土的渗透性及渗流
土的渗透性及渗流
v q A
水力坡降 i h L
vi v ki
注:达西定律合用条件
层流(线性流) ——大部分砂土,粉土;疏松 旳粘土及砂性较重旳粘性土
砂土旳水力梯度与渗透速度呈线 性关系,符合达西渗透定律。
两种特例
v
粗粒土: 砾石类土中旳渗流不符合达西定律
vcr
o
vk i
v ki
i
粘性土:clay 致密旳粘土
第3章 土旳渗透性及渗流
3.1 概述
水在土体孔隙中流动旳现象 土具有被水等液体透过旳性质
渗流 渗透性
土石坝坝基坝身渗流
防渗斜墙及铺盖
土石坝
浸润线
不透水层
透水层
板桩围护下旳基坑渗流
板桩墙
基坑
透水层 不透水层
水井渗流
Q
天然水面
不透水层
透水层
渗流滑坡
三个方面 :
•渗流量问题: 基坑开挖排水 量计算,坝身、
k: 反应土旳透水性能旳百分比系数,称为渗透系数
△h 试样两端旳水位差,即水头损失
△ L 渗径长度
达西渗透定律 Darcy 's law
渗透试验
▪试验前提:层流 ▪试验条件: h1,A,L ▪量测变量: h2,QL↑, q↓
q A h L
断面平均流速
k x
1 H
kiHi
kz
H Hi
ki
5、渗透力 J —:渗透作用中,孔隙水对土骨架旳作用
力,方向与渗流方向一致。
Gd γwi
6、临界水力梯度
i cr
γ γω
Gs 1 1e
i icr 不发生流土
i icr 发生流土
Exercises
土渗透性及渗流
变水头试验法 井孔抽水试验 井孔注水试验
渗透系数的室内测定 渗透系数的现场测定
(1) 常水头渗透试验
是指在整个试验过程中保持土样 两端水头不变的渗流实验。
Q vAt kAth / L
QL kT At h
h
A
土样
L Q V
对于黏性土,由于其渗透系数较小故渗水量较小, 用常水头渗透试验不易准确测定。因此,对于 渗透系数小的土可用变水头试验。
w
B
hB
L
zB
水头梯度(坡降) hydraulic gradient
i
hA hB h L L
水流损失与渗流路径长 度之比
二、地下水的运动方式和判别
地下水是指地下水位以下的重力水
按地下水的流线形态分类 1、层流 2、湍流 按水流特征随时间的变化状况分类 1、稳定流运动 2、非稳定流运动 按水流在空间上的分布状况分类 1、一维流动 2、二维流动 3、三维流动
(紊流)
地下水的渗流速度与 水力梯度成非线性关系
两种特例:
(1)粗粒土: ①砾石类土中的渗流常不符合达西定律 ②砂土中渗透速度 vcr=0.3-0.5cm/s v
v vcr
o
v ki m (m 1)
i
(2)粘性土: 致密的粘土 i > i0 修正:v = k(i - i0 )
o i0
i
五、 渗透系数的测定及其影响因素
渗流问题 土的渗透性 及渗透规律
三、达西定律
四、达西定律的适用范围 五、渗透系数的测定及其影响
因素
1. 水在土中渗流会使土的强度发生变化,引起土体变形,甚至影响建筑地基的 稳定。 2. 在层流渗透情况下,砂土中水的渗流服从达西定律,即水的渗流速度与水力 梯度呈正比。 3. 渗透系数是土的基本力学性能指标之一,用来表征土体被水透过的性能,渗 透系数可通过室内试验或现场试验测定。
土力学 第2章 土的渗透性
n Vv Av 1 Av V A1 A
A > Av
v
vs
v n
Vs=q/Av V=q/A
(3)适用条件
v
层流(线性流):大部分砂土,粉土;
疏松的粘土及砂性较重的粘性土。
o
v=k i
v
v ki (a) 层流 i
(4)两种特例
密实粘性土:近似适用: v=k(i - i0 ) ( i >i0 ) i0:起始水力梯度
