交流伺服电机的基本结构与工作原理(精)
伺服电机原理

伺服电机原理一、交流伺服电动机交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似.其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc。
所以交流伺服电动机又称两个伺服电动机。
交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的调速范围、线性的机械特性,无“自转”现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。
目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅0.2-0.3mm,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子.空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用。
交流伺服电动机在没有控制电压时,定子内只有励磁绕组产生的脉动磁场,转子静止不动。
当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化,当控制电压的相位相反时,伺服电动机将反转。
交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点:1、起动转矩大由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。
它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。
因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。
2、运行范围较广3、无自转现象正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。
当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性(T1-S1、T2-S2曲线)以及合成转矩特性(T-S曲线)交流伺服电动机的输出功率一般是0.1-100W。
伺服电机的结构和工作原理

伺服电机的结构和工作原理
1.伺服电机的结构
交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似.其定子上装有两个位置互差90°的绕组,一个是励磁绕组U1U2,它始终接在交流电压Uf上;另一个是控制绕组V1V2,连接控制信号电压Uc。
交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的调速范围、线性的机械特性,无“自转”现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。
2.伺服电机的工作原理
交流伺服电动机在没有控制电压时,定子内只有励磁绕组产生的脉动磁场,转子静止不动。
当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化,当控制电压的相位相反时,伺服电动机将反
转。
第五章交流伺服电动机

圆形磁场
3.幅值相位控制(电容控制)
激磁回路串联电容后接到相位和幅值都不变的激磁电源, 当改变控制电压幅值时,由于激磁回路电流发生变化,使激 磁绕组及其串联电容上的电压分布发生变化,从而使控制电 压与激磁绕组上的电压间的相位角也发生变化。
普通高等教育“十一五”国家级规划教材
n0 n s 100% 1000 975 100% 2.5% 1000 n0
交流伺服电动机的机械特性如图所示。 n
o
T 不同控制电压下的机械特性曲线 n=f(T), U1=常数
在励磁电压不变的情况下,随着控制电压的 下降,特性曲线下移。在同一负载转矩作用时, 电动机转速随控制电压的下降而均匀减小。
2.伺服电动机和伺服系统
2.4 交流伺服电机(AC Servo Motor)
结构特点和工作原理
交流伺服电机通常都是两相异步电机,在定子上有两个 空间相距90度的绕组,即控制绕组和励磁绕组。
f1
c1
c2
f2
普通高等教育“十一五”国家级规划教材
2.伺服电动机和伺服系统
工作原理:
与普通两相异步电机的相似之处:在二相对称绕组中通入 两对称电流,就会在气隙中产生圆形旋转磁场,转子导体 切割磁场所感应的电流与气隙磁磁场相互作用就产生电磁 转矩。当改变其中一相电流的大小或相位时,气隙磁场就 发生变化,电磁转矩随之变化,电机转速必然跟着改变, 从而实现对转速的控制。 区别:由于伺服电动机在自动控制系统中作为执行元件。 对其要求是:(1)转子速度的快慢能反应控制信号的强弱, 转动方向能反应控制信号的相位,调速范围要宽;(2) 无控制信号时,转子不能转动;(3)当电机转动起来以 后,如控制信号消失,应立即停止转动;(4)为减小体 积和重量,一般采用400、500 或1000Hz。
交流伺服电机的工作原理

总目录 章目录 返回
上一页 下一页
前面介绍的异步电动机、直流电动机等都是 作为动力使用的,其主要任务是能量的转换。 本章介绍的各种控制电机的主要任务是转换和 传递控制信号,能量的转换是次要的。 控制电机的种类很多,本章只讨论常用的几种: 伺服电机、测速电机、步进电机。 各种控制电机有各自的控制任务: 如: 伺服电动机将电压信号转换为转矩和转速以驱 动控制对象;测速发电机将转速转换为电压,并传 递到 输入端作为反馈信号。步进电动机将脉冲信号 转换为角位移或线位移。 对控制电机的主要要求:动作灵敏、准确、 重 量轻、体积小、耗电少、运行可靠等。
总目录 章目录 返回
上一页 下一页
9.1.2 直流伺服电动机
直流伺服电动机的结构与直流电动机基本相 同。只是为减小转动惯量,电机做得细长一些。 直流伺服电动机的工作原理也与直流电动机 直流伺服电动机的 相同。 供电方式:他励供电。励磁绕组和电枢分别由两 个独立的电源供电。 I2 I1
U2 r
综合上述分析可知:
U 2 1n U 1n
当 U1恒定不变时, U2与n 成正比,这样, 发电机就把被测装置的转速信号转变成了电压 信号,输出给控制系统。 由于铁心线圈电感的非线性影响,交流测 速发电机的输出电压 U2与n 间存在着一定的非 线性误差,使用时要注意加以修正。
放 + –
U1为励磁电 压, U2为电枢电压
+
U
U2 M 大
器
U1
–
直流伺服电动机的接线图
总目录 章目录 返回 上一页 下一页
直流伺服电机的机 械特性与他励直流电机 相同一样,也可用下式 表示
n
伺服电机内部结构及其工作原理

伺服机电内部结构之迟辟智美创作伺服机电工作原理伺服机电原理一、交流伺服电念头交流伺服电念头定子的构造基本上与电容分相式单相异步电念头相似.其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc.所以交流伺服电念头又称两个伺服电念头.交流伺服电念头的转子通常做成鼠笼式,但为了使伺服电念头具有较宽的调速范围、线性的机械特性,无“自转”现象和快速响应的性能,它与普通电念头相比,应具有转子电阻年夜和转动惯量小这两个特点.目前应用较多的转子结构有两种形式:一种是采纳高电阻率的导电资料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采纳铝合金制成的空心杯形转子,杯壁很薄,仅,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子.空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采纳.交流伺服电念头在没有控制电压时,定子内只有励磁绕组发生的脉动磁场,转子静止不动.当有控制电压时,定子内便发生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电念头的转速随控制电压的年夜小而变动,当控制电压的相位相反时,伺服电念头将反转.