第2章土的渗透性与渗流.
土渗透性及渗流
变水头试验法 井孔抽水试验 井孔注水试验
渗透系数的室内测定 渗透系数的现场测定
(1) 常水头渗透试验
是指在整个试验过程中保持土样 两端水头不变的渗流实验。
Q vAt kAth / L
QL kT At h
h
A
土样
L Q V
对于黏性土,由于其渗透系数较小故渗水量较小, 用常水头渗透试验不易准确测定。因此,对于 渗透系数小的土可用变水头试验。
w
B
hB
L
zB
水头梯度(坡降) hydraulic gradient
i
hA hB h L L
水流损失与渗流路径长 度之比
二、地下水的运动方式和判别
地下水是指地下水位以下的重力水
按地下水的流线形态分类 1、层流 2、湍流 按水流特征随时间的变化状况分类 1、稳定流运动 2、非稳定流运动 按水流在空间上的分布状况分类 1、一维流动 2、二维流动 3、三维流动
(紊流)
地下水的渗流速度与 水力梯度成非线性关系
两种特例:
(1)粗粒土: ①砾石类土中的渗流常不符合达西定律 ②砂土中渗透速度 vcr=0.3-0.5cm/s v
v vcr
o
v ki m (m 1)
i
(2)粘性土: 致密的粘土 i > i0 修正:v = k(i - i0 )
o i0
i
五、 渗透系数的测定及其影响因素
渗流问题 土的渗透性 及渗透规律
三、达西定律
四、达西定律的适用范围 五、渗透系数的测定及其影响
因素
1. 水在土中渗流会使土的强度发生变化,引起土体变形,甚至影响建筑地基的 稳定。 2. 在层流渗透情况下,砂土中水的渗流服从达西定律,即水的渗流速度与水力 梯度呈正比。 3. 渗透系数是土的基本力学性能指标之一,用来表征土体被水透过的性能,渗 透系数可通过室内试验或现场试验测定。
土力学 第2章 土的渗透性
n Vv Av 1 Av V A1 A
A > Av
v
vs
v n
Vs=q/Av V=q/A
(3)适用条件
v
层流(线性流):大部分砂土,粉土;
疏松的粘土及砂性较重的粘性土。
o
v=k i
v
v ki (a) 层流 i
(4)两种特例
密实粘性土:近似适用: v=k(i - i0 ) ( i >i0 ) i0:起始水力梯度
选取几组不同的h1和h2及对应的时间t=t2-t1,利用式(2-11)计算出相 应的渗透系数k,然后取其平均值作为该土样的渗透系数。
2. 现场井孔抽水试验
(1)室内试验的优缺点 优点:设备简单、操作方便、费用低廉。 缺点:取样和制样对土扰动、试样不一定是现场的代表性土,导致室内
测定的渗透系数难以反映现场土的实际渗透性。
☆水工建筑物防渗
一般采用“上堵下疏”原则。即上游截渗,延长渗径;下 游通畅渗透水流,减小渗透压力,防止渗透变形。
☆基坑开挖防渗
工程实例:
2003年7月1日,上海市轨道交通4号线发生一起管涌坍 塌事故,防汛墙塌陷、隧道结构损坏、周边地面沉降、造成 三幢建筑物严重倾斜。直接经济损失高达1.5亿人民币。
(2-34)
式中Fs为流土安全系数,通常取1.5~2.0。
பைடு நூலகம்
流土
(2)管涌(潜蚀) 定义:在渗流作用下土体的细土粒在粗土粒形成的孔隙通道中
发生移动并被带出的现象。 长期管涌破坏土的结构,最终导致土体内形成贯通的渗流 管道,造成土体坍陷。
管涌(土体内部细颗粒被带走)
管涌破坏(土体坍塌)
◆判别
①土类条件
2 土力学 第二章 土的渗透性及水的渗流
二、临界水力梯度及渗透破坏 当土中水向上渗流时,渗透力垂直向上而与土样重力方向相反,若渗透力 等于土样浮度,即
j = iγ w = γ , 得临界水力梯度: i cr =
γ' γw
土木工程学院 岩土系 冷伍明
第二章 土的渗透性及水的渗流
因此,若土中水向上渗流: ⑴若i>icr,会发生流土破坏,即“管涌”; ⑵若i=icr,流土处于临界状态,即“悬浮”; ⑶若i<icr,不会发生流土破坏。
h = z + hW + hV
由于水在土中渗流的速度一般很小,hv≈0,因此
h = z + hW = z +
u
γw
式中 u为该点的静水压力
土木工程学院 岩土系 冷伍明
第二章 土的渗透性及水的渗流
A、B两点的总水头可分别表示为:
hA = z A +
γω
uA
; hB = z B +
γω
uB
A、B两点间的总水头差:
作业题:P54: 2-7,2-9 补题1:什么是渗透力、临界水力梯度?
