25)2019=;(﹣2)200+(﹣2)201=.15.31=3,32=9,33=27,34=81,…试猜想32018的末位数字是.16.若|x﹣5|=4,则x=;若|a﹣b|=b﹣a,则b a.(比较大小)17.若1<|x﹣2|<4,则这样的整数x是.三、解答题18.(1)15+(﹣)﹣15﹣(﹣0.25);(2)(﹣81)÷÷(﹣32);(3)29×(﹣12);(4)25×﹣(﹣25)×+25×(﹣);(5)3+50÷22×(﹣)﹣1;(6).19.已知|x+1|=4,(y+2)2=4,求x+y的值.20.如图,是一个“有理数转换器”(箭头是指数进入转换器的路径,方框是对进入的数进行转换的转换器)(1)当小明输入3;﹣4;;﹣201这四个数时,这四次输出的结果分别是?(2)你认为当输入什么数时,其输出结果是0?(3)你认为这个“有理数转换器”不可能输出什么数?(4)有一次,小明在操作的时候,输出的结果是2,你判断一下,小明可能输入的数是什么数?参考答案与试题解析一、选择题1.小明的家,学校和书店依次坐落在一条南北方向的大街上,学校在家南边20米,书店在家北边100米,小明从家出来向北走了50米,又向北走了﹣70米,此时,小明的位置在()A.家B.学校C.书店D.不在上述地方【分析】以家为坐标原点建立坐标系,根据题意即可确定小明的位置.【解答】解:根据题意:小明从家出来向北走了50米,又向北走了﹣70米,即向南走了20米,而学校在家南边20米.故此时,小明的位置在学校.故选:B.2.下列各对数中,互为相反数的是()A.+(﹣5.2)与﹣5.2B.+(+5.2)与﹣5.2C.﹣(﹣5.2)与5.2D.5.2与+(+5.2)【分析】首先把选项中的数化简,再根据相反数的定义进行分析即可.【解答】解:A、+(﹣5.2)=﹣5.2与﹣5.2不是相反数,故此选项错误;B、+(+5.2)=5.2与﹣5.2是相反数,故此选项正确;C、﹣(﹣5.2)=5.2与5.2不是相反数,故此选项错误;D、5.2与+(+5.2)=5.2不是相反数,故此选项错误;故选:B.3.在|x|、|x+100|、﹣x2+100、﹣x2﹣1中,一定不是0的有()个.A.1B.2C.3D.4【分析】直接利用绝对值的定义以及偶次方的性质得出答案.【解答】解:|x|、|x+100|、﹣x2+100、﹣x2﹣1中,一定不是0的有﹣x2﹣1.故选:A.4.下列各组数中,数值相等的是()A.32和23B.﹣23和(﹣2)3C.﹣32和(﹣3)2D.﹣3×22和(﹣3×2)2【分析】原式各项利用乘方的意义计算得到结果,即可做出判断.【解答】解:A、32=9,23=8,数值不相等;B、﹣23=(﹣2)3=﹣8,数值相等;C、﹣32=﹣9,(﹣3)2=9,数值不相等;D、﹣3×22=﹣12,(﹣3×2)2=36,数值不相等,故选:B.5.如果a+b>0,a•b<0,那么()A.a>0,b>0B.a、b异号且负数的绝对值较大C.a<0,b<0D.a、b异号且负数的绝对值较小【分析】根据有理数的乘法法则得出a、b异号,根据有理数的加法法则得出正数的绝对值大于负数的绝对值,即可得出选项.【解答】解:∵a•b<0,∴a、b异号,∵a+b>0,∴正数的绝对值大于负数的绝对值,故选:D.6.由点组成的正方形,每条边上的点数n与总点数s的关系如图所示,则当n=60时,计算s的值为()A.220B.236C.240D.216【分析】观察可得规律:n每增加一个数,s就增加四个.【解答】解:n=2时,s=4=1×4;n=3时,s=8=2×4;n=4时,s=12=3×4;…;n=60时,s=(60﹣1)×4=236.二、填空题7.﹣的倒数为﹣,相反数为,绝对值是.【分析】根据乘积为1的两个数互为倒数,只有符号不同的两个数互为相反数,负数的绝对值是它的相反数,可得答案.【解答】解:根据倒数、相反数和绝对值的定义得:﹣的倒数是﹣,相反数是,绝对值是.故答案为:﹣,,.8.用科学记数法表示13040000应记作 1.304×107,若保留3个有效数字,则近似值为1.30×107.【分析】一个大于10的数就记成a×10的n次方,其中1≤|a|<10,n是正整数,像这样的计数法叫做科学记数法.科学记数法表示的数的有效数字就是前边a的有效数字,就是从左边第一个不是0的数起,后边的所有的数字都是这个数的有效数字.【解答】解;用科学记数法表示13 040 000应记作1.304×107,若保留3个有效数字,则近似值为1.30×107.9.如果数轴上的点A对应的数为﹣1.5,那么与A点相距3个单位长度的点所对应的有理数为 1.5或﹣4.5.【分析】此题注意考虑两种情况:当点在已知点的左侧;当点在已知点的右侧.根据题意先画出数轴,便可直观解答.【解答】解:如图所示:与A点相距3个单位长度的点所对应的有理数为1.5或﹣4.5.10.倒数是它本身的数是±1;相反数是它本身的数是0;绝对值是它本身的数是非负数.【分析】根据乘积为1的两个数互为倒数,可得倒数等于它本身的数,根据只有符号不同的两个数互为相反数,可得答案;根据非负数的绝对值是它本身,可得答案.【解答】解:倒数是它本身的数是±1;相反数是它本身的数是0;绝对值是它本身的数故答案为:1或﹣1,0,非负数.11.比较大小:﹣3.14>﹣π,>.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:|﹣3.14|=3.14,|﹣π|=π,∵3.14<π,∴﹣3.14>﹣π;=﹣,∵<,∴>.故答案为:>、>.12.把下列各数填入相应的大括号里:﹣2,,2.3,0,,5,,2005,﹣0.3.整数集合:{﹣2,0,5,2005,…};非负整数集合:{0,5,2005,…};负分数集合:{,,﹣0.3,…}.【分析】根据有理数的分类标准进行分类便可.【解答】解:根据题意得,整数集合:{﹣2,0,5,2005,…};非负整数集合:{ 0,5,2005,…};负分数集合:{,,﹣0.3,…}.故答案为:﹣2,0,5,2005,…;0,5,2005,…;,,﹣0.3,…13.如果|x+8|=5,那么x=3或﹣13;绝对值大于2而不大于5的整数有6个.【分析】根据绝对值的性质,由|x+8|=5可得x+8=±5,据此可得x的值;根据绝对值的几何意义得到绝对值大于2且不大于5的整数有﹣5,﹣4,﹣3,3,4,5.【解答】解:∵|x+8|=5,∴x+8=±5,即x+8=5或x+8=﹣5,解得x=3或x=﹣13;绝对值大于2且不大于5的整数有﹣5,﹣4,﹣3,3,4,5共6个.故答案为:3或﹣13;6.14.计算:(﹣4)2017×(﹣0.25)2019=;(﹣2)200+(﹣2)201=﹣2200.【分析】首先把(﹣0.25)2019化为(﹣0.25)2017×(﹣0.25)2,再利用积的乘方计算(﹣4)2017×(﹣0.25)2017,进而可得第一个空格答案;把(﹣2)201化成(﹣2)200×(﹣2)再进行计算即可得到第二个空格的答案.【解答】解:(﹣4)2017×(﹣0.25)2019=(﹣4)2017×(﹣0.25)2017×(﹣0.25)2=[﹣4×(﹣0.25)]2017×(﹣0.25)2===;(﹣2)200+(﹣2)201=(﹣2)200+(﹣2)200×(﹣2)=﹣(﹣2)200=﹣2200.故答案为:;﹣2200.15.31=3,32=9,33=27,34=81,…试猜想32018的末位数字是9.【分析】先根据已知条件得出规律,再根据规律得出答案即可.【解答】解:∵31=3,32=9,33=27,34=81,35=243,…,2018÷4=672…2,∴32018的末位数字是9,故答案为:9.16.若|x﹣5|=4,则x=9或1;若|a﹣b|=b﹣a,则b>a.(比较大小)【分析】根据绝对值的性质进行解答便可.【解答】解:∵|x﹣5|=4,∴x﹣5=4,或x﹣5=﹣4,解得,x=9,或x=1;∵|a﹣b|=b﹣a,∴a﹣b<0,∴a<b,即b>a.故答案为:9或1;>.17.若1<|x﹣2|<4,则这样的整数x是﹣1或0或4或5.【分析】根据有理数的大小求出大于1且小于4的整数,得|x﹣2|的方程,再根据绝对值的性质转化方程并解方程便可.【解答】解:∵大于1且小于4的整数有2与3两个数,又∵1<|x﹣2|<4,∴|x﹣2|=2或|x﹣2|=3,∴x﹣2=2,或x﹣2=﹣2,或x﹣2=3,或x﹣2=﹣3,∴x=4,或x=0,或x=5,或x=﹣1,故答案为:﹣1或0或4或5.三、解答题18.(1)15+(﹣)﹣15﹣(﹣0.25);(2)(﹣81)÷÷(﹣32);(3)29×(﹣12);(4)25×﹣(﹣25)×+25×(﹣);(5)3+50÷22×(﹣)﹣1;(6).