交流伺服电念头的工作原理与分相式单相异步电念头虽然相似,但前者的转子电阻比后者年夜很多,所以伺服电念头与单机异步电念头相比,有三个显著特点:1、起动转矩年夜由于转子电阻年夜,其转矩特性曲线如图3中曲线1所示,与普通异步电念头的转矩特性曲线2相比,有明显的区别.它可使临界转差率S0>1,这样不单使转矩特性(机械特性)更接近于线性,而且具有较年夜的起动转矩.因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点.2、运行范围较广3、无自转现象正常运转的伺服电念头,只要失去控制电压,机电立即停止运转.当伺服电念头失去控制电压后,它处于单相运行状态,由于转子电阻年夜,定子中两个相反方向旋转的旋转磁场与转子作用所发生的两个转矩特性(T1-S1、T 2-S2曲线)以及合成转矩特性(T-S曲线)交流伺服电念头的输出功率一般是.当电源频率为50H z,电压有36V、110V、220、380V;当电源频率为400H z,电压有20V、26V、36V、115V等多种.交流伺服电念头运行平稳、噪音小.但控制特性是非线性,而且由于转子电阻年夜,损耗年夜,效率低,因此与同容量直流伺服电念头相比,体积年夜、重量重,所以只适用于的小功率控制系统.交流伺服电念头原理?伺服机电内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时机电自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比力,调整转子转动的角度.伺服机电的精度决定于编码器的精度(线数).伺服电念头在伺服系统中控制机械元件运转的发念头.是一种补助马达间接变速装置.又称执行电念头,在自动控制系统中,用作执行元件,把所收到的电信号转换成电念头轴上的角位移或角速度输出.分为直流和交流伺服电念头两年夜类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降,作用:伺服机电,可使控制速度,位置精度非常准确.直流伺服机电分为有刷和无刷机电.有刷机电本钱低,结构简单,启动转矩年夜,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),发生电磁干扰,对环境有要求.因此它可以用于对本钱敏感的普通工业和民用场所.无刷机电体积小,重量轻,出力年夜,响应快,速度高,惯量小,转动平滑,力矩稳定.控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相.机电免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境.交流伺服机电也是无刷机电,分为同步和异步机电,目前运动控制中一般都用同步机电,它的功率范围年夜,可以做到很年夜的功率.年夜惯量,最高转动速度低,且随着功率增年夜而快速降低.因而适合做低速平稳运行的应用.伺服电念头基本知识讲解伺服电念头伺服电念头又叫执行电念头,或叫控制电念头.在自动控制系统中,伺服电念头是一个执行元件,它的作用是把信号(控制电压或相位)变换成机械位移,也就是把接收到的电信号酿成机电的一定转速或角位移.其容量一般在0.1-100W,经常使用的是30W以下.伺服电念头有直流和交流之分.一、交流伺服电念头交流伺服电念头定子的构造基本上与电容分相式单相异步电念头相似,如图1所示.其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf 上;另一个是控制绕组L,联接控制信号电压Uc.所以交流伺服电念头又称两个伺服电念头.交流伺服电念头的转子通常做成鼠笼式,但为了使伺服电念头具有较宽的调速范围、线性的机械特性,无“自转”现象和快速响应的性能,它与普通电念头相比,应具有转子电阻年夜和转动惯量小这两个特点.目前应用较多的转子结构有两种形式:一种是采纳高电阻率的导电资料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采纳铝合金制成的空心杯形转子,杯壁很薄,仅0.2-0.3mm,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子,如图2所示.空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采纳.图1 交流伺服电念头原理图图2 空心杯形转子伺服电念头结构交流伺服电念头在没有控制电压时,定子内只有励磁绕组发生的脉动磁场,转子静止不动.当有控制电压时,定子内便发生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电念头的转速随控制电压的年夜小而变动,当控制电压的相位相反时,伺服电念头将反转.交流伺服电念头的工作原理与分相式单相异步电念头虽然相似,但前者的转子电阻比后者年夜很多,所以伺服电念头与单机异步电念头相比,有三个显著特点:1、起动转矩年夜由于转子电阻年夜,其转矩特性曲线如图3中曲线1所示,与普通异步电念头的转矩特性曲线2相比,有明显的区别.它可使临界转差率S0>1,这样不单使转矩特性(机械特性)更接近于线性,而且具有较年夜的起动转矩.因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点.图3 伺服电念头的转矩特性2、运行范围较宽如图3所示,较差率S在0到1的范围内伺服电念头都能稳定运转.3、无自转现象正常运转的伺服电念头,只要失去控制电压,机电立即停止运转.当伺服电念头失去控制电压后,它处于单相运行状态,由于转子电阻年夜,定子中两个相反方向旋转的旋转磁场与转子作用所发生的两个转矩特性(T1-S1、T2-S 2曲线)以及合成转矩特性(T-S曲线)如图4所示,与普通的单相异步电念头的转矩特性(图中T′-S曲线)分歧.这时的合成转矩T是制动转矩,从而使电念头迅速停止运转.图4 伺服电念头单相运行时的转矩特性图5是伺服电念头单相运行时的机械特性曲线.负载一按时,控制电压Uc愈高,转速也愈高,在控制电压一按时,负载增加,转速下降.图5 伺服电念头的机械特性交流伺服电念头的输出功率一般是0.1-100W.当电源频率为50Hz,电压有36V、110V、220、380V;当电源频率为400Hz,电压有20V、26V、36V、115V等多种.交流伺服电念头运行平稳、噪音小.但控制特性是非线性,而且由于转子电阻年夜,损耗年夜,效率低,因此与同容量直流伺服电念头相比,体积年夜、重量重,所以只适用于0.5-100W的小功率控制系统.二、直流伺服电念头直流伺服电念头的结构和一般直流电念头一样,只是为了减小转动惯量而做得细长一些.它的励磁绕组和电枢分别由两个自力电源供电.也有永磁式的,即磁极是永久磁铁.通常采纳电枢控制,就是励磁电压f一定,建立的磁通量Φ也是定值,而将控制电压Uc加在电枢上,其接线图如图6所示.图6 直流伺服电念头接线图直流伺服电念头的机构特性(n=f(T))和直流他励电念头一样,也用下式暗示:n=Uc/KE?Φ-Ra/KE?KT?Φ?T图7 是直流伺服电念头在分歧控制电压下(Uc为额定控制电压)的机械特性曲线.由图可见:在一定负载转矩下,当磁通不变时,如果升高电枢电压,机电的转速就升高;反之,降低电枢电压,转速就下降;当Uc=0时,电念头立即停转.要电念头反转,可改变电枢电压的极性.图7 直流伺服电念头的n=f(T)曲线直流伺服电念头和交流伺服电念头相比,它具有机械特性较硬、输出功率较年夜、不自转,起动转矩年夜等优点.交流的伺服电念头的原理交流伺服机电的定子装有三相对称的绕组,而转子是永久磁极.当定子的绕组中通过三相电源后,定子与转子之间肯定发生一个旋转场.这个旋转磁场的转速称为同步转速.机电的转速也就是磁场的转速.由于转子有磁极,所以在极低频率下也能旋转运行.所以它比异步机电的调速范围更宽.而与直流伺服机电相比,它没有机械换向器,特别是它没有了碳刷,完全排除换向时发生火花对机械造成的磨损,另外交流伺服机电自带一个编码器.可以随时将机电运行的情况“陈说”给驱动器,驱动器又根据获得的“陈说”更精确的控制机电的运行.由此可见交流伺服机电优点确实很多.可是技术含量也高了,价格也高了.最重要是对交流伺服机电的调试技术提高了.