土木工程学院 岩土系 冷伍明
第二章 土的渗透性及水的渗流 §2.1 土的渗透定律
土的渗透性:由于土中孔隙是相互连同 的,土体孔隙中的自由水会由于总水头 差而产生流动,这种土体被水透过的性 质,称为土的渗透性(permeability)。 一、土中渗流的总水头与水力梯度 土中一点的总水头由三项组成:势水头 z、静水头hw和动水头hv,即:
土木工程学院 岩土系 冷伍明
第二章 土的渗透性及水的渗流
二、成层土的平均渗透系数 成层土渗透系数的计算方法见P43 三、渗透系数的室内测定方法 渗透系数k不能用理论方法求得,只能通过试验确定。 测定k值室内方法:定水头法、变水头法。 (1)定水头法 保持总水头差Δh不变,在t时间内,量得透过土样的水量为Q,求k: 根据达西定律
土的渗透性及渗流
x
§2 土旳渗透性和渗流问题 §2.3 平面渗流与流网
一. 平面渗流旳基本方程及求解 1. 基本方程
▪ 连续性条件
dqe vxdz vzdx
dqo
(vx
v x x
dx)dz
(vz
v z z
dz)dx
dqe dqo
vx vz 0 x z
z
vz
vz z
dz
vx
v
x
vx x
dx
vz
x
▪ 达西定律
§2 土旳渗透性和渗流问题 §2.3 平面渗流与流网
二.流网旳绘制及应用
▪ 流 网——渗流场中旳两族相互正交曲线——等势线和流线所形成旳 网络状曲线簇。 ▪ 流 线——水质点运动旳轨迹线。 ▪ 等势线——测管水头相同旳点之连线 。 ▪ 流网法——经过绘制流线与势线旳网络状曲线簇来求解渗流问题。
△h
第二章 土旳渗透性和渗流问题
§2 土旳渗透性和渗流问题
2.1 概述
碎散性
多孔介质
三相体系
孔隙流体流动
能量差
水、气等在土体孔隙中流动旳现象
渗流
土具有被水、气等液体透过旳性质
渗透性
渗透特征 强度特征 变形特征
非饱和土旳渗透性 饱和土旳渗透性
§2 土旳渗透性和渗流问题 2.1 概述 土石坝坝基坝身渗流
防渗斜墙及铺盖 不透水层
土石坝
浸润线
透水层
渗流量 渗透变形
§2 土旳渗透性和渗流问题 2.1概述 板桩围护下旳基坑渗流
板桩墙
基坑
透水层 不透水层
渗水压力 渗流量 渗透变形 扬压力
§2 土旳渗透性和渗流问题 2.1 概述 水井渗流
第二章土的渗透性及水的渗流
上层滞水: 埋藏在地表浅处,局部隔水透镜体 上部,且具有自由水面的地下水。
地下水按埋藏 条件分为:
潜水:埋藏在地表以下第一个稳定隔水层以上 的具有自由水面的地下水。
承压水:是指充满于两个稳定隔水层之间的含 水层中的地下水。
3
2.1 概述
不饱和土 饱和土
毛细水(地下水位以上) 地下水位(潜水)
上层滞水
31
解:(1)B截面上v1=v2
h2 h1
h wB h wA
m
h wC=5m
m
B
m
A
m
C
32
•
v1
k1i1
k1
(hwB 1) 1
k1 (hwB
1)
(1)
•
v2
k2i2
k2
hwC
1.2 1.2
hwB
(2)
•
(1)=(2),hwc=5m,有
hwB
3.8k2 1.2k1 1.2k1 k2
于是,根据有效应力原理,a-a平面上的有效应力为
由此可见,在静水条件下,孔隙水应力等于研究平面上单位面积的 水柱重量,与水深成正比,呈三角形分布; 有效应力等于研究平面上单位面积的土柱有效重量,与土层深度成 正比,也呈三角形分布,而与超出土面以上静水位的高低无关。
三、在稳定渗流作用下水平面上的孔隙水应力和有效应力
饱和粉土1:i
h l
(2.12
1)
/1
1.12
icr
34
小结
概述
渗流问题
土的渗透性 及渗透规律
渗流中的水头与水力坡降 渗透试验与达西定律 渗透系数的测定及影响因素
第2章土的渗透性与渗透变形优秀课件
k (cm/s) 10-1~10-2 10-2~10-3 10-3~10-4 10-4~10-6 10-6~10-7
渗透系数k:
粘土
10-7~10-10
反映土的透水性能的比例系数
物理意义:水力坡降i=1时的渗流速度
单位:mm/s, cm/s, m/s, m/day
渗透系数与土的性质有关。
§2.1 土的渗透性与渗透规律
§2.1 土的渗透性与渗透规律
一.渗流中的水头与水力坡降
uB gw
u0 >pa
B
位置水头:到基准面的竖直距 离,代表单位重量的液体从基 准面算起所具有的位置势能
uA 压力水头:水压力所能引起的 gw 自由水面的升高,表示单位重
量液体所具有的压力势能
静静水水 A zB
0
基基准面面
测管水头:测管水面到基准面 zA 的垂直距离,等于位置水头和
野外试验测定方法 井孔抽水试验
学
井孔注水试验
§2.1 土的渗透性与渗透规律
三.渗透系数的测定及影响因素
室内试验方法1—常水头试验
constant head permeability test
Δh
▪试验条件:h,A,L=const
▪量测变量:V,t ▪结果整理:V=Qt=vAt
v=ki i=h/L
A
度
••• •
压击实实功曲能线 压实标准 压实标准
土的压实性
提问
1、击实曲线为什么在饱和曲线以下?