选取几组不同的h1和h2及对应的时间t=t2-t1,利用式(2-11)计算出相 应的渗透系数k,然后取其平均值作为该土样的渗透系数。
2. 现场井孔抽水试验
(1)室内试验的优缺点 优点:设备简单、操作方便、费用低廉。 缺点:取样和制样对土扰动、试样不一定是现场的代表性土,导致室内
测定的渗透系数难以反映现场土的实际渗透性。
☆水工建筑物防渗
一般采用“上堵下疏”原则。即上游截渗,延长渗径;下 游通畅渗透水流,减小渗透压力,防止渗透变形。
☆基坑开挖防渗
工程实例:
2003年7月1日,上海市轨道交通4号线发生一起管涌坍 塌事故,防汛墙塌陷、隧道结构损坏、周边地面沉降、造成 三幢建筑物严重倾斜。直接经济损失高达1.5亿人民币。
(2-34)
式中Fs为流土安全系数,通常取1.5~2.0。
பைடு நூலகம்
流土
(2)管涌(潜蚀) 定义:在渗流作用下土体的细土粒在粗土粒形成的孔隙通道中
发生移动并被带出的现象。 长期管涌破坏土的结构,最终导致土体内形成贯通的渗流 管道,造成土体坍陷。
管涌(土体内部细颗粒被带走)
管涌破坏(土体坍塌)
◆判别
①土类条件
第3章 土的渗透性和渗流
基坑
渗流问题 1.渗流量(降水办法) 2.渗透破坏(流砂)
透水层 不透水层
§3.1 概 述
土坝蓄水后水透
土石坝坝基坝身渗流 过坝身流向下游
防渗体
坝体 浸润线
渗流问题: 1.渗流量? 2.渗透破坏?
透水层
3.渗透力?
不透水层
§3.1 概 述 水井渗流
Q 天然水面
透水层
不透水层
渗流问题: 1.渗流量Q? 2.降水深度?
土愈密实,k值得愈小。试
• 土的密实度
验表明,对于砂土,k值对数与孔
• 土的饱和度
隙比及相对密度呈线性关系;对
• 土的结构和构造 粘性土,孔隙比对k值影响更大。
(2)水的性质
§3.2 土的渗透性
4.影响土的渗透系数主要因素
(1)土的性质
• 粒径大小及级配 • 土的密实度
• 土的饱和度 • 土的结构和构造
第3章 土的渗透性和渗流
§3.1 概
述
§3.2 土的渗透性
§3.3 土中二维渗流及流网
§3.4 渗透破坏与控制
§3.1 概 述
土是一种三相组成的多孔介质,其孔隙在空 间互相连通。如果存在水位差的作用,水就会在 土的孔隙中从能量高的点向能量低的点流动。
水等液体在土体孔隙中
流动的现象称为渗流。
土具有被水等液体透过
k1
h1 L1
k2
h2 L2
已知:L1=L2=40cm, k1= 2k2,故2△h1= △h2 ,
代入△h1+△h2 = △h=30cm得:
△h1=10cm,△h2 = 20cm
由此可知,测压管中的水面将升至右端水面以上10cm处。
2 土力学 第二章 土的渗透性及水的渗流
二、临界水力梯度及渗透破坏 当土中水向上渗流时,渗透力垂直向上而与土样重力方向相反,若渗透力 等于土样浮度,即
j = iγ w = γ , 得临界水力梯度: i cr =
γ' γw
土木工程学院 岩土系 冷伍明
第二章 土的渗透性及水的渗流
因此,若土中水向上渗流: ⑴若i>icr,会发生流土破坏,即“管涌”; ⑵若i=icr,流土处于临界状态,即“悬浮”; ⑶若i<icr,不会发生流土破坏。
h = z + hW + hV
由于水在土中渗流的速度一般很小,hv≈0,因此
h = z + hW = z +
u
γw
式中 u为该点的静水压力
土木工程学院 岩土系 冷伍明
第二章 土的渗透性及水的渗流
A、B两点的总水头可分别表示为:
hA = z A +
γω
uA
; hB = z B +
γω
uB
A、B两点间的总水头差:
作业题:P54: 2-7,2-9 补题1:什么是渗透力、临界水力梯度?