【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘除法可以解答本题;(3)根据乘法分配律可以解答本题;(4)根据乘法分配律可以解答本题;(5)根据有理数的乘方、有理数的乘除法和减法可以解答本题;(6)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【解答】解:(1)15+(﹣)﹣15﹣(﹣0.25)=15+(﹣)+(﹣15)+=[15+(﹣15)]+[()+]=0+0=0;(2)(﹣81)÷÷(﹣32)=81×××=;(3)29×(﹣12)=(30﹣)×(﹣12)=30×(﹣12)﹣×(﹣12)=﹣360+0.5=﹣359.5;(4)25×﹣(﹣25)×+25×(﹣)=25×+25×+25×(﹣)=25×[+(﹣)]=25×1=25;(5)3+50÷22×(﹣)﹣1=3+50÷4×(﹣)﹣1=3+50××(﹣)﹣1=3+(﹣)﹣1=;(6)=÷()×16=÷﹣=﹣==﹣.19.已知|x+1|=4,(y+2)2=4,求x+y的值.【分析】根据绝对值的性质与有理数的乘方求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:∵|x+1|=4,(y+2)2=4,∴x+1=4,或x+1=﹣4,y+2=2或y+2=﹣2,解得x=3或x=﹣5,y=0或y=﹣4,∴x=3,y=0时,x+y=3+0=3;x=3,y=﹣4时,x+y=3﹣4=﹣1;x=﹣5,y=0时,x+y=﹣5+0=﹣5;x=﹣5,y=﹣4时,x+y=﹣5﹣4=﹣9.20.如图,是一个“有理数转换器”(箭头是指数进入转换器的路径,方框是对进入的数进行转换的转换器)(1)当小明输入3;﹣4;;﹣201这四个数时,这四次输出的结果分别是?(2)你认为当输入什么数时,其输出结果是0?(3)你认为这个“有理数转换器”不可能输出什么数?(4)有一次,小明在操作的时候,输出的结果是2,你判断一下,小明可能输入的数是什么数?【分析】(1)先判断出3、﹣4、、201与2的大小,再根据所给程序图找出合适的程序进行计算即可;(2)由此程序可知,当输出0时,因为0的相反数及绝对值均为0,所以应输入0;(3)由(1)中输出的各数可找出规律;(4)设输入的数为x,分2<x<7、0≤x≤2、当x<0及x≥7四种情况进行讨论,按输入程序进行解答.【解答】解:(1)∵3>2,∴输入3时的程序为:(3﹣5)=﹣2<0,∴﹣2的相反数是2>0,2的倒数是,∴当输入3时,输出;当输入﹣4时,∵﹣4<2,∴﹣4的相反数是4>0,4的倒数是,∴当输入﹣4时,输出;当输入时,<2,∴其相反数是﹣,其绝对值是,∴当输入时,输出;当输入﹣201时,﹣201<2,∴其相反数是201>0,其倒数是,∴当输入﹣201时,输出;(2)∵输出数为0,0的相反数及绝对值均为0,当输入5的倍数时也输出0.∴应输入0或5n(n为自然数);(3)由(1)中输出的各数均为非负数可知,输出的数应为非负数,不可能输出负数;(4)∵输出的数为2,设输入的数为x,①当2<x<7时,(x﹣5)<0,其相反数是5﹣x>0,其倒数是=2,解得x=;②当0≤x≤2时,其相反数是﹣x<0,其绝对值是x=2,故x=2;③当x<0时,其相反数为﹣x>0,其倒数是﹣=2,x=﹣.④当x≥7时,按①的程序可知x=+…5n.总上所述,x的可能值为:,2,﹣…x=+…5n.。
人教版七年级数学上册《第一章有理数》练习题-附有答案

人教版七年级数学上册《第一章有理数》练习题-附有答案考点1【正负数和零】1.一种巧克力的质量标识为“23±0.25千克”则下列哪种巧克力的质量是合格的.()A.23.30千克B.22.70千克C.23.55千克D.22.80千克【答案】D解:∵23+0.25=23.2523-0.25=22.75∴巧克力的重量在23.25与22.75kg之间.∴符合条件的只有D.2.若足球质量与标准质量相比超出部分记作正数不足部分记作负数则在下面4个足球中质量最接近标准的是()A.B.C.D.【答案】A-<+<+<-解:0.70.8 2.1 3.5∴质量最接近标准的是A选项的足球3.我市某天最高气温是12℃最低气温是零下3℃那么当天的日温差是_________ ℃【答案】15.12−(−3)=12+3=15(℃)4.若某次数学考试标准成绩定为85分规定高于标准记为正两位学生的成绩分别记作:+9分和﹣3分则第一位学生的实际得分为______分.5.教师节当天出租车司机小王在东西向的街道上免费接送教师规定向东为正向西为负当天出租车的行程如下(单位:千米):+5 ﹣4 ﹣8 +10 +3 ﹣6 +7 ﹣11﹣﹣1)将最后一名老师送到目的地时小王距出发地多少千米?方位如何?﹣2)若汽车耗油量为0.2升/千米则当天耗油多少升?若汽油价格为5.70元/升则小王共花费了多少元钱?解℃℃1℃+5℃4℃8+10+3℃6+7℃11=℃4℃则距出发地西边4千米;℃2)汽车的总路程是:5+4+8+10+3+6+7+11=54千米则耗油是54×0.2=10.8升花费10.8×5.70=61.56元答:当天耗油10.8升小王共花费了61.56元.考点2【有理数分类】1.在数22715π0.40.30.1010010001... 3.1415中有理数有()A.3个B.4个C.5个D.6个【答案】C数22715π0.40.30.1010010001... 3.1415中有理数有227150.40.3 3.1415共计5个2.下列说法正确的有( )(1)整数就是正整数和负整数;(2)零是整数但不是自然数;(3)分数包括正分数、负分数;(4)正数和负数统称为有理数;(5)一个有理数它不是整数就是分数.A.1个B.2个C.3个D.4个【答案】B℃分数包括正分数、负分数正确;℃正数、负数和0 统称为有理数故错误;℃一个有理数它不是整数就是分数正确3.在3.142π15-00.12个数中是有理数的几个()A.2B.3C.4D.5【答案】C解:有理数为3.1415-00.12共4个4.若a是最小的自然数b是最大的负整数c是绝对值最小的有理数则a-b-c的值为()A.-1B.0C.2D.1【答案】D解:由题意得:a=0b=-1c=0∴a-b-c=0-(﹣1)-0=1.5.下列说法中正确的是()A.非负有理数就是正有理数B.零表示没有不是自然数C.正整数和负整数统称为整数D.整数和分数统称为有理数【答案】DA.非负有理数就是正有理数和零故A错误;B.零表示没有是自然数故B错误;C.整正数、零、负整数统称为整数故C错误;D.整数和分数统称有理数故D正确;考点3【数轴】1.在数轴上表示a﹣b两数的点如图所示则下列判断正确的是()A.a+b﹣0B.a+b﹣0C.a﹣|b|D.|a|﹣|b|【答案】B解℃℃b℃0℃a而且a℃|b|℃a+b℃0∴选项A不正确选项B正确;℃a℃|b|∴选项C不正确;℃|a|℃|b|∴选项D不正确.2.数轴上表示整数的点称为整点某数轴的单位长度是1厘米若在这个数轴上随意画出一条长2000厘米的线段AB盖住的整点的个数共有()个.A.1998或1999B.1999或2000C.2000或2001D.2001或2002【答案】C解:依题意得:①当线段AB起点在整点时覆盖2001个数;②当线段AB起点不在整点即在两个整点之间时覆盖2000个数.3.已知点A和点B在同一数轴上点A表示数﹣2又已知点B和点A相距5个单位长度则点B表示的数是()A.3B.﹣7C.3或﹣7D.3或7【答案】C分为两种情况:当B点在A点的左边时B点所表示的数是-2-5=−7;当B点在A点的右边时B点所表示的数是-2+5=3;4.a b ,是有理数 它们在数轴上的对应点的位置如图所示 把a a b b --,,,按照从小到大的顺序排列( )A .b a a b -<<-<B .a b a b -<-<<C .b a a b -<-<<D .b b a a -<<-<【答案】A观察数轴可知:b >0>a 且b 的绝对值大于a 的绝对值.在b 和-a 两个正数中 -a <b ;在a 和-b 两个负数中 绝对值大的反而小 则-b <a . 因此 -b <a <-a <b .5.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1cm) 刻度尺上的“0cm”和“8cm”分别对应数轴上的-3.6和x 则x 的值为( )A .4.2B .4.3C .4.4D .4.5【答案】C利用减法的意义 x -(-3.6)=8 x =4.4.所以选C.6.如图 数轴上四点O A B C 其中O 为原点 且2AC = OA OB = 若点C 表示的数为x 则点B 表示的数为( )A .()2x -+B .()2x --C .2x +D .2x -【答案】B解:∵AC=2 点C 表示的数为x∵OA OB =∴点B 表示的数为:-(x -2)7.