也就是机电虽好,如果调试欠好一样是问题多多. 伺服机电内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时机电自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比力,调整转子转动的角度.伺服机电的精度决定于编码器的精度(线数).4. 什么是伺服机电?有几种类型?工作特点是什么?答:伺服电念头又称执行电念头,在自动控制系统中,用作执行元件,把所收到的电信号转换成电念头轴上的角位移或角速度输出.分为直流和交流伺服电念头两年夜类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降,请问交流伺服机电和无刷直流伺服机电在功能上有什么区别?答:交流伺服要好一些,因为是正弦波控制,转矩脉动小.直流伺服是梯形波.但直流伺服比力简单,廉价.永磁交流伺服电念头20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电念头和伺服驱动器系列产物其实不竭完善和更新.交流伺服系统已成为今世高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机.90年代以后,世界各国已经商品化了的交流伺服系统是采纳全数字控制的正弦波电念头伺服驱动.交流伺服驱动装置在传动领域的发展日新月异.永磁交流伺服电念头同直流伺服电念头比力,主要优点有:⑴无电刷和换向器,因此工作可靠,对维护和调养要求低.⑵定子绕组散热比力方便.⑶惯量小,易于提高系统的快速性.⑷适应于高速年夜力矩工作状态.⑸同功率下有较小的体积和重量.伺服电念头的介绍伺服电念头(或称执行电念头)是自动控制系统和计算装置中广泛应用的一种执行元件.其作用为把接受的电信号转换为电念头转轴的角位移或角速度.按电流种类的分歧,伺服电念头可分为直流和交流两年夜类.一、交流伺服电念头1、结构和原理交流伺服电念头的定子绕组和单相异步电念头相似,它的定子上装有两个在空间相差90°电角度的绕组,即励磁绕组和控制绕组.运行时励磁绕组始终加上一定的交流励磁电压,控制绕组上则加年夜小或相位随信号变动的控制电压.转子的结构形式笼型转子和空心杯型转子两种.笼型转子的结构与一般笼型异步电念头的转子相同,但转子做的细长,转子导体用高电阻率的资料作成.其目的是为了减小转子的转动惯量,增加启动转矩对输入信号的快速反应和克服自转现象.空心杯形转子交流伺服电念头的定子分为外定子和内定子两部份.外定子的结构与笼型交流伺服电念头的定子相同,铁心槽内放有两相绕组.空心杯形转子由导电的非磁性资料(如铝)做成薄壁筒形,放在内、外定子之间.杯子底部固定于转轴上,杯臂薄而轻,厚度一般在0.2—0. 8mm,因而转动惯量小,举措快且灵敏.交流伺服电念头的工作原理和单相异步电念头相似,LL 是有固定电压励磁的励磁绕组,LK是有伺服放年夜器供电的控制绕组,两相绕组在空间相差90°电角度.如果IL与Ik 的相位差为90°,而两相绕组的磁动势幅值又相等,这种状态称为对称状态.与单相异步电念头一样,这时在气隙中发生的合成磁场为一旋转磁场,其转速称为同步转速.旋转磁场与转子导体相对切割,在转子中发生感应电流.转子电流与旋转磁场相互作用发生转矩,使转子旋转.如果改变加在控制绕组上的电流的年夜小或相位差,就破坏了对称状态,使旋转磁场减弱,电念头的转速下降.机电的工作状态越分歧毛病称,总电磁转矩就越小,当除去控制绕组上信号电压以后,电念头立即停止转动.这是交流伺服电念头在运行上与普通异步电念头的区别.交流伺服电念头有以下三种转速控制方式:(1)幅值控制控制电流与励磁电流的相位差坚持90°不变,改变控制电压的年夜小.(2)相位控制控制电压与励磁电压的年夜小,坚持额定值不变,改变控制电压的相位.(3)幅值—相位控制同时改变控制电压幅值和相位.交流伺服电念头转轴的转向随控制电压相位的反相而改变.2 工作特性和用途伺服电念头的工作特性是以机械特性和调节特性为表征.在控制电压一按时,负载增加,转速下降;它的调节特性是在负载一按时,控制电压越高,转速也越高.伺服电念头有三个显著特点:(1)启动转矩年夜由于转子导体电阻很年夜,可使临界转差率Sm>1,定子一加上控制电压,转子立即启动运转.(2)运行范围宽在转差率从0到1的范围内都能稳定运转.(3)无自转现象控制信号消失后,电念头旋转不竭的现象称"自转".自转现象破坏了伺服性,显然要防止.正常运转的伺服电念头只要失去控制电压后,伺服电念头就处于单相运行状态.由于转子导体电阻足够年夜,使得总电磁转矩始终是制动性的转矩,当电念头正转时失去Uk(控制电压),发生的转矩为负(0<S<1).而反转时失去UK,发生的转矩为正(1〈S〈2时〉,不会发生自转现象,可以自行制动,迅速停止运转,这也是交流伺服电念头与异步电念头的重要区别.分歧类型的交流伺服电念头具有分歧的特点.笼型转子交流伺服电念头具有励磁电流较小、体积较小、机械强度高等特点;可是低速运行不够平稳,有颤动现象.空心杯形转子交流伺服电念头具有结构简单、维护方便、转动惯量小、运行平滑、噪声小、没有无线电干扰、无颤动现象等优点;可是励磁电流较年夜,体积也较年夜,转子易变形,性能上不及直流伺服电念头.交流伺服电念头适用于0.1—100W小功率自动控制系统中,频率有50Hz、400Hz等多种.笼型转子交流伺服电念头产物为SL系列.空心杯形转子交流伺服电念头为SK系列,用于要求运行平滑的系统中.二、直流伺服电念头直流伺服电念头的基本结构与普通他励直流电念头一样,所分歧的是直流伺服电念头的电枢电流很小,换向其实不困难,因此都不用装换向磁极,而且转子做得细长,气隙较小,磁路不饱和,电枢电阻较年夜.按励磁方式分歧,可分为电磁式和永磁式两种,电磁式直流伺服电念头的磁场由励磁绕组发生,一般用他励式;永磁式直流伺服电念头的磁场由永久磁铁发生,无需励磁绕组和励磁电流,可减小体积和损耗.为了适应各种分歧系统的需要,从结构上作了许多改进,又发展了低惯量的无槽电枢、空心杯形电枢、印制绕组电枢和无刷直流伺服电念头等品种.电磁式直流伺服电念头的工作原理和他励式直流电念头同,因此电磁式直流伺服电念头有两种控制转速方式:电枢控制和磁场控制.对永磁式直流伺服电念头来说,固然只有电枢控制调速一种方式.由于磁场控制调速方式的性能不如电枢控制调速方式,故直流伺服电念头一般都采纳电枢控制调速.直流伺服电念头转轴的转向随控制电压的极性改变而改变.直流伺服电念头的机械特性与他励直流电念头相似,即n= n0-αT.当励磁不变时,对分歧电压Ua有一组下降的平行直线.直流伺服电念头适用于功率稍年夜(1—600W)的自动控制系统中.与交流伺服电念头相比,它的调速线性好,体积小,质量轻,启动转矩年夜,输出功率年夜.但它的结构复杂,特别是低速稳定性差,有火花会引起无线电干扰.近年来,发展了低惯量的无槽电枢电念头、空心杯形电枢电念头、印制绕组电枢电念头和无刷直流伺服电念头,来提高快速响应能力,适应自动控制系统的发展需要,如电视摄象机、录音机、X—Y函数记录永磁交流伺服电念头20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电念头和伺服驱动器系列产物其实不竭完善和更新.交流伺服系统已成为今世高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机.90年代以后,世界各国已经商品化了的交流伺服系统是采纳全数字控制的正弦波电念头伺服驱动.交流伺服驱动装置在传动领域的发展日新月异.永磁交流伺服电念头同直流伺服电念头比力,主要优点有:⑴无电刷和换向器,因此工作可靠,对维护和调养要求低.⑵定子绕组散热比力方便.⑶惯量小,易于提高系统的快速性.⑷适应于高速年夜力矩工作状态.⑸同功率下有较小的体积和重量.自从德国MANNESMANN的Rexroth公司的Indramat分部在1978年汉诺威贸易展览会上正式推出MAC永磁交流伺服电念头和驱动系统,这标识表记标帜着此种新一代交流伺服技术已进入实用化阶段.到20世纪80年代中后期,各公司都已有完整的系列产物.整个伺服装置市场都转向了交流系统.