2、压实与含水量之间的关
系如何?
2.0 dmax
1.8
干密度d(g/cm3)
3、砂土在什么含水率条件 1.6
下最容易压实?
1.4
(完整版)第二章土的渗透性和渗流问题要点
第二章 土的渗透性和渗流问题第一节 概 述土是多孔介质,其孔隙在空间互相连通。
当饱和土体中两点之间存在能量差时,水就通过土体的孔隙从能量高的位置向能量低的位置流动。
水在土体孔隙中流动的现象称为渗流;土具有被水等液体透过的性质称为土的渗透性。
土的渗透性是土的重要力学性质之一。
在水利工程中,许多问题都与土的渗透性有关。
渗透问题的研究主要包括以下几个方面:1.渗流量问题。
例如对土坝坝身、坝基及渠道的渗漏水量的估算(图2-la 、b ),基坑开挖时的渗水量及排水量计算(图2-1C ),以及水井的供水量估算(图2-1d )等。
渗流量的大小将直接关系到这些工程的经济效益。
2.渗透变形(或称渗透破坏)问题。
流经土体的水流会对土颗粒和土体施加作用力,这一作用力称为渗透力。
当渗透力过大时就会引起土颗粒或土体的移动,从而造成土工建筑物及地基产生渗透变形。
渗透变形问题直接关系到建筑物的安全,它是水工建筑物和地基发生破坏的重要原因之一。
由于渗透破坏而导致土石坝失事的数量占总失事工程数量的25%~30%。
3.渗流控制问题。
当渗流量和渗透变形不满足设计要求时,要采用工程措施加以控制,这一工作称为渗流控制。
渗流会造成水量损失而降低工程效益;会引起土体渗透变形,从而直接影响土工建筑物和地基的稳定与安全。
因此,研究土的渗透规律、对渗流进行有效的控制和利用,是水利工程及土木工程有关领域中的一个非常重要的课题。
第二节 土的渗透性一、土的渗透定律—达西定律(一)渗流中的总水头与水力坡降液体流动除了要满足连续原理外,还必须要满足液流的能量方程,即伯努里方程。
在饱和土体渗透水流的研究中,常采用水头的概念来定义水体流动中的位能和动能。
水头是指单位重量水体所具有的能量。
按照伯努里方程,液流中一点的总水头h ,可用位置水头Z 、压力水头w uγ和流速水头g v 22之和表示,即 1)-(2 22g v uz h w ++=γ 式(2—1)中各项的物理意义均代表单位重量液体所具有的各种机械能,其量纲为长度。
《土力学》教案——第二章 土的渗透性和渗透问题
教学内容设计及安排第一节达西定律【基本内容】渗透——在水位差作用下,水透过土体孔隙的现象。
渗透性——土具有被水透过的性能。
一、达西定律v =ki =k Lh或用渗流量表示为q =vA =kiA式中 v ――渗透速度,cm/s 或m/d ;q ――渗流量,cm 3/s 或m 3/d ;i =h /L ――水力坡降(水力梯度),即沿渗流方向单位距离的水头损失,无因次; h ――试样两端的水头差,cm 或m ; L ――渗径长度;cm 或m ;k ――渗透系数,cm/s 或m/d ;其物理意义是当水力梯度i 等于1时的渗透速度; A ――试样截面积,cm 2或m 2。
【注意】由上式求出的v 是一种假想的平均流速,假定水在土中的渗透是通过整个土体截面来进行的。
水在土体中的实际平均流速要比达西定律采用的假想平均流速大。
二、达西定律的适用范围与起始水力坡降对于密实的粘土:由于结合水具有较大的粘滞阻力,只有当水力梯度达到某一数值,克服了结合水的粘滞阻力后才能发生渗透。
起始水力梯度――使粘性土开始发生渗透时的水力坡降。
(a ) 砂土 (b ) 密实粘土 (c )砾石、卵石粘性土渗透系数与水力坡降的规律偏离达西定律而呈非线性关系,如图(b )中的实线所示,常用虚直线来描述密实粘土的渗透规律。
()b i i k v -= (2-3)式中 i b ――密实粘土的起始水力坡降;对于粗粒土中(如砾、卵石等):在较小的i 下,v 与i 才呈线性关系,当渗透速度超过临界流速v cr 时,水在土中的流动进入紊流状态,渗透速度与水力坡降呈非线性关系,如图(c )所示,此时,达西定律不能适用。
第二节 渗透系数及其确定方法【基本内容】一、渗透试验1.常水头试验常水头试验适用于透水性大(k >10-3cm/s )的土,例如砂土。
常水头试验就是在整个试验过程中,水头保持不变。
试验时测出某时间间隔t 内流过试样的总水量V ,根据达西定律At LhkkiAt qt V === 即 hAtVL k =2.变水头试验粘性土由于渗透系数很小,流经试样的总水量也很小,不易准确测定。
土的渗透性和渗流
一、平面渗流的连续性分析
对于一个稳定的渗流来说,渗流场中各点的测管水头h 及流速v等仅是位置的函数而与时间无关,即: h = f (x, z),v = g(x, z)。
z
vz+
v z z
dz
dz vx
图2-9 二维稳定 渗流场中
vz
的某微元
dx
vx+
vx x
dx
x
单位时间流入微元的水量为:
(b) 等效图
图2-8 层状土的垂直渗流情况
其特点有:
(1)通过各层土的流量与等效土层的流量均相 同,即:
qz = q1z = q2z = q3z = ∙∙∙∙∙,v = v1 = v2 = v3 = ∙∙∙∙∙∙ (2)流经等效土层的水头损失等于各土层的水
头损失之和,即:
Δh = Δh1 + Δh2 + Δh3 + ∙∙∙∙∙ = Σhi
分布规律,结合一定的边界条件后,求解该方
程即可得到此条件下的渗流场。
以上就是教材P50-51三个式子的由来。
求解拉普拉斯方程有以下四种方法:
(1)解析法 — 边界条件复杂时,难以求解;
(2)数值解法 — 差分法和有限元方法已应用越 来越广;
(3)实验法 — 用一定比尺的模型实验来模拟渗 流场,应用较广的是电比拟法等;
有
vx
kx
h x
,vz
kz
h z
,将这两式代入连续
方程(2-12)可得:
kx
2h x 2
kz
2h z 2
0
(2-13)
对于各向同性的均质土kx = kz,(2-13)还可变为:
(完整版)第二章土的渗透性和渗流问题要点
第二章 土的渗透性和渗流问题第一节 概 述土是多孔介质,其孔隙在空间互相连通。
当饱和土体中两点之间存在能量差时,水就通过土体的孔隙从能量高的位置向能量低的位置流动。
水在土体孔隙中流动的现象称为渗流;土具有被水等液体透过的性质称为土的渗透性。
土的渗透性是土的重要力学性质之一。
在水利工程中,许多问题都与土的渗透性有关。
渗透问题的研究主要包括以下几个方面:1.渗流量问题。
例如对土坝坝身、坝基及渠道的渗漏水量的估算(图2-la 、b ),基坑开挖时的渗水量及排水量计算(图2-1C ),以及水井的供水量估算(图2-1d )等。
渗流量的大小将直接关系到这些工程的经济效益。
2.渗透变形(或称渗透破坏)问题。
流经土体的水流会对土颗粒和土体施加作用力,这一作用力称为渗透力。
当渗透力过大时就会引起土颗粒或土体的移动,从而造成土工建筑物及地基产生渗透变形。
渗透变形问题直接关系到建筑物的安全,它是水工建筑物和地基发生破坏的重要原因之一。
由于渗透破坏而导致土石坝失事的数量占总失事工程数量的25%~30%。
3.渗流控制问题。
当渗流量和渗透变形不满足设计要求时,要采用工程措施加以控制,这一工作称为渗流控制。
渗流会造成水量损失而降低工程效益;会引起土体渗透变形,从而直接影响土工建筑物和地基的稳定与安全。
因此,研究土的渗透规律、对渗流进行有效的控制和利用,是水利工程及土木工程有关领域中的一个非常重要的课题。
第二节 土的渗透性一、土的渗透定律—达西定律(一)渗流中的总水头与水力坡降液体流动除了要满足连续原理外,还必须要满足液流的能量方程,即伯努里方程。
在饱和土体渗透水流的研究中,常采用水头的概念来定义水体流动中的位能和动能。
水头是指单位重量水体所具有的能量。
按照伯努里方程,液流中一点的总水头h ,可用位置水头Z 、压力水头w uγ和流速水头g v 22之和表示,即 1)-(2 22g v uz h w ++=γ 式(2—1)中各项的物理意义均代表单位重量液体所具有的各种机械能,其量纲为长度。
土力学-土的渗透性及渗流
• 防止发生流土破坏的设计要求
所需入土深度
水力梯度 i h h 2h
临界水力梯度 i c r
w
所需入土深度 h Fs w h 2
地下连续墙
h
坑底
渗
透
h
力
向
上
地表
渗 透 力 向 下
• 管涌 piping 在渗流作用下,土中的细粒在粗粒形成的孔隙中移动以至流失→孔
z
(1)连续方程的建立
流入微单元的水量(厚度为1)
dqxvxdz1vxdz dqz vzdx dqxdqzvxdzvzdx
vx
dz
流出微单元的水量
(vz v zzdz)dx(vx v xxdx)dz
vz
vz z
dz
vx
vx x
dx
vz
dx
x
对稳定流,流入量=流出量(忽略土体的变形) z
v x d z v z d x ( v z v z zd z )d x ( v x v x xd x )d z dz vx vx vz 0 x z
(2)水力梯度 水头 hydraulic head:单位重量的水所具有的能量。(故量纲为长度)
测压管水头
总水头 hzhwhv zu/wv2/2g hzu/w
势静 动
孔
渗
水水 水
隙
流
土中渗流速度通常较小,可忽略
头头 头
水
速
头位头压 头速
压
度
置力 度
水水 水
• 水力梯度
uA w
hA zA
测压管 piezometer tube
隙增大,渗流速度增加→粗粒流走→贯通的水流通道→土体塌陷。
管涌
第2章土的渗透性与渗流
稳定的控制坡降。 4.渗透流速 各点的水力坡降已知后,渗透流速的大小可根据达西定律求出, 即v=ki,
其方向为流线的切线方向。
5.渗透流量