点A 在数轴上距原点5个单位长度 将A 点先向左移动2个单位长度 再向右移动6个单位长度 此时A 点所表示的数是( ) A .-1 B .9C .-1或9D .1或9【答案】C解:∵点A 在数轴上距原点5个单位长度 ∴点A 表示的数是−5或5∵A 点先向左移动2个单位长度 再向右移动6个单位长度 ∴−5−2+6=−1或5−2+6=9 ∴此时点A 所表示的数是−1或9.考点4【相反数】1.若a 与1互为相反数 则a +3的值为( ) A .2 B .0C .﹣1D .1【答案】A∵a 与1互为相反数 ∴a =﹣1则a +3的值为:﹣1+3=2.2.下列各对数:()3+-与3- ()3++与+3 ()3--与()3+- ()3-+与()3+-()3-+与()3++ +3与3-中 互为相反数的有( )A .3对B .4对C .5对D .6对解:根据相反数的定义得-(-3)与+(-3)-(+3)与+(+3)+3与-3互为相反数所以有3对.3.如果a+b=0那么a b两个数一定()A.都等于0B.互为相反数C.一正一负D.a>b【答案】B由a+b=0则有=-a b所以a b两个数一定是互为相反数-的相反数是-2那么a是()4.7aA.5B.-3C.2D.1【答案】A解:∵7-a的相反数是-2∴7-a=2解得a=5.5.若a表示有理数则-a是()A.正数B.负数C.a的相反数D.a的倒数【答案】Ca表示有理数则a-表示a的相反数考点5【绝对值】1.下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有()A.0个B.1个C.2个D.3个【答案】B解:①∵互为相反数的两个数相加和为0移项后两边加上绝对值是相等的∴互为相反数的两个数绝对值相等故①正确;④∵|2|=|-2| 但2≠-2 ∴④错误2.如果一个有理数的绝对值是正数 那么这个数必定是( ) A .是正数 B .不是0C .是负数D .以上都不对【答案】B由于正数和负数的绝对值都是正数 而0的绝对值是0;所以若一个有理数的绝对值是正数 那么这个数必不为0.3.已知a>0 b<0 c<0且c >a >b 则下列结论错误的是( ) A .a+c<0 B .b -c>0C .c<-b<-aD .-b<a<-c【答案】C解:∵a>0 b<0 c<0且c >a >b在数轴上表示如下:则a+c<0 b -c>0 c<-a<-b -b<a<-c 故C 错误4.若a ab b=- 则下列结论正确的是( ) A .0a < 0b < B .0a > 0b >C .0ab >D .0ab ≤【答案】D解:a ab b=- ∴0ab≤ 即0ab ≤;A.a>0B.a≥0C.a<0D.a≤0【答案】D=-解:∵||a a∴a≤0.-表示的数是( )6.若x为有理数则x xA.正数B.非正数C.负数D.非负数【答案】D【解析】℃1)若x≥0时丨x丨-x=x-x=0℃℃2)若x℃0时丨x丨-x=-x-x=-2x℃0℃由(1℃℃2)可得丨x丨-x表示的数是非负数.考点6【有理数的加减法】1.已知|a|=7|b|=2且a<b求a+b的值.【答案】-5或-9解:∵|a|=7∴a=±7又∵|b|=2∴b=±2又∵a<b∴a=-7b=2或a=-7b=-2当a=-7b=2时a+b=-7+2=-5当a=-7b=-2时a+b=-7+(-2)=-9综上所述a+b的值为-5或-9.2.已知|a| = 3 |b| = 2 且ab < 0 求:a + b的值.解:℃|a|=3 |b|=2 ℃a=±3 b=±2; ℃ab <0 ℃ab 异号.℃当a=3时 b=-2 则a + b=3+(-2)=1; 当a=-3时 b=2 则a + b=-3+2=-1.3.已知5a = 2a b -=且a b a b -=- 求+a b 的值 【答案】8或-12 解:∵|a|=5 ∴a=±5∵2a b -=且a b a b -=- ∴0a b -> 2a b -= ∴2b a =- ∴当a=5 则b= 3 当a=-5 则b= -7 ∴a+b=8或-12;4.已知│a │=4且a<0 b 是绝对值最小的数 c 是最大的负整数 则a+b -c=____. 【答案】﹣3解:因为a =4且a <0 b 是绝对值最小的数 c 是最大的负整数所以a =﹣4 b =0 c =﹣1所以a +b -c =﹣4+0-(﹣1)=﹣4+1=﹣3.5.绝对值大于3且小于5.5的所有整数的和为______________ ;解:∵绝对值大于3而小于5.5的整数为:-4-545∴其和为:-4+(-5)+4+5=0故绝对值大于3且小于5.5的所有整数的和为0.考点7【有理数的乘除法】1.先阅读下面的材料再回答后面的问题:计算:10÷(12-13+16).解法一:原式=10÷12-10÷13+10÷16=10×2-10×3+10×6=50;解法二:原式=10÷(36-26+16)=10÷26=10×3=30;解法三:原式的倒数为(12-13+16)÷10=(12-13+16)×110=12×110-13×110+16×110=130故原式=30.(1)上面得到的结果不同肯定有错误的解法你认为解法是错误的。
初一数学第一章有理数计算题

初一数学第一章有理数计算题一、有理数加法运算(5题)1. 计算:(-3)+5- 解析:异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
| - 3|=3,|5| = 5,5>3,所以结果为正,5 - 3=2。
- 答案:22. 计算:4+(-7)- 解析:异号两数相加,|4| = 4,| - 7|=7,7>4,取负号,7 - 4 = 3。
- 答案:-33. 计算:(-2)+(-3)- 解析:同号两数相加,取相同的符号,并把绝对值相加。
| - 2|+| - 3|=2 + 3=5,符号为负。
- 答案:-54. 计算:0+(-6)- 解析:0加任何数等于这个数本身,所以0+(-6)=-6。
- 答案:-65. 计算:(-5)+5- 解析:互为相反数的两数相加得0,-5和5互为相反数。
- 答案:0二、有理数减法运算(5题)1. 计算:5-(-3)- 解析:减去一个数等于加上这个数的相反数,所以5-(-3)=5 + 3=8。
- 答案:82. 计算:4 - 7- 解析:4-7=4+(-7),异号两数相加,|4| = 4,| - 7|=7,7>4,取负号,7 - 4=3,结果为-3。
- 答案:-33. 计算:(-3)-(-5)- 解析:(-3)-(-5)=(-3)+5,异号两数相加,| - 3|=3,|5| = 5,5>3,取正号,5 - 3 = 2。
- 答案:24. 计算:0-(-6)- 解析:0-(-6)=0 + 6=6。
- 答案:65. 计算:(-6)-6- 解析:(-6)-6=(-6)+(-6),同号两数相加,| - 6|+| - 6|=6+6 = 12,符号为负。
- 答案:-12三、有理数乘法运算(5题)1. 计算:(-2)×3- 解析:异号两数相乘得负,| - 2|×|3|=2×3 = 6,所以结果为-6。
- 答案:-62. 计算:4×(-5)- 解析:异号两数相乘得负,|4|×| - 5|=4×5 = 20,结果为-20。
人教版七年级数学上册第一章《有理数》全章练习题题(含答案解析)

能力提升 1.C 2.D
参考答案
1.2.2 数轴
能力提升 1.在数轴上,原点及原点右边的点表示的数是( )
A.正数
B.整数
C.非负数
D.非正数
2.数轴上的点 A 与原点距离 6 个单位长度,则点 A 表示的数为( )
A.6 或-6
B.6
C.-6
D.3 或-3
3.在数轴上,表示-17 的点与表示-10 的点之间的距离是( )
A.27 个单位长度 B.-27 个单位长度
参考答案
能力提升 1.C 在数轴上,原点及原点右边的点表示的数是 0 和正数. 2.A 3.C 4.D 5.4 -6 6.2 7.7 符合条件的点有-3,3,-2,2,-1,1,0,共 7 个. 8.-5 或 1 画出数轴,找出-2 表示的点,与该点距离 3 个单位长度的点有两个,分别表示 -5,1. 9.分析:从图中可见墨迹盖住两段,一段是在-8~-3 之间,另一段在 4~9 之间. 解:-8~-3 之间的整数有-4,-5,-6,-7;4~9 之间的整数有 5,6,7,8.
D.Q 站点与 R 站点之间
5. 在 数 轴 上 , 表 示 数 -6,2.1,- ,0,-4 ,3,-3 的 点 中 , 在 原 点 左 边 的 点 有
个,
表示的点与原点的距离最远.
7
6.点 M 表示的有理数是-1,点 M 在数轴上向右移动 3 个单位长度后到达点 N,则点 N 表示的有
理数是 .