早期的模拟系统在诸如零漂、抗干扰、可靠性、精度和柔性等方面存在缺乏,尚不能完全满足运动控制的要求,近年来随着微处置器、新型数字信号处置器(DS P)的应用,呈现了数字控制系统,控制部份可完全由软件进行,分别称为摪胧只瘮或摶旌鲜綌、撊只瘮的永磁交流伺服系统.到目前为止,高性能的电伺服系统年夜多采纳永磁同步型交流伺服电念头,控制驱动器多采纳快速、准确定位的全数字位置伺服系统.典范生产厂家如德国西门子、美国科尔摩根和日本松下及安川等公司.日本安川机电制作所推出的小型交流伺服电念头和驱动器,其中D系列适用于数控机床(最高转速为1000r/mi n,力矩为0.25~2.8N.m),R系列适用于机器人(最高转速为3000r/min,力矩为0.016~0.16N.m).之后又推出M、F、S、H、C、G 六个系列.20世纪90年代先后推出了新的D系列和R系列.由旧系列矩形波驱动、8051单片机控制改为正弦波驱动、80C、154CPU和门阵列芯片控制,力矩摆荡由24%降低到7%,并提高了可靠性.这样,只用了几年时间形成了八个系列(功率范围为0.05~6k W)较完整的体系,满足了工作机械、搬运机构、焊接机械人、装配机器人、电子部件、加工机械、印刷机、高速卷绕机、绕线机等的分歧需要.以生产机床数控装置而著名的日本法奴克(Fanuc)公司,在20世纪80年代中期也推出了S系列(13个规格)和L系列(5个规格)的永磁交流伺服电念头.L系列有较小的转动惯量和机械时间常数,适用于要求特别快速响应的位置伺服系统.日本其他厂商,例如:三菱电念头(HC-KFS、HC-MF S、HC-SFS、HC-RFS和HC-UFS系列)、东芝精机(SM 系列)、年夜隈铁工所(BL系列)、三洋电气(BL系列)、立石机电(S系列)等众多厂商也进入了永磁交流伺服系统的竞争行列.德国力士乐公司(Rexroth)的Indramat分部的MAC系列交流伺服电念头共有7个机座号92个规格.德国西门子(Siemens)公司的IFT5系列三相永磁交流伺服电念头分为标准型和短型两年夜类,共8个机座号98种规格.据称该系列交流伺服电念头与相同输出力矩的直流伺服电念头IHU系列相比,重量只有后者的1/2,配套的晶体管脉宽调制驱动器6SC61系列,最多的可供6个轴的电念头控制.德国宝石(BOSCH)公司生产铁氧体永磁的SD系列(17个规格)和稀土永磁的SE系列(8个规格)交流伺服电念头和Servodyn SM系列的驱动控制器.美国著名的伺服装置生产公司Gettys曾一度作为Gould 电子公司一个分部(Motion Control Division),生产M600系列的交流伺服电念头和A600 系列的伺服驱动器.后合并到AEG,恢复了Gettys名称,推出A700全数字化的交流伺服系统.美国A-B(ALLEN-BRADLEY)公司驱动分部生产1326型铁氧体永磁交流伺服电念头和1391型交流PWM伺服控制器.电念头包括3个机座号共30个规格.I.D.(Industrial Drives)是美国著名的科尔摩根(Kollmor gen)的工业驱动分部,曾生产BR-210、BR-310、BR-51 0 三个系列共41个规格的无刷伺服电念头和BDS3型伺服驱动器.自1989年起推出了全新系列设计的摻鹣盗袛(Gol dline)永磁交流伺服电念头,包括B(小惯量)、M(中惯量)和EB(防爆型)三年夜类,有10、20、40、60、80五种机座号,每年夜类有42个规格,全部采纳钕铁硼永磁资料,力矩范围为0.84~111.2N.m,功率范围为0.5 4~15.7kW.配套的驱动器有BDS4(模拟型)、BDS5(数字型、含位置控制)和Smart Drive(数字型)三个系列,。
伺服电机工作原理图片大全

伺服电机工作原理图片大全伺服电机是一种能够精准控制位置、速度和加速度的电动机,广泛应用于机械领域中需要高精度运动控制的场景。
了解伺服电机的工作原理对于正确使用和维护伺服系统至关重要。
在本文中,我们将通过图片的形式详细解释伺服电机的工作原理。
图片一:伺服电机结构示意图伺服电机结构示意图伺服电机结构示意图图中展示了伺服电机的基本结构,包括电机本体、编码器、功放电路等组成部分。
电机本体是实现运动的部件,编码器用于反馈位置信息,功放电路用于控制电机运动。
图片二:伺服电机闭环控制原理伺服电机闭环控制原理伺服电机闭环控制原理这幅图展示了伺服电机闭环控制的工作原理。
编码器反馈电机位置信息给控制器,控制器计算出误差信号,再通过功放电路控制电机旋转直至误差为零,实现位置控制。
图片三:伺服电机PWM控制波形图伺服电机PWM控制波形图伺服电机PWM控制波形图PWM(脉宽调制)信号是控制伺服电机的常用方式。
这幅图展示了PWM控制信号的波形,通过调节脉冲宽度和周期可以控制电机的转速和位置。
图片四:伺服电机速度-扭矩曲线伺服电机速度-扭矩曲线伺服电机速度-扭矩曲线伺服电机的速度-扭矩曲线表现了在不同速度下电机可以提供的最大扭矩。
了解这一曲线可以帮助合理选择电机并优化控制性能。
图片五:伺服电机应用案例伺服电机应用案例伺服电机应用案例伺服电机在各个领域都有广泛应用,如机械手臂、自动化生产线、无人机等。
这幅图片展示了伺服电机在不同应用场景的作用和重要性。
通过以上的图片展示,我们可以更加直观地理解伺服电机的工作原理和应用场景,为相关行业领域的工程师和爱好者提供参考和指导。
在日后的实际操作中,正确理解和应用伺服电机的原理将极大提升工作效率和性能表现。
希望这份文档能够为您带来一些帮助,如有需要请随时联系我。
交流伺服电机的安装与调试

图10-2-1 交流伺服电机的外形
图10-2-2 交流伺服电机的结构
1.1 交流伺服电机的结构
1.定子 交流伺服电机的定子是用来产生旋转磁场的。定子一般由机 座、定子铁芯和定子绕组三部分组成。 (1)机座:主要作用是内部固定定子铁心,前端面固定端 盖,后端面固定编码器的作用。 (2)定子铁芯:分为槽拼接式和整体式两种。如图10-2-3 所示。
伺服电机 联轴器 电动机安装台 伺服放大器 动力线 数据传送线
型号 自定 发那科或自定
发那科
规格 3~,380V
与电机和工作机械配套 与电机配套
与伺服电机型号配套 接头与电机和伺服放大器配套 接头与电机和伺服放大器配套
数量
1套 1台 1套 1处 1台 1条 1条
1.5 认识伺服电机的结构与铭牌
了解交流伺服电机的结构,查看伺服铭牌,将伺服电 机型号、输出功率等数据填入表10-2-3中。
1.7 安装伺服电机 3.安装伺服电机就位 1)伺服电机安装时,首先确定安装方向,并对电机安装端面 经行清理,保证安装端面的清洁和安装孔里无异物。 2)固定断面的清理和检查固定端面的平整度,可以用直角尺 对垂直面经行检查。 3)安装电机时,先把电机安装方向确定,转动电机轴,使螺 杆轴连接器的锁紧端朝正上方,电机水平朝着螺杆方向移动, 让螺杆套入螺杆联轴器内,然后用固定螺丝固定电机,在固 定时,采用对角固定安装螺钉,勿拧得太紧,以便进行调整。 检查电机联轴器和螺杆联轴器是否平直,在把螺杆联轴器用 螺钉锁紧。
表10-2-1 发那科伺服电机铭牌数据介绍
OUTPUT(电机输出功率) 0.4kw VOLT(电机工作电压 )115V AMP(~)(电机工作电流)1.8A
伺服电机的工作原理

伺服电机的工作原理伺服电机是一种常用于控制系统中的电机,它具有精确控制、高效运行和稳定性强等特点。
伺服电机常被应用在自动化设备、机器人、航空航天等领域。
本文将详细介绍伺服电机的工作原理。
一、伺服电机的基本结构伺服电机由电机本体、编码器、控制器和电源组成。
1. 电机本体:伺服电机常采用直流电机或交流电机作为电机本体,其结构与普通电机相似,但具有更高的精度和控制性能。
2. 编码器:伺服电机配备编码器来实时监测电机转动的位置和速度。
编码器将转动角度和速度转化为脉冲信号,反馈给控制器,用于调整电机的输出。
3. 控制器:伺服电机的控制器是整个系统的核心,它接收编码器的反馈信号,并根据设定的控制算法来调整电机的输出。
控制器通常由微处理器或专用芯片组成,具备高速计算和精确控制的能力。
4. 电源:伺服电机需要稳定的电源供应,以保证电机的正常运行。
电源通常为直流电源,电压和电流的大小根据具体的电机要求而定。
二、伺服电机的工作原理伺服电机的工作原理可以简单概括为:控制器接收编码器的反馈信号,通过比较设定值和实际值,计算出误差,并根据误差调整电机的输出,使其逐渐趋近于设定值。