土木工程学院 岩土系 冷伍明
第二章 土的渗透性及水的渗流 §2.1 土的渗透定律
土的渗透性:由于土中孔隙是相互连同 的,土体孔隙中的自由水会由于总水头 差而产生流动,这种土体被水透过的性 质,称为土的渗透性(permeability)。 一、土中渗流的总水头与水力梯度 土中一点的总水头由三项组成:势水头 z、静水头hw和动水头hv,即:
土木工程学院 岩土系 冷伍明
第二章 土的渗透性及水的渗流
二、成层土的平均渗透系数 成层土渗透系数的计算方法见P43 三、渗透系数的室内测定方法 渗透系数k不能用理论方法求得,只能通过试验确定。 测定k值室内方法:定水头法、变水头法。 (1)定水头法 保持总水头差Δh不变,在t时间内,量得透过土样的水量为Q,求k: 根据达西定律
第三章 土的渗透性与渗流
历时 破坏过程短
后果 导致下游坡面产生局部滑动等
土体内细颗粒通过粗粒形成的 孔隙通道移动
可发生于土体内部和渗流 溢出处
一般发生在特定级配的无 粘性土或分散性粘土
破坏过程相对较长
导致结构发生塌陷或溃口
k
Q
ln(r2 / r1 )
h
2 2
h12
缺点:费用较高,耗时较长
2.影响因素
k f (土粒特性、流体特性)
粒径大小及级配 孔隙比 矿物成分 结构
饱和度(含气量) 水的动力粘滞系数
2.影响因素
(1)土粒特性的影响 粒径大小及级配:是土中孔隙直径大小的主要影响因素;因由粗颗粒形 成的大孔隙可被细颗粒充填,故土体孔隙的大小一般由细颗粒所控制。 孔隙比:是单位土体中孔隙体积的直接度量;对于砂性土,渗透系数k 一般随孔隙比e增大而增大。 矿物成分:对粘性土,影响颗粒的表面力;不同粘土矿物之间渗透系 数相差极大,其渗透性大小的次序为高岭石>伊里石>蒙脱石;塑性指 数Ip综合反映土的颗粒大小和矿物成份,常是渗透系数的参数。
1. 渗流量问题: 基坑开挖或施工围堰的渗水及排水量计算、土 坝渗水量计算、水井供水量或排水量计算等。
2. 渗透破坏问题: 土中渗流会对土颗粒施加渗透力,当渗透力过 大时就会引起土颗粒或土体的移动,产生渗透 变形,甚至渗透破坏。如滑坡、溃坝、地下水 开采引起地面下沉。
3. 渗流控制问题: 当渗流量或渗透变形不满足设计要求时,要研 究如何采取工程措施进行渗流控制。
量测变量: h2,V,T 试验结果
Δh=h1-h2
Q
断面平均流速 v Q A
水力坡降
土质学与土力学土的渗透性与土中渗流
第22页/共35页
有效应力原理
(K.Terzaghi,1936) 1. 饱和土中的两种应力形态
饱和土是由固体颗粒构成的骨架和充满其间的水组成的两相体,当外力 作用于土体后一部分由土骨架承担,并通过颗粒之间的接触面进行应力的传 递.称之为粒间应力;另一部分则由孔隙中的水来承担,水虽然不能承担剪 应力,但却能承受法向应力.并且可以通过连通的孔隙水传递,这部分水压 力称为孔隙水压力。
第8页/共35页
土的渗透系数范围
土的类型
渗透系数 k(cm/s)
砾石、粗砂
a×10-1 ~ a×10-2
中砂
a×10-2 ~ a×10-3
细砂、粉砂
a×10-3 ~ a×10-4
粉土
a×10-4 ~ a×10-6
粉质粘土
a×10-6 ~ a×10-7
粘土
a×10-7 ~ a×10-10
第9页/共35页
n
h h1 h2 h3 hi i 1
将达西定律代入上式可得沿竖直方向的等效
渗透系数kz:
kz
H n hi k i 1 i
第12页/共35页
渗透力和渗透变形
(一)渗透力实验验证 当h1=h2时,土中水处于静止状态,无渗流发生, 贮水器向上提升,使h1>h2,由于存在水头差.土中产生向上的渗流。水 头差h是土体中渗流所损失的能量。能量损失说明土粒对水流给以阻力;反 之.渗流必然对每个土颗粒有推动、摩擦和拖曳的作用力,称之为渗透力,可 定义为每单位土体内土颗粒所受的渗流作用力,用 j表示。
第4页/共35页
达西定律的适用范围