流网中任意两相邻流线间的单宽流量q是相等的,因为:
q vA kis 1 k h s l
当取s=l时,
通过坝底的总渗流量
q =k h
失相等,相邻两条等势线之间的水头损失h 。即
h H H N n 1
式中:H—上、下游水位差,也就是水从上游渗到下游的总水头损失; N —等势线间隔数(N=n-1); n — 等势线数。
2.孔隙水压力 渗流场中各点的孔隙水压力,等于该点测压管中的水柱高度hua乘以水的容 重w。故a点的孔隙水压力为 ua=hua×w。应当注意,图中所示a、b两点位于同 一根等势线上,其测管水头虽然相同,即hua=hub,但其孔隙水压力却不同 ua ≠ ub 。 3.水力坡降 流网中任意网格的平均水力坡降i=h/l, l为该网格处流线的平均 长度。 由此可知,流网中网格越密处,其水力坡降越大。故图中,下游坝趾水流渗出 地面处(图中CD段)的水力坡降最大。该处的坡降称为逸出坡降,常是地基渗透
2.管涌 在渗透水流作用下,土中的细颗粒在粗颗粒形成的孔隙中移动.以 至流失;随着土的孔隙不断扩大,渗透流速不断增加.较粗的颗粒也相 继被水流逐渐带走,最终导致土体内形成贯通的渗流管道,造成土体塌 陷,这种现象称为管涌。
管涌破坏一般有个时间发展过程,是一种渐进性质的破坏。管涌发
生在一定级配的无粘性土中,发生的部位可以在渗流逸出处,也可以在 土体内部,故也称之为渗流的潜蚀现象。
i=h/L
i 称为水力坡降,L为两点间的渗流路径, 水力坡降的物理意义:单位渗流长度上的水头损失。
土力学第二章土的渗透性和渗透问题
§2.1 土的渗透性与渗透规律 Permeability and seepage law of soil
Ch2 土的渗透性和渗流问题 Permeability and seepage problem of soil
Ch2 土的渗透性和渗流问题 Permeability and seepage problem of soil
A
B
L
h1
h2
zA
zB
Δh
0
0
基准面
水力坡降线
总水头-单位质量水体所具有的能量
流速水头≈0
A点总水头:
B点总水头:
总水头:
水力坡降:
一.渗流中的水头与水力坡降
§2.1 土的渗透性与渗透规律 Permeability and seepage law of soil
概述
Ch2 土的渗透性和渗流问题 Permeability and seepage problem of soil
概述
Teton坝
渗流量
渗透变形
渗水压力
渗流滑坡
土的渗透性及渗透规律
二维渗流及流网
渗透力与渗透变形
扬压力
土坡稳定分析
挡水建筑物 集水建筑物 引水结构物 基坑等地下施工 边坡渗流
§2.3 渗透力与渗透变形 Seepage force and seepage deformaton
学习目标
学习基本要求
参考学习进度
学习指导
学习目标
掌握土的渗透定律与渗透力计算方法,具备对地基渗透变形进行正确分析的能力。
掌握土的渗透定律
01
掌握二维渗流及流网绘制
土力学第2章
第2章土的渗透性与渗流2.1概述由于土体本身具有连续的孔隙,如果存在水位差的作用时,水就会透过土体孔隙而产生孔隙内的流动,这一现象称为渗透。
土具有被水透过的性能称为土的渗透性。
这里所论及的水是指重力水。
水是在土的孔隙中流动的,本章假定土颗粒骨架形成的孔隙是固定不变的,并且认为,在孔隙中流动的水是具有粘滞性的流体。
也就是说,把土中水的流动,简单地看成是粘滞性的流体在土烧制成的素陶磁管似的刚体的孔隙中流动。
这种思考方法,在被称为达西定律的试验中反映出来。
达西定律是土中水的运动规律的最重要的公式。
这个公式采用了“水是从水头(总水头)高的地方流向低处”这一水流的基本原理。
根据达西定律和连续方程,再考虑边界条件,一般的透水问题都可以得到解决,即可以求出土中水的流量(透水量)及土中水压力的分布。
如图2-1 所示为土木、水利工程中典型渗流问题。
此外,土的渗透性的强弱,对土体的固结、强度以及工程施工都有非常重要的影响。
为此,我们必须对土的渗透性质、水在土中的渗透规律及其与工程的关系进行很好的研究,从而给土工建筑物或地基的设计、施工提供必要的资料。
图2-1土木、水利工程中的渗流问题2.2土的渗透性土是由固体相的颗粒、孔隙中的液体和气体三相组成的,而土中的孔隙具有连续的性质,当土作为水土建筑物的地基或直接把它用作水土建筑物的材料时,水就会在水头差作用下从水位较高的一侧透过土体的孔隙流向水位较低的一侧。
渗透:在水头差作用下,水透过土体孔隙的现象。
渗透性:土允许水透过的性能称为土的渗透性。
水在土体中渗透,一方面会造成水量损失,影响工程效益;另一方面将引起土体内部应力状态的变化,从而改变水土建筑物或地基的稳定条件,甚者还会酿成破坏事故。
此外,土的渗透性的强弱,对土体的固结、强度以及工程施工都有非常重要的影响。