具体来说,伺服电机的工作过程可分为四个阶段:检测阶段、比较阶段、计算阶段和调整阶段。
1. 检测阶段:编码器实时检测电机的位置和速度,并将这些信息转化为脉冲信号,反馈给控制器。
2. 比较阶段:控制器将编码器反馈的脉冲信号与设定值进行比较,得到误差信号。
3. 计算阶段:控制器根据设定的控制算法,对误差信号进行计算,得到控制信号。
4. 调整阶段:控制器将计算得到的控制信号转化为电流或电压信号,通过电机驱动器将其传递给电机,调整电机的输出。
电机根据控制信号的大小和方向,调整转子的位置和速度,使其逐渐趋近于设定值。
三、伺服电机的优势和应用伺服电机相比于普通电机具有以下优势:1. 高精度:伺服电机配备编码器反馈系统,能够实时监测电机的位置和速度,从而实现精确控制。
伺服电机内部结构及其工作原理

伺服电机内部结构伺服电机工作原理伺服电机原理一、交流伺服电动机交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似.其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc;所以交流伺服电动机又称两个伺服电动机;交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的调速范围、线性的机械特性,无“自转”现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点;目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子.空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用;交流伺服电动机在没有控制电压时,定子内只有励磁绕组产生的脉动磁场,转子静止不动;当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化,当控制电压的相位相反时,伺服电动机将反转;交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点:1、起动转矩大由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别;它可使临界转差率S0>1,这样不仅使转矩特性机械特性更接近于线性,而且具有较大的起动转矩;因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点;2、运行范围较广3、无自转现象正常运转的伺服电动机,只要失去控制电压,电机立即停止运转;当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性T1-S1、T2-S2曲线以及合成转矩特性T-S曲线交流伺服电动机的输出功率一般是;当电源频率为50Hz,电压有36V、110 V、220、380V;当电源频率为400Hz,电压有20V、26V、36V、115V等多种;交流伺服电动机运行平稳、噪音小;但控制特性是非线性,并且由于转子电阻大,损耗大,效率低,因此与同容量直流伺服电动机相比,体积大、重量重,所以只适用于的小功率控制系统;交流伺服电动机原理伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度;伺服电机的精度决定于编码器的精度线数;伺服电动机在伺服系统中控制机械元件运转的发动机.是一种补助马达间接变速装置;又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出;分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降,作用:伺服电机,可使控制速度,位置精度非常准确;直流伺服电机分为有刷和无刷电机;有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便换碳刷,产生电磁干扰,对环境有要求;因此它可以用于对成本敏感的普通工业和民用场合;无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定;控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相;电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境;交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率;大惯量,最高转动速度低,且随着功率增大而快速降低;因而适合做低速平稳运行的应用;伺服电动机基本知识讲解伺服电动机伺服电动机又叫执行电动机,或叫控制电动机;在自动控制系统中,伺服电动机是一个执行元件,它的作用是把信号控制电压或相位变换成机械位移,也就是把接收到的电信号变为电机的一定转速或角位移;其容量一般在,常用的是30W 以下;伺服电动机有直流和交流之分;一、交流伺服电动机交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似,如图1所示;其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc;所以交流伺服电动机又称两个伺服电动机;交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的调速范围、线性的机械特性,无“自转”现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点;目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子,如图2所示;空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用;图1 交流伺服电动机原理图图2 空心杯形转子伺服电动机结构交流伺服电动机在没有控制电压时,定子内只有励磁绕组产生的脉动磁场,转子静止不动;当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化,当控制电压的相位相反时,伺服电动机将反转;交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点:1、起动转矩大由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别;它可使临界转差率S0>1,这样不仅使转矩特性机械特性更接近于线性,而且具有较大的起动转矩;因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点;图3 伺服电动机的转矩特性2、运行范围较宽如图3所示,较差率S在0到1的范围内伺服电动机都能稳定运转;3、无自转现象正常运转的伺服电动机,只要失去控制电压,电机立即停止运转;当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性T1-S1、T2-S2曲线以及合成转矩特性T-S曲线如图4所示,与普通的单相异步电动机的转矩特性图中T′-S曲线不同;这时的合成转矩T是制动转矩,从而使电动机迅速停止运转;图4 伺服电动机单相运行时的转矩特性图5是伺服电动机单相运行时的机械特性曲线;负载一定时,控制电压Uc愈高,转速也愈高,在控制电压一定时,负载增加,转速下降;图5 伺服电动机的机械特性交流伺服电动机的输出功率一般是;当电源频率为50Hz,电压有36V、110V、2 20、380V;当电源频率为400Hz,电压有20V、26V、36V、115V等多种;交流伺服电动机运行平稳、噪音小;但控制特性是非线性,并且由于转子电阻大,损耗大,效率低,因此与同容量直流伺服电动机相比,体积大、重量重,所以只适用于的小功率控制系统;二、直流伺服电动机直流伺服电动机的结构和一般直流电动机一样,只是为了减小转动惯量而做得细长一些;它的励磁绕组和电枢分别由两个独立电源供电;也有永磁式的,即磁极是永久磁铁;通常采用电枢控制,就是励磁电压f一定,建立的磁通量Φ也是定值,而将控制电压Uc加在电枢上,其接线图如图6所示;图6 