5 -0.8 0 -2 -3
整数
分数
负整数
2023-2024学年七年级数学上册《第一章 有理数》同步练习题有答案-人教版

2023-2024学年七年级数学上册《第一章 有理数》同步练习题有答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列有理数中-4,2.6,19与-3.5,10,-1,0,−35非正数的个数为( )A .3B .4C .5D .6 2.-2020的相反数是( )A .2020B .12020C .-2020D .−12020 3.下列说法中错误的是( )A .0既不是正数,也不是负数B .0是自然数,也是整数,也是有理数C .若仓库运进货物5t 记作+5t ,那么运出货物5t 记作-5tD .一个有理数不是正数,那它一定是负数4.在−6,0,2.5,|−3|这四个数中,最大的数是( )A .−6B .0C .2.5D .|−3|5.如图,数轴上点A 所表示的数可能是( )A .2.5B .-1.5C .-2.4D .1.56.已知:|a|=5 , 则a=( )A .5B .﹣5C .5或﹣5D .1或﹣17.已知a ,b 都是有理数,如果|a +b|=b −a ,那么对于下列两种说法:①a 可能是负数;②b 一定不是负数,其中判断正确的是( )A .①②都错B .①②都对C .①错②对D .①对②错8.已知|a|=5,|b|=3且|a −b|=b −a ,则a-b 的值为( )A .2B .2或8C .-2或-8D .2或-8 二、填空题9.在有理数-3,13与0,−72与-1.2,5中,整数有 ,负分数有 .10.-(-1)的相反数是 .11.已知数轴上 A 、 B 两点间的距离为3,点 A 表示的数为1,则点 B 表示的数为 .12.有理数a 、b 、c 在数轴上的位置如图:化简:|b ﹣c|+2|a+b|﹣|c ﹣a|= .13.若式子|x −1|+2取最小值时,x 等于 .三、解答题14.把下列各数填在相应的集合中:8,-1,-0.4,35与0与13,−137,−(−5),−|−207|.正数集合{ …};负数集合{ …};整数集合{ …};分数集合{ …};非负有理数集合{ …}.15.把下面的直线补成条数轴,并在数轴上表示下列各数:﹣3,12与0,−32和2.16.已知数轴上点 A 表示的数-1比6大,点 B 、 C 表示互为相反数的两个数,且点 C 与点 A 间的距离为2,求 B 、 C 表示的数17.已知|a ﹣3|与|b+5|互为相反数,计算a ﹣b 的值.参考答案1.C2.A3.D4.D5.C6.C7.B8.C9.-3,0,5;−72 10.-111.4或−2 12.﹣a﹣3b. 13.114.解:正数集合{8,35,13,−(−5)…};负数集合{ -1,-0.4,−137,−|−207|…};整数集合{ 8,-1,0,−(−5)…};分数集合{-0.4,35,13,−137,−|−207|…};非负有理数集合{ 8,35,0,13,−(−5)…}.15.解:画图如下:16.解:因为点A表示的数比-1大6所以点A表示的数是5因为点C与点A间的距离为2所以点C表示的数为3或7因为点B、C表示互为相反的两个数所以当点C表示的数是3时,点B表示的数为-3 当点C表示的数是7时,点B表示的数为-7.17.解:∵|a﹣3|与|b+5|互为相反数∴|a﹣3|+|b+5|=0∴a-3=0,b+5=0解得a=3,b=-5∴a−b=3−(−5)=8.。
第一章《有理数》测试(难)

第一章《有理数》测试一.选择题(共9小题)1.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③正整数、负整数、正分数、负分数统称为有理数;④非负数就是正数;⑤不仅是有理数,而且是分数;⑥是无限不循环小数,所以不是有理数;⑦无限小数不都是有理数;⑧正数中没有最小的数,负数中没有最大的数.其中错误的说法的个数为()A.7个B.6个C.5个D.4个2.若a为有理数,且满足|a|+a=0,则()A.a>0B.a≥0C.a<0D.a≤03.若|x|=7,|y|=9,则x﹣y为()A.±2B.±16C.﹣2和﹣16D.±2和±16 4.把﹣1,0,1,2,3这五个数,填入下列方框中,使行、列三个数的和相等,其中错误的是()A.B.C.D.5.计算×(﹣a)÷(﹣)×a等于()A.1B.a2C.﹣a D.6.的倒数与4的相反数的商是()A.﹣5B.5C.D.7.若a+b=0,则下列各组中不互为相反数的数是()A.a3和b3B.a2和b2C.﹣a和﹣b D.和8.有理数a、b在数轴上分别对应的点为M、N,则下列式子结果为负数的个数是()①a+b;②a﹣b;③﹣a+b;④﹣a﹣b;⑤ab;⑥;⑦;⑧a3b3;⑨b3﹣a3.A.4个B.5个C.6个D.7个9.计算:(﹣﹣)×(﹣34)的结果为()A.﹣21B.21C.﹣24D.24二.填空题(共8小题)10.相反数等于本身的数有,倒数等于本身的数有,奇次幂等于本身的数有,绝对值等于本身的数有.11.在数轴上把点A(﹣5)沿数轴移动6个单位后得到点B,则B所表示的数为.12.比较大小:①﹣0.﹣(+);②+(﹣5)﹣|﹣17|;③﹣32(﹣2)3.13.填“>”或“<”或“=”号:①若m>0,n>0,且|m|<|n|,则m+n0,m﹣n0,mn0,0;②若m<0,n<0,且|m|<|n|,则m+n0,m﹣n0,mn0,0;③若m>0,n<0,且|m|<|n|,则m+n0,m﹣n0,mn0,0;④若m>0,n<0,且|m|>|n|,则m+n0,m﹣n0,mn0,0;⑤若m、n互为相反数,则m+n=.14.①125÷(﹣)×=;②1﹣2+3﹣4+5﹣…﹣2014+2015﹣2016+2017=.15.若|6﹣x|与|y+9|互为相反数,则x=,y=,(x+y)÷(x﹣y)=.16.若x是不等于1的实数,我们把称为x的差倒数,如2的差倒数是=﹣1,﹣1的差倒数为,现已知x1=﹣,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2017=.17.已知:,,,…,观察上面的计算过程,寻找规律并计算C106=.三.解答题(共8小题)18.①399×(﹣6);②﹣99×3;③﹣60×(3﹣+﹣)④2×(﹣5)+23﹣3÷;⑤﹣14﹣(2﹣0.5)××[﹣].⑥÷[2﹣(﹣1+2)]×0.4﹣(﹣2)2×(﹣).20.①1﹣2+3﹣4+5﹣6+7﹣8+9﹣…﹣2012+2013﹣2014+2015﹣2016;②(﹣1)×(﹣1)×(﹣1)×…×(﹣1)×(﹣1)×(﹣1);③1﹣﹣﹣﹣﹣…﹣﹣﹣.21.已知:a、b、c、d是互不相等的整数,且abcd=9,求代数式a+b+c+d的值.22.规定○是一种新的运算符号,且a○b=a2+a×b﹣a+2,例如:2○3=22+2×3﹣2+2=10.请你根据上面的规定试求:①﹣2○1的值;②1○3○5的值.23.如图的图例是一个方阵图,每行的3个数、每列的3个数、斜对角的3个数相加的和均相等.如果将方阵图的每个数都加上同一个数,那么方阵中每行的3个数、每列的3个数、斜对角的3个数相加的和仍然相等,这样就形成新的方阵图.根据图①②③中给出的数,对照原来的方阵图,请你完成图①②③的方阵图?24.观察下列三行数:﹣2,4,﹣8,16,﹣32,…①0,6,﹣6,18,﹣30,…②﹣1,2,﹣4,8,﹣16,…③(1)第①行的数按什么规律排列?写出第①行的第n个数;(2)第②、③行数与第①行数分别有什么关系?(3)取每行第7个数,计算这三个数的和.一.选择题(共9小题)1.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③正整数、负整数、正分数、负分数统称为有理数;④非负数就是正数;⑤不仅是有理数,而且是分数;⑥是无限不循环小数,所以不是有理数;⑦无限小数不都是有理数;⑧正数中没有最小的数,负数中没有最大的数.其中错误的说法的个数为()A.7个B.6个C.5个D.4个【分析】有理数的分类:有理数,依此即可作出判断.【解答】解:①没有最小的整数,故错误;②有理数包括正数、0和负数,故错误;③正整数、负整数、0、正分数、负分数统称为有理数,故错误;④非负数就是正数和0,故错误;⑤是无理数,故错误;⑥是无限循环小数,所以是有理数,故错误;⑦无限小数不都是有理数是正确的;⑧正数中没有最小的数,负数中没有最大的数是正确的.故其中错误的说法的个数为6个.故选:B.【点评】本题考查了有理数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.注意整数和正数的区别,注意0是整数,但不是正数.2.若a为有理数,且满足|a|+a=0,则()A.a>0B.a≥0C.a<0D.a≤0【分析】根据绝对值的性质即可得到a≤0,从而得到答案.【解答】解:∵|a|+a=0,∴|a|=﹣a,∴a≤0,即a为负数或0.故选:D.【点评】本题考查了绝对值的性质:若a>0,则|a|=a;若a<0,|a|=﹣a;若a=0,|a|=0.3.若|x|=7,|y|=9,则x﹣y为()A.±2B.±16C.﹣2和﹣16D.±2和±16【分析】根据题意,利用绝对值的代数意义求出x与y的值,即可确定出x﹣y 的值.【解答】解:∵|x|=7,|y|=9,∴x=﹣7,y=9;x=﹣7,y=﹣9;x=7,y=9;x=7,y=﹣9;则x﹣y=﹣16或2或﹣2或16.故选:D.【点评】此题考查了有理数的减法,绝对值,熟练掌握运算法则是解本题的关键.4.把﹣1,0,1,2,3这五个数,填入下列方框中,使行、列三个数的和相等,其中错误的是()A.B.C.D.【分析】由图逐一验证,运用排除法即可选得.