达西定律是描述层流状态下渗透流速与水头损失关系的规律, 即渗流速度v与水力坡降i成线性关系只适用于层流范围。在土木 工程中,绝大多数渗流,无论是发生砂土中或一般的粘性土中, 均介于层流范围,故达西定律均可适用。
土的渗透性及渗流
3.3.2 不同土渗透3.3系土的渗透系数 数的范围
1、P37,表3-2. 2、卡萨哥兰德三界限值
K=1.0cm/s为土中渗流的层流与紊流的界限; K=10-4cm/s为排水良好与排水不良的界限,也是 对应于发生管涌的敏感范围; K=10-4cm/s大体上为土的渗透系数的下限。
3、在孔隙比相同的情况下,粘性土的渗透系 数一般远小于非性土。
水井渗流
Q
天然水面
不透水层
透水层 渗流量
渠道渗流
原地下水位
渗流量
渗流时地下水位
渗流滑坡
渗流滑坡
板桩围护下的基坑渗流 板桩墙
基坑
透水层 不透水层
渗水压力 渗流量 渗透变形 扬压力
土石坝坝基坝身渗流 防渗斜墙及铺盖
不透水层
土石坝
浸润线
渗流量
透水层 渗透变形
本章研究内 容
土的渗流 土的变形 土的强度
讨论 ❖ 砂土、粘性土:小水流为层流,渗透规律符合
达西定律,-i 为线性关系
❖ 粗粒土: i 小、 大水流为层流,渗透规律符合 达西定律,-i 为线性关系 i 大、 大水流为紊流,渗透规律不符合 达西定律,-i 为非线性关系
3.3.1 渗透系数的3.3 土的渗透系数
影响因素1
1、孔隙比
v
nvs
e 1 e
素2
3、土的饱和度
土的饱和度愈低,渗透系数愈小。因为低饱和土 的孔隙中存在较多气泡会减小过水面积,甚至赌 塞细小孔道。
4、温度
渗透系数k实际上反映流体经由土的孔隙通道时 与土k颗20 粒k间T 摩T 擦20力或粘滞滞T系、性数2。,0分可别而查为流表T℃体和2的0℃粘时水滞的性动力与粘 其温度有关。试验测得的渗透系数kT需经温度修 正(P36,表3-1)
第3章:土的渗透性及渗流
• 基本概念
渗透---土中水从土中孔隙中透过的现象称为渗透 渗透---土中水从土中孔隙中透过的现象称为渗透。 土中水从土中孔隙中透过的现象称为渗透。 渗透性---土体具有被水透过的性质称为渗透性 土体具有被水透过的性质称为渗透性; 渗透性---土体具有被水透过的性质称为渗透性; 渗流---水在土孔隙中的流动问题称为渗流 水在土孔隙中的流动问题称为渗流。 渗流---水在土孔隙中的流动问题称为渗流。 渗透与渗流的基本问题: 渗透与渗流的基本问题: (1)渗流量问题 (2)渗透破坏问题 (3)渗流控制问题
适用:中砂、细砂、粉砂等,粗砂、砾石、卵石等粗颗粒不适用
• 公式应用的假定
• 按照达西定律求出的渗透速度是一种假想的平均流速 , 它假定水在土中的渗透是通过土体截面来进行的。 它假定水在土中的渗透是通过土体截面来进行的。实际 上 ,水在土体中的实际流速要比用达西定律求出的流速 要大得多, 要大得多,如均质砂土的孔隙率为 n,则他们之间的关系 为
3.3 渗透破坏与控制 水在土中渗透时,由于水具有一定的流速, 水在土中渗透时,由于水具有一定的流速, 必然受到土颗粒的阻力作用。 必然受到土颗粒的阻力作用。根据作用力 与反作用力的原理, 与反作用力的原理,水流必然也对土颗粒 有一个大小相等,方向相反的作用力。 有一个大小相等,方向相反的作用力。 • 渗透力---渗流作用在单位体积土体中土颗 渗透力---渗流作用在单位体积土体中土颗 粒上的作用 作用力 粒上的作用力(kN/m3),作用方向与水流 方向一致。 方向一致。
• 层状地基的等效渗透系数 大多数天然沉积土层是由渗透系数不同的层土所组 宏观上具有非均质性。 成,宏观上具有非均质性。
厚度等效
层状土层
渗透系数等效
单一土层
土的渗透性及渗流
L
υ--水在土中的渗透速度,cm/s。不是地下水的实际流速,而是在单位时间 内流过单位土截面(cm2)的水量(cm3),是土体断面的平均渗透速度; i--水力梯度,即土中两点的水头差 (H1-H2)与两点间的流线长度(L)之比; k--土的渗透系数,cm/s,与土的渗透性质有关的待定系数。
渗透系数是直接衡量土的透水