直流伺服电动机接线图直流伺服电动机的机构特性n=fT和直流他励电动机一样,也用下式表示:n=Uc/KEΦ-Ra/KEKTΦT图7 是直流伺服电动机在不同控制电压下Uc为额定控制电压的机械特性曲线;由图可见:在一定负载转矩下,当磁通不变时,如果升高电枢电压,电机的转速就升高;反之,降低电枢电压,转速就下降;当Uc=0时,电动机立即停转;要电动机反转,可改变电枢电压的极性;图7 直流伺服电动机的n=fT曲线直流伺服电动机和交流伺服电动机相比,它具有机械特性较硬、输出功率较大、不自转,起动转矩大等优点;交流的伺服电动机的原理交流伺服电机的定子装有三相对称的绕组,而转子是永久磁极;当定子的绕组中通过三相电源后,定子与转子之间必然产生一个旋转场;这个旋转磁场的转速称为同步转速;电机的转速也就是磁场的转速;由于转子有磁极,所以在极低频率下也能旋转运行;所以它比异步电机的调速范围更宽;而与直流伺服电机相比,它没有机械换向器,特别是它没有了碳刷,完全排除了换向时产生火花对机械造成的磨损,另外交流伺服电机自带一个编码器;可以随时将电机运行的情况“报告”给驱动器,驱动器又根据得到的“报告”更精确的控制电机的运行;由此可见交流伺服电机优点确实很多;可是技术含量也高了,价格也高了;最重要是对交流伺服电机的调试技术提高了;也就是电机虽好,如果调试不好一样是问题多多; 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度;伺服电机的精度决定于编码器的精度线数;4. 什么是伺服电机有几种类型工作特点是什么答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出;分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降,请问交流伺服电机和无刷直流伺服电机在功能上有什么区别答:交流伺服要好一些,因为是正弦波控制,转矩脉动小;直流伺服是梯形波;但直流伺服比较简单,便宜;永磁交流伺服电动机20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新;交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机;90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动;交流伺服驱动装置在传动领域的发展日新月异;永磁交流伺服电动机同直流伺服电动机比较,主要优点有:⑴无电刷和换向器,因此工作可靠,对维护和保养要求低;⑵定子绕组散热比较方便;⑶惯量小,易于提高系统的快速性;⑷适应于高速大力矩工作状态;⑸同功率下有较小的体积和重量;伺服电动机的介绍伺服电动机或称执行电动机是自动控制系统和计算装置中广泛应用的一种执行元件;其作用为把接受的电信号转换为电动机转轴的角位移或角速度;按电流种类的不同,伺服电动机可分为直流和交流两大类;一、交流伺服电动机1、结构和原理交流伺服电动机的定子绕组和单相异步电动机相似,它的定子上装有两个在空间相差90°电角度的绕组,即励磁绕组和控制绕组;运行时励磁绕组始终加上一定的交流励磁电压,控制绕组上则加大小或相位随信号变化的控制电压;转子的结构形式笼型转子和空心杯型转子两种;笼型转子的结构与一般笼型异步电动机的转子相同,但转子做的细长,转子导体用高电阻率的材料作成;其目的是为了减小转子的转动惯量,增加启动转矩对输入信号的快速反应和克服自转现象;空心杯形转子交流伺服电动机的定子分为外定子和内定子两部分;外定子的结构与笼型交流伺服电动机的定子相同,铁心槽内放有两相绕组;空心杯形转子由导电的非磁性材料如铝做成薄壁筒形,放在内、外定子之间;杯子底部固定于转轴上,杯臂薄而轻,厚度一般在—,因而转动惯量小,动作快且灵敏;交流伺服电动机的工作原理和单相异步电动机相似,LL是有固定电压励磁的励磁绕组,LK是有伺服放大器供电的控制绕组,两相绕组在空间相差90°电角度;如果IL与Ik 的相位差为90°,而两相绕组的磁动势幅值又相等,这种状态称为对称状态;与单相异步电动机一样,这时在气隙中产生的合成磁场为一旋转磁场,其转速称为同步转速;旋转磁场与转子导体相对切割,在转子中产生感应电流;转子电流与旋转磁场相互作用产生转矩,使转子旋转;如果改变加在控制绕组上的电流的大小或相位差,就破坏了对称状态,使旋转磁场减弱,电动机的转速下降;电机的工作状态越不对称,总电磁转矩就越小,当除去控制绕组上信号电压以后,电动机立即停止转动;这是交流伺服电动机在运行上与普通异步电动机的区别;交流伺服电动机有以下三种转速控制方式:1幅值控制控制电流与励磁电流的相位差保持90°不变,改变控制电压的大小;2 相位控制控制电压与励磁电压的大小,保持额定值不变,改变控制电压的相位;3幅值—相位控制同时改变控制电压幅值和相位;交流伺服电动机转轴的转向随控制电压相位的反相而改变;2 工作特性和用途伺服电动机的工作特性是以机械特性和调节特性为表征;在控制电压一定时,负载增加,转速下降;它的调节特性是在负载一定时,控制电压越高,转速也越高;伺服电动机有三个显著特点:1启动转矩大由于转子导体电阻很大,可使临界转差率Sm>1,定子一加上控制电压,转子立即启动运转.2运行范围宽在转差率从0到1的范围内都能稳定运转.3无自转现象控制信号消失后,电动机旋转不停的现象称"自转".自转现象破坏了伺服性,显然要避免.正常运转的伺服电动机只要失去控制电压后,伺服电动机就处于单相运行状态;由于转子导体电阻足够大,使得总电磁转矩始终是制动性的转矩,当电动机正转时失去Uk控制电压,产生的转矩为负0<S<1;而反转时失去UK,产生的转矩为正1〈S〈2时〉,不会产生自转现象,可以自行制动,迅速停止运转,这也是交流伺服电动机与异步电动机的重要区别;不同类型的交流伺服电动机具有不同的特点;笼型转子交流伺服电动机具有励磁电流较小、体积较小、机械强度高等特点;但是低速运行不够平稳,有抖动现象;空心杯形转子交流伺服电动机具有结构简单、维护方便、转动惯量小、运行平滑、噪声小、没有无线电干扰、无抖动现象等优点;但是励磁电流较大,体积也较大,转子易变形,性能上不及直流伺服电动机;交流伺服电动机适用于—100W小功率自动控制系统中,频率有50Hz、400Hz 等多种;笼型转子交流伺服电动机产品为SL系列;空心杯形转子交流伺服电动机为SK系列,用于要求运行平滑的系统中;二、直流伺服电动机直流伺服电动机的基本结构与普通他励直流电动机一样,所不同的是直流伺服电动机的电枢电流很小,换向并不困难,因此都不用装换向磁极,并且转子做得细长,气隙较小,磁路不饱和,电枢电阻较大;按励磁方式不同,可分为电磁式和永磁式两种,电磁式直流伺服电动机的磁场由励磁绕组产生,一般用他励式;永磁式直流伺服电动机的磁场由永久磁铁产生,无需励磁绕组和励磁电流,可减小体积和损耗;为了适应各种不同系统的需要,从结构上作了许多改进,又发展了低惯量的无槽电枢、空心杯形电枢、印制绕组电枢和无刷直流伺服电动机等品种; 电磁式直流伺服电动机的工作原理和他励式直流电动机同,因此电磁式直流伺服电动机有两种控制转速方式:电枢控制和磁场控制;对永磁式直流伺服电动机来说,当然只有电枢控制调速一种方式;由于磁场控制调速方式的性能不如电枢控制调速方式,故直流伺服电动机一般都采用电枢控制调速;直流伺服电动机转轴的转向随控制电压的极性改变而改变;直流伺服电动机的机械特性与他励直流电动机相似,即n=n0-αT;当励磁不变时,对不同电压Ua有一组下降的平行直线;直流伺服电动机适用于功率稍大1—600W的自动控制系统中;与交流伺服电动机相比,它的调速线性好,体积小,质量轻,启动转矩大,输出功率大;但它的结构复杂,特别是低速稳定性差,有火花会引起无线电干扰;近年来,发展了低惯量的无槽电枢电动机、空心杯形电枢电动机、印制绕组电枢电动机和无刷直流伺服电动机,来提高快速响应能力,适应自动控制系统的发展需要,如电视摄象机、录音机、X—Y函数记录永磁交流伺服电动机20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新;交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机; 