2.2.1土的渗透定律地下水在土体孔隙中渗透时,由于渗透阻力的作用,沿程必然伴随着能量的损失。
为了揭示水在土体中的渗透规律,法国工程师达西(H.darcy)经过大量的试验研究,1856年总结得出渗透能量损失与渗流速度之间的相互关系即为达西定律。
土力学-第二章-土的渗流性与渗透规律3 平面渗流与流网1 张丙印
智者乐水 仁者乐山
广义达西定律:对二维平面渗流,矩阵的广义达西定律为
vx vz
kx
kzx
kxz ix
kz
iz
或简写为:
v ki
[k]一般称之为渗透系数矩阵,它是一个对称矩阵,
也即总有kxz= kzx
渗透性是土体的固有性质,不受坐标系选取的影响。
因此,[k]满足坐标系变换的规则
对应kxz= kzx=0的方向称为渗透主轴方向
广义达西定律(2) 10
§2.3 平面渗流与流网
智者乐水 仁者乐山
两种常用的简化情况:
1. 坐标轴和渗透主轴方向一致,此时kxz=kzx=0
vx
vz
kx
0
0 ix
kz
iz
vx kx ix vz kz iz
2. 对各向同性土体,恒有kxz=kzx=0,且kx=kz=k
vx vz
§2.2 土的渗流性与渗透规律 –等效渗透系数
智者乐水 仁者乐山
已知条件:
ij
i
Δh L
H Hj
达西定律: qx=vxH=kx i H Σqjx=Σkj ij Hj
等效条件: qx qjx
h
x
1
d=1.0
2
q1x k1 H1 q2x k2 H2 q3x k3 H3
kx H
1
L
2
等效渗透系数:
定律 渗透系数的测定
及影响因素
层状地基的等效 渗透系数
智者乐水 仁者乐山
• 总水头=位置水头+压力水头 • 水头是渗流的驱动力
• 达西定律 • 渗透系数、渗透速度 • 达西定律的适用条件
• 常水头试验 • 变水头试验 • 抽水试验 • 渗透系数影响因素
土力学第二章
i x = i xi ( ∆h = ∆hi ), q x =
∑q
i =1nxi Nhomakorabea);(2 ;(2
)试根据图2.5(b)求垂直透水时总垂直渗透系数Kz (提 试根据图2.5 2.5( 求垂直透水时总垂直渗透系数K
∑ ∆h
i =1
n
i
);
解:(1)水平透水时各层土的水力坡降(或水头差)相等,单位面积 (1)水平透水时各层土的水力坡降 或水头差)相等, 水平透水时各层土的水力坡降( 上的总水平透水量等于各层透水量之和, 上的总水平透水量等于各层透水量之和,即:
置
H2
γ w La
L
z2
z 2 − z1 cos α = L
-∆h 压 力 总 水 头 H1 位 置 水 头 z1 A 水 L z2 头 h1 TLa 水 头 a α B 位 置 总 水 头
j = γw
压 力 水
h1=H1-z1;h2=H2h1=H1-z1;h2=H2-z2
T = γw
H1 − H 2 = γ wi L
h 45 −2 V = k At = 2.5 ×10 × ×120 ×10 = 54cm3 l 25
h k Adt = a (−dh) l
A dh k dt = −a l t1 h h1
t2
∫
h2
∫
A h2 h1 k (t 2 − t1 ) = − a ln = a ln l h1 h2
k= 2.3al h lg 1 A(t2 − t1 ) h2
v2 u +z+ = h = 常数 2g γw
z+ u
γw
=h
-△h =h1-h2=(z1+u1/γw)-(z2+u2/γw)
土力学第二章
2.1 概述 2.2 土的渗透性 2.3 二维渗流与流网
2.4 渗透力与渗透变形
2.1 概述
2.1 概述
碎散性
多孔介质 能量差
土颗粒 土中水 渗流
三相体系
孔隙流体流动
水、气等在土体孔隙中流动的现象 土具有被水、气等流体透过的性质
渗流 渗透性
2.1 概述
土石坝坝基坝身渗流 防渗斜墙及铺 盖
1 kx H
kz
1 k j H j (0.0011 0.2 1 101 ) 3.4m/d 3 j 1
3 1 1 1 0.001 0.2 10 0.003m/d
n
k
j 1
H n H j
j
水平渗流kx:渗透系数大的土层起主导作用 竖直渗流kz:渗透系数小的土层起主导作用 kx恒大于kz,实际工程中,一定要注意渗流水流的流向
Q lg(r2 / r1 ) k 2.3 h22 h12
优点:可获得现场较为可 靠的平均渗透系数 缺点:费用较高,耗时较长
2.2 土体的渗透性
4、影响渗透系数的因素
k f (土粒特性、流体特性)
粒径大小及级配 孔隙比 矿物成分 结构 饱和度(含气量) 水的动力粘滞系数
2.2 土体的渗透性
2.2 土体的渗透性
2.2.2
渗透系数的测定和影响因素
常水头试验法
室内试验测定方法
变水头试验法
野外试验测定方法
井孔抽水试验 井孔注水试验