透水层 不透水层
5
土的渗透性及举例
渗流滑坡
6
§2.3 地下水的运动方式和判别
地下水运动的基本方式 地下水:地下水位以下的重力水。除特殊情况外,地下 水总是处在运动状态之中。 地下水的运动方式的分类: 1、按流线形态:层流、湍流(紊流) 2、按水流特征随时间的变化状况分为:稳定流运动、 非稳流运动 3、按水流在空间上的分布状况分为:一维流动、二维 流动、三维流动
为达西定律。
11
达西定律及其适用范围
一、达西渗透定律
由于一般土体(粘性土及砂土)中的孔隙一般非常微小,水 在土体中流动时的粘滞阻力很大、流速缓慢,因此,其流动状态 大多属于层流。
著名的达西(Darcy)渗透定律:
A
渗透速度: v k h ki
L
B
12
达西定律及其适用范围
式中:
渗透速度: v k h ki
T
J
W
J w sin
W cos tg ' costg Ks ' sin w sin TJ W sin J tan Ks sat tan
Tf
因此,当坡面有顺坡渗流作用时,无粘性 土土坡的稳定安全系数发生渗流,只取决于 总水头差, 若hA≠hB时,才会发生水从总水 头高的点向总水头低的点流动(但水并非一定
土的渗透性和渗流问题
第二篇 土力学第四章 土的渗透性和渗流问题第一节 概述土是由固体相的颗粒、孔隙中的液体和气体三相组成的,而土中的孔隙具有连续的性质,当土作为水土建筑物的地基或直接把它用作水土建筑物的材料时,水就会在水头差作用下从水位较高的一侧透过土体的孔隙流向水位较低的一侧。
渗透:在水头差作用下,水透过土体孔隙的现象渗透性:土允许水透过的性能称为土的渗透性。
水在土体中渗透,一方面会造成水量损失,影响工程效益;另一方面将引起土体内部应力状态的变化,从而改变水土建筑物或地基的稳定条件,甚者还会酿成破坏事故。
此外,土的渗透性的强弱,对土体的固结、强度以及工程施工都有非常重要的影响。
本章将主要讨论水在土体中的渗透性及渗透规律,以及渗透力渗透变形等问题。
第二节 土的渗透性一、土的渗透规律——达西定律(一)渗流中的总水头与水力坡降液体流动的连续性原理:(方程式)dw v dw v w w ⎰⎰=2211 2211v w v w =1221w w v v = 表明:通过稳定总流任意过水断面的流量是相等的;或者说是稳定总流的过水断面的 平均流速与过水断面的面积成反比。
前提:流体是连续介质流体是不可压缩的;流体是稳定流,且流体不能通过流面流进或流出该元流。
理想重力的能量方程式(伯努利方程式1738年瑞士数学家应用动能定理推导出来的。
)c gv r p Z =++22饱和土体空隙中的渗透水流,也遵从伯努利方程,并用水头的概念来研究水体流动中 的位能和动能。
水头:实际上就是单位重量水体所具有的能量。
按照伯努利方程,液流中一点的总水头h ,可以用位置水头Z ,压力水头U/r w 和流速水 头V 2/2g 之和表示,即gv r u Z h w 22++= 4-1 此方程式中各项的物理意义均代表单位重量液体所具有的各种机械能,而其量纲都是 长度。
教材P37图22表示渗流在水中流经A ,B 两点时,各种水头的相互关系。
按照公式(4-1),A,B 两点的总水头可分别表示为:gv r u Z h A w A A A 22++= gv r u Z h B w B B B 22++= h h h B A ∆+=式中:Z A ,Z B :为A ,B ,两点相对于任意选定的基准面的高度,代表单位重量液体 所具有的位能(位置高度)故称Z 为位置水头。
第三章土的渗透性及渗流ppt课件
2024年8月1日星期四2时44分59秒
34
3.渗透破坏与控制
J = rwi
(1)流砂 当向上的渗流力与土的浮重
度相等时,粒间有效应力σ'为零, 颗粒群同时发生悬浮、移动的现象 称为流砂现象(流土现象)。
J= r' rwicr= r'
r' icr= rw
i ≥ icr 流砂
2024年8月1日星期四2时44分59秒
水在土中渗透有规律可以遵循吗?