90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动;交流伺服驱动装置在传动领域的发展日新月异;永磁交流伺服电动机同直流伺服电动机比较,主要优点有:⑴无电刷和换向器,因此工作可靠,对维护和保养要求低;⑵定子绕组散热比较方便;⑶惯量小,易于提高系统的快速性;⑷适应于高速大力矩工作状态;⑸同功率下有较小的体积和重量;自从德国MANNESMANN的Rexroth公司的Indramat分部在1978年汉诺威贸易博览会上正式推出MAC永磁交流伺服电动机和驱动系统,这标志着此种新一代交流伺服技术已进入实用化阶段;到20世纪80年代中后期,各公司都已有完整的系列产品;整个伺服装置市场都转向了交流系统;早期的模拟系统在诸如零漂、抗干扰、可靠性、精度和柔性等方面存在不足,尚不能完全满足运动控制的要求,近年来随着微处理器、新型数字信号处理器DSP的应用,出现了数字控制系统,控制部分可完全由软件进行,分别称为摪胧只瘮或摶旌鲜綌、撊只瘮的永磁交流伺服系统;到目前为止,高性能的电伺服系统大多采用永磁同步型交流伺服电动机,控制驱动器多采用快速、准确定位的全数字位置伺服系统;典型生产厂家如德国西门子、美国科尔摩根和日本松下及安川等公司;日本安川电机制作所推出的小型交流伺服电动机和驱动器,其中D系列适用于数控机床最高转速为1000r/min,力矩为~,R系列适用于机器人最高转速为30 00r/min,力矩为~;之后又推出M、F、S、H、C、G 六个系列;20世纪90年代先后推出了新的D系列和R系列;由旧系列矩形波驱动、8051单片机控制改为正弦波驱动、80C、154CPU和门阵列芯片控制,力矩波动由24%降低到7%,并提高了可靠性;这样,只用了几年时间形成了八个系列功率范围为~6kW较完整的体系,满足了工作机械、搬运机构、焊接机械人、装配机器人、电子部件、加工机械、印刷机、高速卷绕机、绕线机等的不同需要;以生产机床数控装置而著名的日本法奴克Fanuc公司,在20世纪80年代中期也推出了S系列13个规格和L系列5个规格的永磁交流伺服电动机;L系列有较小的转动惯量和机械时间常数,适用于要求特别快速响应的位置伺服系统; 日本其他厂商,例如:三菱电动机HC-KFS、HC-MFS、HC-SFS、HC-RFS和HC-UFS系列、东芝精机SM系列、大隈铁工所BL系列、三洋电气BL系列、立石电机S系列等众多厂商也进入了永磁交流伺服系统的竞争行列;德国力士乐公司Rexroth的Indramat分部的MAC系列交流伺服电动机共有7个机座号92个规格;德国西门子Siemens公司的IFT5系列三相永磁交流伺服电动机分为标准型和短型两大类,共8个机座号98种规格;据称该系列交流伺服电动机与相同输出力矩的直流伺服电动机IHU系列相比,重量只有后者的1/2,配套的晶体管脉宽调制驱动器6SC61系列,最多的可供6个轴的电动机控制;德国宝石BOSCH公司生产铁氧体永磁的SD系列17个规格和稀土永磁的SE 系列8个规格交流伺服电动机和Servodyn SM系列的驱动控制器;美国著名的伺服装置生产公司Gettys曾一度作为Gould 电子公司一个分部M otion Control Division,生产M600系列的交流伺服电动机和A600 系列的伺服驱动器;后合并到AEG,恢复了Gettys名称,推出A700全数字化的交流伺服系统;美国A-BALLEN-BRADLEY公司驱动分部生产1326型铁氧体永磁交流伺服电动机和1391型交流PWM伺服控制器;电动机包括3个机座号共30个规格; .Industrial Drives是美国著名的科尔摩根Kollmorgen的工业驱动分部,曾生产BR-210、BR-310、BR-510 三个系列共41个规格的无刷伺服电动机和BDS3型伺服驱动器;自1989年起推出了全新系列设计的摻鹣盗袛Goldline永磁交流伺服电动机,包括B小惯量、M中惯量和EB防爆型三大类,有10、20、40、6 0、80五种机座号,每大类有42个规格,全部采用钕铁硼永磁材料,力矩范围为~,功率范围为~;配套的驱动器有BDS4模拟型、BDS5数字型、含位置控制和S。
伺服电机的原理

伺服电机内部结构伺服电机工作原理伺服电机原理一、交流伺服电动机交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似.其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc。
所以交流伺服电动机又称两个伺服电动机。
交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的调速范围、线性的机械特性,无“自转”现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。
目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅0.2-0.3mm,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子.空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用。
交流伺服电动机在没有控制电压时,定子内只有励磁绕组产生的脉动磁场,转子静止不动。
当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化,当控制电压的相位相反时,伺服电动机将反转。
交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点:1、起动转矩大由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。
它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。
因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。
2、运行范围较广3、无自转现象正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。
当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性(T1-S1、T2-S 2曲线)以及合成转矩特性(T-S曲线)交流伺服电动机的输出功率一般是0.1-100W。
伺服电机工作原理

伺服电机工作原理伺服电机是一种常用的电动机,具有精确控制位置和速度的能力。
它广泛应用于机械设备、工业自动化、机器人等领域。
本文将详细介绍伺服电机的工作原理,包括其基本结构、工作原理和控制方式。
一、伺服电机的基本结构伺服电机由电机本体、编码器、控制器和电源组成。
1. 电机本体:伺服电机通常采用直流电机或交流电机作为驱动源。
电机本体通过控制器接收指令,并根据指令调整转速和位置。
2. 编码器:编码器是伺服电机的关键部件,用于测量电机转动的位置和速度。
编码器可以分为增量式编码器和绝对式编码器两种类型。
- 增量式编码器:通过检测转子转动的脉冲数来确定位置和速度。
每个脉冲对应一定的角度,通过计数脉冲数可以计算出转子的位置和速度。
- 绝对式编码器:通过每个位置点上的独特编码来确定位置和速度。
绝对式编码器可以直接读取转子的位置,无需进行脉冲计数。
3. 控制器:控制器是伺服电机的核心部件,负责接收指令、处理信号和控制电机运动。
控制器通常由微处理器、驱动电路和通信接口组成。
4. 电源:伺服电机需要稳定的电源供电,以保证电机运行的稳定性和可靠性。
二、伺服电机的工作原理伺服电机的工作原理可以简单概括为:接收指令-测量位置-比较误差-调整控制-输出动作。
1. 接收指令:控制器接收到来自外部的指令,指令可以是位置指令、速度指令或扭矩指令。
2. 测量位置:编码器测量电机转子的位置和速度,并将测量结果传输给控制器。
3. 比较误差:控制器将指令和测量结果进行比较,计算出误差值。
误差值表示实际位置与目标位置之间的差异。
4. 调整控制:控制器根据误差值和控制算法,计算出控制信号。