【解答】解:验证四个选项:A、行:1+(﹣1)+2=2,列:3﹣1+0=2,行=列,对;B、行:﹣1+3+2=4,列:1+3+0=4,行=列,对;C、行:0+1+2=3,列:3+1﹣1=3,行=列,对;D、行:3+0﹣1=2,列:2+0+1=3,行≠列,错.故选:D.【点评】本题为选取错误选项的题,常有一些题目这样设计,目的是要求学生认真读题.本题为数字规律题,考查学生灵活运用知识能力.5.计算×(﹣a)÷(﹣)×a等于()A.1B.a2C.﹣a D.【分析】根据有理数的除法法则:除以一个数等于乘以这个数的倒数,可得答案.【解答】解:×(﹣a)÷(﹣)×a=•(﹣a)•(﹣a)•a=a2,故选:B.【点评】本题考查了有理数的除法,解题关键是把有理数的除法转化成有理数的乘法.6.的倒数与4的相反数的商是()A.﹣5B.5C.D.【分析】依据相反数、倒数的概念先求得﹣1的倒数与4的相反数,然后根据有理数的除法法则求出它们的商.【解答】解:∵﹣1的倒数是﹣,4的相反数是﹣4,∴﹣÷(﹣4)=.故选:C.【点评】主要考查相反数、倒数的概念及有理数的除法法则.7.若a+b=0,则下列各组中不互为相反数的数是()A.a3和b3B.a2和b2C.﹣a和﹣b D.和【分析】由a与b互为相反数,得到a=﹣b,代入各项检验即可得到结果.【解答】解:A、因为a=﹣b,所以a3=﹣b3,即a3和b3互为相反数,故本选项错误;B、因为a=﹣b,所以a2=b2,即a2和b2不互为相反数,故本选项正确;C、因为a=﹣b,所以﹣a=b,即﹣a和﹣b互为相反数,故本选项错误;D、因为a=﹣b,所以=﹣,即和互为相反数,故本选项错误;故选:B.【点评】此题考查了相反数的概念:只有符号不同的两个数叫做互为相反数.8.有理数a、b在数轴上分别对应的点为M、N,则下列式子结果为负数的个数是()①a+b;②a﹣b;③﹣a+b;④﹣a﹣b;⑤ab;⑥;⑦;⑧a3b3;⑨b3﹣a3.A.4个B.5个C.6个D.7个【分析】根据数轴上点的位置得出a,b的范围,即可做出判断.【解答】解:根据题意得:a<0,b>0,|a|>|b|,则①a+b<0,是负数;②a﹣b<0,是负数;③﹣a+b>0,是正数;④﹣a﹣b>0,是正数;⑤ab<0,是负数;⑥<0,是负数;⑦>0,是正数;⑧a3b3<0,是负数;⑨b3﹣a3>0,是正数.则结果为负数的个数是5个.故选:B.【点评】此题考查了有理数的混合运算,以及数轴,弄清数轴上点的位置是解本题的关键.9.计算:(﹣﹣)×(﹣34)的结果为()A.﹣21B.21C.﹣24D.24【分析】原式先计算乘方运算,再利用乘法分配律计算即可得到结果.【解答】解:原式=(﹣﹣)×(﹣81)=﹣9+27+3=21,故选:B.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.二.填空题(共8小题)10.相反数等于本身的数有0,倒数等于本身的数有±1,奇次幂等于本身的数有±1,0,绝对值等于本身的数有非负数.【分析】根据只有符号不同的两个数互为相反数,乘积为的两个数互为倒数,绝对值的性质,可得答案.【解答】解:相反数等于本身的数有0,倒数等于本身的数有±1,奇次幂等于本身的数有±1,0,绝对值等于本身的数有非负数,故答案为:0,±1,±1、0.【点评】本题考查了倒数,利用了相反数的定义、倒数的定义、绝对值的性质.11.在数轴上把点A(﹣5)沿数轴移动6个单位后得到点B,则B所表示的数为1或﹣11.【分析】考虑两种情况:要求的点在已知点左移或右移6个单位长度.【解答】解:在数轴上把点A(﹣5)沿数轴移动6个单位后得到点B,则B所表示的数为:﹣5+6=1,或﹣5﹣6=﹣11,故答案为:1或﹣11.【点评】此题考查了数轴,要求掌握数轴上的两点间距离公式的运用.在数轴上求到已知点的距离为一个定值的点有两个.12.比较大小:①﹣0.=﹣(+);②+(﹣5)>﹣|﹣17|;③﹣32<(﹣2)3.【分析】先化简符号,再根据实数的大小比较法则比较即可.【解答】解::①﹣0.=﹣(+),②+(﹣5)>﹣|﹣17|;③﹣32 <(﹣2)3.故答案为:=,>,<.【点评】本题考查了对实数的大小比较法则,绝对值,相反数的应用,能正确化简符号是解此题的关键.13.填“>”或“<”或“=”号:①若m>0,n>0,且|m|<|n|,则m+n>0,m﹣n<0,mn>0,>0;②若m<0,n<0,且|m|<|n|,则m+n<0,m﹣n>0,mn>0,>0;③若m>0,n<0,且|m|<|n|,则m+n<0,m﹣n>0,mn<0,<0;④若m>0,n<0,且|m|>|n|,则m+n>0,m﹣n>0,mn<0,<0;⑤若m、n互为相反数,则m+n=0.【分析】各项利用有理数的加减乘除法则,以及相反数定义计算即可得到结果.【解答】解:①若m>0,n>0,且|m|<|n|,则m+n>0,m﹣n<0,mn>0,>0;②若m<0,n<0,且|m|<|n|,则m+n<0,m﹣n>0,mn>0,>0;③若m>0,n<0,且|m|<|n|,则m+n<0,m﹣n>0,mn<0,<0;④若m>0,n<0,且|m|>|n|,则m+n>0,m﹣n>0,mn<0,<0;⑤若m、n互为相反数,则m+n=0.故答案为:①>;<;>;>;②<;>;>;>;③<;>;<;<;④>;>;<;<;⑤0【点评】此题考查了有理数的乘除、加减法则,熟练掌握运算法则是解本题的关键.14.①125÷(﹣)×=﹣180;②1﹣2+3﹣4+5﹣…﹣2014+2015﹣2016+2017=1009.【分析】①将除法变为乘法,再约分计算即可求解;②两个一组计算即可求解.【解答】解:①125÷(﹣)×=125÷(﹣)×=﹣180;②1﹣2+3﹣4+5﹣…﹣2014+2015﹣2016+2017==(1﹣2)+(3﹣4)+…+(2015﹣2016)+2017=﹣1×1008+2017=﹣1008+2017=1009.故答案为:﹣180;1009.【点评】此题考查了有理数混合运算,有理数混合运算的四种运算技巧1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.15.若|6﹣x|与|y+9|互为相反数,则x=6,y=﹣9,(x+y)÷(x﹣y)=﹣.【分析】根据相反数的概念列出算式,求出x、y的值,计算即可.【解答】解:由题意得,|6﹣x|+|y+9|=0,则6﹣x=0,y+9=0,解得,x=6,y=﹣9,则(x+y)÷(x﹣y)=﹣,故答案为:6;﹣9;﹣.【点评】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.16.若x是不等于1的实数,我们把称为x的差倒数,如2的差倒数是=﹣1,﹣1的差倒数为,现已知x1=﹣,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2017=﹣.【分析】根据题目中的数据可以分别求得前面几个数据值,从而可以发现其中的规律,从而可以解答本题.【解答】解:由题意可得,x1=﹣,x2=,x3=,x4=,2017÷3=672…1,∴x2017=,故答案为:.【点评】本题考查数字的变化类,解题的关键是发现数字之间的变化规律.17.已知:,,,…,观察上面的计算过程,寻找规律并计算C106=210.【分析】对于C a b(b<a)来讲,等于一个分式,其中分母是从1到b的b个数相乘,分子是从a开始乘,乘b的个数.【解答】解:;;;…;C106==210.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三.解答题(共8小题)18.①399×(﹣6);②﹣99×3;③﹣60×(3﹣+﹣).【分析】①原式变形后,利用乘法分配律计算即可得到结果;②原式变形后,利用乘法分配律计算即可得到结果;③原式利用乘法分配律计算即可得到结果.【解答】解:①原式=(400+)×(﹣6)=﹣2400﹣=﹣2401;②原式=(﹣100+)×3=﹣300+=﹣299;③原式=﹣185+15﹣20+28=﹣162.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.①2×(﹣5)+23﹣3÷;②﹣14﹣(2﹣0.5)××[﹣].【分析】①原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;②原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:①原式=﹣10+8﹣6=﹣8;②原式=﹣1﹣××=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.①1﹣2+3﹣4+5﹣6+7﹣8+9﹣…﹣2012+2013﹣2014+2015﹣2016;②(﹣1)×(﹣1)×(﹣1)×…×(﹣1)×(﹣1)×(﹣1);③1﹣﹣﹣﹣﹣…﹣﹣﹣.(提示:﹣=﹣1+,…﹣=﹣+,…以此类推!)【分析】①原式结合后,相加即可得到结果;②原式先计算括号中的减法运算,约分即可得到结果;③原式变形后,抵消合并即可得到结果.【解答】解:①原式=﹣1﹣1…﹣1(1008个﹣1)=﹣1008;②原式=﹣×(﹣)×(﹣)×…×(﹣)×(﹣)×(﹣)=;③原式=1+(﹣1+)+(﹣+)+…+(﹣+)+(﹣+)+(﹣+)=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.21.已知:a、b、c、d是互不相等的整数,且abcd=9,求代数式a+b+c+d的值.【分析】把9分解质因数,然后判断出a、b、c、d四个数,再求和即可.【解答】解:9=(﹣1)×(﹣9)=1×9=3×3=(﹣3)×(﹣3),∵a、b、c、d是互不相等的整数,且abcd=9,∴a、b、c、d四个数为﹣1、1、﹣3、3,∴a+b+c+d=﹣1+1﹣3+3=0.【点评】本题考查了有理数的乘法,有理数的加法,根据9的质因数判断出a、b、c、d四个数的值是解题的关键.22.