如何定性和定量化评价水在土中的渗透性的大小?如何来描述?
2024年8月1日星期四2时44分58秒
12
一、渗流模型
实际土体中的渗流仅是流 经土粒间的孔隙,由于土体 孔隙的形状、大小及分布极 为复杂,导致渗流水质点的 运动轨迹很不规则。
简化
(1)不考虑渗流路径的迂
回曲折,只分析它的主—“截弯取直” 要流向 ;
9;
由这些特征可进一步知道,流网中等势
线越密的部位,水力梯度越大,流线越
密的部位流速越大。
板桩墙围堰的流网图
2024年8月1日星期四2时44分59秒
28
流网的绘制
(1) 按一定比例绘出结构物和土层的剖面图;
(2) 判定边界条件:透水面(aa' ,bb' )等势线 ; abc 和不透水面 为流线;
27
3.流网的特征与绘制
流网的特征
对于各向同性渗流介质,流网具有下列特征:
(1) 流线与等势线互相正交;
(2) 流线与等势线构成的各个网格的长宽比为常数,当长宽比为
1 时,网格为曲线正方形,这也是最常见的一种流网;
(3) 相邻等势线之间的水头损失相等;Δh= ΔH
(4) 各个流槽的渗流量相等。 q=Nf Δq
土的渗透性和渗流
一、平面渗流的连续性分析
对于一个稳定的渗流来说,渗流场中各点的测管水头h 及流速v等仅是位置的函数而与时间无关,即: h = f (x, z),v = g(x, z)。
z
vz+
v z z
dz
dz vx
图2-9 二维稳定 渗流场中
vz
的某微元
dx
vx+
vx x
dx
x
单位时间流入微元的水量为:
(b) 等效图
图2-8 层状土的垂直渗流情况
其特点有:
(1)通过各层土的流量与等效土层的流量均相 同,即:
qz = q1z = q2z = q3z = ∙∙∙∙∙,v = v1 = v2 = v3 = ∙∙∙∙∙∙ (2)流经等效土层的水头损失等于各土层的水
头损失之和,即:
Δh = Δh1 + Δh2 + Δh3 + ∙∙∙∙∙ = Σhi
分布规律,结合一定的边界条件后,求解该方
程即可得到此条件下的渗流场。
以上就是教材P50-51三个式子的由来。
求解拉普拉斯方程有以下四种方法:
(1)解析法 — 边界条件复杂时,难以求解;
(2)数值解法 — 差分法和有限元方法已应用越 来越广;
(3)实验法 — 用一定比尺的模型实验来模拟渗 流场,应用较广的是电比拟法等;
有
vx
kx
h x
,vz
kz
h z
,将这两式代入连续
方程(2-12)可得:
kx
2h x 2
kz
2h z 2
0
(2-13)
对于各向同性的均质土kx = kz,(2-13)还可变为:
土的渗透性及渗流总结
【解】已知面积 A 30cm2,渗流长度L 4cm ,细玻
第2章 土的渗透性及渗流
2.1 土的渗透性及 举例
2.3 地下水的 运动方式和判别
2.5 渗透系数
2.7 渗流力、流沙 和潜蚀的危害及防治
2.2 土的水理性质
2.4 达西定律 及其适用范围
2.6 二维渗流 及流网应用
2.8 渗流情况下的 有效应力和孔隙水压力
§2.1 土的渗透性及举例
渗透:在水位差作用下,水透过土体孔隙的现象。 土的渗透性:土具有被水透过的性质。
天然水面
透水层
渗透压力 渗流量 渗透变形
透水层 不透水层
水井渗流
§2.2 土的水理性质
土的水理性质是指土体在水的作用及其变化的 条件下,产生的土的物理、力学状态及性质的变化 以及对工程的影响。