2.2 土体的渗透性
1、常水头试验法
试验条件: Δh,A,L已知 量测变量: V,t 结果整理
V=Qt=vAt v=ki
i=Δh/L
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
失相等,相邻两条等势线之间的水头损失h 。即
h H H N n 1
式中:H—上、下游水位差,也就是水从上游渗到下游的总水头损失; N —等势线间隔数(N=n-1); n — 等势线数。
2.孔隙水压力 渗流场中各点的孔隙水压力,等于该点测压管中的水柱高度hua乘以水的容 重w。故a点的孔隙水压力为 ua=hua×w。应当注意,图中所示a、b两点位于同 一根等势线上,其测管水头虽然相同,即hua=hub,但其孔隙水压力却不同 ua ≠ ub 。 3.水力坡降 流网中任意网格的平均水力坡降i=h/l, l为该网格处流线的平均 长度。 由此可知,流网中网格越密处,其水力坡降越大。故图中,下游坝趾水流渗出 地面处(图中CD段)的水力坡降最大。该处的坡降称为逸出坡降,常是地基渗透
向两边画等势线,每根等势线要与流线正交,并弯曲成曲线正方形。
(3) 一般初绘的流网总不能完全符合要求,必须反复修改,直至大 部分网格满足曲线正方形为止。
3. 流网的应用 流网绘出后,即可求得渗流场中各点的测管水头、水力被降、渗透 流速和渗流量。 1.总水头 根据流网特征可知,任意两相邻等势线间的势能差相等,即水头损
大多数天然沉积土层是由渗透系数不同的层土所组成,宏观上 具有非均质性。 等效方法: 等效厚度等于各土层之和。
层状土层 单一土层
等效渗透系数的大小与水流的方向有关。
水平向渗流下的等效渗透系数
水平渗流的特点: (1) 各层土中的水力坡降i=(h/L)与等效土层的平均水力坡降i相同。 (2) 垂直x-z面取单位宽度,通过等效土层H的总渗流量等于各层土渗流量 之和,即
混凝土坝下渗流
通过土坝的渗流
平面渗流的基本方程
2h 2h kx 2 k y 2 0 x y
对于各向同性的均质土,kx=ky,则上式可表示为:
2h 2h 0 x 2 y 2
即为著名的拉普拉斯(Laplace)方程。该方程描述了渗流场内部 的测管水头h的分布,是平面稳定渗流的基本方程式。通过求解一 定边界条件下的拉普拉斯方程,即可求得该条件下的渗流场。
i=h/L
i 称为水力坡降,L为两点间的渗流路径, 水力坡降的物理意义:单位渗流长度上的水头损失。
2 达西定律 达西根据对不同尺寸的圆筒和不 同类型及长度的土样所进行的试验发 现,渗出量 Q 与圆筒断面积 A 和水力 坡降 i 成正比,且与土的透水性质有 关。即 写成等式为:
Q A h L
土的毛细水性质:
毛细水是受到水与空气交界面处表面张力作用的自 由水。毛管现象是毛细管壁对水的吸力和水的表面张力 共同作用的结果。
土层毛细水带的类型:
1.正常毛细水带(毛细饱和带)
2.毛细网状水带 3.毛细悬挂水带
毛细水的产生
毛细水是受毛细管作用控制的水,可以把土的孔隙看作是连续变截 面的毛细管,毛细管放在水中,管中的水位会上升到自由水位以上的一 定高度,毛管直径愈细上升高度愈高。在常温下毛细上升高度hc与毛管半 径r有以下关系:
从而
’ = j = w ic ic= ’/ w
上式中的ic 为临界水力坡降,它是土体开始发 生流土破坏时的水力坡降。
已知土的浮容重’
'
(Gs 1) w 1 e
则ic为
Gs 1 ic 1 e
式中Gs、e分别为土粒比重及土的孔隙比。由此可知,流土的临界 水力坡降取决于土的物理性质。
由于土中渗流阻力大,流速 v 在一般情况下都很小,可以忽略。
h=z + u/w
h=z + u/w
伯努里方程用于土中渗流时有两点需要指出: (1) 饱和土体中两点间是否出现渗流,完全由总水头差决定。只有当两点间 有总水头差时,才会发生水从总水头高的点向总水头低的点流动。 (2) 由于土中渗流阻力大,故流速v在一般情况下都很小,因而形成的流速水 头也很小,为简便起见可以忽略。 水力坡降 由于渗流过程中存在能量损失,测管水头线沿渗流方向下降。两点间的 水头损失,可用一无量纲的形式来表示,即
三维流
土的渗透性: 土是多孔介质
水头差
渗透的工程影响:
1. 水能损失,影响工程效益。
2. 引起土体内部应力的变化。 3. 土体的强度,工程性质
当饱和土中的两点存在能量差时,水就在土的孔隙中从能量高的
点向能量低的点流动。 渗 流:水在土体孔隙中流动的现象。
渗透性:土具有被水等液体透过的性质。
土的层流渗透定律
(2)孔隙比; (3)矿物成分;
(4)土的结构;
(5)饱和度。 尤以前两项,即粒径大小和孔隙比对k 的影响最大。
2.渗透水的性质对k值的影响
水的性质对渗透系数k 值的影响主要是由于粘滞度不同所引起。 温度高时,水的粘滞性降低, k值变大:反之k值变小。