规定○是一种新的运算符号,且a○b=a2+a×b﹣a+2,例如:2○3=22+2×3﹣2+2=10.请你根据上面的规定试求:①﹣2○1的值;②1○3○5的值.【分析】根据新运算的运算顺序,把﹣2○1,1○3○5列出式子,再根据有理数混合运算的顺序和法则分别进行计算即可.【解答】解:①﹣2○1=(﹣2)2+(﹣2)×1﹣(﹣2)+2=4﹣2+2+2=6;②1○3○5=(12+1×3﹣1+2)○5=(1+3﹣1+2)○5=5○5=52+5×5﹣5+2=25+25﹣5+2=47.【点评】此题考查了有理数的混合运算,掌握新运算的规律是解题的关键,是一道新题型.23.如图的图例是一个方阵图,每行的3个数、每列的3个数、斜对角的3个数相加的和均相等.如果将方阵图的每个数都加上同一个数,那么方阵中每行的3个数、每列的3个数、斜对角的3个数相加的和仍然相等,这样就形成新的方阵图.根据图①②③中给出的数,对照原来的方阵图,请你完成图①②③的方阵图?【分析】(1)图①中正中间的数1变为图②中正中间的数0,所以将图①中各数依次加上2即可;(2)可将图①中各数依次减去3,填表即可;(3)可将图①中各数依次减去7,填表即可.【解答】解:(1)将图①中各数依次加上2,如图①;(2)将图①中各数依次减去3,如图②;(3)可将图①中各数依次减去7,如图③.【点评】本题考查了有理数的加法,九方格题目,趣味性较强,本题的关键是了解九方格的特点.24.观察下列三行数:﹣2,4,﹣8,16,﹣32,…①0,6,﹣6,18,﹣30,…②﹣1,2,﹣4,8,﹣16,…③(1)第①行的数按什么规律排列?写出第①行的第n个数;(2)第②、③行数与第①行数分别有什么关系?(3)取每行第7个数,计算这三个数的和.【分析】(1)第①行有理数是按照﹣2的正整数次幂排列的;(2)第②行为第①行的数加2;第③行为第①行的数的一半,分别写出第n个数的表达式;(3)根据各行的表达式求出第7个数,然后相加即可得解.【解答】解:(1)第①行的有理数分别是﹣2,(﹣2)2,(﹣2)3,(﹣2)4,…,故第n个数为(﹣2)n(n是正整数);(2)第②行的数等于第①行相应的数加2,即第n的数为(﹣2)n+2(n是正整数),第③行的数等于第①行相应的数的一半,即第n个数是×(﹣2)n(n是正整数);(3)∵第①行的第7个数为(﹣2)7=﹣128,第②行的第7个数为(﹣2)7+2=﹣126,第③的第7个数为×(﹣2)7=﹣64,所以,这三个数的和为:(﹣128)+(﹣126)+(﹣64)=﹣318.【点评】本题是对数字变化规律的考查,认真观察、仔细思考,善用联想是解决这类问题的方法,观察出第②③行的数与第①行的数的联系是解题的关键.25.÷[2﹣(﹣1+2)]×0.4﹣(﹣2)2×(﹣).【分析】有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.依此计算即可求解.【解答】解:÷[2﹣(﹣1+2)]×0.4﹣(﹣2)2×(﹣)=÷(2.5﹣1.25)×0.4﹣4×(﹣)=25÷1.25×0.4+1=20×0.4+1=8+1=9.【点评】此题考查了有理数混合运算,进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.规律方法,有理数混合运算的四种运算技巧1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章有理数1. 1正数和负数班级:___________________ 姓名:____________________1、举出几对具有相反意义的量,并分别用正、负数表示.2、在某次乒乓球检测中,一只乒乓球超过标准质量0.02克记作+ 0.02克,?那么—0.03克表示什么?表示:_____________________________________ 。
3、2001年美国的 6.4%可记为______________ ,中国增长7.5%可记为___________ •4、某项科学研究以45分钟为1个时间单位,?并记为每天上午10时为0, 10时以前记为负,10时以后记为正.例如,9:15记为-1 , 10:45记为1等等.依此类推,上午7:45应记为 ()A.3B.-3C.-2.5D.-7.455、填空-1 ,2, -3 , 4,-5 , _, _, _______ …第81个数是__________ ,第2005个数是_________ .6.填空题(1)如果节约用水30吨记为+30吨,那么浪费20吨记为 _____________ 吨.(2)如果4年后记作+ 4,那么8年前记作 __________________ .(3)如果运出货物7吨记作一7吨,那么+ 100吨表示_______________________ .(4)一年内,小亮体重增加了3kg,记作+ 3,小阳体重减少了 2 kg,则小阳增长了________ .7.中午12时,水位低于标准水位0.5米,记作—0.5米,下午1时,?水位上涨了1米,下午5时,水位又上涨了0.5米.(1)用正数或负数记录下午 _________________________________ 1时和下午5时的水位;(2)_______________________________________________________________________ 下午5时的水位比中午12时水位高多少?_________________________________________________ 8.粮食每袋标准重量是50公斤,现测得甲、乙、丙—52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.甲:_____________________ 乙:__________________________ 丙:____________________ 9.有没有这样的有理数,它既不是正数,也不是负数?_________________10 .下列各数中哪些是正数?哪些是负数?6 1 1—15, -0.02 , , - — , 4, -2 , 1.3 , 0, 3.14 ,771 3正数: _______________________________________ ;负数:______________________________ 11.同学聚会,约定在中午12点到会,早到的记为正,迟到的记为负,结果最早到的同学记为+ 3点,最迟到的同学记为-1.5点,?你知道他们最早的同学__________________ 到,最迟的是_____________到,最早的比最迟的早到______________ 个小时.12.__________________________________________________________________________ 冷库A的温度是—5C,冷库E的温度是—15C, ?则温度高的是冷库_____________________________ .1 . 2. 1 有理数整数正整数正有理数■正整数I正分数(1)有理数“正分数分数厶八-负分数(2)有理数』零负有理数侦整数负分数1.把下列各数填入相应的集合内:12 810% 10」,0.67, -89 ,3.1416 , 0, 2004, -— , -0.23456 ,7 53. _____________________________________________________ 如果用字母表示一个数,那 a 可能是什么样的数,一定为正数吗?与你的伙伴交流一下 你的看法. 。
2 3 44.观察下列数,按某种规律在横线上填入适当的数,并说明你的理由•土,上,二,3 4 5―,…你的理解是75 .把下列各数填入相应的大括号内:1 1 -7,0.125, ,-3 ,3,0,50% -0.32 2(1)整数集合{} (2)分数集合{(3)负分数集合{ }(4)非负数集合{(5)有理数集合{}6.卜列说法止确的是()A.整数就是自然数B. 0不是自然数C.正数和负数统称为有理数D. 0是整数而不是正数7 •某商店出售的三种规格的面粉袋上写着( 25± 0.1 )千克,(25± 0.2?千克),(25± 0.3 )千克的字样,从中任意两袋,它们质量相差最大的是 _____________ 千克. 8•某校对初一新生的男生进行了引体向上的测试,以能做 5个为标准,?超过的次数记为 正数,不足的次数记为负数,其中10名男生的测试成绩如下:—2 -1 2 -1 3 0 -1 -2 1 0(1) 这10名男生有百分之几达标(即达标率)? (2) 这10名男生共做了多少个引体向上?9. 应用创新题若向东8米记作+ 8米,如果一个人从A 地出发先走+ 12米,再走—15米,又走+ 18米,最后走一 20 米,你能判断这个人此时在何处吗? ______________________________________ 10. 某市2004年元月某一天的天气预报中,宁城县的最低温度是— 22 C ,克旗的最低温 度是—26C ,这一天宁城县的最低气温比克旗的最低气温高(A)A . 4CB . -4C C . 8CD . -8 C1. 2. 2数轴1 .所有的_____________ 都可以用数轴上的点表示 ____________________ ?都在原点的左边,_______________都在原点的右边.2 .下列所画数轴对不对?如果不对,指出错在哪里.A.1 个B.2 个C.3 个D.4 个①0是最小的正整数③0不是负数 ②0是最小的有理数④0既是非正数,也是非负数——•——*——•——•——-—> ——*_*_*_*_*———*_+_«_«_1 2 3 4 5 -1 0 1 2 3 -2 -1 0 1 2① ② ③4 .