控制信号可以是电压、电流或脉冲等形式。
5. 输出动作:控制器将控制信号传输给电机本体,驱动电机转动。
电机根据控制信号调整转速和位置,使实际位置逐渐接近目标位置。
三、伺服电机的控制方式伺服电机可以通过不同的控制方式实现精确的位置和速度控制。
常见的控制方式包括位置控制、速度控制和扭矩控制。
伺服电机的工作原理

伺服电机的工作原理伺服电机是一种常用的电动机,它具有高精度、高响应速度和高稳定性等特点,被广泛应用于机械控制系统中。
了解伺服电机的工作原理对于理解其应用和故障排除非常重要。
本文将详细介绍伺服电机的工作原理。
一、伺服电机的基本结构伺服电机由电机、编码器、控制器和驱动器组成。
电机负责转动,编码器用于反馈位置信息,控制器根据反馈信息调整电机的转动,驱动器则将控制信号转换为电机驱动信号。
二、伺服电机的工作原理1. 反馈系统伺服电机的核心是反馈系统,它通过编码器获取电机的实际位置信息,并将其与控制器设定的目标位置进行比较。
根据比较结果,控制器会调整驱动器的输出信号,使电机逐步接近目标位置。
当电机达到目标位置时,控制器会停止调整,保持电机稳定在目标位置上。
2. 控制器控制器是伺服电机系统的大脑,它接收编码器反馈的位置信息,并与设定的目标位置进行比较。
根据比较结果,控制器计算出电机需要的控制信号,并将其发送给驱动器。
控制器还可以根据需要进行速度和加速度的控制,以实现更精确的位置控制。
3. 驱动器驱动器是伺服电机系统的关键组件,它将控制器发送的控制信号转换为电机驱动信号。
驱动器根据控制信号的大小和方向,控制电机的转动。
驱动器还可以根据需要提供额外的保护功能,如过流保护、过热保护等。
4. 电机伺服电机通常采用直流电机或交流电机。
电机负责将电能转换为机械能,驱动机械系统的运动。
电机的转动速度和转动方向由驱动器控制,根据控制器的指令进行调整。
三、伺服电机的应用领域伺服电机广泛应用于需要精确位置控制的领域,如机床、自动化生产线、机器人等。
由于伺服电机具有高精度、高响应速度和高稳定性等特点,能够满足对位置、速度和力矩要求较高的应用场景。
例如,在机床上,伺服电机可以控制工件的位置和速度,实现精密加工。
在自动化生产线上,伺服电机可以控制输送带的速度和位置,确保产品的准确定位和运输。
在机器人上,伺服电机可以控制机械臂的运动,实现复杂的任务。
交流伺服电动机原理

交流伺服电动机原理?伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。
伺服电机的精度决定于编码器的精度(线数)。
伺服电动机在伺服系统中控制机械元件运转的发动机.是一种补助马达间接变速装置。
又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。
分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降,作用:伺服电机,可使控制速度,位置精度非常准确。
直流伺服电机分为有刷和无刷电机。
有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),产生电磁干扰,对环境有要求。
因此它可以用于对成本敏感的普通工业和民用场合。
无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。
控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。
电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。
交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。
大惯量,最高转动速度低,且随着功率增大而快速降低。
因而适合做低速平稳运行的应用。
伺服电动机基本知识讲解伺服电动机伺服电动机又叫执行电动机,或叫控制电动机。
在自动控制系统中,伺服电动机是一个执行元件,它的作用是把信号(控制电压或相位)变换成机械位移,也就是把接收到的电信号变为电机的一定转速或角位移。
其容量一般在0.1-100W,常用的是30W以下。
伺服电动机有直流和交流之分。
一、交流伺服电动机交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似,如图1所示。
其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
交流伺服电机的基本结构与工作原理
交流伺服电机通常都是单相异步电动机,有鼠笼形转子和杯形转子两种结构形
式。与普通电机一样,交流伺服电机也由定子和转子构成。定子上有两个绕组,即励
磁绕组和控制绕组,两个绕组在空间相差90°电角度。固定和保护定子的机座一般用
硬铝或不锈钢制成。笼型转子交流伺服电机的转子和普通三相笼式电机相同。杯形
转子交流伺服电机的结构如图3-12由外定子4,杯形转子3和内定子5三
部分组成。它的外定子和笼型转子交流伺服电机相同,转子则由非磁性导电材
料(如铜或铝制成空心杯形状,杯子底部固定在转轴7上。空心杯的壁很薄(小于
0.5mm,因此转动惯量很小。内定子由硅钢片叠压而成,固定在一个端盖1、
8上,内定子上没有绕组,仅作磁路用。电机工作时,内﹑外定子都不动,只有杯形
转子在内、外定子之间的气隙中转动。对于输出功率较小的交流伺服电机,常将励
磁绕组和控制绕组分别安放在内、外定子铁心的槽内。交流伺服电机的工作原理和
单相感应电动机无本质上的差异。但是,交流伺服电机必须具备一个性能,就是能克
服交流伺服电机的所谓“自转”现象,即无控制信号时,它不应转动,特别是当它已在转
动时,如果控制信号消失,它应能立即停止转动。而普通的感应电动机转动起来以后,
如控制信号消失,往往仍在继续转动。当电机原来处于静止状态时,如控制绕组不加
控制电压,此时只有励磁绕组通电产生脉动磁场。可以把脉动磁场看成两个圆形旋
转磁场。这两个圆形旋转磁场以同样的大小和转速,向相反方向旋转,所建立的正、
反转旋转磁场分别切割笼型绕组(或杯形壁并感应出大小相同,相位相反的电动势和
电流(或涡流,这些电流分别与各自的磁场作用产生的力矩也大小相等、方向相反,合
成力矩为零,伺服电机转子转不起来。一旦控制系统有偏差信号,控制绕组就要接受
与之相对应的控制电压。在一般情况下,电机内部产生的磁场是椭圆形旋转磁场。
一个椭圆形旋转磁场可以看成是由两个圆形旋转磁场合成起来的。这两个圆形旋转
磁场幅值不等(与原椭圆旋转磁场转向相同的正转磁场大,与原转向相反的反转磁场
小,但以相同的速度,向相反的方向旋转。它们切割转子绕组感应的电势和电流以及
产生的电磁力矩也方向相反、大小不等(正转者大,反转者小合成力矩不为零,所以伺
服电机就朝着正转磁场的方向转动起来,随着信号的增强,磁场接近圆形,此时正转磁
场及其力矩增大,反转磁场及其力矩减小,合成力矩变大,如负载力矩不变,转子的速度
就增加。如果改变控制电压的相位,即移相180o,旋转磁场的转向相反,因而产生的合
成力矩方向也相反,伺服电机将反转。若控制信号消失,只有励磁绕组通入电流,伺服
电机产生的磁场将是脉动磁场,转子很快地停下来。为使交流伺服电机具有控制信
号消失,立即停止转动的功能,把它的转子电阻做得特别大,使它的临界转差率Sk大
于1。在电机运行过程中,
如果控制信号降为“零”,励磁电流仍然存在,气隙中产生一个脉动磁场,此脉动磁
场可视为正向旋转磁场和反向旋转磁场的合成。图3-13画出正向及反向旋转磁场
切割转子导体后产生的力矩一转速特性曲线1、2,以及它们的合成特性曲
线3。图3-13b中,假设电动机原来在单一正向旋转磁场的带动下运行于A点,
此时负载力矩是。一旦控制信号消失,气隙磁场转化为脉动磁场,它可视为正向旋转
磁场和反向旋转磁场的合成,电机即按合成特性曲线3运行。由于转子的惯性,运行
点由A点移到B点,此时电动机产生了一个与转子原来转动方向相
反的制动力矩。在负载力矩和制动力矩的作用下使转子迅速停止。必须指出,
普通的两相和三相异步电动机正常情况下都是在对称状态下工作,不对称运行属于
故障状态。而交流伺服电机则可以靠不同程度的不对称运行来达到控制目的。
这是交流伺服电机在运行上与普通异步电动机的根本区别。