包括:毛细水现象,粘性土含水状态特征及水 -土系统的胶体特征,黄土的湿陷性,膨胀土特征, 饱和松砂的地震液化,潜蚀和流沙现象,粘性土的 含水量与夯实等等。
地下水位较高,冻胀现象明显。 (3)温度:若气温缓慢下降,冷却强度小,
但负温持续时间较长。
§2.2 土的水理性质
上述三方面的因素是土层发生冻胀的三个必要 条件。其结论是:在持续负温作用下,地下水位较 高处的粉砂、粉土、粉质粘土等土层常具有较大的 冻胀危害。
主要措施:将构筑物基础底面置于当地冻结深 度(可查有关规范)以下,基础的侧面回填中砂或 粗砂等不冻胀的材料,以防止冻害的影响。
§2.3 地下水的运动方式和判别
2.3.1 地下水运动的基本方式
1.按地下水的流线形态: 层流:流线互相平行、水流平稳、流速均匀 湍流(紊流):流线不规则、漩涡 2.按水流特征随时间的变化状况: 稳定流运动:在渗流场中,若任一点的流速、流向、 水位、水压力等运动特征不随时间而改变。 非稳定流运动:在渗流场中,若任一点的流速、流 向、水位、水压力等运动要素均随时间而变化。
土的渗透性及渗流
重复试验后,取均值 粗粒土
不同时段试验,取均值 粘性土
现场测定法3-抽水试验 试验条件:
r2 r1
观察井
抽水量Q
Q=const
量测变量: r=r1,h1=?
地下水位≈ 测压管水面
不透水层
井
h1
h2
r=r2,h2=?
优点:可获得现场较为可靠的平均渗透系数 缺点:费用较高,耗时较长
h2
t=t2
Q A
土样
L
水头 测管 开关
aL h1 k ln At h2
选择几组量测结果 ,计算相应的k,取平均值
室内试验方法-变水头试验法
室内试验方法小结
常水头试验 条件 已知 测定 算定 取值 适用
Δh=const Δh,A,L Q, t
k QL Aht
变水头试验
h变化 a,A,L h,t
pA w
A zA
B L
基准面
渗流问题的水头
•
•
pA A点总水头: hA z A w p B点总水头:h z B B B w h A
水力坡降线
pA w
Δh A
pB w
• 二点总水头差:反映了 两点间水流由于摩阻力 造成的能量损失
zA
B
hB
L
基准面
zB
pA pB h h A h B zA zB W W
水头(伯努利定理):
单位重量水体所具有的能量
位置水头Z:水体的位置势能(任选基准面)
v p h z 2g w
2
压力水头p/w:水体的压力势能(p孔隙水压力) 流速水头V2/(2g):水体的动能(对渗流多处于层流≈0)
3第三章-土的渗透性及渗流
粗颗粒土一般在完全干燥和洒水饱和状态下最容易密 实。主要因为在潮湿状态下,土中的水为毛细水,毛 细水压增加了粒间阻力。
பைடு நூலகம்
土的击实试验
在试验室内通过击实试验研究土的压实性。击实试验有 轻型和重型两种。
护筒
导筒 击实筒
轻型击实试验适用于粒径小于 击锤 5mm的土,击实筒容积为947cm3, 击锤质量为2.5kg。把制备成一定 含水量的土料分三层装入击实筒, 每层土料用击锤均匀锤击25下, 击锤落高为30.5cm
渗透力
J T wi
负号:渗透力方向与土骨架对水流阻力方向相反
三 土的渗透性——渗透力
根据力的平衡条件
wh1 A w LA cos wh2 A TLA 0
cos ( z1 z2 ) / L h1 H1 z1; h 2 H2 z 2
三 土的渗透性——渗透力 渗流过程