在数轴上,原点及原点左边的点所表示的数是( )A .正数B .负数C .不是负数D .不是正数―*——*——«——e ——*——*- -3-2-1 0 1 2 ⑥答:① ___________________________ ② _____________________________ ③ _________________④ ⑤ —⑥ __________________________________________ ⑦ ______________________________________________3 .试一试:用你画的数轴上的点表示4,1.5 , -3 , - 7 , 034.下列语句:①数轴上的点又能表示整数;②数轴是一条直线; 孑③数轴上的一个点只能 表示一个数;④数轴上找不到既不表示正数, 又不表示负数的点; ⑤数轴上的点所表示的数 都是有理数.正确的说法有( ) A.1 个 B.2 个 C.3 个 D.4 个 5. ( 1 )与原点的距离为 2.5个单位的点有 ____________ 个,它们分别表示有理数 __________ ? 和 ________ .— 个蜗牛从原点开始,先向左爬了 4个单位,再向右爬了 7?个单位到达终点,那 么终点表示的数是 .]121 2 6.在数轴上表示一2丄和1 士,并根据数轴指出所有大于-2丄而小于1 土的整数.2323M 1M 2 M 3M 4M 5----- * ----- * ---- *----- * -------- * ----- •------- * ------ * ------ * ------ * ----- #_士-5-4 -3-2 -112345(1) 点 M 和 M 所表示的有理数是什么? ____________________________________ (2) 点M 和M 两点间的距离为多少? _____________________________________ (3)怎样将点M 移动,使它先达到 M ,再达到M ,请用文字说明;5 6 7 8 4 9(4) 若原点是一休息游乐所,那 __________________________ 5个卡通人到游乐所休息的总路程为多少? __________________________________________________ 6 .规定了 ___________ 、 __________ 、 _______________ 叫数轴,所有的有理数都可从用 上的点来表示.7 . P 从数轴上原点开始,向右移动2个单位,再向左移 5个单位长度,此时 P 点所表示的数是 ____________ .8 .把数轴上表示2的点移动5个单位后,所得的对应点表示的数是( ) A. 7 B . -3 C . 7或-3 D .不能确定 9 .数轴上表示5和-5的点离开原点的距离是 ____________ ,但它们分别 _________________ .-0④—» • - dt - « - •- -2^1 0 1 2⑦7. 数轴上表示整数的点称为整点,某数轴的单位长度是长2000cm 的线段AB 则线段A . 1998 或 1999BC . 2000 或 2001D8. 在数轴上,离原点距离等于 9. 一条直线的流水线上,依次有M 3、M4、 1cm,若这个数轴上随意画出一条AB 盖住的整点是( .1999或 2000 .2001 或 20023的数是 _______5个卡通人,?它们站立的位置在数轴上依次用点M 、M 、M 5表示,如图:6. ______ 是最小的正整数, ______ 是最小的非负数,_________ 是最大的非正数.7.与原点距离为 3.5个单位长度的点有___________ 个,它们分别是_______ 和 _________18.画一条数轴,并把下列数表示在数轴上:+2,-3 , 0.5 , 0, -4.5 , 4, 339.在数轴上与-1相距3个单位长度的点有个,为;长为3个单位长度的木条放在数轴上,最多能覆盖_____________ 个整数点.10.下列四个数中,在-2到0之间的数是( )A . -1B . 1C . -3D . 31. 2. 3相反数1.填空(1) _____________ -5.8是__________ 的相反数, _____________________________ 的相反数是一(+3), a的相反数是_________________ , a-b的相反数是,0的相反数是.(2) ____________________ 正数的相反数是________ ,负数的相反数是, 的相反数是它本身.2.下列判断不正确的有( )①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.A.1 个B.2 个C.3 个D.4 个3.化简下列各符号:(1)-卜(-2 ) ] (2) +{-[- (+5) ]} (3) -{-{-…-(-6 ) }…}(共n 个负号)【提示】化简的规律是:有偶数个负号,结果为正;有奇数个负号,结果为负.4.数轴上A点表示+4, B、C两点所表示的数是互为相反数,且C到A?的距离为2,点B和点C各对应什么数?5 .如图所示,数轴上的点A所表示的是实数a,则点A到原点的距离是A■■-*a 06 .判断题(1) -3是相反数()(2) -7和7是相反数()(3) -a的相反数是a,它们互为相反数()(4)符号不同的两个数互为相反数()7.分别写出下列各数的相反数,并把它们在数轴上表示出来.1, -2 , 0, 4.5 , -2.5 , 3A .正数B .正数或0C .负数D .负数或09•一个数比它的相反数小,这个数是( )A .正数B .负数C .非负数D .非正数210 •数轴上表示互为相反数的两个点之间的距离为4—,则这两个数是311.比-6的相反数大7的数是____________ .12.若a与a-2互为相反数,则a的相反数是 __________ .13.(1) - (-8 )的相反数是__________ , (2) + (-6 )是________ 的相反数.(3) ______ 的相反数是a-1 . (4)若-x=9,贝U x= ______________ .14 .已知有理数m -3、n在数轴上位置如图所示,将m -3、n?的相反数在数轴上表示, 并将这6个数用“ 连接起来.-3 M 0【答案】< < < < <3 15.——的相反数是()4A 3 厂 3 4 f 4A .B .—CD .—-4 4 3 31 . 2. 4 绝对值(第一课时)1 .例题填空:(1)绝对值等于4的数有个,它们是(2)绝对值等于-3的数有个.(3)___________________________ 绝对值等于本身的数有_______ 个,它们是(4)①若 |a | =2,贝U a= ___________ .②若丨-a | =3,贝U a= __________ .(5)绝对值不大于2的整数是_______________________ .2 .绝对值为4的数是()A . ± 4B . 4C . -4D . 23 .填空题(1) - | -3 | = ,+ | -0.27 | = , - | +26 | = , - (+24)(2) -4的绝对值是,绝对值等于4的数是.|3.14-兀| =(3)若 |x | =2,贝V x= ______ ,若 |-x | =2,贝V x= _______ .若 |-x | =3,贝V x = ________(4)__________________________________________________ 绝对值小于3的所有整数有.4.选择题(1)贝U|a| > 0, 那么()A .a>0B .a<0C . 0D . a为任意数(2)若|a | =| b |,则a、b的关系是()A .a=bB a=-bC . a+b=0 或a-b=0D . a=0 且b=0(3)卜列说法不止确的是()A .如果a的绝对值比它本身大,则a一定是负数B .如果两个数相等,那么它们的绝对值也必不相等C .两个负有理数,绝对值大的离原点远D .两个负有理数,大的离原点近(4 )若|乂| +x=0 ,则x -A .负数B . 0C .非正数D .非负数5 .若实数a、b满足|3a-1 | + | b-2 | =0,求a+b的值.6.正式排球比赛, 对所使用的排球的重量是严重规定的,检查5个排球的重量,超过规定重量的克数记为正数,不足规定重量的克数记作负数,检查结果如下表:+ 15 -10 +30 -20 -40指出哪个排球的质量好一些(即重量最接近规定重量)?你怎样用学过的绝对值知识来说明这个问题?且 4丄>4.2>0.6 ,2 0.6< -3| <-0.6< | -0.6 | <-(2)31 -4 <2| 4.21 .填空题,用“〉??a ??” — 、 〈 填空:①-7-5②-0.1-0.01 ③-| -3.2 |-(-3.2 ) ④-|1033.34⑤--——8⑥- (--)0.025⑦-二-3.14 ⑧2297 4231. 2. 4绝对值(第二课时)例1比较下列各组数的大小(1)5 —-和一2.765十 3(2) —-和—74解:(1): 1 —5 | =--2.7 | =2.7 ,5 而一V 2.7666... —— 5>-2.76, 5 ,520 , 3 , 3 21 云 20(2) •••丨——I =-1 —— 1 =-=,而 V7 7 284 4 28 28例2 按从大到小的顺序,用“〈”号把下列数连接起来.1 2-4- ,-(-- ),1 -0.6 | , -0.6 , -| 4.223解:••--(2) =21-0.6=0.6 , -| 4.2| =-4.23 3十1 1而 |-4 |=4, 1 -0.6 I =0.6 , | -4.2 | =4.25 3> — ——2 22032 •解答题(1)比较一7和一6的大小,并写出比较过程.871. 