土的渗透系数范围
土的类型 砾石、粗砂 中 砂 渗透系数 k(cm/s) a× 10-1 ~ a× 10-2 a× 10-2 ~ a× 10-3 a× 10-3 ~ a× 10-4 a× 10-4 ~ a× 10-6 a× 10-6 ~ a× 10-7 a× 10-7 ~ a× 10-10
(2)流经等效土层H的总水头损失h等于各层 上的水头损失之和,即 将达西定律代入上式可得沿竖直方向的等效 渗透系数kz:
h h1 h2 h3 hi
i 1
n
kz
H n hi i 1 k i
影响渗透系数的因素
1.土的性质对k值的影响
(1)粒径大小与级配;
故渗透力
j = j’= w i
渗透力是一种体积力,量纲与w相同。渗透力的大小和水力坡降成 正比,其方向与渗流方向一致。
临界水力坡降
若左端的贮水器不断上提,则h逐渐增大, 从而作用在土体中的渗透力也逐渐增大。当 h 增 大到某一数值,向上的渗透力克服了向下的重力 时,土体就要发生浮起或受到破坏,俗称流土。 土体处于流土的临界状态时的水力坡降ic值。 土骨架隔离体的平衡状态。当发生流土时,土柱 压在滤网上的压力R=0,故 W’-J-R=0 所以 即 ’L- jL=0
2.管涌 在渗透水流作用下,土中的细颗粒在粗颗粒形成的孔隙中移动.以 至流失;随着土的孔隙不断扩大,渗透流速不断增加.较粗的颗粒也相 继被水流逐渐带走,最终导致土体内形成贯通的渗流管道,造成土体塌 陷,这种现象称为管涌。
管涌破坏一般有个时间发展过程,是一种渐进性质的破坏。管涌发
生在一定级配的无粘性土中,发生的部位可以在渗流逸出处,也可以在 土体内部,故也称之为渗流的潜蚀现象。
Vs= v/n
为了研究的方便,渗流计算中均采用假想的平均流速。
达西定律的适用范围
达西定律是描述层流状态下渗透流速与水头损失关系的规律, 即渗流速度v与水力坡降i成线性关系只适用于层流范围。在土木 工程中,绝大多数渗流,无论是发生砂土中或一般的粘性土中, 均介于层流范围,故达西定律均可适用。
3 渗透系数的测定和影响因素
体可分为常水头法和变水头法两种。
现场测定法 现场研究场地的渗透性,进行渗透系数k值测定时,常用现场并孔抽 水试验或井孔注水试验的方法。
常水头试验 适用于测定透水性大 的砂性土的渗透系数。 变水头试验 适用于测定渗透性很 小的粘性土的渗透系数。
由于粘性土的渗透水
量很少,用常水头试验不 易准确测定。
成层土的渗透系数
n
qx q1x q2 x q3 x qix
i 1
将达西定律代入上式可得沿水平方H
k H
i 1 i
n
i
竖直向渗流下的等效渗透系数
竖直渗流的特点: (1)根据水流连续原理,流经各土层的流速 与流经等效土层的流速相同,即
v1 v2 v3 v
Q = qL ( L为坝基长度)
通过坝底的总单宽流量 q = M q = Mk h (M流网中的流槽数)
渗透力的计算
考虑水体隔离体的平衡条件,可得:
w hw ww J ' w h1 w hw L w j ' L w h1 w (h1 hw L) w h j wi L L
一、伯努利方程 1.渗流中的总水头与水力坡降
液体流动必须满足的条件: 连续原理 能量守恒原理(伯努里D.Bernoulli方程) 为了研究的方便,常用水头的概念来研究水体流动中的位能和动能。 水头:单位重量水体所具有的能量。 按照伯努里方程,液流中一点的总水头由三部分组成: 1. 位臵水头 z 2. 压力水头 u/w h=z+u/w+v2/2g 3. 流速水头 v2/2g
流线 等势线
绘制流网的基本要求:
(1) 流线与等势线必须正交。 (2) 流线与等势线构成的各个网格的长宽比应为常数,即l/s=C。当取l=s 时,网格应呈曲线正方形,这是绘制流网时最方便和最常见的一种流网图形。 (3)必须满足流场的边界条件,以保证解的唯一性。
流网的绘制方法
现以透水地基上混凝土坝下的流网为例,说明绘制流网的步骤。 (1)首先根据渗流场的边界条件,确定边界流线和边界等势线。 (2) 根据绘制流网的另外两个要求,初步绘制流网。然后再自中央
稳定的控制坡降。 4.渗透流速 各点的水力坡降已知后,渗透流速的大小可根据达西定律求出, 即v=ki,
其方向为流线的切线方向。
5.渗透流量
流网中任意两相邻流线间的单宽流量q是相等的,因为:
q vA ki s 1 k h s l
当取s=l时,
通过坝底的总渗流量
q =k h
拉普拉斯方程式的求解
大致可分为下述四种类型: 1.数学解析法 2.数值解法 3.实验法 4.图解法 图解法即用绘制流网的方法求解拉普拉斯方程的近似解。该 法具有简便、迅速的优点,并能用于建筑物边界轮廓较复杂的情况。 只要满足绘制流网的基本要求,精度就可以得到保证,因而该法在 工程上得到广泛应用。