若水自上而下渗流:渗透力方向与土粒所受重力方向相同 ——将增加土粒之间的压力 若水自下而上渗流:渗透力方向与土粒所受重力方向相反 ——将减小土粒之间的压力 此时,若渗透力大小等于土的浮重度时,则土粒之间压力为零,理论上 土粒处于悬浮状态,将随水流一起流动,形成流砂现象
三 土的渗透性
三 土的渗透性——基本概念
1 基本概念
土:具有连续孔隙介质,水在重力作用下可以穿过土中孔隙而流动 渗透或渗流——在水头差作用下,水透过土孔隙流动的现象
渗透性——土体可被水透过的性能
土坝、水闸等挡水后,上游水将通过坝体或地基渗到下游——发生渗透
三 土的渗透性——基本概念
渗透引起两个方面问题:
i>icr:土粒处于流砂状态
i= icr:土粒处于临界状态
土力学第二章土的渗透性和渗透问题
§2.1 土的渗透性与渗透规律 Permeability and seepage law of soil
Ch2 土的渗透性和渗流问题 Permeability and seepage problem of soil
Ch2 土的渗透性和渗流问题 Permeability and seepage problem of soil
A
B
L
h1
h2
zA
zB
Δh
0
0
基准面
水力坡降线
总水头-单位质量水体所具有的能量
流速水头≈0
A点总水头:
B点总水头:
总水头:
水力坡降:
一.渗流中的水头与水力坡降
§2.1 土的渗透性与渗透规律 Permeability and seepage law of soil
概述
Ch2 土的渗透性和渗流问题 Permeability and seepage problem of soil
概述
Teton坝
渗流量
渗透变形
渗水压力
渗流滑坡
土的渗透性及渗透规律
二维渗流及流网
渗透力与渗透变形
扬压力
土坡稳定分析
挡水建筑物 集水建筑物 引水结构物 基坑等地下施工 边坡渗流
§2.3 渗透力与渗透变形 Seepage force and seepage deformaton
学习目标
学习基本要求
参考学习进度
学习指导
学习目标
掌握土的渗透定律与渗透力计算方法,具备对地基渗透变形进行正确分析的能力。
掌握土的渗透定律
01
掌握二维渗流及流网绘制
土力学 第3章 土的渗流
第三章 土的渗透性
a-a平面上的总应力仍保持不变,等于
于是,根据有效应力原理,a-a平面上的有效应力为
地下水按埋藏条件可分上层滞水、潜水、承压水3类。 上层滞水:存在于地面以下 局部隔水层上面的积水。分 布范围有限,是季节性或临 时性的水源。 潜水:埋藏在地面以下第一 个连续稳定的隔水层以上, 具有自由水面的地下水。潜 水的水面标高称为地下水位。 潜水水位往往低于上层滞水。 承压水:充满在两个稳定的 隔水层问的承受一定静水压 力的地下水。承压水上下都有 隔水层存在,它的埋藏区与补 给区不一致。 因此,承压水的动态变化, 受局部气候的影响不明显。
5
3-2
土的渗透性
一、达西渗透定律 由于土体中的孔隙一般非常微小,水在土体中流动时的粘滞阻力很大 、流速缓慢,因此,其流动状态大多属于层流,即相邻2个水分子运 动的轨迹相互平行而不混流。 著名的达西(Darcy)渗透定律:
渗透速度:
h v k ki L
或 渗流量为:
q vA kiA
qx q1x q2 x qnx qix
i 1
n
整个土层与层面平行的平均渗流系数为:
kx
1 H
k H
i 1 i
n
i
第三章 土的渗透性
如图3-6 (b) 所示与层面垂直的渗流情况。通过整个土层的总 渗流量qy应为各土层渗流量之总和,即
qy q1y q2 y qny