3. 1有理数的加法(第一课时)1.计算(1)_______________________ (-4)+( -6)= ___________________ ( 2)( +15) +( -17)= (3)( -39)+( -21)=_(4)(-6 ) + |-10 | + (-4 ) = ______ (5) (-37 ) +22= __________ (6) -3+ ( 3) = _______2.某足球队在一场比赛中上半场负5球,下半场胜4球,?那么全场比赛该队净胜球.3.绝对值小于2005的所有整数和为 _________ .4.一个数是11,另一个数比11的相反数大2,那么这两个数的和为( )A . 24B . -24C . 2D . -25.下面结论正确的有( )①两个有理数相加,和-②一个正数与一个负数相加得正数.③两个负数和的绝对值一定等于它们绝对值的和.④两个正数相加,和为正数.⑤两个负数相加,绝对值相减.⑥正数加负数,其和一定等于0.A . 0个B . 1个C . 2个D . 3个6.在1 , - 1, -2这三个数中,任意两数之和的最大值是( )A.1B.0C.-1D.37.填空题(1) ________________________________________________ 绝对值不小于3且小于5的所有整数的和为_______________________________________________ .1 1(2)已知两数5丄和一6 -,这两个数的相反数的和是,两数和的相反数2 2是______ ,两数绝对值的和是________ ,两数和的绝对值是_______ .8.计算题(1) (-15 ) +27= _________ (2) (-3.2 ) + (+3.2 ) = __________ (3) 5.2+ (-2.8 ) =(4) (-2 ) + ( +1) = _______ ( 5) -8+ | -5 | = _____________ (6) - (-7 ) + (-2 ) =9.列式计算1 2(1)求3 —的相反数与-2 的绝对值的和.3 3(2)某市一天上午的气温是10C,上午上升2C,半夜又下降15C,则半夜的气温是多少. 10 .填空题:某天早晨的气温是一7C,中午上升了11 C, ?则中午的气温是 __________________1. 3. 1有理数的加法(第二课时)例1说出下列每一步运算的依据1(-0.125)+(+5)+(-7)+( +—)+(+2)8=1(-0.125 ) + (+—)8+ ( +5) + ( +2) + (-7 )(加法交换律)=[1(-0.125 ) + (+—)8]+[ ( +5) + ( +2) ]+ (-7 )(加法结合律)=0+ (+7) + (-7 ) (有理数的加法法则)=0 (有理数的加法法则)1 .利用有理数的加法运算律计算,使运算简便.(1) (+9) + (-7 ) + ( +10) + (-3 ) + (-9 ) (2) ( +0.36 ) + (-7.4 ) + ( +0.03 ) + (-0.6 ) + (+0.64 )(3)(+1) + (-2 ) + ( +3) + (-4 ) + …+ ( +2003) + (-2004 )2.某出租司机某天下午营运全是在东西走向的人民大道进行的,?如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米)+ 15 , +14, -3 , -11 , +10, -12 , +4, -15 , +16, -18(1)他将最后一名乘客送到目的地,该司机距下午出发点的距离是多少千米?(2)若汽车耗油量为0.3公升/千米,这天下午汽车共耗油多少公升?解:一一1 23.运用加法的运算律计算(+6 ) + (-18 ) + (+4 ) + (-6.8 ) +18+ (-3.2 )最适当的是3 3()1 2A . [ (+6—) + (4- ) +18]+[ (-18) + (-6.8 ) + (-3.2 )]3 31 2B . [ (+6 ) + (-6.8 ) + (4 -) ]+[ (-18 ) +18+ (-3.2 )]3 31 2C . [ (+6 - ) + (-18 ) ]+[ (+4 - ) + (-6.8 ) ]+[18+ (-3.2 )]3 31 2D . [ (+6 ) + (+4 ) ]+[ (-18) +18]]+[ (-3.2 ) + (-6.8 )]3 34.已知 |x | =4,|y | =5,x+y | 的值为 ()A . 1B . 9C . 9或 1D . ± 9 或土 15. __________________________________ 有理数中,所有整数的和等于 .6. (-2 ) +4+ (-6 ) +8+…+ (-98 ) +100= __________7. 一个加数是绝对值等于11-的负有理数,另一个加数是一一的相反数,8 2?这两个数的和等于 .& 计算题-16 1 cc1+29 - 13 (+0.65 ) + (-1.9 ) + (-1.1 ) + (-—) 2 1 + (+5—)+( -2 )3 620 3 31 3+ (-6.5 ) +3 3 + (-1.75 ) +254889•小李到银行共办理了四笔业务,第一笔存入 120元,第二笔支取了 85元,第三笔取出70元,第四笔存入130元.如果将这四笔业务合并为一笔,?请你替他策划一下这一笔业务该怎样做.10•某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.?某天自A 地出发到收工时所走路线(单位:千米)为: +10, -3 , +4, +2, -8 , +13, -2 , +12, +8, ?+5.(1) 问收工时距A 地多远?(2) 若每千米路程耗油 0.2升,问从A 地出发到收工共耗油多少升?// 2、 / 2、 1(+6 + (-5 —) + ( 4-) + (+2— ) + (-1 ) +5 3 5 71. 3. 2 1. 计算题21 1 (1) ( ---- ) - (+ —)-(-—)3124有理数的减法(2) (-0.1 ) - (-81 ) + (-11 -)-(-丄)3 3 102. 根据题意列出式子计算(1) 一个加数是1.8,和是—0.81,求另一个加数.12(2)——的绝对值的相反数与 的相反数的差.33解:3•填空题(1) 0C 比—10C 高多少度?列算式为 ______________ ,转化为加法是 _______ , ?运算结果 为 _____ . (2 )减法法则为减去一个数,等于 ______________ 这个数的 ___________ ,即把减法转 为 _________ .③两个相反数相减得零;④有理数减法中,被减数不一定比减数或差大 ⑤ 减去一个负数,差一定大于被减数 ;⑥减去一个正数,差不一定小于被减数A . 2个B . 3个C . 4个D . 5个 6 .计算题 (1) (-7 ) - (-4 ) - ( +5) ; (2) (-9 ) -[ (-10 ) - (-2 )](3) (-4 1 ) - (+51 ) - (-4 1 )4 3 4(3) ______________________ 比-18小5的数是 ___________________ (4) A 、B 两地海拔高度为100米、4.下列说法正确的是()A .正数与正数的差是正数C.正数减去负数差为正数 ,比-18 小-5的数是 _________ . -20米,B 地比A 地低 ___________ 米. B .负数与负数的差是正数 D . 0减去正数差为正数;②零减去一个数,仍得这个数(4) -8.2-9.2-1.6-(-5 )1.4.1 有理数的乘法(第一课时)1.判断题(1)两数相乘,若积为正数,则这两个因数都是正数. ()(2)两数相乘,若积为负数,则这两个数异号. ()(3)两个数的积为0,则两个数都是0. ()(4)互为相反的数之积一定是负数.()(5)正数的倒数是正数,负数的倒数是负数. ()2.填空题1 4(1) (-1 — )X(- — ) = , (2) ( +3)X( -2 ) = , ( 3) 0X( -4 )= ,4 52 1 1(4)1—X (-1) = ______ ,( 5) (-15 ) X (— ) = __________ , (6) - | -3 | X (-2 ) = ________ ,3 5 33.用正、负数表示气温的变化量:上升为正、下降为负. ?某登山队攀登一座山峰,每登高1km,气温的变化量为-6 C.攀登5km后,气温有什么变化?__________________________________ 4.填空题(-2 )X(-3 )= ,(- -)3 •(-右)=. ,2001 X(-2002 )X 2003X(-2004 )X 0= .5•选择题(1) 若ab>0,则必有( )A .a>0, b>0B a<0, b<0C . a>0, b<0 C .同号(2) 若ab=0,则必有( )A .a=b=0B .a=0C .a、b中至少有-个为0 D . a、b中取多有一个为0(3) 有奇数个负因数相乘,其积为( )A .正B .负C .非正数D .非负数6.计算题(1) (-3 1)X( -4 ) ( 2) (-2 )X( -3 )X( -5)2(4)(-9.89 )X( -6.2 )X( -26 )X( -30.7 )X 0 (3) (-7 - )X 3X(-丄)3 23祝各位亲爱的同学们国庆节快乐!希望同学们在享受假日的轻松与闲暇时,不要忘记了我们作为一个学生的使命,请同学们按时按质按量完成我们的假期作业, 收假当晚交由老师统一检查。